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1 Introduction

In today’s engineering the question of reliability and failure of the applied materials is of

raising importance. As a consequence of severe thermal and mechanical loading even initially

homogeneous materials start to develop a certain microstructure, e.g., distortions of the metal

lattice, micro-cracks and pores. So it is reasonable to ask for a physical measure of these

microscopic changes in order to avoid catastrophic failure. Such microstructural evolution

can efficiently be analyzed by means of the mesoscopic theory developed by Muschik et.

al., [MPE01], which represents a general approach for the description of complex internal

structured materials within the continuum mechanical framework.

In [WB06] the authors presented a mesoscopic concept for the theoretical description of

elastic bubble oscillation in soft biological tissue. This was done regarding the interest in

the physical phenomena occurring during the ultrasonic treatment of kidney stones. In the

present paper we focus on dissipative materials in which the internal structure is character-

ized by a micro-void distribution. Such material defects were observed in many technical

components. Examples are (cf. [Bel02, TI77, XP05]):

(1) Void growth in spallation planes, cf., Figure 1(a). Voids represent the initial stage

of dynamic fracture observable in the surface area of ductile metals during high pressure

impulses. The extremely high tension within the material lead to void nucleation at internal

defects, such as impurities or grain boundaries. This damage proceeds and results in fast

void expansion leading to void sheets and final failure by void coalescence.

(2) The formation and growth of Kirkendall voids within the interface of solder and

substrate in microelectronic packages, cf., Figure 1(b). Here the Si-chips are typically fixed
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Figure 1: Technical relevant examples showing void distributions: (a) Void distribution in the
spallation layer of copper, [Bel02]. (b) Kirkendall voids between solder and substrate, [XP05].
(c) Micro-voids in sapphire filaments, [TI77].

at the substrate (e.g., polished Cu) by means of solder materials (e.g., Sn-Ag-Cu) in which

Intermetallic Compounds (e.g., Cu3Sn or Cu6Sn5) are formed near the solder-substrate in-

terface, Figure 1(b). The so-called Kirkendall voids appear between the Cu substrate and

the thin Cu3Sn layer due to the migration of Cu atoms from Cu3Sn into Cu6Sn5, which is

much faster than the Sn-diffusion from Cu6Sn5 towards Cu3Sn. This unbalanced Cu-Sn in-

terdiffusion generates atomic vacancies at the lattice sites which coalesce to the Kirkendall

voids, cf. [XP05].

(3) Micro-void formation in mono-crystal growing. Here voids grow during the crystallization

process, i.e., while a crystal is pulled from the melt bubbles of dissolved or surrounding gases

may be included. The resulting void distribution depends on the growth conditions and

it considerably affects the material behavior of the mono-crystal. Figure 1(c) illustrates a

void-distribution in mono-crystalline sapphire - a widely used material in high-technology

applications (e.g., in high-power lasers).

Although the origins of the voids in the presented examples are completely different — the

resulting microstructure of the materials is similar. The materials contain a certain fraction

of voids separated by matrix material. Moreover, the void radii differ within a certain range

and may grow in the case of external loading. Therefore, we model here the voids by an

ensemble of spherical inclusion in a matrix material. This model, which will be described in
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detail in the next section, enables us to link the mechanisms of void expansion and global

softening of the material to parameters which describe the micro-mechanical mechanisms in

a porous solid. After a brief retrospective on the mesoscopic concept we turn the attention

in Section 3 to a constitutive model for void expansion in a material which is assumed to

behave visco-plastically. In Section 4 we study different void ensembles and present numerical

results. We finish with a short summary and an outlook in Section 5.

2 Model of a Porous Metal

In typical technical and natural materials the pores and cavities are small compared to the

size of the structure. Let their distribution within a volume element dV be described by the

void volume fraction, fV (x, t) ∈ IR, representing the void volume per current volume at the

position x and time t in the material. Here we presume the initial void volume fraction fV 0 ≡
fV (x, t = 0) to be small. For engineering metals it is in the range of fV 0 = 10−4 . . . 10−2, cf.

[Tve90] , caused, e.g., by defects in the crystal lattice or by (empty) inclusions along grain

boundaries. Through straining of the material element the pores and cavities may grow but,

typically, metals fail by ductile fracture at about fV = 0.1 . . . 0.3 [Tve90].

2.1 The Spherical Shell Model

a

b
r

a0

b0

r0

surface S(i)

void

matrix

Figure 2: Left: Porous composite consisting of spherical shells. Right: Spherical shell model of a
single void before and after (dashed lines) the deformation.

In order to analyze the growth of pores and cavities (voids) in a deforming solid we imagine

the material to be a conglomerate of initially very small spherical voids each surrounded
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by a sphere of matrix material, see Figure 2 (left). In other words, each void i with radius

a ≡ a(i)(x, t) and volume V
(i)
void

= 4π/3 a3 is at every instance completely embedded in a

spherical shell. We exclude here the process of coalescence and it holds for each spherical

shell with radius b ≡ b(i)(x, t) and volume V
(i)
shell

= 4π/3 b3,

∑

i

V
(i)
shell

= V − Vrem and V
(i)
void

/V
(i)
shell

=
a3

b3
= fV

(i) . (1)

Here V denotes the total volume and Vrem is the volume remaining between the spheres.

The porous material is now modelled as an assemblages of such spherical shells with a certain

given initial void volume fraction and an initial size distribution. During the process of

deformation the spherical shells may grow (in different ways) but retain their shapes whereas

the matrix material follows classical material laws. As the remaining volume between the

spheres can be made infinitesimally small, we assume, for simplicity, Vrem → 0. Then, the

deformation energy of the composite body will in the limit approach the sum of deformation

energies of all spherical shells.

Figure 2 (right) illustrates one spherical shell in its undeformed and deformed state. An

arbitrary material sphere surrounding the void and deforming with the body has initial and

current radii r0 ∈ [a0, b0] and r ≡ r(t) ∈ [a, b], respectively. Presuming a volume preserving

deformation, i.e.,

d

dt

4π

3
(r3 − a3) = 0 ⇒ r3

0 − a3
0 = r3 − a3, (2)

gives the current radius as r =
(

r3
0 − a3

0 + a3
)1/3

. As a consequence, the current outer

radius of an incompressible shell is uniquely determined by b(a) = (b30 − a3
0 + a3)1/3, and all

subsequent equations depending on radius b can be expressed in terms of void radius a and

the initial geometry. Moreover, eq. (2) defines the deformation velocity field over the current

configuration. In particular, the radial component of the spatial velocity reads

vr =
dr

dt
=
a2

r2
ȧ, (3)

where the rate of void radius, ȧ ≡ ȧ(a, t) = da
dt

, identifies the velocity of void expansion or

compression, here simply denoted as void velocity.
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2.2 Mesoscopic Variables and Void Distribution Function

The temporal change of a mass-specific quantity ψ(x, t) in a body with domain Ω(t) can

be invoked by production Πψ and supply Σψ within the body and by a flux J
ψ over the

boundaries. Thus, the generic balance equation reads in local form (cf. [Mül01])

∂ρψ

∂t
+ ∇ ·

(

v ρψ + J
ψ
)

= Πψ + Σψ , (4)

where ρ is the current mass density and v(x, t) denotes the material velocity. The specific

balances of mass, momentum, total and internal energy, etc. follow directly by inserting the

according expressions for ψ, J
ψ, Πψ and Σψ.

The fundamental idea of the mesoscopic concept is to extend the classical space-time domain

of these quantities by a set of additional parameters, the mesoscopic variables m. The fields

appearing in the classical balances equations are now defined on a so-called mesoscopic space

{x, t,m}. In our case of a porous metal the mesoscopic variables are simply the void radii

a(t) of the different spherical shells1 in a volume element at position x.

Additionally, a statistical function is introduced. This mesoscopic distribution function
d̃(m,x, t) ∈ IR describes the distribution of the mesoscopic variables: in the volume element

associated with (x, t) the value of the mesoscopic variables m has fraction d̃ of all particles.

Now the fields of mass density, momentum, total energy etc. can be defined on the mesoscopic

space. For distinguishing these fields from the usual, macroscopic ones and to omit the

arguments in the remaining of the text, we add a tilde to symbol, i.e, ˜̺ ≡ ˜̺(m,x, t),
ṽ ≡ ṽ(m,x, t), ẽ ≡ ẽ(m,x, t) and so on.

From a mathematical point of view, the mesoscopic balance equations differ from the macro-

scopic ones only in their domain which is enlarged by the mesoscopic variables. Therefore,

derivatives with respect to these variables now appear in the balances. Thus, the generic

mesoscopic balance equation reads in local form (cf. [MPE04])

∂

∂t
ρ̃ψ̃ + ∇x ·

[

ṽ ρ̃ψ̃ − J̃
ψ,x

]

+ ∇m ·
[

ũ ρ̃ψ̃ − J̃
ψ,m

]

= Π̃ψ̃ + Σ̃ψ̃ . (5)

The mesoscopic change velocity ũ ≡ ũ(m,x, t) is the analog to the material velocity ṽ; in

our model it is the void velocity ȧ defined in eq (3). Moreover, derivative ∇m stands here

for ∂/∂a. Mesoscopic balances of mass, momentum and energy can now be formulated.

1The sole use of the scalar mesoscopic variable a presumes a dependence between the radii a(t) and b(t)
within the spherical shell ensemble as described above. A more general case could be found introducing a
vectorial mesoscopic variable m = (a, b).
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The mesoscopic concept does not introduce new balance for the additional fields through

these are included in the mesoscopic space. However, the mesoscopic distribution function d̃
and the mesoscopic change velocity ȧ require additional equations. To specify the mesoscopic

distribution function for the porous material under consideration here let Ñ V = Ñ V (a,x, t)
be the number of shells with voids of radius a in the volume element at {x, t}. We presume

that all voids have a nucleation size a0 and that the void radius is bounded by half of the

characteristic length of the volume element, lVE =
3
√

dV . Then, the total number of voids

per unit volume results as

NV (x, t) =

∫ lVE/2

a0

Ñ V da , (6)

and we define the mesoscopic void distribution function by

d̃ ≡ d(a,x, t) =
Ñ V

NV (x, t)
with normalization

∫ lVE/2

a0

d̃ da = 1 . (7)

In order to obtain an evolution equation for the void distribution function we start from

eq. (5) and formulate the balance of the mesoscopic void number density

∂Ñ V

∂t
+ ∇x · (Ñ V ṽ) +

∂

∂a

(

Ñ V ȧ
)

= Π̃Ñ V , (8)

where symbol Π̃Ñ V denotes a production term referring to void nucleation and/or coales-

cence. Because all voids are embedded in the matrix of the solid (and do not move inde-

pendently), the mesoscopic velocity ṽ is identical for all voids and equals the macroscopic

velocity of the volume element, ṽ = v(x, t). Multiplying eq. (8) with 1/NV and applying

eq. (7) results after a minor calculation in

∂d̃

∂t
+ ∇x · (d̃v) +

∂

∂a

(

d̃ȧ
)

= Π̃ÑP +
d̃

NP

(

∂NP

∂t
+ v · ∇xNP

)

. (9)

The right hand side of (9) represents two different but not independent production terms,

for a discussion see [WB06]. Here we do neither consider void nucleation nor coalescence and

these terms vanish. Thus, eq. (9) becomes a conservation law and the balance of the void
distribution function reads:

∂d̃

∂t
+ ∇x · (d̃v) +

∂

∂a

(

d̃ȧ
)

= 0. (10)
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By means of eq. (10) the evolution of voids in a general material is predictable. For applica-

tion to the specific materials we envision here, the constitutive equation for the void velocity

within the ensemble, ȧ(a,x, t), remains to be specified.

3 Constitutive Model

In what follows we want to consider the deformation process of a volume element dV con-

taining an ensemble of spherical shells. We postulate the existence of a free energy function

A(x, t) as a weighted sum of free energy contributions of all spherical shells. The energy

required to deform one shell, Ã, is a sum of energy contributions accompanying shell defor-

mation and void expansion.

Exposing the spherical shell ensemble to externally applied forces, e.g., a tension field p(t),
generally invokes an inhomogeneous stress field. In this model we assume an averaged stress

field of the form σ(a,x, t)
.
= σ, i.e., all spherical shells “feel” the same loading2. Moreover,

we assume the power of the external forces acting on one spherical shell P̃ ≡ P (a,x, t) to

be completely compensated by the rate of free energy,

P̃ = p(t) · dṼshell

dt
!
=

dÃ

dt
. (11)

With a specified right hand side and with initial values a0 and b0 eq. (11) represents a

differential equation for the void radius in one spherical shell. Solving this equation for all

voids with different initial conditions yields a constitutive relation for the void velocity (3).

Let us now specify the constitutive equations for a visco-plastic material with three contribu-

tions to the free energy function: (1) energy required for plastic deformation of the matrix

material W̃ p, (2) kinetic energy K̃ of void expansion and (3) surface energy S̃ stored in the

interface between void and matrix.

Stored plastic work

Exploiting the spherical symmetry of the model and the plastic incompressibility constraint

of the matrix material we can derive from the kinematics outlined in section (2) the prin-

ciple stresses and strains within one shell. Correspondingly, the velocity over the current

2This assumption is established in the field of homogenization as the Reuss approximation, [GS06].
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configuration (3) yields the strain rate as

ε̇(r, t) =
∂ṙ

∂r
= −2a2(t)

r3(t)
ȧ(t). (12)

The absolute value of strain rate (12) defines the rate of the effective von Mises strain,

ε̇p ≡ |ε̇(r, t)|. Presuming a monotonic void growth, equation (12) can be integrated to give

εp =

∣

∣

∣

∣

− 2

3
log

(

1 +
a3 − a3

0

r3 − (a3 − a3
0)

) ∣

∣

∣

∣

=
2

3
log

(

1 +
a3 − a3

0

r3
0

)

. (13)

Let us consider classical von Mises plasticity with power law hardening of the yield stress σy,

σy = σ0

(

1 + εp/εp0
)1/n

, (14)

where n ∈ [1,∞) denotes the hardening exponent and σ0, ε
p
0, are the initial yield stress and

a reference plastic strain, respectively. With n = 1 we prescribe linear isotropic hardening,

whereas n→ ∞ enforces perfect plasticity. Additionally, one may include here a temperature

dependence of the yield stress, σ0(T ), cf. [Wei06]. The stored plastic energy density follows

from the rate of plastic straining by

∫ t

0

σyε̇p dt̄ =

∫ εp

εp
0

σy dε̄p = εp0σ0(T )
n

n+ 1

[(

1 +
εp

εp0

)
n+1

n − 1
]

. (15)

A volume integration results in the stored plastic energy of one spherical shell:

W̃ p(a, b;T, n) =

∫ b

a

εp0σ0(T )
n

n+ 1

[(

1 +
εp

εp0

)
n+1

n − 1
]

4πr2 dr. (16)

Note that the result of (16) does not depend on radius r. Evaluating (16) with (13) and

substituting x := r3/a3 gives

W̃ p(a, b;T, n) = εp0σ0(T )
n

n+ 1

4πa3

3

∫ b3/a3

0

(

1 +
2

3εp0
log

x

x− 1 + a3
0/a

3

)
n+1

n

dx. (17)

8
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By means of relation (2) the dependence of W̃ p on radius b can be eliminated and we obtain

W̃ p = W̃ p(a;T, n) = εp0σ0
n

n+ 1

4πa0
3

3
g(a;n), (18)

g(a;n) =

∫ b3
0
/a3

0

0

{

1 +
2

3εp0
log

[

1 +
1

x

(

a3

a0
3
− 1

)]}
n+1

n

dx. (19)

The stored energy function (18) is attributed directly to the growth of one void of radius a.
The total stored plastic energy can be calculated by the “weighted sum” over the individual

spherical shells using the mesoscopic distribution function (10). It reads:

W p(x, t) =

∫ lVE/2

a0

d̃W̃ p da . (20)

Kinetic energy

In an analogous manner the kinetic energy of an expanding void ensemble can be determined.

With the radial component of spatial velocity (3) the kinetic energy of one expanding void

is computed to be

K̃ = K̃(a, ȧ) =

∫

V

1

2
̺ṽ2dV =

∫ b

a

1

2
̺0 v

2
r 4πr2 dr = 2π̺0 a

4
(1

a
− 1

b

)

ȧ2, (21)

where ̺0 denotes the mass density of the matrix material which is constant because of plastic

incompressibility, and b = b(a). Then, analogously to eq. (20), the total kinetic energy of

the porous ensemble follows as

K(x, t) =

∫ lVE/2

a0

d̃K̃ da . (22)

Surface energy

The surface energy S̃ in the interface of one void with radius a as well as the according total
surface energy of the whole ensemble are determined by the relations

S̃ := S(a) = 4πa2γ and S(x, t) =

∫ lVE/2

a0

d̃S̃ da , (23)

where γ denotes the surface tension (in [N/m]).

9
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External power and governing differential equation

With eq. (11) and the kinematics of Section 2 the external power of a spherical shell results

in P̃ = p(t) · dt
(

4
3
π(b30 − a3

0 + a3)
)

. Consequently, we write for P̃ and for the macroscopic

power P consumed by the whole spherical shell ensemble:

P̃ = p(t) · 4πa2ȧ and P (x, t) =

∫ lVE/2

a0

d̃P̃ da . (24)

Inserting the expressions (18), (21), (23) and (24)1 into ansatz (11) results in

0 = P̃ − d

dt

(

W̃ p + K̃ + S̃
)

= p(t) · a2ȧ − εp0σ0
n

n+ 1

a3
0

3
ġ(a;n) − 2aγȧ (25)

− ρ0

2

[

2äȧa3 + 3ȧ3a2 − a3

b

(

2äȧa+ 4ȧ3 − a3ȧ3

b3

)]

,

where we abbreviate b = (b30 − a3
0 + a3)1/3. This ordinary differential equation can be solved

(numerically) for every shell of radius a(t) and of known initial geometry, a0 = a(t = 0) and

b0 = b(t = 0). Once the values of void velocity ȧ have been found for all different shells the

evolution of the void size distribution function can be solved by means of eq. (10).

4 Analysis of Void Ensembles

In an attempt to illustrate the capability of the constitutive model derived in the previous

section we now analyze void growth for a typical metal with material data of Table 1. In

E ν ̺ σ0 εp0 γ n

69 0.33 2700 80 0.0012 5 10

Table 1: Material parameter representative of aluminum. The following units are chosen: E in
[GPa], ̺ in [kg/m3], σ0 in [MPa], and γ in [N/m].

the following we consider a volume element at fixed spatial position x, i.e., dV = dV (t),
subjected to different loading regimes p(t). Note that a positive value of p(t) refers to

hydrostatic tension.

10
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4.1 Growth of equally sized voids under hydrostatic tension

We start with the special case of a void ensemble with an average radius of size ā, i.e., the

initial void distribution function d̃(t = 0) has the form of a dirac impulse at ā0 and remains

of this shape for the expanding voids of radius ā ≥ ā0; for ease of reading we write a ≡ ā.

4.1.1 Quasistatic void growth

In case of a slow loading regime the effect of inertia can be neglected. Assuming a constant

remotely applied tension p̄ we get from eq. (25)

P̃ =
d

dt

(

W̃ p + S̃
)

⇒ p̄a2 =
nσ0ε

p
0

n+ 1

a0
3

3
g′(a;n) + 2aγ, (26)

where g′(a;n) denotes the derivative of integral (19) w.r.t. radius a. Solving the plastic

energy term of (26)2 for the special case of perfect plasticity, i.e., n → ∞, and dividing the

expression by a2 results in

p̄ =
2σ0

3

(

log(a3 − a3
0 + b30) − log(a3)

)

+
2γ

a
. (27)

Eq. (27) defines an algebraic relation between applied tension p̄ and void radius a. Note

that we neglect in our constitutive model any elastic void expansion. In consequence, equa-

tion (27) is actually an inequality determining a critical tension necessary to induce a void

to grow plastically. This corresponds to the concept of critical cavitation pressure as

discussed, e.g., in [Fre98, OM92, WMO06].

p̄ ≥ py =
2σ0

3
log

(

1 +
b30 − a3

0

a3

)

+
2γ

a
(condition for void expansion) (28)

The material-specific critical cavitation pressure depends on initial and current void volume

fraction. For an perfect-plastic material eq. (28) defines a high initial cavitation pressure

which considerably softens immediately after the voids start to grow, see Fig. 3 (left). For

a hardening material the slope is smaller, i.e., the cavitation pressure reduces slowlier with

rising void size.

11
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Figure 3: Left: Perfect plastic cavitation pressure depending on void volume fraction fV in a qua-
sistatic regime. Right: Solution and approximation of equation (19) muliplied by (1.5εp0)

−(n+1)/n.

In general, an analytical expression for py cannot be obtained because the integral of eq. (19)

is trackable by analytical means only for n → ∞. If a repeated numerical solution of eq.

(19) for every value of a is too cumbersome, we suggest here a simple linear approximation:

g(a;n) ≈ hn
( 2

3εp0

)
n+1

n
(a3

a3
0

− 1
)

, (29)

where hn is a constant depending on hardening exponent n. This constant needs to be fitted

to the values of integral (19), once numerically evaluated over a range of realistic (initial and

final) void volume fractions, see Figure 3 (right). We proceed here with hn = 2.21 for n = 10

and fV 0 = 10−4. Note that the approximation (29) may also provide a way to fit the critical

cavitation pressure to values known from experiments, if available.

Assuming from now on a hypercritical tension p̄ let us discuss void growth in a quasistatic

regime, eq. (27). The yield stress of a material, usually in the range of some MPa, weights

the first term in (27) much stronger than the surface tensions, cf. Table 1. This effect is

compensated for very small void sizes by factor 1/a. Only if the void is near vacancy size

(0.5 nm – 50 nm) the surface energy contributes significantly to void growth. Otherwise, the

second term in equations (27) is negligible.

In consequence, we approximate the initial cavitation pressure for void expansion in an

12
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perfect plastic and in a hardening material (n ∈ IN) by

py0 =
2σ0

3
log

( b30
a3

0

)

and py0 =
nσ0 ε

p
0 a

3
0

3(n+ 1)a2
g′(a;n) ≈ nσ0ε

p
0hn

n+ 1

(

2

3εp0

)
n+1

n

, (30)

respectively.

4.1.2 Dynamic void growth in a perfect plastic material

In a next step we extend the above relations to dynamic loading regimes with a constant but

hypercritical tension p̄ > py0. Integrating eq. (25) in the interval [0, t] and inserting eq. (30)

yields:

1

3
p̄(a3 − a3

0) =
1

3
py0(a

3 − a3
0) + γ(a2 − a2

0) +
1

2
̺0 a

4
(1

a
− 1

b

)

ȧ2. (31)

Evaluating this ODE of first order in a(t) gives

ȧ =

√

2

3̺0

(

p̄− py0 − pγ
)

1

2

( 1 − (a3
0/a

3)

1 − (a/(a3 + b30 − a3
0)

1/3)

)
1

2

, (32)

where pγ = 3γ(a2 − a2
0)/(a

3 − a3
0) is the term resulting from surface energy contributions

which has significance only at the beginning of the void growth process when a & a0. By the

presumption of hypercritical loading is the pressure difference ∆p ≡ p̄ − py0 − pγ > 0 and

the second term of (32) is positive. Moreover, it is clear from equation (32) that the void

velocity reduces for high density materials, whereas a small value of ̺0 allows the voids to

grow faster. The solution of eq. (32) is displayed in Fig. 4 for ̺0 = 2/3, ∆p = 1 and some

realistic initial void sizes. Note that, although the applied tension p̄ is constant, the void

velocity increases unboundedly with rising void size.

Some particular cases merit special attention:

I: b0 → ∞. This case corresponds to a void of radius a0 in an infinite matrix as analyzed in

[OM92]. Eq. (32) becomes

ȧ =

√

2

3̺0

(

p̄− py0 − pγ
)

1

2
(

1 − a3
0

a3

)
1

2 , (33)

with the third term ∈ [0, 1). In this case (and only in this case!) the void expansion

velocity is bounded.
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Figure 4: Velocity of void expansion as a function of radius a for different initial data.

II: b0 → ∞, a0 → 0. For a very small void in an infinite matrix the void expansion velocity

is constant, namely:

ȧ =

√

2

3̺0

(

p̄− py0 − pγ
)

1

2 . (34)

4.1.3 Dynamic void growth in a hardening material

At next we analyze void expansion in a volume element of visco-plastic material with hard-

ening subjected to hydrostatic tension. Evaluating eq. (25) for the void acceleration ä gives:

ä =

{

1

ρ0

[

p̄a2 − 2aγ − na3
0ε
p
0σ0

3(n+ 1)
g′(a;n)

]

− ȧ2

(

3a2

2
− 2a3

b
+

a6

2b4

) }

×
(

a3 − a4

b

)−1

.

In order to determine a(t), ȧ(t), and ä(t) this equation is solved numerically by recourse

to a Runge-Kutta scheme with adapted time step. The derivative of integral (19) w.r.t. a,
g′(a;n), is computed numerically (no approximation in the sense of eq. (29) performed).

The initial conditions are: a0 = 25µm and fV 0 = a3
0/b

3
0 = 10−4.

Applying instantaneously a constant tension of 1 GPa we compute the results displayed in

Figure 5. A population of voids expands, and, despite of the hardening material we observe
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Figure 5: Void growth of an equally sized void ensemble under constant tension.

a raise of void radius, of void velocity and of void acceleration up to the theoretical limit

of fV = 1. Note that this “self-accelerating” void expansion is equivalent to a macroscopic
softening of the composite material.

In general, the dynamic void expansion is faster the smaller the initial voids are. The surface

energy retards void growth in the first stages, superposed by a significant effect of inertia. The

initial void volume fraction is of small influence, but generally the void growth decelerates

with lower values of fV 0, cf. comments in Section 4.1.2.
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Figure 6: Inertia dominated void growth due to a pressure impulse for two different radii, short
term and long term response.

4.1.4 High Pressure Impulse

Let us apply now a sinusoidal pressure impulse with an amplitude of 10 GPa within a short

time interval of tload = 1 ns. A void ensemble with a0 = 0.1µm expands to a = 1.57µm

at t = tload. The corresponding void volume fraction rises from fV 0 = 10−4 to fV = 0.28.

Starting with the same initial void volume fraction but a smaller void size increases the void

expansion. In particular we observe a dependence of the form ȧ(t) ∝ (
√
p/a0) for t ∈ [0, tload].

The void expansion is here clearly dominated by inertia effects. This is nicely illustrated in

Figure 6 where we see that the voids continue to grow after the load impulse has passed,

i.e., for p̄ = 0, t > tload. For a0 = 0.1µm the final void volume fraction reaches fV → 1.

Starting with bigger voids of a0 = 1µm the void velocity and size increase are smaller,

a(t = tload) = 1.76µm, and the void growth converges to a final void size of a = 4.03µm.

This regime of inertia dominated void growth is of particular importance for impact and

spallation problems, see, e.g. [Fre98, MM00, SCA01, WMO06].

4.2 Analysis of Void Size Distribution

After studying the principles of void growth we proceed with an ensemble of differently sized

voids. Point of departure is the balance of the void distribution function (10), where we

additionally assume that the body is not in motion, v = 0.
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Let the initial number of voids ÑV (a, t = 0) be given by a Gaussian distribution around an

initial mean radius ā0

ÑV (a, t = 0) = ÑV (a0) = c0e
− 1

2

“

a0−ā0
ā0ǫ0

”2

(35)

where c0 is a normalization factor, ǫ0 denotes the deviation (the “width” of distribution) and

an index ·0 refers to the initial configuration. By means of eq. (6) the initial number of

particles NV 0 can be obtained. Introducing an integration variable x = (a0 − ā0)/(ǫ0ā0

√
2)

we get

NV 0 =

∫ ∞

0

Ñ V (a0) da0 = ǫ0ā0c0
√

2

∞
∫

−1/(ǫ0
√

2)

e−x
2

dx
(ǫ0≪1)∼= ǫ0ā0c0

√
2π (36)

to determine c0; the approximation refers to small values of a0 and ǫ0 ≪ 1. With eq. (7) the

initial void distribution function reads

d̃0 =
c0
NV 0

· e−
1

2

“

a0−ā0
ā0ǫ0

”2

≈ 1

ǫ0ā0

√
2π

· e−
1

2

“

a0−ā0
ā0ǫ0

”2

. (37)

The problem of interest is now, how does this distribution change in time. We start by

discretizing the void distribution function for void radius a

d̃(a, t) = lim
∆a→0

(

d̃(a+ ∆a, t) − d̃(a, t)
)

and d̃(i)(t) = d̃(a(i) + ∆a, t) − d̃(a(i), t),

where d̃(i) is the distribution of voids with radii a ∈ [a(i), a(i) + ∆a]. Furthermore it holds:

1 =

∫ lVE/2

a0

d̃(a, t)da ≈
n

∑

i=1

d̃(i). (38)

Exemplarily we analyze a volume element with an ensemble of 5 voids (NV = NV 0 = 5), with

an initial void volume fraction of fV 0 = 10−4 and with a
(1)
0 = 1µm, a

(2)
0 = 3µm, a

(3)
0 = 5µm,

a
(4)
0 = 7µm, a

(5)
0 = 9µm. The volume element is subjected to the sinusoidal loading impulse

of Figure 6 with pmax = 10 GPa and tload = 1 ns. With the parameter ā0 = 5µm, ǫ0 = 1/3,
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Figure 7: Initial, intermediate and final distribution in a void ensemble of 5 sizes.

c0 = NV 0/(ā0 ǫ0
√

2π) and equation (37) the initial (discrete) distribution function d̃
(i)
0 is

obtained, see Figure 7 (left).

As outlined in Section 4.1 we determine the mesocopic void velocities ȧ(i) = ȧ(a(i), t) to solve

eq. (10). Figure 7 shows the numerical solution using a Runge-Kutta scheme with time

step ∆t ≤ 10−11s. Subjected to the loading impulse all voids grow. From the analysis of

Section 4.1 we know that voids with small initial size are less inert and grow faster than their

bigger companions. Consequently, the change of distribution function d̃ is not symmetric.

The set of small voids reduces whereas the numbers of bigger void sizes grow.

As a consequence of the inertial effects the void distribution keeps changing after the actual

loading time passed. Therefore, the initial distribution, the distribution at the end of the

impulse t = tload and the final distribution after 20µs are displayed.3 Again, the fraction

of bigger voids grows. This observation is in agreement with other theories of multi-phase

materials (as, e.g., Ostwald ripening or the LSW4 theory for liquid droplets in a gas, cf.

[RV02]) where the bigger inclusions grow on cost of the smaller ones.

3Note that the width of the bars in Figure 7 has no meaning.
4LSW stands for the initials of the pioneers in this research: I.M. Lifshitz, V.V. Slyozov and C. Wagner.
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Figure 7 already indicates that the inertial effects result is a smaller variety of void sizes, i.e.,

the“width”of distribution function d̃ gets smaller. This trend has be supported by numerical

studies of more different voids (e.g., 10 or 30 different radii). The effect may explain some

of the difference between static and dynamic fracture of ductile metals. Whereas in static

experiments we usually observe a cup-cone like fracture with large plastic straining and

small and big (coalesced) voids, in dynamic experiments the fracture surface is more or less

plain but dimpled. Voids of similar sizes grew here and set up sheets of voids resulting in

fragmented surfaces, e.g. spallation planes, see Fig. 1(a).

5 Conclusions

In our paper we explained a mesocopic continuum model as well as an approach for the

required material relations in order to describe the temporal development of a certain void

distribution in an visco-plastic material. Moreover, in the foregoing section exemplarily

results were illuminated for different loading regimes and the evolution of five different voids

under a short pressure impulse was presented.

Although the physical background, the assumptions, and the interpretations of the results

are completely different one can recognized similarities to the equations of so called LSW

theories. So in both theories the central element is the distribution function, which charac-

terize the temporal development of the number of ”inclusions” with a certain radius. This

equation is usually ad hoc defined, whereas we derive this equation in the mesoscopic frame-

work. Moreover, the resulting balance of the mesoscopic void distribution is more generally

admitted, because it contains a production term on the right hand side and does not pre-

sume a constant volume fraction. Thus, it is possible to describe an increasing void volume

as well as nucleation and coalescence of voids. However, both theories qualitatively show

the same asymmetrical temporal development of the distribution function (indicated by dif-

ferent void velocities) but differ in the employed constitutive relation (LSW revert to the

Gibbs-Thomson-equation).

Various questions and tasks are open or under current investigation, respectively. So, it is

interesting to consider the behavior of voids in an elastic-plastic material. Furthermore, the

question of the definition of a macroscopic damage parameter arises, characterizing, e.g., a

current averaged void radius and its consequences on the classical (macroscopic) material

laws. This parameter may be very similar to the damage parameter for soft tissue presented

in [WB06]. Finally, investigations of (suitable) production-terms and an extension of the

simulations to void coalescence is planned for future studies.
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