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a b s t r a c t

The present work investigates diffusion-induced phase evolution in solid mixtures under the presence of
thermo-elastic strains. Based on five statements for an entropy principle we explain how to construct the
constitutive equations for the entropy flux, the stress tensor, and the diffusion flux in multi-component
solid mixtures. We show, first, that the obtained results agree with the classical results of thermodynam-
ics of fluid mixtures and, second, that they allow for a theoretical description of phase formation and evo-
lution. Finally we specialize to binary alloys and present various numerical studies for the brazing alloy
Ag–Cu, for which the required material data is reliably documented.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion processes in multi-phase and multi-component solid
mixtures and the accompanying micromorphological evolution
represent an important field in applied as well as in theoretical
materials science. For example, (lead-free) solder alloys that are
typically used in microelectronic packaging show a variation of dif-
fusion-induced ‘‘microstructures,” which has a crucial influence on
the strength and lifetime of the solder joint [1]. Moreover, experi-
mental observations show that surface tensions along the phase
boundaries and the presence of additional mechanical loading sig-
nificantly effect the diffusion process. Based on a systematic

exploitation of the Second Law of Thermodynamics (2nd law) by
means of the method of LAGRANGE multipliers, Dreyer and Müller re-
cently derived an Extended Diffusion Equation (EDE) for binary
mixtures [5]. However, recent investigations show that this meth-
od of exploitation cannot generally be applied to all classes of
materials (cf., explanations in Section 2.2).

For this reason we revisit in Section 2.2 an entropy principle
based on ‘‘well-accepted” thermodynamical concepts. In Section
3 these concepts are applied in terms of five statements to sin-
gle-phase systems in order to illustrate the agreement of the ob-
tained results with those of classical thermodynamics of fluids.
Based on the incorporation of so-called Higher Gradients (HG)
we proceed in Section 4 to multiphase mixtures and derive all con-
stitutive equations required for the description of phase separation
and OSTWALD ripening. Finally we specialize to binary alloys and
present various numerical studies subjected to spinodal decompo-
sition and coarsening in Ag–Cu for one and two dimensions.
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2. Elements of continuum thermodynamics

2.1. Kinematics and balance equations

In order to describe motion and deformation of a solid contin-
uum we identify material points at time t ¼ t0 by their reference
position vector Xi and at times t > t0 by the current position vector
xi ¼ viðxj; tÞ, from which the displacements ui ¼ xi � Xi can be deter-
mined. Further quantities are the velocity vi ¼ dxi=dt, the deforma-
tion gradient Fij ¼ dxi=dXj, and the Jacobian J ¼ det Fij P 0. Strains
within the material are characterized by the displacement gradient
Hij ¼ oui=oXj or the right CAUCHY–GREEN tensor Cij ¼ FmiFmj ¼ J2=3cij,
where J2=3 stands for pure volumetric changes and cij (with
det cij ¼ 1) for pure changes of the shape. Further strain measures
are the linearized strains eij ¼ 1

2 ðH
ij þ HjiÞ and GREEN’s deformation

tensor Gij ¼ 1
2 ðC

ij � dijÞ.
In order to describe mixtures that consist of m components mþ 4

primary variables are required, namely the partial mass or particle
density, qa or na, (a ¼ f1; . . . ; mg), the barycentric velocity or the
displacements, vi or ui, and the internal energy density, qe. For
their determination local balances hold (here without production
terms and external forces), viz.

oqa

ot
¼ � oðqavi

aÞ
oxi

¼ � oðqavi þ Ji
aÞ

oxi
or ð1Þ

ona

ot
¼ � oðnavi

aÞ
oxi

¼ � oðnavi þ ji
aÞ

oxi
; ð2Þ

oqvi

ot
¼ � o

oxj
ðqvjvi � rijÞ; ð3Þ

oq�
ot
¼ � o

oxj
ðq�vj þ qjÞ þ rij ovi

oxj
ð4Þ

with the diffusion flux Ji
a ¼ qaðvi

a � viÞ and ji
a ¼ naðvi

a � viÞ. We
emphasize that Eq. (2) can be used alternatively to Eq. (1) in order
to account for (mass–less) vacancies. As a consequence of these bal-
ances the total particle balance otnþriðnviÞ ¼ 0, the total mass bal-
ance otqþriðqviÞ ¼ 0 and its integrated form J ¼ q0=q will hold. In
this context the following relations apply (qa ¼ mana):

q ¼
X

a
qa )

X
a

Ji
a ¼

X
a

maji
a ¼ 0: ð5Þ

In order to solve the system of Eqs. (1),(3),(4) or (2)–(4) constitutive
relations for the diffusion fluxes, the CAUCHY stresses rij and the heat
flux qi are required, which link these quantities to the primary vari-
ables in a material-dependent manner.

2.2. Entropy

A key issue of thermodynamics is the question regarding a local
version of the 2nd law, which leads to the question which form of
the entropy flux /i shall be used. Liu [9], presented an approach
from which a constitutive relation for the entropy flux results.
However, recent investigations show that /i is not unique for com-
plex materials, and this fact is not easy to reveal within Liu’s pro-
cedure [6]. Therefore we formulate five well-established statements,
which allow to perform a general exploitation of the 2nd law, also
for complex materials.

1. There exist two constitutive quantities, the entropy density qg
and the entropy flux /i. Moreover the constitutive relation for
qg has the form:

qg ¼ Sðprimary variables; functions=deri-vatives
of the primary variablesÞ: ð6Þ

2. The local entropy balance reads:

oqg
ot
þ o

oxi
ðqgvi þ /iÞ ¼ f: ð7Þ

3. The stresses can be decomposed into an elastic and dissipative
part: rij ¼ rij

el þ rij
diss.

4. The entropy production f is positive definite and of the form (flux
� driving force, i.e, Fz � Dz):

f ¼
X

z

FzDz; f P 0 ð2nd lawÞ ð8Þ

with Fz ¼ fji
a; q

i;rij
dissg and fj eq: ¼ Feq:

z ¼ 0.
5. The absolute temperature is defined by 1=T ¼ oqg=oðqeÞ.

The balances can be interpreted as a system of algebraic equa-
tions, of which the right hand sides can be chosen arbitrarily in or-
der to calculate the left hand sides. Using the product rule the
arbitrary terms are given in Table 1 (rhivji ¼ ovhj=oxii denotes the
trace-free part of rivj). Thus the constitutive equations must be
constructed such that the 2nd law is satisfied for any solution of
the balances (i.e., for arbitrary choice of the terms in Table 1).

3. Single phase mixtures

3.1. Entropy production

In order to investigate a single phase within a m-component so-
lid mixture the wanted primary variables are n1 . . . nm, ui, and qe.
According to Statement 1 in Section 2.2 we choose the following
four functional representations for qg (yb: particle concentration
and a ¼ f1; . . . ; mg; b ¼ f1; . . . ; m� 1g)

qg ¼fSðq�; na; cijÞ ¼cSðT;na; cijÞ ¼SðT; yb;q; cijÞ

¼ �SðT; yb; C
ijÞ: ð9Þ

Four types of dependencies are required for the following purpose:fS is used for the exploitation of the 2nd law, whereas cS, S, and �S

are suitable for the definition of the chemical potentials, la, and the
calculation of pressure, p, and the 2nd PIOLA-KIRCHHOFF stresses,
tij ¼ JFim�1

rmnFjn�1
.

From Eq. (7) we obtain by using the product rule

ofS
ot
þ vio

~S

oxi
þfS ovi

oxi
þ o/i

oxi
¼ f: ð10Þ

For the underlined terms one can write

ofS
ot
¼ ofS

oq�
oq�
ot
þ
Xm

a¼1

ofS
ona

ona

ot
þ ofS

ocij

ocij

ot
; ð11Þ

ofS
oxi
¼ ofS

oq�
oq�
oxi
þ
Xm

a¼1

ofS
ona

ona

oxi
þ ofS

ockl

ockl

oxi
: ð12Þ

Inserting the balances (2,4) into Eq. (11) and the result into Eq. (10)
yields after rearrangement

Table 1
Arbitrary terms, following from the different balances

na , vi , rivi , rina , ri ji
a , sn

a Partial particle balance
qa , vi , rivi , riqa , riJi

a , sq
a Partial mass balance

qvi ,rhivji , rjrij Momentum balance
qe, riðqeÞ, riqi , rij Internal energy balance
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f ¼ o

oxi
/i � qi

T
�
Xm

a¼1

ji
a
ofS
ona

 !
þ
Xm

a¼1
ji
a

o

oxi

ofS
ona

 !
þ qi o1=T

oxi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q

þ ovi

oxj

rij
el

T
þþJ�2=3ðFjkFil þ FjlFikÞ o

fS
ockl

"

þdij fS � q�
T
�
Xm

a¼1

na
ofS
ona
� 2

3
J�2=3Ckl ofS

ockl

 !#
P 0: ð13Þ

In this context the relation _ckl ¼ � 2
3 J�2=3Cklrivi þ J�2=3ðFjkFil þ FikFjlÞ

rivj is used. Furthermore the arrangement of Eq. (13) is based on a
certain a priori knowledge of the from of f, according to Statement 4
of Section 2.2. Thus we arrange the expression Q to be of the typeP

FzDz and extract terms linear in rjvi related to the arbitrary
terms in Table 1. Now we define the entropy flux /i as

/i ¼ qi

T
þ
Xm

a¼1

ji
a
ofS
ona

: ð14Þ

Consequently the first row of Eq. (13) vanishes and the remaining
equation has the form

P � ðrjviÞ þ Q ¼ f P 0 8ðrjviÞ; ð15Þ

in which P stands for the long-winding term within the brackets.
Here the non-negativity of the entropy production strictly implies
P ¼ 0 and Q � 0, i.e.,

f ¼ qi o1=T
oxi
þ
Xm

a¼1

ji
a

o

oxi

ofS
ona

 !
: ð16Þ

3.2. Classical results

We start by introducing the following representations for the
HELMHOLTZ free energy qu:

qu ¼ ~Fðq�; na; cijÞ ¼ cFðT; na; cijÞ ¼FðT; yb;q; cijÞ

¼ �FðT; yb; C
ijÞ: ð17Þ

The definition of the chemical potential la ¼ ocF=ona and a Legendre
transfrom yields ofS=ona ¼ �ðocF=onaÞ=T ¼ �la=T. Now ji

a and qi in
Eq. (16) are chosen such that a quadratic form results, which guar-
antees non-negativity of the entropy production f. Using the con-
straint of Eq. (5)3,

P
a Ji

a ¼ 0, yields (without coupling terms):

ji
b ¼

Xm�1

d¼1

Mij
bdrj 1

T
md

mm
lm � ld

� �� �
; ð18Þ

qi ¼ jijrjð1=TÞ ðFourier0s lawÞ; ð19Þ

where Mij
ab and jij are the coefficients of mobility and conductivity.

The relation P ¼ 0 can be exploited in order to find the consti-
tutive equations for p and tij. Due to limited space we will only
present the results, viz.

p ¼ q2 o �u
oq

and tij ¼ 2Jq
o�u
oCij

: ð20Þ

Finally the GIBBS–DUHEM equation, pþ qu ¼
Pm

a¼1nala, follows from
p ¼ �rkk

el =3 and P ¼ 0.

4. Multi-phase mixtures

4.1. Entropy production

For multiphase mixtures one has to take the phase boundaries
into account, which can be done by extending the functional repre-
sentations in Eqs. (9,17) as follows (a ¼ 1; . . . ; m ^ b ¼ 1; . . . ; m� 1):

qg ¼ eSðq�; na;rina;rijna; cijÞ ¼ bSðT; na;rina;rijna; cijÞ

¼ SðT; yb;riyb;rijyb;riq;rijq;q; cijÞ

¼ �SðT; yb;riyb;rijyb;riq;rijq; CijÞ ð21Þ

and accordingly

qu ¼ eFð. . .Þ ¼ bFð. . .Þ ¼ Fð. . .Þ ¼ �Fð. . .Þ; ð22Þ

where the so-called higher gradients (HGs), riN and rijN with
N ¼ fna; yb;qg characterize the spatial gradients of the composition.
According to Section 3, the different functions of qg and qu are
used for the definition of the chemical potential and the calculation
of the mechanical constituitve quantities.

Now the underlined terms of the dissipation inequality in Eq.
(10) are re-written as follows:

oeS
ot
¼ oeS

oq�
oq�
ot
þ oeS

ocij

ocij

ot

þ
Xm

a

oeS
ona

ona

ot
þ

 
þ oeS

orina

orina

ot
þ oeS

orijna

orijna

ot

!
; ð23Þ

oeS
oxk
¼ oeS

oq�
oq�
oxk
þ oeS

ocij

ocij

oxk

þ
Xm

a

oeS
ona

ona

oxk
þ

 
þ oeS

orina

orina

oxk
þ oeS

orijna

orijna

oxk

!
: ð24Þ

The underlined terms are treated in the same manner as in Section
3. The double underlined terms must be replaced by the differenti-
ated partial particle balance in Eq. (2), i.e., riðotnaÞ and rijðotnaÞ.

Fig. 1. Initial concentration profiles used for the 1D (one fluctuation) and 2D (two fluctuations) simulations.
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Note that Eq. (23) directly indicates which balances and which
differentiated balances are required during the exploitation of the
2nd law. This fact remedies the aformentioned shortcoming of Liu’s
procedure, cf., Section 2.2.

By inserting Eqs. (23) and (24) into Eq. (10), and by using the
EULER–LAGRANGE derivative

d�
dna
¼ o�

ona
�ri � o�

orina
þrij � o�

orijna
ð25Þ

as well as the relation

_na ¼
ðdefÞ ona

ot
þ vi ona

oxi
¼ð2Þ �na

ovi

oxi
� oji

a

oxi
; ð26Þ

we obtain after a lenghty but straightforward calculation

f ¼ o

oxi
/i � qi

T
�
Xm

a
ji
a

deS
dna
þ
Xm

a

_na
oeS

orina
� o

oxl

oeS
orlina

 !" #(

þ
Xm

a

o _na

oxl

oeS
orlina

�
Xm

a

ovl

oxk

ona

oxl

oeS
orkina

)
þ qi o1=T

oxi

þ
Xm

a
ji
a

o

oxi

deS
dna

 !
þ ovi

oxj

rij
el

T
þ J�2=3ðFjkFil þ FikFjlÞ o

eS
ockl

(

�
Xm

a

ona

oxi

oeS
orjna

� o

oxl

oeS
orjlna

 !" #
�
Xm

a

o2na

oxioxl

oeS
orjlna

�dij q�
T
� eS þXm

a
na

deS
dna
þ 2

3
J�2=3Ckl oeS

ockl

" #)
P 0: ð27Þ

We define the entropy flux such that the divergence terms of the
first three rows vanish, viz.

Fig. 2. 1D simulations for a pressure load of r0 ¼ �5000 MPa.
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/i ¼ qi

T
þ � � � þ

Xm

a

ovl

oxk

ona

oxl

oeS
orkina

: ð28Þ

By means of the same arguments as in Section 3 the term within the
curly brackets {� � �} of the last four rows vanishes since
rjvif� � �g ¼ 0;8ðrjviÞ. Consequently one finds for the entropy
production

qi o1=T
oxi
þ
Xm

a
ji
a

o

oxi

deS
dna

 !
¼ f P 0: ð29Þ

4.2. Diffusion flux

Eq. (27) can be exploited to find the constitutive relations for,
e.g., the pressure, p, the 2nd PIOLA KIRCHHOFF tensor, tij, and the diffu-
sion flux, ji

a or Ji
a. However, due to lack of space we will only exam-

ine the diffusion flux. To this end we consider Eq. (29). Analogously
to the arguments used for the derivation of Eq. (18) we obtain:

ji
b ¼

Xm�1

d¼1

Mij
bdrj 1

T
md

mm
lm � ld

� �� �
; ð30Þ

Ji
b ¼

Xm�1

d¼1

Bij
bdrj 1

T
l�m � l�d
� �� �

ð31Þ

with the definitions of the chemical potential

la ¼
ðdefÞ dbF

dna
or l�a ¼

ðdefÞ dbbF
dqa
¼ 1

ma

dbF
dna

: ð32Þ

Here we introduced the alternative functional representations
qu ¼ bbFðT;qa;riqa;rijqa; c

ijÞ ¼ FðT; cb;ricb;rijcb;riq;rijq;q; cijÞ,
where cb denotes the mass concentration.

In some cases it might be pratical to express l�m � l�d in terms of
dF=dcd. By means of the LEGENDRE transformation the following rela-
tion is found:

l�m � l�d ¼
Xm�1

k¼1

dF

dck

dmk

q
� ddk

q

� �
¼ � 1

q
dF
dcd

: ð33Þ

Fig. 3. 1D simulations for a tensile load of r0 ¼ þ5000 MPa.
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4.3. Binary alloys and extended diffusion equation

Next we investigate the binary case, namely a solid mixture A–
B, in which the following relations hold:

q ¼ qA þ qB and cB ¼ 1� cA: ð34Þ

In order to predict the phase evolution characterized by the
(smoothly changing) concentration field c ¼ cB within the mixture
we reformulate the partial mass balance in Eq. (1) as follows
(T ¼ const, Ji ¼ Ji

B and BijðTÞ ¼ Bij
AA=T):

q
dc
dt
¼ � oJi

oxi
; Ji ¼ð33Þ �BijðTÞrj 1

q
dF
dc

 !
: ð35Þ

At this point the question arises, how F depends on the higher
derivatives ric and rijc. For this reason we follow the strategy of
Cahn and Hilliard [4], and expand F into a TAYLOR series around the
(homogeneous) reference state (no gradients):

F ¼ F0ðT; c; eijÞ þ lkðc; eijÞrkc � aklðc; eijÞrklc

þ 1
2

bklðc; eijÞrkcrlc þ � � � ð36Þ

with the so-called Higher Gradient Coefficients (HGCs)
lk ¼ oF=orkc, akl ¼ oF=orklc, and bkl ¼ o2F=ðorkcorlcÞ, which can
be exactly calculated by means of atomistic theories [2]. In particu-
lar it follows that due to the periodic arrangement of the lattice
lk ¼ 0 holds. Furthermore the HELMHOLTZ free energy density of the
homogeneous state consists of a pure thermodynamical part and
a thermo-elastic part, viz. F0 ¼ Fth þ Fel, where Fth can be deter-
mined from experimental phase equilibrium data. For Fel we simply
assume HOOKE’s law:

2Fel � ðeij � aijDTÞCijklðT; cÞðekl � aklDTÞ; ð37Þ

where aij stand for the coefficients of thermal expansion.
Note that in [1,5] an equivalent version of Eq. (35) is used. Here

the authors chose a LAGRANGEian description which can be derived
from Eq. (35) by simply performing the replacement: xi ! Xi and
q! q0, where q0 denotes the constant mass density of the homo-
geneous reference state. Inserting Eq. (36) into Eq. (35) the follow-
ing Extended Diffusion Equation (EDE) is finally obtained
(Akl :¼ oakl=oc þ bkl)

Fig. 4. 2D simulations by means of an explicit EULER method: after 5:8� 10�3, 1:17� 10�2, 2:2� 10�2, 5:1� 10�2, 6:6� 10�2, 9:5� 10�2, 0.4, 0.87, and 1.3 s.
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q0
dc
dt
¼ q0

o

oXi
Mij o

oXj

o½Fth þ Fel�
oc

� 2Akl o2c

oXk
oXl
� oAkl

oc
oc

oXk

oc

oXl

 "

�2
oAkl

oemn

oc

oXk

oemn

oXl
� o2akl

oeopoemn

oeop

oXk

oemn

oXl
� oakl

oemn

o2emn

oXk
oXl

!#
ð38Þ

in which we redefine the mobility by Mij ¼ðdefÞq2
0Bij.

Eq. (38) can be interpreted as a generalization of the well-
established Cahn–Hilliard equation and represents a nonlinear
PDE of fourth order, which must be solved numerically in order
to investigate the temporal change of the concentration field
cðXi; tÞ.

5. Numerical studies

5.1. Material data and computational realization

In what follows we turn the attention to the binary alloy Ag–Cu
at 1000 Kelvin and put: A 	 Ag;B 	 Cu;c 	 cB ¼ cCu. Moreover we
restrict our simulations to the following two cases:

(1) One-dimensional simulations under the presence of so-
called line strains, i.e.:

eij¼: e11 ¼ eðx; tÞ ^ eij¼: 0 8i; j ¼ f1;2g: ð39Þ

Following the strategy in [1] the set of required material data re-
duces to (T ¼ const :¼ 1000 K): FthðcÞ, C11

a;b, Ma;b, aðe; cÞ, bðe; cÞ, and
Aðe; cÞ.

(2) Two-dimensional simulations for the strain-free case. Then
the last three terms in the diffusion flux of the EDE vanish.
Furthermore the absence of local thermo-mechanical strains,
eij ¼ 0, reduces the mobility and the HGCs to the following
isotropic form (i; j ¼ f1;2g), [2]:

Nij ¼ Ndij; N ¼ fMa;b; aðcÞ; bðcÞ;AðcÞg: ð40Þ

Hence the required set of material data is given by: F thðcÞ, MðcÞ,
aðcÞ, bðcÞ, and AðcÞ.

FthðT; cÞ is fitted according to the MARGULES-ansatz by using dis-
crete phase equilibrium data, available from MTdataTM, [1]. The
HGCs are exactly calculated as functions of eij and c by means of

Fig. 5. 2D simulations by means of the time-adaptive implicit RUNGE–KUTTA method provided by the RADAU routine: after 6:3� 10�3, 8:13� 10�3, 1:0� 10�2, 1:8� 10�2,
2:5� 10�2, 2:9� 10�2, 3:3� 10�2, 4:5� 10�2, and 8:2� 10�2 s.

T. Böhme et al. / Computational Materials Science 45 (2009) 837–844 843
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the Embedded-Atom-Method (EAM), [1,2], and range between
1 and 8� 10�10N. The remaining data are taken from the literature
or databases, e.g., [10].

In order to solve the EDE numerically we used a FORTRAN 90

code. In particular the spatial derivatives were discretized by finite
differences and replaced by an algebraic expression in FOURIER space,
[1]. The required discrete FOURIER transforms were performed by
means of the FFTPack5 package, [11]. For the time integration we
applied an explicit EULER method and - for comparison – an implicit,
time adaptive RUNGE–KUTTA method using the free available RADAU

package, [8].
Furthermore we used a spatial discretiziation of N ¼ 256 (1D)

and N � N ¼ 128� 128 (2D) grid points. The area of the investigated
RVE was L ¼ 0:6 � 10�7 m (1D) and L ¼ 0:5 � 10�7 m (2D). Finally, the
(constant) time integration steps applied during the EULER method
were dt ¼ 0:2 � 10�6 s (1D, pressure loading), dt ¼ 0:4 � 10�6 s (1D,
tensile loading), and dt ¼ 1 � 10�6 s (2D, EULER), [3].

5.2. Phase separation and coarsening in Ag–Cu

We start with an undercooled (unstable) one-phase eutectic
mixture ðceut

AgCu ¼ 0:29Þ characterized by the (slightly pertubed)
homogeneous concentration profile as illustrated in Fig. 1. Here
the outermost dashed lines denote the equilibrium concentrations
(ca ¼ 0:063, cb ¼ 0:945) of the decomposed two-phase mixture and
the innermost dashed lines are the spinodal concentrations
(csp;1 ¼ 0:19, csp;2 ¼ 0:79), which enclose the unstable region.

According to the unstable state the binary Ag–Cu alloy immedi-
ately begins to decompose and subsequently proceeds with
coarsening. Unusually high loading was applied during the 1D sim-
ulations in Figs. 2 and 3 in order to observe their impact within
manageable computational times. Furthermore it seems that pres-
sure loadings increase the coarsening rate in comparison to tensile
loadings1. Finally we emphasize that the implicit time integration by
means of the RADAU routine is extremely time consuming which
cannot be compensated by larger (adaptive) time steps. Therefore
the simulated time period in Fig. 5 is much smaller than the accord-
ing one in Fig. 4, [3].

6. Summary and future prospects

In order to investigate the micromorphological development in
solid mixtures a theory was presented, which allows to construct
the required constitutive equations consistently with the 2nd
law. First, we have shown the agreement of the obtained results
with those of classical thermodynamics (single phase mixtures),
and, second, we extend the theory to multicomponent and multi-
phase materials and derive a general form for the diffusion flux
containing so-called higher gradients to model the smoothly
changing phase boundaries. Moreover, we have shown how ther-
mo-elastic fields change the free energy and, consequently, enter
the diffusion equation. After that we specified to binary alloys
and presented various numerical studies in 1D and 2D for the braz-
ing solder Ag–Cu.

Summarizing the preceding sections the following three items
stand for the main focus of the article:


 A revisited entropy principle in combination with an alternative
exploitation of the 2nd law (cf., e.g., [7] for comparison) was
introduced to model diffusion-controlled phase transformations
in (elastically) deformable, solid mixtures.


 An extended diffusion equation was derived, which incorporates
classical Fickian (‘‘downhill”) diffusion, surface tension effects
(represented by the HGC-terms), and local elastic strains due
to external loadings and misfits. In particular, the consideration
of strain-depending HGCs in Eq. (36) represents an extension of
the classical Cahn–Hilliard/Cahn–Larché equation.


 Numerical simulations were performed based on exactly calcu-
lated HGCs following from an atomistic theory, [2]. These values
are considerably smaller than typical values from literature, e.g.,
[12], and lead to a pretty sharp phase boundary (cf., [1] for a
more detailed discussion of the numerical consequences).

Furthermore it is worth mentioning that the presented numer-
ical simulations are performed on extremely small length scales
(L ’ 600 Å). Typical diameters of SMT2 solder balls are much bigger,
viz. d � 150—350 lm. However, due to the used equidistant spatial
discretization a sufficiently large number of grid points, N, accompa-
nied by a small RVE length, L, is required to model the ‘‘sharp” phase
boundaries realistically within manageable computational times. In
order to investigate the aforementioned SMT length scales recently
developed numerical methods based on adaptive spatial discretiza-
tions seem to be very promising for future work, [13].
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