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Cavities in a visco-plastic material: A mesoscopic concept
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In the present work we investigate the temporal development of arbitrarily distributed voids in a visco-plastic material under
different loading regimes. A mesoscopic continuum model is used in order to take the microstructure of the material into
account. In particular, we introduce a mesoscopic space representingan extension of the space-time domain of the continuum
mechanical fields. This extended domain requires a reformulation of theclassical balance equations as well as the consider-
ation of additional constitutive quantities. Furthermore a mesoscopic distribution function can be introduced which follows
an own balance. Assuming a special model of porous composites, the spherical shell model, all required steps are elaborated
in order to describe load-induced void-growth in a metal-like matrix. We conclude with some exemplary results which show
astonishing similarities with co-called LSW-theories.

Copyright line will be provided by the publisher

1 Spherical Shell Model

Most materials contain a certain amount of cavities (voids). Usu-
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Fig. 1 From arbitrarily distributed voids to the spherical
shell model.

ally the voids are small compared to the size of the surrounding struc-
ture. In order to analyze the growth of voids in a general deforming
material let us assume that each voidi is surrounded by a spherical
material shell as illustrated in Fig. 1. Furthermore the porous ma-
terial is modeled as an ensemble of isotropicspherical shells (void
plus spherically surrounded matrix) with a certain given initial void
volume fraction and an initial distribution. In detail holds:
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Due to this construction the remaining volume between the spheres
can be made infinitesimally small and the deformation energy density
of the composite can be approximated as the sum of the deformation
energies densities stored in all spherical shells. Consider now a spher-
ical shell under deformation. The initial geometrya0, b0 changes to
a(t) andb(t). Presume an incompressible deformation and denote thevelocity of void expansion with ȧ it follows for r ∈ [a, b]:
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2 Mesoscopic Space, Distribution Function and Balance Equations

In classical (five-field) continuum mechanics thewanted fields are the mass densityρ(x, t), the material velocityv(x, t) and
the (mass-specific) internal energyu(x, t). These five fields are defined on thespace-time domain(x, t) and follow universal
balance equations. In order to solve the balances one must specify the material through constitutive equations, which are
defined on thestate space. Now the question arise, how to introduce the additional information about the microstructure of
the material into the continuum mechanical framework. The central idea of the mesoscopic concept is the Extension of the
space time domain(x, t) ∈ R

3 ×R → (m,x, t) ∈ M×R
3 ×R to themesoscopic space, wherem are ’suitable’ variables of

arbitrary tensorial order describing the microstructure andM are the manifold according tom, [1]. For our problem we can
identify: M ⊂ R andm ≡ a.

Thus, a (normalized) mesoscopic distribution functiond̃(a,x, t) can be found representing the number of the voidsÑV

with radiusa relatively to the total number of voidsNV at positionx and timet (The tilde in the variables refers to the
mesoscopic space):
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On the other hand a reformulation of the balances is necessary, in which occur now additional derivatives and fluxes due to
m orM, respectively. In particular the (local) mass balance and the balance of the distribution function read:
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where we presume that the voids can not move independly with respect to the surrounding material, i.e.v = ṽ and neglect
any void production, i.e.ṄV = 0. Eq. (4)2 determines the temporal development of arbitrary distributed voids in a material.
For its (numerical) solution one must insert a material law for ȧ.

3 Constitutive Model for ȧ

In order to derive a material laẇa(a,x, t) we firstly ask, which energies are necessary to deformone spherical shell, [2]. Here
three contributions are considered:(a) plastic energyW̃ , (b) kinetic energyK̃ and(c) surface energỹS. Neglecting elastic
effects and taking into account effective von Mises strains|ε̇| = ε̇p = 2a2ȧ/r3 and hardening effects results in expressions
for W̃ , K̃ andS̃ as well as for the external power̃P as functions ofa(t) andȧ(t). Setting the external power equal the “sum
of the internal powers”,̃P = d(W̃ p + S̃ + K̃)/dt, yields an ODE fora(t) as follows:
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By means of an initial geometry(a0, b0) a (numerical) solution of Eq (5) can be perform providing a constitutive relation
for ȧ(t) for one chosen spherical shell. Exploiting this ODE for different spherical shells, i.e., for different initial valuesa0

andb0, yieldsȧ(a, t).

4 Results

In order to investigatedynamical void expansion in visco-plastic material we apply to the spherical shells ahigh pressure
impulsep(t) as illustrated in Fig. 2 (left). Furthermore all required material were chosen exemplarily for typical aluminum.

Fig. 2 The external load, the expansion of two different voids and the temporal development of five different void radii.

In the centered picture two different voids with the initialradii of a0 = 0.1 µm, 1 µm and the initial void volume fraction
fv0 = a3

0/b3
0 = 10−4 were considered. Obviously the void growth continues afterp(t) finished. This fact is caused by inertia

effects due to the kinetic energỹK. Furthermore smaller voids grow faster than bigger voids, they can even “overtake” the
bigger voids.

Finally we investigate the temporal development of a discrete (Gaussian) void distribution function with five different
initial void radii, right £gure. Due to the fact that smaller voids grow faster than bigger voids the initial symmetric distribution
change to an asymmetrical distribution in such a manner thatthe fraction of smaller voids decrease. Such results can be also
found in so-called LSW-theories (Ostwald ripening), although the driving forces are completely different.
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