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A geometrically exact membrane model for isotropic foils and fabrics
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1 The finite-strain-viscoelastic membrane model

The spatial deformation of a thin-walled structure ¢ : w X (—%, %) — IR? is decomposed into the motion of the (initially

plane) midsurface m : w C IR? +— IR3 and of the director (initially) orthogonal to the midsurface,

bs(,y,2) = m(x,y) + zom (2, y) R(z, y).e3, (D

where R = polar(F') € SO(3) is the orthogonal part of the deformation gradient F' with out-of plane component R(z, y).e3.
The variable g,, € IR accounts for a varying thickness, see [1, 2] for details.

Basic idea: introduce an additional field of independently evolving viscoelastic rotations R € SO(3). These rotations
R are thought of as being physical meaningful but not exact continuum rotations R. With R3 = R(x,%).e3 denoting the
corresponding out-of plane component the dimensional reduction of a three-dimensional continuum solid to a geometrically
exact membrane model results in a deformation gradient of the form

F = (Vmlom R3), @)

where Vim € M**? is the deformation gradient of the midsurface with m, = (my 4, M2, m3.2)7 My = (M1 4y, Moy, ma,)7.
_ The problem: find the deformation of the midsurface m : [0, 7] x w + IR? and the independent local viscoelastic rotation
R :[0,T] x w — SO(3) such that

JrwE R @ [ romydo— [ (fom)ds — min., @)

s

w.r.t. m at fixed rotation R. The strain energy density W (F, R) in (3) is of the form
— _ A _ 2
W(F,R) = % IFTR+R F—2I)? + S (FTR +R'F- 21) . @)

Moreover, let We*t(m) be the linear work of applied external forces with f, being the resultant body forces and f the
resultant surface traction and let gq : w — IR3 denote the prescribed Dirichlet boundary conditions for the membrane,

W) = [ {fpmydo— [ (fm)ds, my (o) = galtzy) oy € C 0. )

s

The field of local viscoelastic rotation follows an evolution equation

d— _ 1 _ _
TR0 = vt skew(B)-R(t) with vt = ;]w(F, R), and B=FR . 6)

Here v € IR represents a scalar valued function introducing an artificial viscosity and n plays the role of an artificial
relaxation time (with units [sec]). The evolution equation (6) and parameter v are introduced into the model to preserve
ellipticity of the force balance. Physically, one may imagine the viscoelastic rotation R as shadowing the exact continuum
rotation in a viscous sense.
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2 Discretization of the model

. o . . . —n—1 . . .
We consider a fully implizit time discretized version of model (3). Let (m™ !, R" ) be the given solution for the deformation
of the midsurface and the rotations at time ¢,,_;. Now, compute the new solution (m", En) € YV at time t,, such that

/ AW (F™ R")dw — W™ (m™) — min ., @)

w.r.t. m™ at fixed R . The current deformation gradient F* = F(t,,) is

F" = (Vm"|o}, Ry) @)
and the current boundary conditions are

mp (tn, 2, y) = ga(tn, z,y), T,y €7 C Ow. ©

The evolution equation for the rotations is mapped by a local exponential update. This implies that R" = Rn(Vm")
solves the following highly nonlinear problem

- - —n— . 1 —=n,T 2
" = exp (Atwf skew (FRT)) BT with v = — (14 skew FPR")) (10)
n
By the properties of logarithmic and exponential mapping it can be shown that (10) converges to (6) for the limit At — 0, see
[1].
The finite element discretization of problem (7) considers discrete subspaces V4, of the continuous solution spaces ) for
the membrane’s deformation. We employ

Vo = P1(T)? x Po(T)3*3, (11)

where P (7) denotes the linear space of 7 -piecewise polynomials of degree < k, and, P°(7) are the continuous discrete
functions in Px(7) with homogeneous boundary values. Thus, the discrete problem reads: find the deformation of the
midsurface of the membrane and the independent local viscoelastic rotation (my, Ry) : [0, T] x V; such that,

/ hW (F(my), Ry) dw — W (my,, Rp3) +— min . , (12)

w.r.t. my at fixed rotation Rj, such that R}, satisfies (10).

3 Example: wrinkling of a thin foil

We apply our model to the problem of a 2 x 2m elastic foil under pressure load. The foil is 1mm thick, lies on a square obstacle
(like a cloths on a table) and only the unsupported part of it can deform. A pressure of pyg = 0.75 MPa acts from above.

Fig. 1 Wrinkling of a soft foil (relaxed state)
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