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Cavities in a visco-plastic material: A mesoscopic concept

Kerstin Weinberg* andThomas Bohme
Institut fur Mechanik (MS-2), Technische Univei&itBerlin, Einsteinufer 5, 10587 Berlin, Germany

In the present work we investigate the temporal development of ailyitdistributed voids in a visco-plastic material under
different loading regimes. A mesoscopic continuum model is used ier dadtake the microstructure of the material into
account. In particular, we introduce a mesoscopic space represantéxgension of the space-time domain of the continuum
mechanical fields. This extended domain requires a reformulation afdissical balance equations as well as the consider-
ation of additional constitutive quantities. Furthermore a mesoscopic distribfunction can be introduced which follows
an own balance. Assuming a special model of porous compositeqtieecal shell model, all required steps are elaborated
in order to describe load-induced void-growth in a metal-like matrix. Welcole with some exemplary results which show
astonishing similarities with co-called LSW-theories.
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1 Spherical Shell Model

Most materials contain a certain amount of cavities (voitigu- matrix
ally the voids are small compared to the size of the surroxgsiiruc- surfaces,
ture. In order to analyze the growth of voids in a general aefiog AN
material let us assume that each void surrounded by a spherical O\‘ N

material shell as illustrated in Fig. 1. Furthermore theopgrma-
terial is modeled as an ensemble of isotrogiberical shells (void
plus spherically surrounded matrix) with a certain giveitiahvoid
volume fraction and an initial distribution. In detail hstd
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Due to this construction the remaining volume between theisgs
can be made infinitesimally small and the deformation epdensity ¢
of the composite can be approximated as the sum of the demmmaFig. 1 From arbitrarily distributed voids to the spherical
energies densities stored in all spherical shells. Consinl& a spher- gpail model.
ical shell under deformation. The initial geometry, b, changes to
a(t) andb(t). Presume an incompressible deformation and denotestbety of void expansion with a it follows for r € [a, b]:
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2 Mesoscopic Space, Distribution Function and Balance Equatis

In classical (five-field) continuum mechanics tivanted fields are the mass densip(x, t), the material velocityw (x, t) and
the (mass-specific) internal energyx, t). These five fields are defined on thgace-time domain(x, ¢) and follow universal
balance equations. In order to solve the balances one mesifisphe material through constitutive equations, which a
defined on thestate space. Now the question arise, how to introduce the additionalrimfation about the microstructure of
the material into the continuum mechanical framework. Téetral idea of the mesoscopic concept is the Extension of the
space time domaifx, t) € R?* x R — (m,x,t) € M x R3 x R to themesoscopic space, wherem are ’suitable’ variables of
arbitrary tensorial order describing the microstructurd &1 are the manifold according tm, [1]. For our problem we can
identify: M C R andm = a.

Thus, a (normalized) mesoscopic distribution functa'iQn,:g t) can be found representing the number of the voVds
with radiusa relatively to the total number of voidd,, at positionx and timet (The tilde in the variables refers to the
mesoscopic space):

d'="— and Ny = Ny da . 3
1% ag
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On the other hand a reformulation of the balances is negg#savhich occur now additional derivatives and fluxes doie t
m or M, respectively. In particular the (local) mass balance &edalance of the distribution function read:
ad

8p a .. < 0 (.
o +V-(pv)+ %0 (pa) =0 and E—&—V (dv)—k%(da)—o, 4)

where we presume that the voids can not move independly eshect to the surrounding material, ive= v and neglect
any void production, i.eNy = 0. Eq. (4) determines the temporal development of arbitrary disteitdwoids in a material.
For its (numerical) solution one must insert a material lanat

3 Constitutive Model for a

In order to derive a material law(a, x, t) we firstly ask, which energies are necessary to defamespherical shell, [2]. Here
three contributions are considere(g) plastic energyV, (b) kinetic energyK and(c) surface energy. Neglecting elastic
effects and taking into account effective von Mises striifis= ¥ = 2a%a/r3 and hardening effects results in expressions
for W, K andS as Well~as for tpe ext~erna~l powét as functions ofi(t) anda(t). Setting the external power equal the “sum
of the internal powers”P = d(W? + S + K)/dt, yields an ODE for(t) as follows:
b3 a3 3 3:3

Z(’>a = £900 ilgg(a n) + 2aya + 5 2daa® + 3a3a® — % (Qdaa+4d3 — ZS(C;))] . (5)

By means of an initial geometryg, by) a (numerical) solution of Eq (5) can be perform providing astdutive relation

for a(t) for one chosen spherical shell. Exploiting this ODE for differepherical shells, i.e., for different initial valuesg
andby, yieldsa(a, t).

pan +p

4 Results

In order to investigatelynamical void expansion in visco-plastic material we apply to the spherical shellsigh pressure
impulsep(t) as illustrated in Fig. 2 (left). Furthermore all requiredteral were chosen exemplarily for typical aluminum.
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Fig. 2 The external load, the expansion of two different voids and the terhgevalopment of five different void radii.

In the centered picture two different voids with the initialii of ag = 0.1 gm, 1 um and the initial void volume fraction
fo0 = a3 /b3 = 10~* were considered. Obviously the void growth continues afer finished. This fact is caused by inertia
effects due to the kinetic enerdy. Furthermore smaller voids grow faster than bigger voidey ttan even “overtake” the
bigger voids.

Finally we investigate the temporal development of a disc(Gaussian) void distribution function with five differe
initial void radii, right £gure. Due to the fact that smalleids grow faster than bigger voids the initial symmetridritisition
change to an asymmetrical distribution in such a mannetttigafraction of smaller voids decrease. Such results catsbe a
found in so-called LSW-theories (Ostwald ripening), altb the driving forces are completely different.
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