

Distributed Real-time Architecture for
Mixed Criticality Systems

XtratuM support of enhanced hypervisor layer
services: description and interfaces

D 2.3.1

Project Acronym DREAMS
Grant Agreement
Number

FP7-ICT-2013.3.4-610640

Document Version 1.0 Date 31.03.2015 Deliverable No. 2.3.1

Contact Person Javier O. Coronel Organisation FENTISS

Phone +34 963294704 E-Mail jcoronel@fentiss.com

Contributors

Name Partner

Javier Coronel FENTISS

Alfons Crespo UPV

Miguel Masmano FENTISS

Vicent Brocal FENTISS

Table of Contents

Contributors .. 2

Abstract ... 6

Terms, definitions and abbreviated Terms ... 7

1 Introduction ... 9

1.1 Structure of the deliverable .. 9

1.2 Relationship to other DREAMS Deliverables ... 9

2 Virtualization Overview ... 10

2.1 Virtualization layer .. 11

2.1.1 Full virtualization ... 12

2.1.2 Para-virtualization ... 13

2.1.3 Hybrid Virtualization .. 13

2.2 I/O Virtualization ... 13

2.2.1 IOMMU Virtualization ... 13

2.2.2 Device and I/O Virtualization .. 14

2.3 Guest Operating System .. 14

3 XtratuM hypervisor overview .. 16

3.1 Basic properties ... 17

4 XtratuM – Software design overview .. 19

4.1 Software static architecture .. 19

4.1.1 System deployment ... 19

4.1.2 System components .. 20

4.1.3 System states ... 23

4.2 Partition overview ... 23

4.2.1 Partition operation .. 24

4.2.2 Types of partitions ... 24

4.2.3 Names and identifiers ... 24

4.3 Partition scheduling ... 25

4.3.1 Multiple scheduling plans .. 25

4.4 Inter-Partition communications (IPC) .. 26

4.5 Health Monitor (HM) ... 27

4.6 Inter-Partition Virtual Interrupts (IPVI) ... 28

4.7 Interfaces context required by XtratuM ... 29

4.8 Interfaces context provided by XtratuM ... 29

4.8.1 Hypercalls .. 29

4.8.2 Binary interfaces .. 31

4.8.4 Partition control table (PCT) .. 32

4.8.5 Virtual Interrupts ... 33

4.8.6 Fault management model ... 36

4.8.7 Partition image header .. 37

5 Booting process ... 39

5.1 Hypervisor boot ... 39

5.2 Partition boot .. 40

6 System configuration ... 41

6.1 XtratuM subjects, objects and privileges .. 41

6.1.1 Subject identification ... 41

6.1.2 Exported resource identification ... 42

6.1.3 Exported resource access mechanism .. 43

6.1.4 Operations on exported resources .. 43

6.1.5 Partitions and the Partitioned Information Flow Policy (PIFP) 44

6.1.6 Access matrices ... 44

6.1.7 Subject temporal allocation .. 47

6.1.8 Subject memory areas allocation .. 47

6.1.9 Subjects and virtualized exported resources .. 47

6.1.10 IPC exported resources.. 48

6.1.11 Devices exported resources .. 48

6.2 Configuration file specification ... 48

6.2.1 Element HwDescription ... 51

6.2.2 Element XMHypervisor .. 57

6.2.3 Element ResidentSw .. 59

6.2.4 Element PartitionTable .. 61

6.2.5 Element Channels .. 64

6.2.6 Basic types ... 65

7 Secure State and Secure Operations ... 73

7.1 Secure State ... 73

7.2 Insecure state .. 74

7.3 Trustability enforcement ... 74

7.4 Test for secure states .. 75

7.4.1 Abstract machine test (AMT)... 75

7.4.2 Basic platform tests ... 75

7.4.3 Maintenance tests ... 76

8 DREAMS Abstraction Layer (DRAL) .. 77

8.1 DRAL .. 78

8.1.1 System Management Services ... 78

8.1.2 Partition Management Services .. 78

8.1.3 Process Management .. 79

8.1.4 Time Management Services .. 79

8.1.5 Inter-Partition Communication Services ... 79

8.1.6 Intra-Partition Communication ... 80

8.1.7 Scheduling Services ... 80

8.1.8 Monitoring Services (Health Monitor) .. 80

8.1.9 Configuration services ... 80

9 Bibliography ... 82

APPENDIX 1 ... 83

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 6 of 92

Abstract

This document describes the internal design of the XtratuM hypervisor. This presents an overview of
the main features, services and properties of the virtualization layer focused to the development of
mixed-criticality applications in distributed multicore platforms.

In this document the DREAMS Abstraction Layer specification is included, where the definition of the
main features and services of this software layer are presented. This layer is intended to deliver
DREAMS services to the application regardless of the software layer below.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 7 of 92

Terms, definitions and abbreviated Terms

Definition of terms.

Application
A set of cooperating tasks which together perform a coherent function, e.g. an avionics
function. The scope of an application, i.e. which software functions it is made of, is
defined by the system architectural design activity.

Computing platform
Environment in which applications execute; it provides Computing Resources to every
application. An application has no other interface than the one provided by the
computing platform.

Computing resource
Resources are the totality of all hardware, firmware and software and data that are
executed, utilized, created, protected or exported by the Computing Platform

Configuration file The file that describes the system configuration in a user-friendly format (XML)

Configuration vector The binary internal representation of the configuration file

Error
An error is the part of the system state that may cause a subsequent failure: a failure
occurs when an error reaches the service interface and alters the service.

Failure
A failure is an event that occurs when the delivered service deviates from correct
service.

Fault A fault is the adjudged or hypothesized cause of an error.

Hypercall
The service (system call) provided by the hypervisor. The services provided are known
as para-virtual services.

Hypervisor
The layer of software that, using the native hardware resources, provides one or more
virtual machines (partitions).

Partition
Also known as ``virtual machine'' or ``domain''. It refers to the environment created by
the hypervisor to execute user code.

Partition code

Also known as ``guest''. It is the code executed inside a partition. Usually, the code is
composed of an operating system and a set of processes or threads. Since application
code relies on the services provided by the OS, we will assume that the partition code
is an operating system (or a real-time operating system).

Resident software
The booting software that is executed directly in ROM memory right after a system
reboot, also referred as boot-loader or firmware. Among other tasks, it is in charge of
loading RAM memory and the initial partitions.

Slot See temporal window.

System partition
A partition that has extra capabilities to manage and control the system, and other
partitions. Originally these partitions were named ``supervisor partitions'' but to avoid
confusion with the processor modes it was renamed as ``system partitions''.

Temporal window
Time interval in which a partition is scheduled. A temporal windows is specified with an
initial time point and an interval. Also known as slot.

Tile
A tile can be processor cluster with several processor cores, caches, local memories and
I/O resources. Alternatively, a tile can also be a single processor core or an IP core (e.g.,
memory controller that is accessible using the NoC and shared by several other tiles).

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 8 of 92

Acronyms and Abbreviations

ABI Application Binary Interface

API Application Programming Interface

ARINC Aeronautical Radio, Incorporated

CPU Central Processing Unit

DRAL DREAMS Abstraction Layer

guestOS Guest Operating System

HM Health Monitor

IRQ Interrupt Request

libXM XtratuM library

OS Operating System

PCT Partition Control Table

PIFP Partitioned Information Flow Policy

SKPP Separation Kernel Protection Profile

TSP Temporal and Space Partitioning

UART Universal Asynchronous Receiver-Transmitter

UML Unified Modeling Language

VLayer Virtualization Layer

VM Virtual Machine

XM_CF XtratuM Configuration File

XSD Xtratum Security Functions

VCPU Virtual CPU

VFPU Virtual Floating Point Units

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 9 of 92

1 Introduction

This document presents an overview of the XtratuM hypervisor design to achieve the basic properties
of real-time applications based on multicore systems. The principles of the virtualization layer design
presented here are general enough to address application domains in order to build a solution that
allows the engineering of mixed-criticality applications over the envisioned distributed multicore
platforms.

This document sketches a summary of the architectural design of the virtualization layer to be
developed in the context of the DREAMS project. A detailed XtratuM design can be gathered in
internal reports and technical manuals of FENTISS, some of them released into the project. This
deliverable is mainly focused in the XtratuM design for the DREAMS harmonized platform using the
Zynq-7000 board. However, the basic properties and principles of this design can be used as reference
for other platforms using XtratuM. Other development systems into the DREAMS project that will also
use XtratuM are the PPC T4240-QDS and the Industrial PC Automation PC910, which include
hardware-assisted virtualization. Specific features of XtratuM for those architectures will be presented
in subsequent DREAMS deliverables such as D2.3.4 Hypervisor adaptation and drivers for local
resource manager.

Additionally, in this document the DRAL (DREAMS Abstraction Layer) specification is also included. A
definition of the features and services provided by this software layer is presented. This layer is
intended to deliver DREAMS services to the application in a transparent way of the virtualization layer.

1.1 Structure of the deliverable

This document is organised as follows: section 2 offers an outline of the world of the virtualization.
Section 3 presents a XtratuM hypervisor overview where the hypervisor is introduced and the basic
properties to be achieved by XtratuM are pointed out. Section 4 outlines the software design overview
of the virtualization layer. It describes the software static architecture and the main features of the
hypervisor such as a partition overview, scheduling, health monitor and communication schemas, it
also details the interface to the hardware and partitions. Section 5 details the booting process of the
virtualization layer and partitions. Section 6 describes the scheme of the configuration file. Section 7
presents the approach to formalize a security model. Finally, section 8 outlines the DREAMS
Abstraction Layer.

This document is complemented with an Annex that provides specification of the DREAMS Abstraction
Layer. As this annex contains a high number of pages, we considered that it is more convenient to
provide it as separate document: D2.3.1 Annex - DREAMS Abstraction Layer (DRAL) Specification
(Annex 1).

1.2 Relationship to other DREAMS Deliverables

This document is an important input for the development of the demonstrators in WP6 and WP7.
Additionally, it serves as input for D1.5.1 Intermediate integration of DREAMS platform with virtual
platform prototype and D2.3.4 Hypervisor adaptation and drivers for local resource manager.
Furthermore, this deliverable is an input for the WP5, where the XtratuM design is used as modular
safety case of a hypervisor. DRAL specification uses as main input the deliverable D1.2.1 Architectural
Style of DREAMS.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 10 of 92

2 Virtualization Overview

A quick overview through the world of the virtualization is presented in this section. This section is
developed mainly from the experiences around the XtratuM hypervisor.

Although the virtualization technology has been used in mainframe systems since 60’s; the advances
in the processing power of the desktop processors in the middle of the 90’s opened its adoption it in
the PC market. The embedded market is now ready to take advantage of this promising technology.

Virtualization is a generic term that refers to the abstraction of the computer resources. The current
state of the virtualization technology is the result of a convergence of several technologies: operating
system design, compilers, interpreters, hardware support, etc. As a result, there are several
competing/complementing technologies that can be used to build a virtual execution environment (or
virtual machine, VM).

Three main alternative virtualization techniques can be highlighted:

 Full-virtualization.

 Para-virtualization.

 Hybrid Virtualization.

The implementation of these techniques will depend mainly on the support of the hardware
architecture. The architectures can be:

 Non-Virtualizable

 Virtualizable

 Virtualizable using hardware virtualization extensions

Virtualizable architectures are those one that can be purely virtualized with trap-and-emulate model,
that is, every privilege operation generates a trap that can be handled by the hypervisor, emulating
its correct operation. However, non-virtualizable architectures can still be virtualized by using complex
software techniques such as binary translation (BT).

Additionally, hardware virtualization extensions have been introduced on some architectures in order
to include virtualization support or to improve the performance and simplify virtualization techniques.
The latter is commonly called hardware-assisted virtualization.

Full-virtualization simulates one or more instances of an underlying hardware environment. From the
point of view of “guests” OS, it is executed as on a native hardware.

Para-virtualization incorporates direct communications between the “guest” OS and the hypervisor.
This virtualization technique does not simulate hardware but involves modifying the “guest” OS to
replace non-virtualizable instructions with hypercalls that communicate directly with the virtualization
layer hypervisor.

Hybrid Virtualization combines both the full-virtualization and para-virtualization techniques in order
to take advantage of each technique.

In the development of partitioning systems three main groups should be taken into account: the user
application, the guest operating system, and the hypervisor/VMM. Depending on the virtualization
techniques used in the virtualization layer and the hardware virtualization extensions available on the
development platform, the groups listed above will have a different impact from the point of view of
performance and efficiency, compatibility and portability, complexity and maintainability. These
aspects will be discussed in the following subsections. Note that although some implementations
could include only a bare application and a hypervisor/VMM, this section addresses the most generic
partitioned systems structure.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 11 of 92

2.1 Virtualization layer

There are two main environments to run the virtualization layer: hosted or bare-metal architectures.
A hosted architecture installs and runs the virtualization layer on top of an O.S. and it is executed as
an additional application on the system. Bare-metal architecture, also known as hypervisor, installs
the virtualization layer directly on the hardware. A bare-metal architecture is more efficient than a
hosted architecture and delivers greater scalability, robustness and performance. This is because the
hypervisor has direct access to the hardware resources rather than going through an operating
system, where the efficiency could depend on the type of O.S. used as host.

This subsection describes the benefits and drawbacks of use the different alternative techniques of
virtualization in the development of the virtualization layer:

 Full virtualization.

 Para-virtualization.

 Hybrid Virtualization.

Table 1 - Comparison in the development of virtualization layer

 Full Virtualization Hybrid Virtualization Para-virtualization

Method Hw-assisted: Exit to
Root Mode on

privileged instruction.

Non-Hw assisted:
Privileged Instructions,

and/or binary
translations.

Use virtual devices.

Hybrid: hypercalls
combined with

methods used on full
virtualization.

Hypercalls: service requests to
the hypervisor. The hypercalls is
the equivalent to system calls in

O.S.

Complexity High: Developing of
firmware is required.

Medium: using
hardware assisted

virtualization

Medium: Developing of
firmware and

hypercalls
Low: Developing of hypercalls

Performance Poor with first
generations of x86

virtualization
extensions.

Good with the latest
generation virtualization

extensions for X86.

Poor/good using binary
translation or trap-and-

emulate technique.

Good. Although it
depends on the

generation hardware
virtualization
technology.

This technique could
increase the

determinism in the
execution.

Better in some cases

Portability and
compatibility

High: unmodified guest
software can be

executed.

High: this support both
unmodified and
adapted guest

software.

Low: guest software has to be
ported.

Most of the recent advances on virtualization have been done in desktop systems. The application of
these advances to embedded systems is not a straightforward activity, due to restrictions related to
determinisms, fault tolerance, hard real-time constrains, and costs, among others constraints.
Therefore, in determined application domains those latest advances in hardware virtualization

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 12 of 92

extensions could not be available and for such cases, it would require to have other virtualization
options such as para-virtualization.

In the context of the DREAMS project, XtratuM will be available for three architectures: X86, PowerPC
and ARM. The three approaches described above have been used in the developing of XtratuM for
such architectures.

In Table 1 a comparison of virtualization techniques from the point of view of the impact in the
developing of hypervisors is presented. The section 2.1.3 provides additional information about this
table.

2.1.1 Full virtualization

Full virtualization requires that every component and feature of the hardware architecture to be
reflected into each one of multiples instances of the virtual machines. This mimicry of hardware should
include the full instruction set, input/output operations, interrupts, memory access, and whatever
other elements are used by the software that runs on the bare machine.

With this technique, the virtualization layer will allow multiple unmodified guest operating system
instances to run concurrently within virtual machines on a single computer, dynamically partitioning
and sharing the available real physical resources. However, this technique requires the development
of some virtual devices that emulate real devices that can be recognized by the guest OS in the same
way as on native hardware. For example, the audio hardware manufacturer on host could be Realtek
and the audio virtual hardware manufacturer on guest could be Creative. It implies the development
of devices firmware emulation into or as additional modules of the virtualization layer. Additionally,
the hypervisor should include hardware drivers to handle real devices when virtual devices have to
change the state of real I/O devices. Some operations can be executed directly in the hardware and it
does not have to be emulated, such as processor, memory locations and arithmetic registers.

The feature described above increases the complexity of the development of the virtualization layer
and establishes an implicit dependence of the hypervisor with the real hardware, but instead increases
the portability and compatibility of “guest” software.

This virtualization technique can be achieved via classical trap-and-emulate model, using Binary
Translation (BT) or using directly hardware virtualization extensions. The first could be implemented
on several architectures such as SPARC. Early versions of VMWare Workstation are an example of the
second and the Wind River and RTS hypervisors are an implementation of the latter.

Binary Translation translates dynamically, during the software execution, portions of the guest kernel
code to replace non-virtualizable instructions with new sequences of instructions making the classic
trap-and-emulate model in software possible and the execution of privileged instructions can be
handled by the hypervisor, emulating its correct operation. To perform this translation the
virtualization layer is developed based on an interpreter, in this way the guest software is executed
on an interpreter instead of directly on a physical CPU. The interpreter separates virtual state (the
VCPU) from physical state (the CPU). However, it introduces an overhead associated to the processing,
execution and changing cost of instruction sets and it increases complexity in the development of the
virtualization layer.

Hardware-assisted virtualization introduces additional hardware extensions to simplify virtualization
techniques and provide architectural support that facilitates building the virtualization layer. The
virtualization layer can virtualize the instruction set by handling privileged instructions using a classic
trap-and-emulate model in hardware instead of software.

The hypervisor partitions management is simplified with more recent hardware virtualization
extensions. With these extensions the guest state can be automatically stored in Virtual Machine

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 13 of 92

Control Structures or Virtual Machine Control Blocks, strongly reducing the code to handle context
switches between partitions. Examples of virtual hardware extensions are AMD-V, Intel VT-x, AMD-Vi
and Intel VT-d (Directed I/O).

2.1.2 Para-virtualization

This technique is based on an interface of communication between the guest software and the
virtualization layer. The sensitive and privileged instructions are replaced by calls to the hypervisor
also called “hypercalls”. This technique simplifies the building virtualization layer and improves in most
cases the performance of guest software (Barham, 2003). This model is simpler to realize because only
a reduced number of services are required to be implemented. Comparing the para-virtualization
approach with platforms based a trap-and-emulate model, the para-virtualization can directly invoke
a handler for each privileged instruction avoiding the code disassembling. However, compared with
hardware based on the latest hardware virtualization extensions that advantage disappears. In the
case of para-virtualized platforms, not only the privileged instructions can be virtualized, also a set of
functionalities or instructions can be virtualized with a single hypercall.

On the other hand, the hardware used on embedded and hard real-time systems usually does not
have available hardware virtualization extensions. Therefore, in most cases the para-virtualization
could be the only option to implement systems based on TSP.

The main drawback of the paravirtualized system is the portability and compatibility of the “guest”
software.

2.1.3 Hybrid Virtualization

This model combines the full-virtualization and para-virtualization techniques. It takes advantage of
the benefits of each technique described above. This technique is mainly used to improve the
performance, increase the determinism and provide additional services of communication,
monitoring and supervision. Therefore, with this approach para-virtualized and unmodified guest
operating systems are supported.

A comparison of virtualization techniques from the point of view of the impact in the developing of
hypervisors is presented in Table 1. This table is based on the results obtained from several papers in
the literature such as (Barham, 2003), (Adams, 2006), (VMware, 2007), (Guy Ben-Haim, 2012). In
(Barham, 2003) a performance comparison between paravirtualized and full-virtualized hypervisors is
presented. In (Adams, 2006) a comparison of software and hardware techniques on the x86
architecture is presented. In this last paper the first-generation virtualization extensions of Intel was
used in the experiments. In (Guy Ben-Haim, 2012) the performance improvement using the last
generation of Intel virtualization extensions are presented.

2.2 I/O Virtualization

2.2.1 IOMMU Virtualization

The Input/Output memory management unit (IOMMU) is a MMU at the bus level, i.e. the IOMMU
translates physical address into virtual ones. This component allows guest partitions to directly use
peripheral devices through DMA I/O bus and interrupt remapping.

Additionally, the IOMMU provides memory protection mechanisms from mischievous devices. In a
traditional system the devices use DMA to access physical memory directly, therefore misbehaving or

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 14 of 92

malicious devices could read or write to any memory address. In a virtual environment the access
addresses for each device can be explicitly assigned.

By using this component in the building of the hypervisor layer could also simplify the switching among
partitions in a full virtualization model, allowing the use of native drivers in guest applications. The
IOMMU can avoid the fail of devices that use DMA when all the memory addresses are remapped by
the virtualization layer using a full virtualization approach.

Some architectures such as Intel (VT-d), AMD (AMD-Vi), SPARC (in LEON4 processors) and PowerPC
(T4240 processors) have released its own version of IOMMU.

2.2.2 Device and I/O Virtualization

Depending on the virtualization technique, several I/O virtualization approaches can be used. If the
technique is para-virtualization, a direct pass-through to the hardware is commonly used for device
virtualization. In this case, an I/O server could be provided as an additional service of the hypervisor
or as an I/O partition in order to share devices among partitions. Some devices could be reserved for
an exclusive management from dedicated partitions. However, in architectures where devices cannot
be allocated to a single partition in an isolated way, the implementation of an I/O server is also
required. An I/O server is a dedicated partition which, on the one hand, manages several devices, and,
on the other one, offers those devices to other partitions as services.

Additionally, the use of an I/O server as partition could simplify the building of the hypervisor layer
and the user could improve the performance of the partition execution and, have higher control from
the point of view of scheduling. For example, the user could decide when the I/O partition should be
executed in order to avoid interferences with other critical partitions. The latter is especially important
in mixed-criticality system.

On the other hand, as the full-virtualization technique emulates real devices as virtual devices, the
devices virtualization in this technique involves managing the routing of I/O requests between virtual
devices and the shared real physical hardware. This management is commonly included in the
hypervisor which adds complexity to the implementation of the hypervisor although increasing the
portability of the “guest” software. It also could have an impact on performance.

There are several hardware extensions for the device virtualization such as PCI-SIG I/O Virtualization,
which allows to natively sharing PCI Express devices, Network Virtualization (Intel VT-c), which
improves networking and I/O throughput, and Single-root I/O Virtualization (SR-IOV) that provides
near native-performance by providing dedicated I/O to virtual machines. These hardware extensions
reduce the software management of devices into the hypervisor. Thus, on the one hand, improving
the performance of the system, as well as improving data isolation among virtual machines, and
therefore providing flexibility and mobility. This is because the hardware extensions bypass the
software virtual switch in the hypervisor. However, these hardware virtualization extensions are
currently available in a reduced number of systems.

2.3 Guest Operating System

From the point of view of the Guest Operating systems, several factors must be deeply analysed before
selecting the virtualization technique to be used:

 Source code availability. This a crucial factor, since para-virtualization depends on the
replacement of low-level functionalities by high-level ones.

 System performance and determinism. The application requirements of the application, such
as real-time constrains, best-effort performance, or safety, among others could determine the
most suitable approach. In general, in most cases the hybrid-virtualization will be the best
option.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 15 of 92

 Portability and compatibility. A full virtualized environment enables the direct execution of an
unmodified system, easing portability. Additionally, another advantage to use operating
systems on a full virtualized machine is that it can be used to provide a common, more generic
underlying virtual hardware, regardless of the real one.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 16 of 92

3 XtratuM hypervisor overview

XtratuM is a real-time hypervisor that it is intended for execution in a bare computer. XtratuM shares
out the resources (i.e. memory and computing time) between the Partitions. A partition is an
independent execution unit designed to execute under XtratuM’s control.

XtratuM is a hypervisor that can include para-virtualization, full-virtualization or the combination of
both techniques to build a virtualization layer. The techniques used will depend on the hardware
support.

Basically, the hypervisor provides multiple isolated virtual machines, or partitions. Each partition can
execute a complete system (i.e. OS kernel and the application processes) or bare applications (i.e.
execution runtime and application). Communication between partitions is done commonly by means
of a virtual network or inter-partition communications mechanisms. From the application layer, a
hypervisor system is much more than a distributed system: a set of computers, where each computer
runs its own operating system and applications, and computers are inter-connected with a high speed
network. The most noticeable difference is the speed of the virtual computers, which is only a fraction
of the native computer.

Figure 1 shows the approach in monocore. The hypervisor virtualizes the CPU and offers a virtual CPU
to the partitions.

Figure 1: Monocore virtualization

In a multicore approach, the hypervisor can provide several virtual CPUs to the partitions. A partition
can be mono or multicore. Different partitions (from the point of view of the number of cores) can
coexist in the system. It allows to profit from a multicore platform even if the partitions are not
multicore. Figure 2 shows an example of this view. It shows a multicore platform virtualized by
XtratuM which offers the possibility to build multicore or monocore partitions. In the example, two
partitions use all the virtualized CPUs due to it uses a multicore OS. The third partition is monocore
and only uses a virtual CPU.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 17 of 92

Figure 2: Multicore approach

XtratuM offers a complete hardware abstraction to allow to the partitions to execute its code as native
machine. However, in a para-virtualized approach, the partitions will require to use the services
provided by the hypervisor to use the virtualized resources via hypercalls.

In general, in multicore architectures, some sources of indeterminism can strongly impact in the WCET
determination of the partitions. These sources of indeterminism are:

 Internal architecture aspects

 Cache management (L2 and L3 caches mainly)

 Shared memory accesses

 Shared controller units

 Bus arbitration

These issues can add unpredictability to the execution of the partitions. For instance, there is a
problem when several cores running at the same time access to the memory. It is a source of
indeterminism that is well known problem in multicore systems. In the case of a hypervisor, the
problem still exists and has to be solved at partition level by performing a more complex estimation
time required for the partition. From the hypervisor point of view, this temporal interference can only
be avoided if the hardware base provides mechanisms to handle it. Therefore, it is not the
responsibility of the hypervisor to provide a solution for that problem. In some cases, the virtualization
layer could mitigate the problem by constraining the use of the resources. For instance, when cache
management is available in the hardware, it could force a partitioning of the cache or other
techniques. DREAMS studies how these interferences could be better mastered on current
architectures in WP2 and WP4, by providing system services as the Local Resource Manager (LRM).
These services will work as Xtratum extensions.

3.1 Basic properties

The basic properties to be achieved by a hypervisor for multicore mixed-critically embedded
applications are:

- Spatial isolation: A partition is completely allocated in a unique address space (code, data, stack).
This address space is not accessible by other partitions. The hypervisor has to guarantee the spatial

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 18 of 92

isolation of the partitions. The system architect can relax this property by defining specific shared
memory areas between partitions. This spatial isolation is achieved using support hardware.

- Temporal isolation: A partition is executed independently of the execution of other partitions. In

other words, the execution of a partition cannot be disturbed by the execution of other partitions.
It influences directly on the scheduling policies at hypervisor level. The hypervisor has to schedule
partitions under a scheduling policy that guarantees the partition execution. However, in
multicore systems, the temporal interferences in parallel executions only can be avoided if the
hardware base provides mechanisms to achieve it. Otherwise, the hypervisor side a time
separation of system partitions is achieved by an adequate scheduling plan. The scheduling must
provide an execution plan, such that no partition interferes with any other partition. The safest
scheduling policy provided is static cyclic scheduling, where partition execution times are
configured a priori and cannot be changed during an execution. The hypervisor can model the
hardware temporal interferences using different scheduling algorithms. Using this method the
effect of the interferences can be significantly reduced, but they cannot be disabled.

- Predictability: A partition with real-time constraints has to execute its code in a predictable way.
It can be influenced by the underlying layers of software (guest-OS and hypervisor) and by the
hardware. From the hypervisor point of view, the predictability applies to the provided services,
the operations involved in the partition execution and the interruption management of the
partitions.

- Security: All the information in a system (partitioned system) has to be protected against access
and modification from unauthorised partitions or unplanned actions. Security implies the
definition of a set of elements and mechanisms that permit to establish the system security
functions. This property is strongly related with the static resource allocation and a fault model
to identify and confine the vulnerabilities of the system.

 Static resource allocation: The system architect is the responsible of the system definition and
resource allocation. This system definition is detailed in the configuration file of the system
specifying all system resources, namely, number of CPUs, memory layout, peripherals,
partitions, the execution plan of each CPU, etc. Each partition has to specify the memory
regions, communication ports, temporal requirements and other resources that are needed
to execute the partition code. Static resource allocation is the basis of predictability and safety
of the system. The hypervisor has to guarantee that a partition can access to the allocated
resources and deny the requests to other not allocated resources.

 Fault isolation and management: A fundamental issue in critical systems is the fault
management. Faults, when occur, have to be detected and handled properly in order to isolate
them and avoid the propagation. A fault model to deal with the different types of errors is to
be designed. The hypervisor has to implement the fault management model and allowing the
partitions to manage those errors that involve the partition execution.

- Partition support: The execution environments are required to be adapted to work on a virtual
platform. The hypervisor has to provide the support to execute partitions and inform about how
the system is working.

- Confidentiality: Partitions cannot access to the space of other partitions neither see how the
system is working. From their point of view, they only can see their own partition. This property

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 19 of 92

can be relaxed to some specific partitions in order to see the status of other partitions or control
their execution.

4 XtratuM – Software design overview

This section is focused mainly on the XtratuM hypervisor using a para-virtualized approach for the
DREAMS harmonized platform. This platform consists of a Zynq-7000 Board using an processor ARM
Cortex A9, which does not incorporate hardware virtualization extensions. However, many services
described below will be used in a similar way on XtratuM using others virtualization approaches.
Additionally, the execution environment of the partition will be assumed as a bare partition using a
minimal runtime to allow the execution of applications. This runtime could be the minimal execution
runtime provided by XtratuM and called XAL, or it could be a minimal Bare-C Cross-compiler system
around GNU/GCC tools.

4.1 Software static architecture

4.1.1 System deployment

XtratuM is a bare metal hypervisor intended mainly for embedded real-time systems.Figure 3 shows
the expected deployed system: the XtratuM hypervisor runs on a specific board (e.g. Zynq-7000 Board,
ATOM-Intel Board, T4240-QDS PPC board), managing it and providing multiple virtual execution
environments (i.e. partitions). The application, XAL/DRAL and the LibXM (library provided by XtratuM)
are executed within one of these partitions.

Figure 3: System deployment diagram

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 20 of 92

4.1.2 System components

The system (Figure 4) is composed by (bottom to top, external components in gray) the Hardware
Layer, the XtratuM hypervisor, XAL/DRAL and the user application.

Zynq-7000 Board: Hardware platform [7] where the software components are executed. It
includes a dual-core 32-bit ARM Cortex-A9 processor, OCM, SDRAM and FLASH. Software
components interact with this component through the processor registers and the memory
ports. The Cortex-A9 processor has available TrustZone technology[8], which allows the
execution of software in two different worlds: a) Secure domain, it has access to all
instructions and resources on the system; b) Normal domain, it has the same capabilities as
secure domain from the point of view of execution and access to processor (including all
processor modes), but in this mode only the resources1 previously allocated by the secure
domain are available.

Figure 4: System deployment diagram

XtratuM hypervisor: XtratuM hypervisor [8] manages the underlying hardware, providing
multiple virtual execution environments. For each of these virtual execution environments,
the hypervisor allocates a set of physical resources to be used directly by the partition and
implements a set of virtual devices, such as timer and clock, behaving similarly to their
hardware counterparts. Additionally, the hypervisor provides a subset of custom services and

1 Resources refer to physical memory, devices management, interrupts, coprocessors, etc.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 21 of 92

functionality related to management, monitoring and control at the partition and system
levels. Inter-partition, inter-tile and inter-node communication services are also provided by
the hypervisor via the DRAL layer. The interaction of the software with these services is
performed through a set of low-level services provided by the hypervisor in the LibXM. The
hypervisor is released jointly with the LibXM that may be linked jointly with the partition code
providing a C interface to the XtratuM services. The use of this library is not compulsory,
nonetheless, the partition may be in charge of implementing the hypervisor service invocation
convention. The virtual environments run in “Normal domain” such as defined by ARM
TrustZone technology [9]. While the hypervisor runs in “Secure domain” in order to manage
the access to the physical resources that can be performed from the partitions.

XAL/DRAL: XAL is a minimal run-time environment provided by XtratuM to execute simple
partition code. XAL provides a developing environment to create bare “C” applications. XAL is
provided jointly with the XtratuM sources as a library “LibXAL”. This environment is linked by
default with the library LibXM and it can be used as tool to test the XtratuM services.

DRAL is the DREAMS Abstraction Layer. This layer includes specific DREAMS services involving
hypervisor, partition, scheduling and communication services. DRAL offers a homogenous
interface to the applications to access low level services in the DREAMS platform. This
software component will be addressed in section 0.

Application: Software payload executed within a virtual execution environment provided by
XtratuM. The application is linked with the DRAL library, LibXAL and LibXM. It uses the services
and abstractions provided by DRAL and XAL.

Note that the application could use a more complex operative system instead of a minimal run-time.
For such case, XAL would be replaced by the new O.S. but DRAL maintains the same application
interface, although it would be a DRAL adapted to such O.S.

4.1.2.1 Zynq-7000 board

In the specific case for the DREAMS harmonized platform, it uses a Zynq-7000 series board, which
incorporates the ARM Cortex-A9 Dual core as processing system (PS). The Cortex-A9 is a 32 bit
processor core that implements the ARMv7A architecture.

This processor implements the ARM TrustZone technology and XtratuM takes advantage of this
technology to perform virtualization of the system. The aim of ARM’s Trustzone technology was not
to make the ISA (Instruction Set Architectures) virtualizable, but to increase system security. However,
it still exhibits some useful properties that can help virtualization.

Trustzone introduces two new modes called worlds, secure domain and normal domain. Software
executing in the normal world cannot access resources belonging to the secure world. Secure world
software on the other hand can access non secure resources. All exception and processor modes are
available in both worlds. Interrupts and devices can be assigned to either world. If they are assigned
to the secure world it is possible to expose them to normal world software, but only via using defined
interfaces which invoke secure world software. For example all interrupts are handled by secure world
software and are only forwarded directly to the normal world when configured accordingly. Also
devices that are allocated to the secure world can only, if an interface is exposed to them, be accessed
indirectly by normal world software. However, the devices can also be allocated directly to normal
world if it is configured in that way. This indirection prevents normal world (the non-secure world)
software from interfering with the secure world.

As those examples show TrustZone allows aspects of the normal world to be managed by the secure
mode using predefined allocation of resources.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 22 of 92

4.1.2.2 XtratuM top-level architecture

Figure 5 shows the decomposition of XtratuM in its major sub-components as well as its interface with
DRAL. These sub-components are (from top to bottom):

Figure 5: XtratuM top-level architecture

LibXM: Library released jointly with XtratuM source code. This library may be optionally linked
with the partition software providing a C interface to invoke XtratuM services. It is used by
XAL/DRAL to interface with XtratuM.

Application: Software payload executed within a virtual execution environment (partition)
provided by XtratuM. The application is linked with the DRAL library, LibXAL and LibXM. It uses
the services and abstractions provided by DRAL and XAL.

XtratuM core: The core manages the underlying hardware, providing the abstraction and
facilities required to run multiple virtual execution environments on the hardware. For each
of these virtual execution environments, the hypervisor provides a set of services that could
be classified as: system and partition management services, time and scheduling,
communications, health-monitoring and tracing services, virtual extended interrupt
management and multicore support. Additionally, the hypervisor can offer virtual devices
mimicking the ones present in underlying hardware when several execution environments
require the same physical device. These services and virtual devices are managed through a
set of low-level services implemented by the core. Each partition includes a partition control
table. The partition control table is a memory area shared between the partition and XtratuM,
used by this last one to provide relevant information. Partitions are scheduled according to a
cyclic scheduling policy. Although, the cyclic scheduling is the policy typically used to schedule
partitions in critical systems, there are other scheduling policies available to be used with
XtratuM.

XM_CF (XtratuM Configuration file): This component is a table defining the hypervisor
configuration, among other things, partitions, inter-partition communication, channels,
resource allocation: memory maps, interrupts, devices, etc. The XtratuM Configuration File
(XM_CF) is the translation of the XML file used to configure the hypervisor into a binary format
understandable by the hypervisor.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 23 of 92

4.1.3 System states

XtratuM is a software component that shares out the memory and computes time between a set of
partitions following a configuration plan. To be able to share the resources, XtratuM needs to initialize
a set of data, and load each partition in memory. This is done at first in the BOOT state, that includes
the period of time between starting from the entry point, to the execution of the first partition. In this
state the scheduler is not enabled and the partitions are not executed.

Figure 6: System states diagram

At the end of the boot sequence the hypervisor is ready to start executing partition code. The system
is in NORMAL state and the scheduling plan is started. XtratuM only runs when a service is requested
by the current partition, or when an asynchronous event arrives.

The system can switch to HALT state by the health monitor system in response to a detected error or
by the system partition invoking the halt system hypercall. In the halt state the scheduler is disabled,
the hardware interrupts are disabled, and the processor enters in a power sleep mode or in an endless
loop (configuration dependent). The only way to exit from this state is via an external hardware reset.

4.2 Partition overview

A partition is an independent execution unit designed to execute under XtratuM’s control. Each
partition can execute a complete system (OS kernel and the application processes) or bare applications
(execution runtime and application). The latter is independent from the point of view of the
hypervisor.

Figure 7: Partition states and transitions

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 24 of 92

4.2.1 Partition operation

Once XtratuM is in normal state, partitions are started. The partition’s states and transitions are shown
in Figure 7.

On start-up each partition is in boot state. XtratuM has to prepare the virtual machine to be able to
run the applications: it sets up a standard execution environment (that is, initializes a correct stack
and sets up the virtual processor control registers), creates the communication ports, requests the
hardware devices (I/O ports and interrupt lines), etc., that it will use. Once the partition has been
initialized, it changes to normal mode.

The partition receives information from XtratuM about the previous executions, if any.

From the hypervisor point of view, there is no difference between the boot state and the normal state.

In both states the partition is scheduled according to the fixed plan, and has the same capabilities.
Although not mandatory, it is recommended that the partition emits a partition’s state-change event
when changing from boot to normal state.

The normal state is subdivided in three sub-states:

 Ready. The partition is ready to execute code, but it is not scheduled because it is not in its
time slot.

 Running. The partition is being executed by the processor.

 Idle. If the partition does not want to use the processor during its allocated time slot, it can
relinquish the processor and wait for an interrupt or for the next time slot (see XM_idle_self()).

A partition can halt itself or be halted by a system partition. In the halt state, the partition is not
selected by the scheduler and the time slot allocated to it is left idle (it is not allocated to other
partitions). All resources allocated to the partition are released. It is not possible to return to normal
state.

In suspended state, a partition will not be scheduled and interrupts are not delivered. Interrupts raised
while in suspended state are left pending. If the partition returns to normal state, then pending
interrupts are delivered to the partition. The partition can return to ready state if requested by a
system partition by calling XM_resume_partition() hypercall.

4.2.2 Types of partitions

XtratuM defines two types of partitions: normal and system. System partitions are allowed to manage
and monitor the state of the system and other partitions. Some hypercalls cannot be called by a
normal partition or have restricted functionality.

Note that system partition rights are related to the capability to manage the system, and not to the
capability to access directly to the native hardware or to break the isolation: a system partition is
scheduled as a normal partition; and it can only use the resources allocated to it in the configuration
file.

A partition has system capabilities if the /System_Description/Partition_Table/Partition/@flags
attribute contains the flag “system” in the XML configuration file. Several partitions can be defined as
system partition.

4.2.3 Names and identifiers

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 25 of 92

Each partition is globally identified by a unique identifier id. Partition identifiers are assigned by the
integrator in the XM CF file. XtratuM uses this identifier to refer to partitions. System partitions use
partition identifiers to refer to the target partition. The “C” macro XM_PARTITION_SELF can be used
by a partition to refer to itself.

These ids are used internally as indexes to the corresponding data structures. The fist identifier (id) of
each object group shall start in zero and the next id’s shall be consecutive. It is mandatory to follow
this order in the XM_CF file.

The attribute name of a partition is a human readable string. This string shall contain only the following
set of characters: upper and lower case letters, numbers and the underscore symbol. It is advisable
not to use the same name on different partitions. A system partition can get the name of another
partition by consulting the status object of the target partition.

In order to avoid name collisions, all the hypercalls of XtratuM contain the prefix “XM”. Therefore, the
prefix “XM”, both in upper and lower case, is reserved.

4.3 Partition scheduling

XtratuM main schedules partitions in a fixed, cyclic basis (ARINC-653 scheduling policy). This policy
ensures that one partition cannot use the processor for longer than scheduled to the detriment of the
other partitions. The set of time slots allocated to each partition is defined in the XM_CF configuration
file during the design phase. Each partition is scheduled for a time slot defined as a start time and a
duration. Within a time slot, XtratuM allocates the processor to the partition.

If there are several concurrent activities in the partition, the partition shall implement its own
scheduling algorithm. This two-level scheduling scheme is known as hierarchical scheduling. XtratuM
is not aware of the scheduling policy used internally on each partition.

In general, a cyclic plan consists of a major time frame (MAF) which is periodically repeated. The MAF
is defined as the least common multiple of the periods of the partitions (or the periods of the threads
of each partition, if any).

Other scheduling schemas of partitions are available to be used on XtratuM. Some of these schemas
are based on fixed-priorities and cyclic with spare capabilities. Scheduling schemas as results of
DREAMS WP3 could be included as scheduling schemas of partitions in XtratuM.

4.3.1 Multiple scheduling plans

Using the cyclic scheduling schema to schedule partitions, in some cases, a single scheduling plan may
be too restrictive. For example:

 Depending on the guest operating system, the initialisation can require a certain amount of
time and can vary significantly. If there is a single plan, the initialisation of each partition can
require a different number of slots due to the fact that the slot duration has been designed
considering the operational mode. This implies that a partition can be executing operational
work whereas others are still initialising its data.

 The system can require to execute some maintenance operations. These operations can
require allocating other resources different from the ones required during the operational
mode.

In order to deal with these issues, XtratuM provides multiple scheduling plans that allow reallocating
the timing resources (i.e. the processor) in a controlled way. In the scheduling theory this process is
known as mode changes. Figure 8 shows how the modes have been considered in the XtratuM
scheduling.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 26 of 92

Figure 8: Scheduling modes

The scheduler (and so, the plans) is only active while the system is in normal mode. Plans are defined
in the XM_CF file and identified by a identifier. Some plans are reserved or have a special meaning:

Plan 0: Initial plan. The system selects this plan after a system reset. The system will be in plan 0 until
a plan change is requested.

Plan 1: Maintenance plan. This plan can be activated in two ways:

 As a result of the health monitoring action XM_HM_AC_SWITCH_TO_MAINTENANCE. The
plan switch is done immediately.

 Requested by a system partition. The plan switch occurs at the end the current plan.

It is advisable to allocate the first slot of this plan to a system partition, in order to start the
maintenance activity as soon as possible after the plan switch. Once the maintenance activities
have been completed, it is responsibility of a system partition to switch to another plan (if
needed).

A system partition can also request a switch to this plan.

Plan x (x>1): Any plan greater than 1 is user defined. A system partition can switch to any of these
defined plans at any time.

4.4 Inter-Partition communications (IPC)

Inter-partition communications are communications between two or more partitions. XtratuM
implements a message passing model which highly resembles the one defined in the ARINC-653
standard. A message is a variable block of data. A message is sent from a source partition to one or
more destination partitions. The data of a message is transparent to the message passing system.

A communication channel is the logical path between one source and one or more destinations.
Partitions can access to channels through access points named ports. The hypervisor is responsible for
encapsulating and transporting messages that have to arrive to the destination(s) unchanged. At
partition level, messages are atomic entities: either the whole message is received or nothing is
received. Partition developers are responsible for agreeing on the format (data types, endianess,
padding, etc.).

XtratuM provides two basic transfer modes: sampling and queuing.

Channels, ports, maximum message sizes and maximum number of messages (queuing ports) are
entirely defined in the configuration files.

Sampling port: It provides support for broadcast, multicast and unicast messages. No queuing is
supported in this mode. A message remains in the source port until it is transmitted through the
channel or it is overwritten by a new occurrence of the message, whatever occurs first. Each new

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 27 of 92

instance of a message overwrites the current message when it reaches a destination port, and
remains there until it is overwritten. This allows the destination partitions to access the latest
message.

The channel has an optional configuration attribute named @refreshPeriod. This attribute defines
the maximum time that the data written in the channel is considered “valid”. Messages older than
the valid period are marked as invalid. When a message is read, a bit is set accordingly to the valid
state of the message.

Queuing port: It provides support for buffered unicast communication between partitions. Each port
has a queue associated where messages are buffered until they are delivered to the destination
partition. Messages are delivered in FIFO order.

If the requested operation cannot be completed because the buffer is full (when trying to send a
message) or empty (when attempting to receive a message), then the operation returns
immediately with the corresponding error. The partition’s code is responsible for retrying the
operation later.

In order to optimise partition’s resources and reduce the performance loss caused by polling the state
of the port, XtratuM triggers an extended interrupt when a new message is written/sent to a port.
Since there is only one single interrupt line to notify for incoming messages, on the reception of the
interrupt, the partition code has to determine which port or ports are ready to perform the operation.
XtratuM maintains a bitmap in the Partition Control Table to inform about the state of each port. A
“1” in the corresponding entry indicates that the requested operation can be performed.

When a new message is available in the channel, XtratuM triggers an extended interrupt to the
destination(s).

4.5 Health Monitor (HM)

The health monitor is the part of XtratuM that detects and reacts to anomalous events or states. The
purpose of the HM is to discover errors at an early stage and try to solve or confine the faulting
subsystem in order to avoid a failure or reduce the possible consequences.

It is important to clearly understand the difference between 1) an incorrect operation (instruction,
function, application, peripheral, etc.) which is handled by the normal control flow of the software,
and 2) an incorrect behaviour which affects the normal flow of control in a way not considered by the
developer or which can not be handled in the current scope.

An example of the first kind of errors is: the malloc() function returns a null pointer because there is
not memory enough to attend the request. This error is typically handled by the program by checking
the return value. As for the second kind, an attempt to execute an undefined instruction (processor
instruction) may not be properly handled by a program that attempted to execute it.

The XtratuM health monitoring system will manage those faults that cannot, or should not, be
managed at the scope where the fault occurs.

The XtratuM HM system is composed of four logical blocks:

 HM event detection: to detect abnormal states, using logical probes in the XtratuM code.

 HM actions: a set of predefined actions to recover from the fault or confine an error.

 HM configuration: to bind the occurrence of each HM event with the appropriate HM action.

 HM notification: to report the occurrence of the HM events.

Note that only some events are detected directly by the hypervisor. Most hardware events are
received directly by the partitions that generate them. Partition events must be handled by the
partitions and those events are not detected by XtratuM. Therefore, the hypervisor provides to the
partition a mechanism for the notification of events, which will be processed based on actions

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 28 of 92

configured in the configuration file. These services of notification should be used by the partitions in
order to maintain the scheme proposed by the hypervisor XtratuM to detect and react to anomalous
states.

Figure 9: Health monitoring overview.

Once the defined HM action is carried out by XtratuM, a HM notification message is stored in the HM
log stream (if the HM event is marked to generate a log). A system partition can then read those log
messages and perform a more advanced error handling. In Figure 9 a health monitoring overview is
shown.

4.6 Inter-Partition Virtual Interrupts (IPVI)

An Inter-Partition Virtual Interrupt (IPVI) emulates the way a real Inter-Processor Interrupts (IPIs)
works in real processors. That is, every time the correspondent hypercall is invoked, a virtual interrupt
is caused to a destination partition. An IPVI can be raised by any partition.

Each partition has a maximum of 8 IPVIs, implemented as the last eight extended virtual interrupts.
The system integrator, though the XML, indicates the entity who receives a IPVI after being raised.

<Channels>

 <Ipvi id="0" sourceId="5" destinationId="8" />

 <Ipvi id="0" sourceId="4" destinationId="1" />

 <Ipvi id="1" sourceId="4" destinationId="8, 1" />

</Channels>

The example above shows a configuration where the behaviour of three IPVIs is defined: the IPVI 0,
caused by the partition 5 and received by the partition 8. The IPVI 0 and 1, caused both by the partition
4 and received, the first one by the partition 1 and the second by the partitions 8 and 1.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 29 of 92

4.7 Interfaces context required by XtratuM

Xtratum requires a set of hardware services that are strongly dependent on the processor. The
following type of interfaces are required for the ARM Cortex-A9 processor:

Interface Required

CPU Registers Partition context switch.

Timers Timer handler and external interface. Provide a system time.

TrustZone interface Control of execution worlds. Allocation of memory, interrupts,
devices, coprocessor access, among others.

MMU Memory management.

Interrupt device Interrupt handler and management. Virtualize hardware interrupts
when these are shared, otherwise the interrupts are allocated directly
to the partition and managed by the partition.

Cache control unit Cache management

IO Ports/devices Device management and external interface

4.8 Interfaces context provided by XtratuM

4.8.1 Hypercalls

The external interface is provided through the libXM that provides to the partition the XM-API. The
exact list of services provided by XtratuM is detailed in the [10] Manual. Next tables list a subset of
these services that should be taken as example.

4.8.1.1 System services

Interface Required

XM-System services Services related to the system management

XM_get_system_status Get the current status of the system.

XM_halt_system Stop the system.

XM_reset_system Reset the system.

4.8.1.2 Partitioning services

Interface Required

XM-Partitioning services Services related to the partition management

XM_get_partition_status Get the current status of a partition.

XM_halt_partition Terminates a partition.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 30 of 92

XM_params_get_PCT Gets the address of the Partition Control Table

XM_reset_partition Reset a partition.

XM_resume_partition Resume a partition

XM_set_partition_opmode Informs the internal status of the partition

XM_shutdown_partition Send a shutdown interrupt to a partition.

XM_suspend_partition Suspend the execution of a partition.

4.8.1.3 Time services

Interface Required

XM-Time services Services related to the time management

XM_get_time Gets the global or local time

XM_set_timer Arm a timer based on a global or local time

4.8.1.4 Plan schedule services

Interface Required

XM-Plan services Services related to the plan management

XM_get_plan_status Return information about the scheduling plans.

XM_switch_sched_plan Request a plan switch at the end of the current MAF.

4.8.1.5 Inter-partition communication services

Interface Required

XM-IPC services Services related to the inter-partition communication

XM_create_queuing_port Create a queuing port.

XM_create_sampling_port Create a sampling port

XM_get_queuing_port_info Get the info of a queuing port.

XM_get_queuing_port_status Get the status of a queuing port.

XM_get_sampling_port_info Get the info of a sampling port.

XM_get_sampling_port_status Get the status of a sampling port.

XM_read_sampling_message Read a message from the specified sampling port

XM_receive_queuing_message Receive a message from the specified queuing port.

XM_send_queuing_message Send a message in the specified queuing port.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 31 of 92

XM_write_sampling_message Writes a message in the specified sampling port.

4.8.1.6 Health monitor services

Interface Required

XM-HM services Services related to the HM management

XM_hm_get_app_error Read a application health monitoring log entry.

XM_hm_raise_app_error Raises an application error

XM_hm_read Read a health monitoring log entry.

XM_hm_seek Sets the read position in the health monitoring stream.

XM_hm_status Get the status of the health monitoring log stream.

4.8.1.7 Tracing services

Interface Required

XM-Trace services Services related to the Trace management

XM_trace_event Records a trace entry.

XM_trace_open Open a trace stream.

XM_trace_read Read a trace event.

XM_trace_seek Sets the read position in a trace stream.

XM_trace_status Get the status of a trace stream.

4.8.1.8 Interrupt management services

Interface Required

XM-IRQ services Services related to the Virtual Interrupt management

XM_clear_irqmask Unmask virtual interrupts.

XM_clear_irqpend Clear pending virtual interrupts.

XM_route_irq Link an virtual interrupt to a specific interrupt vector

XM_set_irqmask Mask virtual interrupts.

XM_set_irqpend Force some virtual interrupts as pending.

4.8.2 Binary interfaces

This section covers the data types and the format of the files and data structures used by XtratuM.

XtratuM conforms to the following conventions of basic data types:

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 32 of 92

Unsigned Signed Size (bytes) Alignment

xm_u8_t xm_s8_t 1 1

xm_u16_t xm_s16_t 2 4

xm_u32_t xm_s32_t 4 4

xm_u64_t xm_s64_t 8 8

These data types have to be stored in the endianness format required according to the underlying
architecture,.

``C'' declaration which meet these definitions are presented in the list below:

// Basic types
typedef unsigned char xm_u8_t;
typedef char xm_s8_t;
typedef unsigned short xm_u16_t;
typedef short xm_s16_t;
typedef unsigned int xm_u32_t;
typedef int xm_s32_t;

typedef unsigned long long xm_u64_t;

typedef long long xm_s64_t;

// Extended types

typedef long xmLong_t;

typedef xm_u32_t xmWord_t;

#define XM_LOG2_WORD_SZ 5

typedef xm_s64_t xmTime_t;

#define MAX_XMTIME 0x7fffffffffffffffLL

typedef xm_u32_t xmAddress_t;

typedef xmAddress_t xmIoAddress_t;

typedef xm_u32_t xmSize_t;

typedef xm_s32_t xmSSize_t;

typedef xm_u32_t xmId_t;

For future compatibility, most data structures contain version information. It is a xm_u32_t data type
with 3 fields: version, subversion and revision. The macros listed next can be used to manipulate those
fields:

#define XM_SET_VERSION(_ver, _subver, _rev) ((((_ver)&0xFF)<<16)|(((
_subver)&0xFF)<<8)|((_rev)&0xFF))
#define XM_GET_VERSION(_v) (((_v)>>16)&0xFF)
#define XM_GET_SUBVERSION(_v) (((_v)>>8)&0xFF)

4.8.3 #define XM_GET_REVISION(_v) ((_v)&0xFF)

4.8.4 Partition control table (PCT)

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 33 of 92

In order to minimize the overhead of the para-virtualized services, XtratuM defines a special data
structure that is shared between the hypervisor and the partition called Partition control table (PCT).
There is a PCT for each partition. XtratuM uses the PCT to send relevant operating information to the
partitions. The PCT is mapped as read-only, allowing a partition only to read it. Any write access causes
a system exception. Partitions can access this table using the address provided by the
XM_params_get_PCT macro.

typedef struct {
 xm_u32_t magic;
 xm_u32_t xmVersion; // XM version
 xm_u32_t xmAbiVersion; // XM's abi version
 xm_u32_t xmApiVersion; // XM's api version
 xm_u32_t resetCounter; // Number of partition reset
 xm_u32_t resetStatus; // Reset status
 xm_u32_t cpuKhz; // CPU frequency
 xmId_t id; // Partition identifier
 // Copy of kthread->ctrl.flags
 xm_u32_t flags;

 xm_u32_t imgStart;

 xm_u32_t hwIrqs[CONFIG_NO_HWIRQS/32];// Hw interrupts belonging
to the partition
 xm_s32_t noPhysicalMemAreas; //No of memory areas
 xm_s32_t noCommPorts; // No of comm. ports
 xm_u8_t name[CONFIG_ID_STRING_LENGTH];
 xm_u32_t iFlags;
 xm_u32_t hwIrqsPend[CONFIG_NO_HWIRQS/32]; // pending hw irqs
 xm_u32_t hwIrqsMask[CONFIG_NO_HWIRQS/32]; // masked hw irqs

 xm_u32_t extIrqsPend; // pending extended irqs
 xm_u32_t extIrqsMask; // masked extended irqs

 struct pctArch arch;
 struct {
 xm_u32_t noSlot:16, releasePoint:1, reserved:15;
 xm_u32_t id;
 xm_u32_t slotDuration;
 } schedInfo;
 xm_u16_t trap2Vector[NO_TRAPS];
 xm_u16_t hwIrq2Vector[CONFIG_NO_HWIRQS];
 xm_u16_t extIrq2Vector[XM_VT_EXT_MAX];
} partitionControlTable_t;

4.8.5 Virtual Interrupts

4.8.5.1 Interrupt model

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 34 of 92

Different manufacturers use terms like exceptions, faults, aborts, traps, and interrupts to describe the
processor mechanism to receive a signal indicating the need for attention. Also, different authors
adopt different terms to their own use. In order to define the interrupt model, we provide the generic
definition of the terms used in this work.

A trap is the mechanism provided by the processor to implement the asynchronous/synchronous
transfer of control. When a trap occurs, the processor switches to a privileged mode and
unconditionally jumps into a predefined handler.

A software trap is raised by a processor instruction and it is commonly used to implement the system
call mechanism in the operating systems.

An exception is an automatically generated interrupt that occurs in response to some exceptional
condition violation. It is raised by the processor to inform about a condition that prevents the
continuation of the normal execution sequence.

A hardware interrupt is a trap raised due to an external hardware event (external to the CPU). These
interrupts generally have nothing at all to do with the instructions currently executing and informs the
CPU that a device needs some attention.

In a partitioned system, the hypervisor can handle these interrupts (native interrupts) and generate
the appropriated virtual interrupts to the partitions. However, if the hardware features allow it, the
hypervisor can delegate the management of these navite interrupts directly to the partition. In such
case, the interrupts are caught directly by the partition and the hypervisor does not take part in the
handle, only in the allocation of such interrupt to the partition. In a general way, a partition has to
deal with the following virtual traps:

 Virtual exceptions are the exceptions propagated by the hypervisor to the partitions as
consequence of a native exception occurrence. Not all the native exceptions are propagated
to the partition. For instance, a memory access error that is generated as consequence of a
space isolation violation is handled by the hypervisor which can perform a halt partition action
or can generate another different virtual exception (like memory isolation fault).

 Native exceptions are the exceptions handled directly by the partition due to the assignment
done from the hypervisor.

 Virtual hardware interrupts are interrupts generated by the real hardware, handled by the
hypervisor and afterwards propagated by the hypervisor to the partitions as virtual interrupts.
The hardware interrupts correspond to the signals generated from external devices
(dedicated devices technique) or peripherals.

 Native hardware interrupts are the hardware interrupts directly allocated to the partition to
be handled directly by them. These interrupts are raised to the partition in the same way as
in a bare-metal machine.

 Virtual Extended interrupts or virtual partitioning interrupts correspond to the virtual
hardware provided by the virtualization layer. It includes different virtual devices associated
to the virtualization. Some of these virtual devices are:

o Virtual global and local clocks and timers
o New message arrival. The communication mechanism (channel) implemented by

XtratuM is seen as a hardware device generating an interrupt when the operation is
completed.

o Partition slot execution. In a partitioned system the partition is aware of the partition
scheduling, this interrupt informs to the partition that a new slot has been scheduled.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 35 of 92

4.8.5.2 Interrupt model implementation

XtratuM provides a virtual vector for interrupt management at partition level. This VirtualTrapTable is
a interrupt model that virtualizes the underlying interrupts available in the hardware and adds a set
of new interrupts related to the partitioned system.

Figure 10 shows the scheme of a generic interrupt model.

Figure 10: Interrupt Model

The API provides a set of symbols for virtual interrupts.

#define XM_VT_EXT_FIRST (0)
#define XM_VT_EXT_LAST (31)
#define XM_VT_EXT_MAX (32)

// Virtual Exceptions
#define XM_HM_EV_ARM_UNDEF_INSTR (XM_HM_MAX_GENERIC_EVENTS+0)
#define XM_HM_EV_ARM_PREFETCH_ABORT (XM_HM_MAX_GENERIC_EVENTS+1)
#define XM_HM_EV_ARM_DATA_ABORT (XM_HM_MAX_GENERIC_EVENTS+2)
#define XM_HM_EV_ARM_DATA_ALIGNMENT_FAULT (XM_HM_MAX_GENERIC_EVENTS+3)
#define XM_HM_EV_ARM_DATA_BACKGROUND_FAULT (XM_HM_MAX_GENERIC_EVENTS+4)
#define XM_HM_EV_ARM_DATA_PERMISSION_FAULT (XM_HM_MAX_GENERIC_EVENTS+5)
#define XM_HM_EV_ARM_INSTR_ALIGNMENT_FAULT (XM_HM_MAX_GENERIC_EVENTS+6)
#define XM_HM_EV_ARM_INSTR_BACKGROUND_FAULT (XM_HM_MAX_GENERIC_EVENTS+7)
#define XM_HM_EV_ARM_INSTR_PERMISSION_FAULT (XM_HM_MAX_GENERIC_EVENTS+8)

// Virtual extended Partitioning IRQs
#define XM_VT_EXT_HW_TIMER (0+XM_VT_EXT_FIRST)
#define XM_VT_EXT_EXEC_TIMER (1+XM_VT_EXT_FIRST)
#define XM_VT_EXT_WATCHDOG_TIMER (2+XM_VT_EXT_FIRST)
#define XM_VT_EXT_SHUTDOWN (3+XM_VT_EXT_FIRST)
#define XM_VT_EXT_SAMPLING_PORT (4+XM_VT_EXT_FIRST)
#define XM_VT_EXT_QUEUING_PORT (5+XM_VT_EXT_FIRST)

#define XM_VT_EXT_CYCLIC_SLOT_START (8+XM_VT_EXT_FIRST)

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 36 of 92

4.8.6 Fault management model

The Health Monitor (HM) is the part of XtratuM that detects and reacts to anomalous events or states.
The purpose of the HM is to discover the errors at an early stage and try to solve or confine the faulting
subsystem in order to avoid or reduce the possible consequences.

HM is executed as result of a HM event occurrence. Next scenarios can raise a HM event:

 An exception has been raised by the CPU. The exception handler generates the associated
HM event.

 A native interrupt has been received and the temporal or spatial properties are not
validated.

 A trap has been received and the temporal or spatial properties are not validated.

 A partition detects an abnormal internal situation and raises a HM event. For instance, the
operating system inside of a partition detects that the application is corrupted.

 When the partition request a hypervisor service (hypercall), the spatial or temporal
properties are verified as pre- and post-conditions. If these validations fail, a HM event is
generated.

Previous cases cover all entry points to the hypervisor. As result of enforcing the isolation of the
partitions, XtratuM performs a check of the temporal and spatial properties each time that it is
invoked.

The HM event occurrence is the manifestation of an error. XtratuM reacts to the error providing a
simple set of predefined actions to be done when it is detected.

XtratuM HM subsystem is composed by four logical components:

 HM configuration: to bind the occurrence of each HM event with the appropriate HM action.
This bind is specified in the configuration file.

 HM event detection: to detect abnormal states, using logical assertions in the XtratuM code.

 HM actions: a set of predefined actions to recover the fault or confine the error.

 HM notification: to report the occurrence of the HM events.

Once a HM event is raised, XtratuM performs an action that is specified in the configuration file. Some
of the HM events and HM actions are shown in the next table.

// HM EVENTS
#define XM_HM_EV_INTERNAL_ERROR 0
#define XM_HM_EV_UNEXPECTED_TRAP 1
#define XM_HM_EV_PARTITION_UNRECOVERABLE 2
#define XM_HM_EV_PARTITION_ERROR 3
#define XM_HM_EV_PARTITION_INTEGRITY 4
#define XM_HM_EV_MEM_PROTECTION 5
#define XM_HM_EV_OVERRUN 6
#define XM_HM_EV_SCHED_ERROR 7

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 37 of 92

#define XM_HM_EV_WATCHDOG_TIMER 8

#define XM_HM_EV_INCOMPATIBLE_INTERFACE 9

// HM ARCH EVENTS

#define XM_HM_EV_ARM_UNDEF_INSTR (XM_HM_MAX_GENERIC_EVENTS+0)

#define XM_HM_EV_ARM_PREFETCH_ABORT (XM_HM_MAX_GENERIC_EVENTS+1)

#define XM_HM_EV_ARM_DATA_ABORT (XM_HM_MAX_GENERIC_EVENTS+2)

#define XM_HM_EV_ARM_DATA_ALIGNMENT_FAULT (XM_HM_MAX_GENERIC_EVENTS+3)

#define XM_HM_EV_ARM_DATA_BACKGROUND_FAULT (XM_HM_MAX_GENERIC_EVENTS+4)

#define XM_HM_EV_ARM_DATA_PERMISSION_FAULT (XM_HM_MAX_GENERIC_EVENTS+5)

#define XM_HM_EV_ARM_INSTR_ALIGNMENT_FAULT (XM_HM_MAX_GENERIC_EVENTS+6)

#define XM_HM_EV_ARM_INSTR_BACKGROUND_FAULT (XM_HM_MAX_GENERIC_EVENTS+7)

#define XM_HM_EV_ARM_INSTR_PERMISSION_FAULT (XM_HM_MAX_GENERIC_EVENTS+8)

 ………

//HM Actions

#define XM_HM_AC_IGNORE 0

#define XM_HM_AC_SHUTDOWN 1

#define XM_HM_AC_PARTITION_COLD_RESET 2

#define XM_HM_AC_PARTITION_WARM_RESET 3

#define XM_HM_AC_HYPERVISOR_COLD_RESET 4

#define XM_HM_AC_HYPERVISOR_WARM_RESET 5

#define XM_HM_AC_SUSPEND 6

#define XM_HM_AC_HALT 7

#define XM_HM_AC_PROPAGATE 8

#define XM_HM_AC_SWITCH_TO_MAINTENANCE 9

4.8.7 Partition image header

The partition image header is a data structure with the following fields:

struct xmImageHdr {
#define XMEF_PARTITION_MAGIC 0x24584d69 // $XMi
 xm_u32_t sSignature; // start signature
 xm_u32_t compilationXmAbiVersion; // XM's abi version
 xm_u32_t compilationXmApiVersion; // XM's api version
 xm_u32_t noCustomFiles; // Number of custom files
 struct xefCustomFile customFileTab[CONFIG_MAX_NO_CUSTOMFILES];
 xm_u32_t eSignature; // end signature

} __PACKED;

where

 sSignature and eSignature: Holds the start and end signatures which identifies the structure
as a XtratuM partition image.

 compilationXmAbiVersion: XtratuM ABI version used to compile the partition. That is, the
ABI version of the libxm and other accompanying utilities used to build the XEF file.

 compilationXmApiVersion: XtratuM API version used to compile the partition. That is, the
API version of the libxm and other accompanying utilities used to build the XEF file.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 38 of 92

 noCustomFiles: The number of extra files accompanying the image. If the image were Linux,
then one of the modules would be the initrd image. Up to CONFIG_MAX_NO_FILES can be
attached.

 customFileTab: Table information about the customisation files.

The xmImageHdr structure has to be placed in a section named “.xmImageHdr”. The remainder of the
image is free to the partition developer. There is not a predefined format or structure of where the
code and data sections shall be placed.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 39 of 92

5 Booting process

The booting process describes how the system (hypervisor) is initialized. In most of the processors the
boot process is initialized when the program counter register is initialized at a specific memory
address. A small program “resident software” is in charge of the initial steps of booting the computer.

This resident software will be in charge of loading into memory the hypervisor, its configuration file
(XM_CT) and the partitions. The information hold by the XM_CT file is used to load any partition image.

5.1 Hypervisor boot

When the control is transferred from the resident software to XtratuM, a setup() function starts the
boot operation. It is sketched in Figure 11.

Figure 11: Booting a multicore architecture

After the hard reset, the CPU0 is started and a XtratuM thread is executed. This CPU0 thread performs
a global initialisation and starts the execution of other CPUs by providing the entry point and stack
area. Each started CPU executes a XtratuM thread performing a local initialisation of the internal local
data structures. All CPU threads are synchronised in a specific point in order to guarantee a coherent
initialisation before the scheduling plan execution.

The global initialisation consists on the following:

1. Initializes the internal console.
2. Initializes the interrupt controller.
3. Detects the processor frequency (information extracted from the XML configuration file).
4. Initializes memory manager (enabling XtratuM to keep track of the use of the physical

memory).
5. Initializes hardware and virtual timers.
6. Initializes the scheduler.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 40 of 92

7. Initializes the communication channels.
8. Wakes up other processors
9. Booting partitions are set in NORMAL state and non-booting ones are set in HALT state.
10. Opens the sync barrier
11. Finally, the setup function calls the scheduler and becomes into the idle task.

Other CPUs perform the local initialisation:

1. Sets up a valid virtual memory map
2. Initializes the timer
3. Waits in a sync barrier
4. Finally, calls the scheduler and becomes into the idle task.

This scheme implies an important design aspect with respect to the monocore version of XtratuM.
The internal code of XtratuM is not a non preemptive code block like it is in the monocore version.
The multicore design is fully preemptive. A set of low grain atomic sections have been defined in order
to avoid race conditions between the internal threads of XtratuM.

5.2 Partition boot

XtratuM provides virtual CPUs to the partitions. A monocore partition will use the virtual CPU identifed
as vCPU0. Its operation is exactly the same as the monocore version of XtratuM.

After a partition reset, the vCPU0 is initialized to the default values specified in the configuration file.
Although the monocore partition uses the vCPU0, it can be allocated to any of the available

A multicore partition can use several virtual CPUs (vCPU0, vCPU1, vCPU2, ...) to implement the
partition. XtratuM follows the approach for virtual CPUs than the hardware provides. At partition
boot, XtratuM only starts vCPU0 for the partition. It is responsibility of the partition code in the
initialized vCPU0 thread to start the execution of the additional cores.

An important aspect to be considered is that the virtual CPUs are local to each partition. It means,
each partition handles its virtual CPUs which are completely hidden to other partitions. In order to
handle virtual CPUs, XtratuM provides some services (hypercalls) to partitions to handle its virtual
CPUs.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 41 of 92

6 System configuration

The system configuration is responsibility of the System Architect. He is in charge of the definition of
the partitions, the resources and the information flows between partitions. This is specified in the
configuration file (XM_CF in XtratuM notation) in XML format.

XtratuM enforces that each virtualized and exported resource can be accessed by a partition at a time.
To achieve this goal, the security functions (XSF) ensure that partitions are executed according a cyclic
plan specified in the configuration vector. This plan is analysed off-line to guarantee plan properties
(i.e. no overlapped intervals have been specified).

For resources such as memory, which does not require mutual exclusion to the whole, the XSF
provides full isolation by allocating physically distinct portions of the resource to different partitions.
XSF ensures the spatial isolation of its internal resources. Subjects, and resources made available to
subjects by the XSF, are identified as exported resources.

The Partitioned Information Flow Policy (PIFP) defines the rules for isolation granted by the
virtualization layer. It defines the authorisations for information flow between partitions and between
subjects and exported resources. It is generated from the XM_CF and allows to apply the internal
security functions during the execution.

An information flow is defined as a <partition/subject, partition/exported resource, mode> triplet.
Note that the exported resource may be another subject. All the information flows have to be
specified in the XM_CF. By default, no information flow between partitions or between subjects and
exported resources is allowed.

6.1 XtratuM subjects, objects and privileges

Based on the Common Criteria definitions [3,4,5],

 Subjects are active entities in the partitioned system that perform operations on objects.
The subjects can be categorized in two types: privileged and normal.

 Exported resources are passive entities that contain or receive information, and upon which
subjects perform operations.

 Operation mode (on a resource) is a specific type of action performed by a subject on an
exported resource.

6.1.1 Subject identification

XtratuM manages partitions as its main active entities. Processes inside of a partition are handled
internally and XtratuM does not know of their existence. Partitions are responsible of the internal
process management. Any operation performed by any of the internal active elements of a partition
is seen as a partition operation.

Based on this approach, the set S of subjects is formed by all the partitions defined in the XM_CF.

S = S0,S1,S2,...,Sn

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 42 of 92

6.1.2 Exported resource identification

XtratuM gets the system information via the XM_CF. In this configuration vector, all the subjects,
exported resources and operations have to be defined beforehand.

XtratuM provides a para-virtualization of some exported resources whereas others are accessed
"directly" by the partition. This "directly" means that the information flow has been explicitly
authorised by the Virtualization Layer (VLayer).

Exported resources can be classified as:

 Processor and register: Exported resources that are exported as a whole during a temporal
window.

o VCPU: Virtual CPUS. It includes the internal registers (user and control registers).
The scheduling plan identifies which subject will use this resource and when.
(ERVCPU, ERURg, ERCRg).

o VFPU: Virtual Floating Point Units. It is exported jointly with the VCPU if the subject
has specified its use in the XM_CF. (ERVFPU)

 Time management and IRQs: Clock, timers and interrupts are virtualized to the subjects.
No direct access from the subject is allowed. XtratuM provides a mechanism via hypercalls
to access indirectly to these resources. (ERTim, ERIRQ).

 Memory areas: Memory is not exported as a whole. Memory areas are regions of memory
that are directly exported as resource to subjects. Each subject is allowed direct access to
specific memory areas defined in the XM_CF.(ERMAk)

o Memory layout: defines the whole memory available in the system. All memory
areas exported have to be independent (no overlapped) subsets of the memory
layout. It is not directly defined as an exportable resource, it is exported as a
resource via memory area definitions.

o Memory area: defines a memory region as an exported resource. It includes the
memory needed by the subjects to be executed, the shared memory between
subjects and memory block devices.

o IO memory area: defines a IO memory region as exported resource. These exported
resources are assigned exclusively to a subject (no shareable).

 Basic peripherals: These devices (UART,) are basic components of the system that are
exported as resources. They require an explicit definition and subjects using this resource
have to explicitly declare it. The access to these devices is done via hypercalls. (ERUART)

 Inter-partition communications: XtratuM provides an inter-partition communication
mechanism based on channels. It allows to subjects to send/receive messages to/from
channels using ports. (ERCHNk).

o Channels: They have to be specified in the XM_CF. They are not directly exported
resources. Channels are seen by subjects through ports. Channels are specified in
the XMCF in order to link information flow sources (<subject, port, SOURCE>) with
information flow destination (<subject, port, DESTINATION>).

o Ports: are exported resources that have to be specified in the XMCF. They are
accessed via hypercalls.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 43 of 92

 Time allocation: specifies when the exported resources are available to subjects. It is
defined by means of temporal windows or slots in the scheduling plan and scheduling
modes. (ERPLNk, ERSLTk).

o Plan: is an exportable resource that defines an execution cyclic scheme for the
subjects.

o Slot: is an exportable resource that specifies the time interval allocated to a specific
subject.

 Traces: are exported resources that permit authorized subjects to register events
(traces/audit records) (ERTRk)

6.1.3 Exported resource access mechanism

The following table summarizes the mechanisms used by subjects to access to the exported resources
as well as where the control is done, the mechanism used by the PIFP.

ER
Control
Place

Mechanism PIFP Comments

VCPU time Hw/Core direct/hypercall explicit Specified in the plan

VCPU User
Registers

Hw/Core direct/hypercall implicit Specified in the plan

VCPU Ctrl Registers Hw/Core hypercall implicit All

VFPU Hw/Core direct explicit
flags in the partition
definition

Memory Areas Hw direct explicit
Memory areas definition in
the partition

MMU Hw direct implicit

Traps Hw hypercall parameterised IRQ lines in the partition

Timers Core Hypercalls implicit

I/O resources Core Hw/hypercall explicit IO devices

For logical resources:

ER Control Place Mechanism PIFP Comments

System modes Core hypercall Explicit plan definition

Partition states Core hypercall Implicit

IPC Core hypercalls Explicit
Channel definition and
port in partitions

HM Hardware/Core hypercall Explicit
HM action in partitions
(default values)

Partition Traces Core hypercall Explicit
Trace definition in
partition

6.1.4 Operations on exported resources

The identified operations on exported resources are:

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 44 of 92

 Read. A subject can read the exported resource.

 Write. A subject can write on the exported resource.

 Run. A subject it is only allowed to use the exported resources during the run operation.

6.1.5 Partitions and the Partitioned Information Flow Policy (PIFP)

The virtualization layer provides partitions as abstraction implemented by the XSF. XtratuM manages
partitions. The guest OS personality is in charge of managing the internal subjects (threads or tasks or
processes) that are not visible from XtratuM.

From this point of view, it is assumed the Partition Abstraction policy: The subjects in a partition have
homogeneous requirements for access, on a per-partition basis, to exported resources.

It is responsibility of the guest OS to define another policy. For instance, a guest OS could define a
Least Privilege Abstraction which assumes that the subjects in a partition have heterogeneous
requirements for access to exported resources. In this case, the guest OS could restrict the operations
defined in the other policy to some internal subjects.

6.1.6 Access matrices

The access matrix specifies the privileges that each subject has over each object. To define the subjects
type: privilege and normal.

Table access matrix is generated from the configuration vector and, consequently, from the
configuration file XM-CF.

Next listing shows an example of XM_CF for LEON3 processor.

<SystemDescription xmlns="http://www.xtratum.org/xm-3.x"
 version="1.0.0" name="hello_world">
 <HwDescription>
 <ProcessorTable>
 <Processor id="0" frequency="50Mhz">
 <CyclicPlanTable>
 <Plan id = "0" majorFrame="25ms">
 <Slot id="0" start="0ms" duration="10ms" partitionId="0"/>
 <Slot id="1" start="15ms" duration="5ms" partitionId="1"/>
 </Plan>
 <Plan id = "1" majorFrame="10ms">
 <Slot id="0" start="0ms" duration="5ms" partitionId="0"/>
 <Slot id="1" start="5ms" duration="5ms" partitionId="2"/>
 </Plan>
 </CyclicPlanTable>
 </Processor>
 </ProcessorTable>

 <MemoryLayout>
 <Region type="stram" start="0x40000000" size="4MB"/>
 <Region type="sdram" start="0x60000000" size="16MB"/>

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 45 of 92

 </MemoryLayout>
 </HwDescription>

 <XMHypervisor console="Uart">
 <PhysicalMemoryAreas>
 <Area start="0x40000000" size="512KB" />
 </PhysicalMemoryAreas>
 </XMHypervisor>

 <PartitionTable>
 <Partition id="0" name="Partition1" flags="system" console="Uart">
 <PhysicalMemoryAreas>
 <Area start="0x40100000" size="256KB" />
 <Area start="0x40300000" size="128KB" flags="shared" />
 </PhysicalMemoryAreas>
 <TemporalRequirements duration="25ms" period="10ms"/>
 <PortTable>
 <Port name="writerQ" type="queuing" direction="source" />
 <Port name="writerS" type="sampling" direction="source" />
 </PortTable>

 <Trace device="Trace1"/>
 <HealthMonitor>
 <Event action="XM_HM_AC_HALT" log="yes"
 name="XM_HM_EV_PARTITION_ERROR" />
 </HealthMonitor>
 <HwResources>
 <Interrupts lines="4" />
 </HwResources>
 </Partition>

 <Partition id="1" name="Partition2" flags="fpu" console="Uart">
 <PhysicalMemoryAreas>
 <Area start="0x40180000" size="256KB" />
 <Area start="0x40300000" size="128KB" flags="shared" />
 </PhysicalMemoryAreas>
 <TemporalRequirements duration="25ms" period="5ms"/>
 <PortTable>
 <Port name="readerQ" type="queuing" direction="destination" />
 <Port name="readerS" type="sampling" direction="destination" />
 </PortTable>
 <Trace device="Trace2"/>
 <HwResources>
 <IoPorts>
 <Range base="0x80000080" noPorts="4"/>
 <Range base="0x80100110" noPorts="15"/>
 <Restricted address="0x80100200" mask="0x60"/>
 </IoPorts>
 <Interrupts lines="7"/>
 </HwResources>
 </Partition>

 <Partition id="2" name="Partition3" console="Uart">
 <PhysicalMemoryAreas>
 <Area start="0x40200000" size="256KB" />
 </PhysicalMemoryAreas>
 <TemporalRequirements duration="25ms" period="5ms"/>
 <PortTable>
 <Port name="readerS" type="sampling" direction="destination" />
 </PortTable>

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 46 of 92

 </Partition>
 </PartitionTable>

 <Channels>
 <QueuingChannel maxMessageLength="512B" maxNoMessages="10">
 <Source partitionId="0" portName="writerQ" />
 <Destination partitionId="1" portName="readerQ" />
 </QueuingChannel>
 <SamplingChannel maxMessageLength="512B">
 <Source partitionId="0" portName="writerS" />
 <Destination partitionId="2" portName="readerS" />
 </SamplingChannel>
 </Channels>

 <Devices>
 <MemoryBlock name="SystemTrace" start="0x40380000" size="128KB"/>
 <MemoryBlock name="Trace1" start="0x403C0000" size="64KB"/>
 <MemoryBlock name="Trace2" start="0x403E0000" size="64KB"/>
 <Uart id="0" baudRate="115200" name="Uart" />
 </Devices>
</SystemDescription>

The following elements are identified:

 Subjects
o P1: Partition1 (System)
o P2: Partition2
o P3: Partition3

 Exported resources:
o ERCPU: VCPU time
o ERURg: CPU U. reg.
o ERCRg: CPU Ctl. reg.
o ERFPU: FPU
o ERMMU: MMU
o ERTRP: Traps
o ERTim: Timers
o ERMA1: Memory layout region start="0x40000000" size="4MB"
o ERMA2: Memory layout region start="0x60000000" size="16MB"
o ERMA3: Memory area start="0x40100000" size="256KB"
o ERMA4: Memory area start="0x40180000" size="256KB"
o ERMA5: Memory area start="0x40200000" size="256KB"
o ERMA6: Shared Memory area start="0x40300000" size="256KB"
o ERMA7: Memory block area name="SystemTrace" start="0x40380000" size="128KB"
o ERMA8: Memory block area name="Trace1" start="0x403C0000" size="64KB"/>
o ERMA9: Memory block area name="Trace2" start="0x403E0000" size="64KB"/>
o ERPLn1: Plan id="0" majorFrame="25ms"
o ERPLn2: Plan id="1" majorFrame="10ms"
o ERSLt1: Slot id="0" start="0ms" duration="10ms" partitionId="0" plan id="0"
o ERSL2: Slot id="1" start="15ms" duration="5ms" partitionId="1" plan id="0"
o ERSLt3: Slot id="0" start="0ms" duration="5ms" partitionId="0" plan id="1"
o ERSLt4: Slot id="1" start="5ms" duration="5ms" partitionId="1" plan id="1"
o ERCHN1: QueuingChannel maxMessageLength="512B" maxNoMessages="10" [<"0",

"writerQ">,<"1", "readerQ">]
o ERCHN2: SamplingChannel maxMessageLength="512B" [<"0", "writerS">,<"2",

"readerS">]

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 47 of 92

o ERUART: Uart id="0" baudRate="115200" name="Uart"
o ERIOM1: IoPort base="0x80000080" noPorts="4"
o ERIOM2: IoPort base="0x80100110" noPorts="15"
o ERIOM3: IoPort Restricted address="0x80100200" mask="0x60"
o ERIRQ1: Interrupts lines="4"
o ERIRQ2: Interrupts lines="7"

6.1.7 Subject temporal allocation

For each virtual CPU the following table shows the partition allocation to temporal windows

Plans Slots S1 S2 S3

ERPLn1
ERSLt1 run

ERSLt2 run

ERPLn2
ERSLt3 run

ERSLt4 run

6.1.8 Subject memory areas allocation

The virtualization layer manages the memory layout and makes areas of it accessible to subjects
according to the configuration file. The following table shows the allocation of physical memory from
the configuration file example.

ER S1 S2 S3 Description

 ERMA1 start:"0x40000000" size:"4MB"

 ERMA2 start:"0x60000000" size:"16MB"

ERMA3 rw start:"0x40100000" size:"256KB"

ERMA4 rw rw start="0x40180000" size="256KB"

ERMA5 rw rw start="0x40200000" size="256KB"

ERMA6 rw rw start="0x40300000" size="256KB"

ERMA7 rw start="0x40380000" size="128KB"

ERMA8 rw start="0x403C0000" size="64KB"

ERMA9 rw start="0x403E0000" size="64KB"

ERIOM1 rw base="0x80000080" noPorts="4"

ERIOM2 rw base="0x80100110" noPorts="15"

ERIOM3 rw address="0x80100200" mask="0x60"

6.1.9 Subjects and virtualized exported resources

ER S1 S2 S3 Description

ERVCPU rw rw rw VCPU time

ERURg rw rw rw VCPU User registers

ERCRg rw rw rw VCPU control registers

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 48 of 92

ERVFPU rw VFPU

ERMMU rw rw rw MMU

ERTRP rw rw rw Traps

ERTim rw rw rw Timers

6.1.10 IPC exported resources

The IPC allocation to partitions is detailed in the next table.

ER S1 S2 S3 Description

ERCHN1 w r QueuingChannel S1 => S2

ERCHN2 w r SamplingChannel S1 => S3

6.1.11 Devices exported resources

The Device allocation to partitions is detailed in the next table.

ER S1 S2 S3 Description

ERUART w w w UART

ERIRQ1 w lines="4"

ERIRQ2 w lines="7"

6.2 Configuration file specification

All the components involved in the previous model are detailed in the configuration file. The
configuration file follows a XML syntax specified by an XMLSchema model. The complete XML Schema
configuration specification for ARM and X86 processors are included in the Appendix 1 of this
document.

The configuration model includes the main elements:

 Hardware description: describes the underlying hardware

 XMHypervisor: describes the allocation of XtratuM

 ResidentSw: details the allocation of the resident software

 PartitionTable: includes the partitions in the system

 Channels: describes the communication channels

Figure 12 shows a graphical view of the configuration file elements. Figure 13 shows the description
of the root element “SystemDescription” and the following subsections depict the main elements of
the configuration specification.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 49 of 92

Figure 12: Graphical view of an example XM CF configuration file

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 50 of 92

Figure 13: System Description Schema.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 51 of 92

6.2.1 Element HwDescription

It describes the underlying hardware.

Figure 14: Hardware description component.

6.2.1.1 Element HwDescription/MemoryLayout

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 52 of 92

Figure 15: Hardware memory layout.

Figure 16: Hardware memory layout region.

6.2.1.2 Element HwDescription/ProcessorTable

Figure 17: Processor table.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 53 of 92

Figure 18: Processor.

Figure 19: Cyclic plan scheduling.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 54 of 92

Figure 20: Plan of a cyclic plan scheduling.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 55 of 92

Figure 21: Fixed priority scheduling.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 56 of 92

6.2.1.3 Element HwDescription/Devices

Figure 22: Hardware devices.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 57 of 92

6.2.2 Element XMHypervisor

Figure 23: Hypervisor component.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 58 of 92

6.2.2.1 Element XMHypervisor/PhisicalMemoryArea

Figure 24: Hypervisor memory.

6.2.2.2 Element XMHypervisor/HealthMonitor

Figure 25: Hypervisor health monitor.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 59 of 92

6.2.2.3 Element XMHypervisor/Trace

Figure 26: Hyperviosr trace.

6.2.3 Element ResidentSw

Figure 27: Resident Software component.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 60 of 92

6.2.3.1 Element ResidentSw/PhisycalMemoryAreas

Figure 28: Resident Software memory.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 61 of 92

6.2.4 Element PartitionTable

Figure 29: Partition component.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 62 of 92

6.2.4.1 Element Partition/PhisycalMemoryAreas

Figure 30: Partition Memory.

6.2.4.2 Element Partition/HwResources

Figure 31: Partition hardware resources.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 63 of 92

Figure 32: Partition I/O ports.

6.2.4.3 Element Partition/PortTable

Figure 33: Partition IPC ports.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 64 of 92

6.2.5 Element Channels

Figure 34: Channel component.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 65 of 92

6.2.6 Basic types

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 66 of 92

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 67 of 92

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 68 of 92

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 69 of 92

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 70 of 92

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 71 of 92

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 72 of 92

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 73 of 92

7 Secure State and Secure Operations

The Secure Kernel Partition Profile [6] defines the rationale for secure state as:

Definition: “secure state” is based on two separate properties:

(A) that the TSF is capable of enforcing the security policy (i.e., its own data and mechanisms
are intact); and

(B) that exported resources are correctly separated (e.g., application data, and related
descendants and copies, are associated with the correct data).

7.1 Secure State

Property (A) states that the "secure state" is related to the integrity and coherence of the internal
data and mechanisms. Internal data of Virtualization Layer (VLayer) can be considered:

 configuration vector as binary representation of the configuration file used to define the
system that has been validated, compiled and included in the final system container. In
execution, this configuration vector resides in the hypervisor (kernel) address space (not
accessible by subjects) in a memory area that is write protected. Additionally, a digest
(cryptographic hash function) is applied to the configuration vector which is added to it. At
any moment, the VLayer can perform the digest of the configuration vector and validate its
integrity.

 internal variables: state of the VLayer. VLayer status is formed by the tuple

 <PARTcurrent, PLANcurrent, SLOTcurrent, CLOCKcurrent>

that refers to the current partition under execution, current plan, current slot and current
time. The coherence of these variables is fundamental in the virtualization layer operation.
The pair <PLANcurrent, CLOCKcurrent> determines the slot and the partition in the configuration
vector that should correspond with the current partition and current slot. Once the state is
validated, through the configuration vector is possible to determine the exported resources
(Memory areas, FPU, IRQs, etc.) and operations that should be applied.

 the processor registers: MMU registers , interrupt vector (IV), mode processor status (MPS),
IO protection and FPU control.

 channels: the consistency of the channel data structures can be determined with respect to
the maximum values (message length and number of messages) defined in the configuration
vector.

 stacks: The VLayer maintains one stack for the own VLayer operations and one stack per
partition which is used when the VLayer executes a hypercall for a specific partition. The limits
of these stacks can be validated. It is important to note that each partition maintains its own
stack in the user space when the partition is executing operations at user level.

As for the configuration vector, a digest of the VLayer core is applied at deployment phase which is
included in the deployment and can be validated. This validation will permit to affirm that the VLayer
code has not been corrupted.

An important aspect with respect to the secure state is the limited preemptability of XtratuM. It
implies that during any VLayer operation, it can be interrupted only at specific points that are very

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 74 of 92

well identified. This limitation has a strong impact in the simplicity of the VLayer design (less complex)
and the security (more secure).

Property (B) is related to the isolation properties (spatial and temporal) of subjects. The VLayer has
been designed so that the individual effects of operations that violate the policy are privileged
operations (operations over virtualized resources) or by means of hypercalls with not allowed
parameters (i.e. reset the system by a subject not authorized). In the first case, the forbidden
operation generates a trap that is captured by the VLayer and generates a Health Monitor event which
involves an HM action with the goal of maintaining the VLayer in the "secure state" (i.e. the subject
can be halted (disabled) or restarted according the action defined in the configuration file (XM_CF).

In the second case, the hypercall with non-allowed parameters, the VLayer performs an exhaustive
validation of the parameters according the configuration vector and refuse the operation (returns a
code error in the hypercall to the subject invoking the hypercall).

7.2 Insecure state

When the conditions stated previously cannot be validated, the VLayer is in an "insecure state". The
following situations can determine that the VLayer is in an "insecure state":

 configuration vector pollution. The digest of the configuration vector does not match
with the correct value.

 VLayer code pollution. The digest of the VLayer code does not match with the correct
value.

 Deviation of the internal state. The tupla <PARTcurrent, PLANcurrent, SLOTcurrent,
CLOCKcurrent> is not coherent with <PARTXM_CF, PLANcurrent, SLOTXM_CF, CLOCKcurrent>
obtained from the configuration vector.

 Access to non exported resources for a partition. A partition can perform an operation
to an exported resource that has not been defined in the configuration vector. Note that
if a partition requests an operation on a non exported resource the hypercall should
return a code error.

 Limits exceeds. Stacks and channels data structures exceeds the limit values established
in the configuration vector.

 Underlaying hardware: clock, timers, memory protection mechanisms, IO protection
mechanisms, FPU protection mechanisms.

Any of these situations determine that the VLayer is not in a "secure state". In these cases, it is not
possible to change to a "secure state" and the system has to be reset.

7.3 Trustability enforcement

Some aspects should be revisited with respect to the VLayer:

 It is non pre-emptable. When any of the entry-points is invoked, it is executed with disabled
interrupts returning the control to a partition.

 It has three entry points and one return point to partition.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 75 of 92

 All exported resources are defined in the configuration vector.

 Only the hypervisor can access to the privileged registers and virtualized services.

 Internal code of partitions is not relevant from the hypervisor point of view

Additionally, it is assumed that the underlying hardware is trusted. It means that the internal processor
registers will work properly if they are used in the correct way.

Based on the trustiness of the hardware mechanisms, XtratuM permits to extend the trustability
including the hypervisor level.

7.4 Test for secure states

As result of the previous analysis the state of the VLayer could be evaluated at different levels. SKPP
(Separation Kernel Protection Profile) defines different types of tests to achieve a secure state at boot
time and during the execution of the partitions.

7.4.1 Abstract machine test (AMT)

In general the AMT refers to the proper operation of the hardware platform on which a VLayer is
running. These tests permit to consider that the underlaying hardware is trusted and extends it to the
VLayer. It is executed at boot time in order to guarantee a secure boot. It includes:

 Timers test

 Protection mechanisms test: MMU, privileged operation, IO protection, FPU control.

 Memory Read and Write: This test can read/write/read portions of

 memory to ensure the values written remain unchanged.

 Memory Separation and Protection: to ensure that user space programs cannot read and
write to areas of memory that is protected.

 Privileged Instructions: it ensures that the enforcement of the property that privileged
instructions should only be in supervisor mode is still in effect.

7.4.2 Basic platform tests

Basic tests rely on basic properties of the hypervisor and the trust enforcement from the trusted
hardware. They should be executed each time a partition is scheduled in order to guarantee a secure
partition operation. It includes:

 Validation of the internal variables related to the VLayer state

 Processor registers: MMU registers, interrupt vector (IV), mode processor status (MPS), IO
protection and FPU control.

 Stack limits

 Monotonic clock

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 76 of 92

These tests require low computation resources. They are executed each time the VLayer performs a
partition context switch.

7.4.3 Maintenance tests

Self tests are related with the self evaluation of the XtratuM security functins (XSF) with respect to
some expected correct operation. It includes:

 Stack limits: VLayer and partition's stacks.

 Configuration vector (perform a digest of the current configuration vector and compare it
with the deployed digest).

 VLayer code (perform a digest of the XtratuM code and compare it with the deployed
digest).

 Channel limits evaluation

 Partition code pollution evaluation. This is an operation that should be performed by each
partition. XtratuM only saw at the deployment phase a binary file of the partition without
distinction of code and data. The partition knows the internal segments and could perform
some evaluation if the code has been polluted, limits of internal data structures, etc.

These tests should be executed during a maintenance phase of the system.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 77 of 92

8 DREAMS Abstraction Layer (DRAL)

This section describes the software architecture supported by DREAMS, which involves several
applications with different levels of criticality. It details the execution environment and the services
provided to support the application execution.

The software architecture is built on top of a DREAMS node that manages the entire tile including one
or more processor cores.

Figure 1: Software architectures

In order to support mixed-criticality applications, the DREAMS software architecture is composed by:

 Virtualization layer: It is a software layer that provides hardware virtualization to the
applications. Two different approaches are considered in DREAMS depending on the
application constraints.

o Partitioning kernel: It provides virtualization of the hardware resources by defining a
set of services that are used by the partitions to access the virtualized resources. The
partitioning kernel provides spatial and temporal isolation to the partitions.

o Interrupt Virtualization layer: This layer virtualizes the Host OS interrupts and is only
introduced when KVM hypervisor is used. The main objective is to take hardware
interrupts control away from Host OS and handle them in a thin layer, so as to
preserve timing guarantees for the RTOS. Thus, an interrupt virtualization layer
(ADEOS or similar) is introduced below the Host OS and real-time partition to prioritize
the RTOS.

 Partitions: A partition is the execution unit in the DREAMS architecture. It provides the basic
infrastructure to execute an application. Different partitions are supported in the DREAMS
architecture.

o Basic single-thread application to be executed near a native hardware
o Multi-thread real-time applications to be executed on top of a real-time operating

system
o Multi process applications to be executed on top of a full featured operating system
o Multi-partition applications to be executed on top of a operating system that provides

the ability to build virtualized multiple process applications.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 78 of 92

8.1 DRAL

A complete DRAL specification is presented in a different document named D2.3.1 – Annex. DREAMS
Abstraction Layer (DRAL) Specification.

8.1.1 System Management Services

System Management Services refer to the services that a partition can invoke to get the status of the
virtualization layer or perform actions on it.

Services are:

Name Description Constraints

DRAL_GET_SYSTEM_STATUS Returns the status of the virtualization layer. The result
is a data structure that provides some information
related to the current status.

In the case of interrupt virtualization, this service
will set the configuration details of such a layer, for
instance, interrupt masking, peripheral
binding/unbdinding, etc.

System

DRAL_SET_SYSTEM_MODE Provides to a partition the ability to change the status of
the virtualization layer. Actions to be invoked are:
- Perform a cold reset on the system. As result of this
invocation, the system is reset and boots. A counter
informs about the number of consecutive warm resets
have been produced. This counter is zeroed when the
cold reset is invoked.
- Perform a warm reset on the system. As result of this
invocation, the system is reset and boots. The reset
counter is increased.
- Perform a system halt. As result of this invocation, the
system is halted. A physical reset is required to restart
the system.

System

8.1.2 Partition Management Services

Partition Management Services refer to the services that a partition can invoke to get its own status
or other partition status or perform actions on them.

Services are:

Name Description Constraints

DRAL_GET_PARTITION_ID Access to the partition identifier. Normal

DRAL_GET_PARTITION_ID_BY_NAME Access to the partition identifier from the partition
name.

System
/Normal

DRAL_GET_PARTITION_STATUS Returns the status of a partition. The result is a data
structure that provides some information related to
the current partition status.

System
/Normal

DRAL_SET_PARTITION_MODE It provides to a partition the ability to change its own
status or the status of other partition. Actions to be
invoked are:
- Perform a cold reset on a partition. As result of this
invocation, the partition is reset and boots. A counter

System
/Normal

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 79 of 92

informs about the number of consecutive warm
resets have been produced. This counter is zeroed
when the cold reset is invoked.
- Perform a warm reset on a partition. As result of this
invocation, the partition is reset and boots. The reset
counter is increased.
- Perform a partition halt. As result of this invocation,
the partition is halted.
- Perform a partition suspend. As result of this
invocation, the partition is suspended.
- Perform a partition resume. As result of this
invocation, the partition is resumed.

In the case of interrupt virtualization, this service
will set the configuration details of such a layer,
for instance, interrupt masking, peripheral
binding/unbdinding, etc.

8.1.3 Process Management

These services are provided by the GuestOS.

8.1.4 Time Management Services

Time Management Services refer to the services that a partition can invoke to get time information or
set timers.

Time can be global or local. Global time is referred to a monotonic clock of the system. Local time is
referred to a partition clock that runs when the partition is executed. Timers can be set taking as
reference the global or the local time.

Services are:

Name Description Constraints

DRAL_GET_TIME Get the current time (global or local). Normal

DRAL_SET_TIMER Set a timer referred to the global or local clock. Normal

8.1.5 Inter-Partition Communication Services

A partition can send/receive messages to/from other partitions using sampling or queuing ports.

Services are:

Name Description Constraints

DRAL_CREATE_SAMPLING_PORT Creates a sampling port. Normal

DRAL_WRITE_SAMPLING_MESSAGE Writes a message in a sampling port. Normal

DRAL_READ_SAMPLING_MESSAGE Reads a message in a sampling port. Normal

DRAL_CREATE_QUEUING_PORT Creates a sampling port. Normal

DRAL_SEND_QUEUING_MESSAGE Sends a message in a queuing port. Normal

DRAL_RECEIVE_QUEUING_MESSAGE Receives a message in a queuing port. Normal

DRAL_GET_QUEUING_PORT_STATUS Gets the status of a queuing port. Normal

DRAL_CLEAR_QUEUING_PORT Removes all messages in a queuing port. Normal

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 80 of 92

8.1.6 Intra-Partition Communication

These services are provided by the GuestOS.

8.1.7 Scheduling Services

A partition is scheduled under the virtualization layer policy. It is relevant for the partition to get the
information related to its own schedule. On the other hand, a partition can be interested in define
local schedules for other partitions in spare slots. How to deal with spare slots and dynamic allocation
of resources will be discussed in WP4.

GPOS sub-partitions created by KVM will also use these services to get scheduling policy details. In this
use case the RTOS system partition will be able to force a scheduling policy on partitions that offer
virtualization features (Linux/KVM partition).

Services are:

Name Description Constraints

DRAL_GET_PARTITION_SCHEDULE Gets the information of the partition schedule in a
MAF.

Normal

DRAL_GET_PARTITION_SCHEDULE_STATUS Gets the information related to the current execution
slot.

Normal

DRAL_SET_MODULE_SCHEDULE Requests for a schedule plan change. System

DRAL_GET_MODULE_SCHEDULE_STATUS Gets the current schedule plan status. Normal

8.1.8 Monitoring Services (Health Monitor)

A partition can raise health monitor (HM) events to the virtualization layer. These HM events are
detected and generated by the application or the partition runtime. The events that the partition can
raise are:

 APPLICATION ERROR: An error in the application.

 DEADLINE MISSED: A deadline miss has been detected.

 NUMERIC ERROR: The application has detected a numeric error.

 STACK OVERFLOW: The partition detects a stack overflow.

 MEMORY VIOLATION: The partition detects an illegal memory access.

Services are:

Name Description Constraints

DRAL_GET_ERROR_STATUS Permits to the partition to access to the reported
errors.

Normal

DRAL_RAISE_APPLICATION_ERROR The partition raises an HM event that will be handled
by the virtualization layer

Normal

8.1.9 Configuration services

The following table summarizes what constitutes configurations services, i.e. all services that allow for
reconfiguration of the system:

Name Description Constraints

DRAL_SET_MODULE_SCHEDULE Requests for a schedule plan change. System

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 81 of 92

DRAL_SET_PARTITION_MODE It provides to a partition the ability to change its own
status or the status of other partition. Actions to be
invoked are:
- Perform a cold reset on a partition. As result of this
invocation, the partition is reset and boots. A counter
informs about the number of consecutive warm
resets have been produced. This counter is zeroed
when the cold reset is invoked.
- Perform a warm reset on a partition. As result of this
invocation, the partition is reset and boots. The reset
counter is increased.
- Perform a partition halt. As result of this invocation,
the partition is halted.
- Perform a partition suspend. As result of this
invocation, the partition is suspended.
- Perform a partition resume. As result of this
invocation, the partition is resumed.

System
/Normal

DRAL_SET_SYSTEM_MODE Provides to a partition the ability to change the status
of the virtualization layer. Actions to be invoked are:
- Perform a cold reset on the system. As result of this
invocation, the system is reset and boots. A counter
informs about the number of consecutive warm
resets have been produced. This counter is zeroed
when the cold reset is invoked.
- Perform a warm reset on the system. As result of this
invocation, the system is reset and boots. The reset
counter is increased.
- Perform a system halt. As result of this invocation,
the system is halted. A physical reset is required to
restart the system.

System

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 82 of 92

9 Bibliography

[1] Barham, P. a. (2003). Xen and the art of virtualization. In P. o. principles (Ed.). (pp. 164-177).
New York: ACM

[2] A. Addisu, L. George, V. Sciandra, and M. Agueh. Mixed criticality scheduling applied to jpeg2000
video streaming over wireless multimedia sensor networks. In Proc. WMC, RTSS , pages 55–60,
2013.

[3] Common criteria for information technology security evaluation, July 2009. Version 3.1 Rev. 3.
CCMB- 2009-07-001.

[4] Common criteria for information technology security evaluation, July 2009. Version 3.1 Rev. 3.
CCMB- 2009-07-002.

[5] Common criteria for information technology security evaluation, July 2009. Version 3.1 Rev. 3.
CCMB- 2009-07-003.

[6] Information Assurance Directorate. SKPP: Separation kernel protection profile, Version 1.03 29
June 2007.

[7] Xilinx. Zynq-7000 All Programmable SoC – Technical Reference Manual. UG585 v1.8.1.
September 19, 2014.

[8] Fent Innovative Software Solutions, “XtratuM Hypervisor for ARM CORTEX-A9 SMP – User
Manual.”, fnts-xm-um-arm-121b, March, 2014.

[9] Gosain, Yashu and Palanichamy, Prushothaman. Xilinx. White Paper: TrustZone Technology
Support in Zynq-7000 All Programmable SoCs. May 20, 2014.

[10] Fent Innovative Software Solutions, “XtratuM Hypervisor for ARM CORTEX-A9 SMP –
Reference Manual.”, fnts-xm-rm-arm-122a, March, 2014.

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 83 of 92

APPENDIX 1

 X86-XSD (XML Schema Definition):

<?xml version="1.0"?>

<xs:schema targetNamespace="http://www.xtratum.org/xm-3.x"

 xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://www.xtratum.org/xm-3.x"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <!-- Basic types definition -->

 <xs:simpleType name="id_t">

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="idString_t">

 <xs:restriction base="xs:string">

 <xs:minLength value="1"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="hwIrqId_t">

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 <xs:maxExclusive value=" 16 "/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="hwIrqIdList_t">

 <xs:list itemType="hwIrqId_t"/>

 </xs:simpleType>

 <xs:simpleType name="idList_t">

 <xs:list itemType="id_t"/>

 </xs:simpleType>

 <xs:simpleType name="hex_t">

 <xs:restriction base="xs:string">

 <xs:pattern value="0x[0-9a-fA-F]+"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="version_t">

 <xs:restriction base="xs:string">

 <xs:pattern value="[0-9]+.[0-9]+.[0-9]+"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="freqUnit_t">

 <xs:restriction base="xs:string">

 <xs:pattern value="[0-9]+(.[0-9]+)?([MK][Hh]z)"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="processorFeatures_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="XM_CPU_LEON2_WA1"/>

 <xs:enumeration value="none"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="processorFeaturesList_t">

 <xs:list itemType="processorFeatures_t"/>

 </xs:simpleType>

 <xs:simpleType name="partitionFlags_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="system"/>

 <xs:enumeration value="fp"/>

 <xs:enumeration value="none"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="partitionFlagsList_t">

 <xs:list itemType="partitionFlags_t"/>

 </xs:simpleType>

 <xs:simpleType name="sizeUnit_t">

 <xs:restriction base="xs:string">

 <xs:pattern value="[0-9]+(.[0-9]+)?([MK]?B)"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="timeUnit_t">

 <xs:restriction base="xs:string">

 <xs:pattern value="[0-9]+(.[0-9]+)?([mu]?[sS])"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="traceHyp_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="HYP_IRQS"/>

 <xs:enumeration value="HYP_HCALLS"/>

 <xs:enumeration value="HYP_SCHED"/>

 <xs:enumeration value="HYP_HM"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="traceHypList_t">

 <xs:list itemType="traceHyp_t"/>

 </xs:simpleType>

 <!--@ \void{<track id="xml-list-hm-events">} @-->

 <xs:simpleType name="hmString_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="XM_HM_EV_INTERNAL_ERROR"/>

 <xs:enumeration value="XM_HM_EV_SYSTEM_ERROR"/>

 <xs:enumeration value="XM_HM_EV_PARTITION_ERROR"/>

 <xs:enumeration value="XM_HM_EV_WATCHDOG_TIMER"/>

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 84 of 92

 <xs:enumeration value="XM_HM_EV_FP_ERROR"/>

 <xs:enumeration value="XM_HM_EV_MEM_PROTECTION"/>

 <xs:enumeration value="XM_HM_EV_UNEXPECTED_TRAP"/>

 <xs:enumeration value="XM_HM_EV_X86_DIVIDE_ERROR"/>

 <xs:enumeration value="XM_HM_EV_X86_DEBUG"/>

 <xs:enumeration value="XM_HM_EV_X86_NMI_INTERRUPT"/>

 <xs:enumeration value="XM_HM_EV_X86_BREAKPOINT"/>

 <xs:enumeration value="XM_HM_EV_X86_OVERFLOW"/>

 <xs:enumeration value="XM_HM_EV_X86_BOUND_RANGE_EXCEEDED"/>

 <xs:enumeration value="XM_HM_EV_X86_INVALID_OPCODE"/>

 <xs:enumeration value="XM_HM_EV_X86_DEVICE_NOT_AVAILABLE"/>

 <xs:enumeration value="XM_HM_EV_X86_DOUBLE_FAULT"/>

 <xs:enumeration value="XM_HM_EV_X86_COPROCESSOR_SEGMENT_OVERRUN"/>

 <xs:enumeration value="XM_HM_EV_X86_INVALID_TSS"/>

 <xs:enumeration value="XM_HM_EV_X86_SEGMENT_NOT_PRESENT"/>

 <xs:enumeration value="XM_HM_EV_X86_STACK_FAULT"/>

 <xs:enumeration value="XM_HM_EV_X86_GENERAL_PROTECTION"/>

 <xs:enumeration value="XM_HM_EV_X86_PAGE_FAULT"/>

 <xs:enumeration value="XM_HM_EV_X86_X87_FPU_ERROR"/>

 <xs:enumeration value="XM_HM_EV_X86_ALIGNMENT_CHECK"/>

 <xs:enumeration value="XM_HM_EV_X86_MACHINE_CHECK"/>

 <xs:enumeration value="XM_HM_EV_X86_SIMD_FLOATING_POINT"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="hmAction_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="XM_HM_AC_IGNORE"/>

 <xs:enumeration value="XM_HM_AC_SHUTDOWN"/>

 <xs:enumeration value="XM_HM_AC_PARTITION_COLD_RESET"/>

 <xs:enumeration value="XM_HM_AC_PARTITION_WARM_RESET"/>

 <xs:enumeration value="XM_HM_AC_HYPERVISOR_COLD_RESET"/>

 <xs:enumeration value="XM_HM_AC_HYPERVISOR_WARM_RESET"/>

 <xs:enumeration value="XM_HM_AC_SUSPEND"/>

 <xs:enumeration value="XM_HM_AC_PARTITION_HALT"/>

 <xs:enumeration value="XM_HM_AC_HYPERVISOR_HALT"/>

 <xs:enumeration value="XM_HM_AC_PROPAGATE"/>

 <xs:enumeration value="XM_HM_AC_SWITCH_TO_MAINTENANCE"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="memAreaFlags_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="unmapped"/>

 <xs:enumeration value="shared"/>

 <xs:enumeration value="read-only"/>

 <xs:enumeration value="uncacheable"/>

 <xs:enumeration value="rom"/>

 <xs:enumeration value="flag0"/>

 <xs:enumeration value="flag1"/>

 <xs:enumeration value="flag2"/>

 <xs:enumeration value="flag3"/>

 <xs:enumeration value="iommu" />

 <xs:enumeration value="none"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="memAreaFlagsList_t">

 <xs:list itemType="memAreaFlags_t"/>

 </xs:simpleType>

 <xs:simpleType name="memRegion_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="ram"/>

 <xs:enumeration value="rom"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="portType_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="queuing"/>

 <xs:enumeration value="sampling"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="direction_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="source"/>

 <xs:enumeration value="destination"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="yntf_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="yes"/>

 <xs:enumeration value="no"/>

 <xs:enumeration value="true"/>

 <xs:enumeration value="false"/>

 </xs:restriction>

 </xs:simpleType>

 <!-- End Types -->

 <!-- Elements -->

 <!-- Hypervisor -->

 <xs:complexType name="hypervisor_e">

 <xs:all>

 <xs:element name="PhysicalMemoryArea" type="hypMemoryArea_e"/>

 <xs:element name="HealthMonitor" type="healthMonitor_e" minOccurs="0"/>

 <xs:element name="Trace" type="traceHyp_e" minOccurs="0"/>

 </xs:all>

 <xs:attribute name="console" type="idString_t" use="optional"/>

 <xs:attribute name="healthMonitorDevice" type="idString_t" use="optional"/>

 </xs:complexType>

 <!-- Rsw -->

 <xs:complexType name="rsw_e">

 <xs:all>

 <xs:element name="PhysicalMemoryAreas" type="memoryArea_e"/>

 </xs:all>

 </xs:complexType>

 <!-- Partition -->

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 85 of 92

 <xs:complexType name="partition_e">

 <xs:all>

 <xs:element name="PhysicalMemoryAreas" type="memoryArea_e"/>

 <xs:element name="TemporalRequirements" minOccurs="0">

 <xs:complexType>

 <xs:attribute name="period" type="timeUnit_t" use="required"/>

 <xs:attribute name="duration" type="timeUnit_t" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="HealthMonitor" type="healthMonitor_e" minOccurs="0"/>

 <xs:element name="HwResources" type="hwResources_e" minOccurs="0"/>

 <xs:element name="PortTable" type="partitionPorts_e" minOccurs="0"/>

 <xs:element name="Trace" type="trace_e" minOccurs="0"/>

 </xs:all>

 <xs:attribute name="id" type="id_t" use="required"/>

 <xs:attribute name="name" type="idString_t" use="optional"/>

 <xs:attribute name="console" type="idString_t" use="optional"/>

 <xs:attribute name="flags" type="partitionFlagsList_t" use="optional" default="none"/>

 <xs:attribute name="noVCpus" type="xs:positiveInteger" use="optional" default="1"/>

 </xs:complexType>

 <!-- Trace -->

 <xs:complexType name="trace_e">

 <xs:attribute name="device" type="idString_t" use="required"/>

 <xs:attribute name="bitmask" type="hex_t" use="required"/>

 </xs:complexType>

 <xs:complexType name="traceHyp_e">

 <xs:attribute name="device" type="idString_t" use="required"/>

 <xs:attribute name="bitmask" type="traceHypList_t" use="required"/>

 </xs:complexType>

 <!-- Communication Ports -->

 <xs:complexType name="partitionPorts_e">

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:element name="Port">

 <xs:complexType>

 <xs:attribute name="name" type="idString_t" use="required"/>

 <xs:attribute name="direction" type="direction_t" use="required"/>

 <xs:attribute name="type" type="portType_t" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <!-- Channels -->

 <xs:complexType name="channels_e">

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:choice>

 <xs:element name="Ipvi">

 <xs:complexType>

 <xs:attribute name="id" type="id_t" use="required"/>

 <xs:attribute name="sourceId" type="id_t" use="required"/>

 <xs:attribute name="destinationId" type="idList_t" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="SamplingChannel">

 <xs:complexType>

 <xs:sequence minOccurs="1">

 <xs:element name="Source" type="ipcPort_e"/>

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="Destination" type="ipcPort_e"/>

 </xs:sequence>

 </xs:sequence>

 <xs:attribute name="maxMessageLength" type="sizeUnit_t" use="required"/>

 <xs:attribute name="validPeriod" type="timeUnit_t" use="optional" default="0s"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="QueuingChannel">

 <xs:complexType>

 <xs:all minOccurs="1">

 <xs:element name="Source" type="ipcPort_e"/>

 <xs:element name="Destination" type="ipcPort_e"/>

 </xs:all>

 <xs:attribute name="maxMessageLength" type="sizeUnit_t" use="required"/>

 <xs:attribute name="maxNoMessages" type="xs:positiveInteger" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <!-- Devices -->

 <xs:complexType name="devices_e">

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:choice>

 <xs:element name="MemoryBlock" minOccurs="0">

 <xs:complexType>

 <xs:attribute name="name" type="idString_t" use="required"/>

 <xs:attribute name="start" type="hex_t" use="required"/>

 <xs:attribute name="size" type="sizeUnit_t" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Uart" minOccurs="0">

 <xs:complexType>

 <xs:attribute name="name" type="idString_t" use="required"/>

 <xs:attribute name="id" type="idString_t" use="required"/>

 <xs:attribute name="baudRate" type="xs:positiveInteger" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Vga" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:attribute name="name" type="idString_t" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Null" minOccurs="0">

 <xs:complexType>

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 86 of 92

 <xs:attribute name="name" type="idString_t" use="optional"/>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <!-- IPC Port -->

 <xs:complexType name="ipcPort_e">

 <xs:attribute name="partitionId" type="id_t" use="required"/>

 <xs:attribute name="partitionName" type="idString_t" use="optional"/>

 <xs:attribute name="portName" type="idString_t" use="required"/>

 </xs:complexType>

 <!-- Hw Description -->

 <xs:complexType name="hwDescription_e">

 <xs:sequence>

 <xs:element name="MemoryLayout" type="memoryLayout_e"/>

 <xs:element name="ProcessorTable">

 <xs:complexType>

 <xs:sequence minOccurs="1" maxOccurs="256">

 <xs:element name="Processor" type="processor_e"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Devices" type="devices_e"/>

 </xs:sequence>

 </xs:complexType>

 <!-- Processor -->

 <xs:complexType name="processor_e">

 <!-- <xs:all>

 <xs:element name="CyclicPlanTable" type="cyclicPlan_e"/>

 </xs:all> -->

 <xs:choice>

 <xs:element name="CyclicPlanTable" type="cyclicPlan_e"/>

 <xs:element name="FixedPriority" type="fixedPrio_e"/>

 </xs:choice>

 <xs:attribute name="id" type="id_t" use="required"/>

 <xs:attribute name="frequency" type="freqUnit_t" use="optional"/>

 <xs:attribute name="features" type="processorFeaturesList_t" use="optional" default="none"/>

 </xs:complexType>

 <!-- HwResource -->

 <xs:complexType name="hwResources_e">

 <xs:all>

 <xs:element name="IoPorts" type="ioPorts_e" minOccurs="0"/>

 <xs:element name="Interrupts" minOccurs="0">

 <xs:complexType>

 <xs:attribute name="lines" type="hwIrqIdList_t" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:all>

 </xs:complexType>

 <!-- Io Ports -->

 <xs:complexType name="ioPorts_e">

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:choice>

 <xs:element name="Range">

 <xs:complexType>

 <xs:attribute name="base" type="hex_t" use="required"/>

 <xs:attribute name="noPorts" type="xs:positiveInteger" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Restricted">

 <xs:complexType>

 <xs:attribute name="address" type="hex_t" use="required"/>

 <xs:attribute name="mask" type="hex_t" use="optional" default="0x0"/>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <!-- Fixed priority -->

 <xs:complexType name="fixedPrio_e">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="Partition">

 <xs:complexType>

 <xs:attribute name="id" type="id_t" use="required"/>

 <xs:attribute name="vCpuId" type="id_t" use="optional" default="0"/>

 <xs:attribute name="priority" type="xs:positiveInteger" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <!-- CyclicPlan -->

 <xs:complexType name="cyclicPlan_e">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="Plan" type="plan_e"/>

 </xs:sequence>

 </xs:complexType>

 <!-- Plan -->

 <xs:complexType name="plan_e">

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:element name="Slot">

 <xs:complexType>

 <xs:attribute name="id" type="id_t" use="required"/>

 <xs:attribute name="start" type="timeUnit_t" use="required"/>

 <xs:attribute name="duration" type="timeUnit_t" use="required"/>

 <xs:attribute name="partitionId" type="id_t" use="required"/>

 <xs:attribute name="vCpuId" type="id_t" use="optional" default="0"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="name" type="idString_t" use="optional"/>

 <xs:attribute name="id" type="id_t" use="required"/>

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 87 of 92

 <xs:attribute name="majorFrame" type="timeUnit_t" use="optional" default="0s"/>

 </xs:complexType>

 <!-- Health Monitor -->

 <xs:complexType name="healthMonitor_e">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="Event">

 <xs:complexType>

 <xs:attribute name="name" type="hmString_t" use="required"/>

 <xs:attribute name="action" type="hmAction_t" use="required"/>

 <xs:attribute name="log" type="yntf_t" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <!-- Memory Layout -->

 <xs:complexType name="memoryLayout_e">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="Region">

 <xs:complexType>

 <xs:attribute name="type" type="memRegion_t" use="required"/>

 <xs:attribute name="start" type="hex_t" use="required"/>

 <xs:attribute name="size" type="sizeUnit_t" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <!-- Hypervisor Memory Area -->

 <xs:complexType name="hypMemoryArea_e">

 <xs:attribute name="size" type="sizeUnit_t" use="required"/>

 <xs:attribute name="flags" type="memAreaFlagsList_t" use="optional"/>

 </xs:complexType>

 <!-- Memory Area -->

 <xs:complexType name="memoryArea_e">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="Area">

 <xs:complexType>

 <xs:attribute name="name" type="idString_t" use="optional"/>

 <xs:attribute name="start" type="hex_t" use="required"/>

 <xs:attribute name="size" type="sizeUnit_t" use="required"/>

 <xs:attribute name="flags" type="memAreaFlagsList_t" use="optional" default="none"/>

 <xs:attribute name="mappedAt" type="hex_t" use="optional"/>

 <!-- default="" -->

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <!-- Root Element -->

 <xs:element name="SystemDescription">

 <xs:complexType>

 <xs:all>

 <xs:element name="HwDescription" type="hwDescription_e"/>

 <xs:element name="XMHypervisor" type="hypervisor_e"/>

 <xs:element name="ResidentSw" type="rsw_e" minOccurs="0"/>

 <xs:element name="PartitionTable">

 <xs:complexType>

 <xs:sequence maxOccurs="unbounded">

 <xs:element name="Partition" type="partition_e"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Channels" type="channels_e" minOccurs="0"/>

 </xs:all>

 <xs:attribute name="version" type="version_t" use="required"/>

 <xs:attribute name="name" type="idString_t" use="required"/>

 </xs:complexType>

 </xs:element>

 <!-- End Root Element -->

 <!-- Elements -->

</xs:schema>

 ARM-XSD (XML Schema Definition):

<?xml version="1.0"?>

<xs:schema targetNamespace="http://www.xtratum.org/xm-3.x"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="http://www.xtratum.org/xm-3.x"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <!-- Basic types definition -->

 <xs:simpleType name="id_t">

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="idString_t">

 <xs:restriction base="xs:string">

 <xs:minLength value="1"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="hwIrqId_t">

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 <xs:maxExclusive value="96"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="hwIrqIdList_t">

 <xs:list itemType="hwIrqId_t"/>

http://www.xtratum.org/xm-3.x
http://www.w3.org/2001/XMLSchema
http://www.xtratum.org/xm-3.x

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 88 of 92

 </xs:simpleType>

 <xs:simpleType name="idList_t">

 <xs:list itemType="id_t"/>

 </xs:simpleType>

 <xs:simpleType name="hex_t">

 <xs:restriction base="xs:string">

 <xs:pattern value="0x[0-9a-fA-F]+"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="version_t">

 <xs:restriction base="xs:string">

 <xs:pattern value="[0-9]+.[0-9]+.[0-9]+"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="freqUnit_t">

 <xs:restriction base="xs:string">

 <xs:pattern value="[0-9]+(.[0-9]+)?([MK][Hh]z)"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="processorFeatures_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="XM_CPU_LEON2_WA1"/>

 <xs:enumeration value="none"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="discipline_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="FIFO"/>

 <xs:enumeration value="PRIORITY"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="processorFeaturesList_t">

 <xs:list itemType="processorFeatures_t"/>

 </xs:simpleType>

 <xs:simpleType name="partitionFlags_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="system"/>

 <xs:enumeration value="fp"/>

 <xs:enumeration value="boot"/>

 <xs:enumeration value="icache_disabled"/>

 <xs:enumeration value="dcache_disabled"/>

 <xs:enumeration value="none"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="partitionFlagsList_t">

 <xs:list itemType="partitionFlags_t"/>

 </xs:simpleType>

 <xs:simpleType name="sizeUnit_t">

 <xs:restriction base="xs:string">

 <xs:pattern value="[0-9]+(.[0-9]+)?([MK]?B)"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="timeUnit_t">

 <xs:restriction base="xs:string">

 <xs:pattern value="[0-9]+(.[0-9]+)?([mu]?[sS])"/>

 </xs:restriction>

 </xs:simpleType>

 <!--@ \void{<track id="xml-list-hm-events">} @-->

 <xs:simpleType name="hmString_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="XM_HM_EV_INTERNAL_ERROR"/>

 <xs:enumeration value="XM_HM_EV_UNEXPECTED_TRAP"/>

 <xs:enumeration value="XM_HM_EV_PARTITION_ERROR"/>

 <xs:enumeration value="XM_HM_EV_PARTITION_INTEGRITY"/>

 <xs:enumeration value="XM_HM_EV_MEM_PROTECTION"/>

 <xs:enumeration value="XM_HM_EV_OVERRUN"/>

 <xs:enumeration value="XM_HM_EV_SCHED_ERROR"/>

 <xs:enumeration value="XM_HM_EV_WATCHDOG_TIMER"/>

 <xs:enumeration value="XM_HM_EV_INCOMPATIBLE_INTERFACE"/>

 <xs:enumeration value="XM_HM_EV_ARM_UNDEF_INSTR"/>

 <xs:enumeration value="XM_HM_EV_ARM_PREFETCH_ABORT"/>

 <xs:enumeration value="XM_HM_EV_ARM_DATA_ABORT"/>

 <xs:enumeration value="XM_HM_EV_ARM_DATA_ALIGNMENT_FAULT"/>

 <xs:enumeration value="XM_HM_EV_ARM_DATA_BACKGROUND_FAULT"/>

 <xs:enumeration value="XM_HM_EV_ARM_DATA_PERMISSION_FAULT"/>

 <xs:enumeration value="XM_HM_EV_ARM_INSTR_ALIGNMENT_FAULT"/>

 <xs:enumeration value="XM_HM_EV_ARM_INSTR_BACKGROUND_FAULT"/>

 <xs:enumeration value="XM_HM_EV_ARM_INSTR_PERMISSION_FAULT"/>

 </xs:restriction>

 </xs:simpleType>

 <!--@ \void{</track id="xml-list-hm-events">} @-->

 <!--@ \void{<track id="xml-list-hm-actions">} @-->

 <xs:simpleType name="hmAction_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="XM_HM_AC_IGNORE"/>

 <xs:enumeration value="XM_HM_AC_SHUTDOWN"/>

 <xs:enumeration value="XM_HM_AC_PARTITION_COLD_RESET"/>

 <xs:enumeration value="XM_HM_AC_PARTITION_WARM_RESET"/>

 <xs:enumeration value="XM_HM_AC_HYPERVISOR_COLD_RESET"/>

 <xs:enumeration value="XM_HM_AC_HYPERVISOR_WARM_RESET"/>

 <xs:enumeration value="XM_HM_AC_SUSPEND"/>

 <xs:enumeration value="XM_HM_AC_HALT"/>

 <xs:enumeration value="XM_HM_AC_PROPAGATE"/>

 <xs:enumeration value="XM_HM_AC_SWITCH_TO_MAINTENANCE" />

 </xs:restriction>

 </xs:simpleType>

 <!--@ \void{</track id="xml-list-hm-actions">} @-->

 <xs:simpleType name="memAreaFlags_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="unmapped"/>

 <xs:enumeration value="read-only"/>

 <xs:enumeration value="uncacheable"/>

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 89 of 92

 <xs:enumeration value="rom"/>

 <xs:enumeration value="flag0"/>

 <xs:enumeration value="flag1"/>

 <xs:enumeration value="flag2"/>

 <xs:enumeration value="flag3"/>

 <xs:enumeration value="none"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="memAreaFlagsList_t">

 <xs:list itemType="memAreaFlags_t"/>

 </xs:simpleType>

 <xs:simpleType name="slotFlags_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="periodStart"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="slotFlagsList_t">

 <xs:list itemType="slotFlags_t"/>

 </xs:simpleType>

 <xs:simpleType name="memRegion_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="sdram"/>

 <xs:enumeration value="stram"/>

 <xs:enumeration value="rom"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="portType_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="queuing"/>

 <xs:enumeration value="sampling"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="direction_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="source"/>

 <xs:enumeration value="destination"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="yntf_t">

 <xs:restriction base="xs:string">

 <xs:enumeration value="yes"/>

 <xs:enumeration value="no"/>

 <xs:enumeration value="true"/>

 <xs:enumeration value="false"/>

 </xs:restriction>

 </xs:simpleType>

 <!-- End Types -->

 <!-- Elements -->

 <!-- Hypervisor -->

 <xs:complexType name="hypervisor_e">

 <xs:all>

 <xs:element name="PhysicalMemoryArea" type="hypMemoryArea_e"/>

 <xs:element name="HealthMonitor" type="healthMonitor_e" minOccurs="0" />

 </xs:all>

 <xs:attribute name="console" type="idString_t" use="optional" />

 </xs:complexType>

 <!-- Rsw -->

 <xs:complexType name="rsw_e">

 <xs:all>

 <xs:element name="PhysicalMemoryAreas" type="memoryArea_e"/>

 </xs:all>

 </xs:complexType>

 <!-- Partition -->

 <xs:complexType name="partition_e">

 <xs:all>

 <xs:element name="PhysicalMemoryAreas" type="memoryArea_e"/>

 <xs:element name="TemporalRequirements" minOccurs="0">

 <xs:complexType>

 <xs:attribute name="period" type="timeUnit_t" use="required"/>

 <xs:attribute name="duration" type="timeUnit_t" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="HealthMonitor" type="healthMonitor_e" minOccurs="0" />

 <xs:element name="HwResources" type="hwResources_e" minOccurs="0" />

 <xs:element name="PortTable" type="partitionPorts_e" minOccurs="0" />

 </xs:all>

 <xs:attribute name="id" type="id_t" use="required"/>

 <xs:attribute name="name" type="idString_t" use="optional" />

 <xs:attribute name="console" type="idString_t" use="optional" />

 <xs:attribute name="flags" type="partitionFlagsList_t" use="optional" default="none" />

 </xs:complexType>

 <!-- Communication Ports -->

 <xs:complexType name="partitionPorts_e">

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:element name="Port">

 <xs:complexType>

 <xs:attribute name="name" type="idString_t" use="required"/>

 <xs:attribute name="direction" type="direction_t" use="required"/>

 <xs:attribute name="type" type="portType_t" use="required"/>

 <xs:attribute name="discipline" type="discipline_t" use="optional" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <!-- Channels -->

 <xs:complexType name="channels_e">

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:choice>

 <xs:element name="Ipvi">

 <xs:complexType>

 <xs:attribute name="id" type="id_t" use="required"/>

 <xs:attribute name="sourceId" type="id_t" use="required"/>

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 90 of 92

 <xs:attribute name="destinationId" type="idList_t" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="SamplingChannel">

 <xs:complexType>

 <xs:sequence minOccurs="1">

 <xs:choice>

 <xs:element name="Source" type="ipcPort_e" />

 </xs:choice>

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:choice>

 <xs:element name="Destination" type="ipcPort_e"/>

 </xs:choice>

 </xs:sequence>

 </xs:sequence>

 <xs:attribute name="maxMessageLength" type="sizeUnit_t" use="required"/>

 <xs:attribute name="refreshPeriod" type="timeUnit_t" use="optional" default="0s"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="QueuingChannel">

 <xs:complexType>

 <xs:sequence minOccurs="1">

 <xs:choice>

 <xs:element name="Source" type="ipcPort_e" />

 </xs:choice>

 <xs:choice>

 <xs:element name="Destination" type="ipcPort_e" />

 </xs:choice>

 </xs:sequence>

 <xs:attribute name="maxMessageLength" type="sizeUnit_t" use="required"/>

 <xs:attribute name="maxNoMessages" type="xs:positiveInteger" use="required"/>

 <xs:attribute name="maxTimeExpiration" type="timeUnit_t" use="optional" default="0s"/>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <!-- Devices -->

 <xs:complexType name="devices_e">

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:choice>

 <xs:element name="MemoryBlock" minOccurs="0">

 <xs:complexType>

 <xs:attribute name="name" type="idString_t" use="required"/>

 <xs:attribute name="start" type="hex_t" use="required"/>

 <xs:attribute name="size" type="sizeUnit_t" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Uart" minOccurs="0">

 <xs:complexType>

 <xs:attribute name="name" type="idString_t" use="required"/>

 <xs:attribute name="id" type="idString_t" use="required"/>

 <xs:attribute name="baudRate" type="xs:positiveInteger" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Null" minOccurs="0">

 <xs:complexType>

 <xs:attribute name="name" type="idString_t" use="optional" />

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <!-- IPC Port -->

 <xs:complexType name="ipcPort_e">

 <xs:attribute name="partitionId" type="id_t" use="required"/>

 <xs:attribute name="partitionName" type="idString_t" use="optional" />

 <xs:attribute name="portName" type="idString_t" use="required"/>

 </xs:complexType>

 <!-- Hw Description -->

 <xs:complexType name="hwDescription_e">

 <xs:sequence>

 <xs:element name="MemoryLayout" type="memoryLayout_e"/>

 <xs:element name="ProcessorTable">

 <xs:complexType>

 <xs:sequence minOccurs="1" maxOccurs="256">

 <xs:element name="Processor" type="processor_e" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Devices" type="devices_e"/>

 </xs:sequence>

 </xs:complexType>

 <!-- Processor -->

 <xs:complexType name="processor_e">

 <xs:all>

 <xs:element name="CyclicPlanTable" type="cyclicPlan_e"/>

 </xs:all>

 <xs:attribute name="id" type="id_t" use="required"/>

 <xs:attribute name="frequency" type="freqUnit_t" use="optional" />

 <xs:attribute name="features" type="processorFeaturesList_t" use="optional" default="none"/>

 <xs:attribute name="console" type="idString_t" use="optional" />

 </xs:complexType>

 <!-- HwResource -->

 <xs:complexType name="hwResources_e">

 <xs:all>

 <xs:element name="IoPorts" type="ioPorts_e" minOccurs="0" />

 <xs:element name="Interrupts" minOccurs="0">

 <xs:complexType>

 <xs:attribute name="lines" type="hwIrqIdList_t" use="required"/>

 </xs:complexType>

 </xs:element>

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 91 of 92

 <xs:element name="APBDev" type="APBDeviceType" minOccurs="0"/>

 </xs:all>

 </xs:complexType>

 <!-- Io Ports -->

 <xs:complexType name="ioPorts_e">

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:choice>

 <xs:element name="Range">

 <xs:complexType>

 <xs:attribute name="base" type="hex_t" use="required"/>

 <xs:attribute name="noPorts" type="xs:positiveInteger" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Restricted">

 <xs:complexType>

 <xs:attribute name="address" type="hex_t" use="required"/>

 <xs:attribute name="mask" type="hex_t" use="optional" default="0x0"/>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <!-- APBId -->

 <xs:simpleType name="APBDevice_e">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 <xs:complexType name="APBDeviceType">

 <xs:attribute name="device" type="APBDevice_e"/>

 </xs:complexType>

 <!-- CyclicPlan -->

 <xs:complexType name="cyclicPlan_e">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="Plan" type="plan_e" />

 </xs:sequence>

 </xs:complexType>

 <!-- Plan -->

 <xs:complexType name="plan_e">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="Slot">

 <xs:complexType>

 <xs:attribute name="id" type="id_t" use="required"/>

 <xs:attribute name="start" type="timeUnit_t" use="required"/>

 <xs:attribute name="duration" type="timeUnit_t" use="required"/>

 <xs:attribute name="partitionId" type="id_t" use="required"/>

 <xs:attribute name="vCpuId" type="id_t" use="optional" default="0"/>

 <xs:attribute name="flags" type="slotFlagsList_t" use="optional"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="name" type="idString_t" use="optional"/>

 <xs:attribute name="id" type="id_t" use="required"/>

 <xs:attribute name="majorFrame" type="timeUnit_t" use="required"/>

 </xs:complexType>

 <!-- Health Monitor -->

 <xs:complexType name="healthMonitor_e">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="Event">

 <xs:complexType>

 <xs:attribute name="name" type="hmString_t" use="required"/>

 <xs:attribute name="action" type="hmAction_t" use="required"/>

 <xs:attribute name="log" type="yntf_t" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <!-- Memory Layout -->

 <xs:complexType name="memoryLayout_e">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="Region">

 <xs:complexType>

 <xs:attribute name="type" type="memRegion_t" use="required"/>

 <xs:attribute name="start" type="hex_t" use="required"/>

 <xs:attribute name="size" type="sizeUnit_t" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <!-- Hypervisor Memory Area -->

 <xs:complexType name="hypMemoryArea_e">

 <xs:attribute name="size" type="sizeUnit_t" use="required"/>

 <xs:attribute name="flags" type="memAreaFlagsList_t" use="optional"/>

 </xs:complexType>

 <!-- Memory Area -->

 <xs:complexType name="memoryArea_e">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="Area">

 <xs:complexType>

 <xs:attribute name="name" type="idString_t" use="optional" />

 <xs:attribute name="start" type="hex_t" use="required"/>

 <xs:attribute name="size" type="sizeUnit_t" use="required"/>

 <xs:attribute name="flags" type="memAreaFlagsList_t" use="optional" default="none"/>

 <xs:attribute name="mappedAt" type="hex_t" use="optional"/> <!-- default="" -->

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <!-- Root Element -->

 <xs:element name="SystemDescription">

 <xs:complexType>

 <xs:all>

 <xs:element name="HwDescription" type="hwDescription_e" />

 <xs:element name="XMHypervisor" type="hypervisor_e"/>

D2.3.1 Version 1.0 Confidentiality Level:PU

31.03.2015 DREAMS Page 92 of 92

 <xs:element name="ResidentSw" type="rsw_e" minOccurs="0"/>

 <xs:element name="PartitionTable">

 <xs:complexType>

 <xs:sequence maxOccurs="unbounded">

 <xs:element name="Partition" type="partition_e" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Channels" type="channels_e" minOccurs="0" />

 </xs:all>

 <xs:attribute name="version" type="version_t" use="required"/>

 <xs:attribute name="name" type="idString_t" use="required"/>

 </xs:complexType>

 </xs:element>

 <!-- End Root Element -->

 <!-- Elements -->

</xs:schema>

