A geometrically exact membrane model for isotropic foils and fabrics

Kerstin Weinberg ${ }^{* 1}$ and Patrizio Neff ${ }^{2}$
${ }^{1}$ Institut für Mechanik, MS2, Technische Universität Berlin, Einsteinufer 5, 10587 Berlin, Germany
${ }^{2}$ Fachbereich Mathematik, AG6, Technische Universität Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany

© 2007 WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim

1 The finite-strain-viscoelastic membrane model

The spatial deformation of a thin-walled structure $\phi_{s}: \omega \times\left(-\frac{h}{2}, \frac{h}{2}\right) \rightarrow \mathbb{R}^{3}$ is decomposed into the motion of the (initially plane) midsurface $m: \omega \subset \mathbb{R}^{2} \mapsto \mathbb{R}^{3}$ and of the director (initially) orthogonal to the midsurface,

$$
\begin{equation*}
\phi_{s}(x, y, z)=m(x, y)+z \varrho_{m}(x, y) R(x, y) \cdot e_{3}, \tag{1}
\end{equation*}
$$

where $R=\operatorname{polar}(F) \in \mathrm{SO}(3)$ is the orthogonal part of the deformation gradient F with out-of plane component $R(x, y) \cdot e_{3}$. The variable $\varrho_{m} \in \mathbb{R}$ accounts for a varying thickness, see [1,2] for details.

Basic idea: introduce an additional field of independently evolving viscoelastic rotations $\bar{R} \in \mathrm{SO}(3)$. These rotations \bar{R} are thought of as being physical meaningful but not exact continuum rotations R. With $R_{3} \equiv \bar{R}(x, y) . e_{3}$ denoting the corresponding out-of plane component the dimensional reduction of a three-dimensional continuum solid to a geometrically exact membrane model results in a deformation gradient of the form

$$
\begin{equation*}
F=\left(\nabla m \mid \varrho_{m} \bar{R}_{3}\right) \tag{2}
\end{equation*}
$$

where $\nabla m \in \mathrm{M}^{3 \times 2}$ is the deformation gradient of the midsurface with $m_{x}=\left(m_{1, x}, m_{2, x}, m_{3, x}\right)^{T}, m_{y}=\left(m_{1, y}, m_{2, y}, m_{3, y}\right)^{T}$.
The problem: find the deformation of the midsurface $m:[0, T] \times \omega \mapsto \mathbb{R}^{3}$ and the independent local viscoelastic rotation $\bar{R}:[0, T] \times \omega \mapsto \mathrm{SO}(3)$ such that

$$
\begin{equation*}
\int_{\omega} h W(F, \bar{R}) \mathrm{d} \omega-\int_{\omega}\left\langle f_{b}, m\right\rangle \mathrm{d} \omega-\int_{\gamma_{s}}\left\langle f_{s}, m\right\rangle \mathrm{ds} \mapsto \min . \tag{3}
\end{equation*}
$$

w.r.t. m at fixed rotation \bar{R}. The strain energy density $W(F, \bar{R})$ in (3) is of the form

$$
\begin{equation*}
W(F, \bar{R})=\frac{\mu}{4}\left\|F^{T} \bar{R}+\bar{R}^{T} F-2 I\right\|^{2}+\frac{\lambda}{8} \operatorname{tr}\left(F^{T} \bar{R}+\bar{R}^{T} F-2 I\right)^{2} \tag{4}
\end{equation*}
$$

Moreover, let $W^{\text {ext }}(m)$ be the linear work of applied external forces with f_{b} being the resultant body forces and f_{s} the resultant surface traction and let $g_{\mathrm{d}}: \omega \mapsto \mathbb{R}^{3}$ denote the prescribed Dirichlet boundary conditions for the membrane,

$$
\begin{equation*}
W^{\mathrm{ext}}(m)=\int_{\omega}\left\langle f_{b}, m\right\rangle \mathrm{d} \omega-\int_{\gamma_{s}}\left\langle f_{s}, m\right\rangle \mathrm{ds}, \quad m_{\left.\right|_{\gamma_{0}}}(t, x, y)=g_{\mathrm{d}}(t, x, y) \quad x, y \in \gamma_{0} \subset \partial \omega \tag{5}
\end{equation*}
$$

The field of local viscoelastic rotation follows an evolution equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \bar{R}(t)=\nu^{+} \cdot \operatorname{skew}(B) \cdot \bar{R}(t) \quad \text { with } \quad \nu^{+}:=\frac{1}{\eta} \nu^{+}(F, \bar{R}), \quad \text { and } B=F \bar{R}^{T} \tag{6}
\end{equation*}
$$

Here $\nu^{+} \in \mathbb{R}^{+}$represents a scalar valued function introducing an artificial viscosity and η plays the role of an artificial relaxation time (with units [sec]). The evolution equation (6) and parameter ν^{+}are introduced into the model to preserve ellipticity of the force balance. Physically, one may imagine the viscoelastic rotation \bar{R} as shadowing the exact continuum rotation in a viscous sense.

[^0]
2 Discretization of the model

We consider a fully implizit time discretized version of model (3). Let (m^{n-1}, \bar{R}^{n-1}) be the given solution for the deformation of the midsurface and the rotations at time t_{n-1}. Now, compute the new solution $\left(m^{n}, \bar{R}^{n}\right) \in \mathcal{V}$ at time t_{n} such that

$$
\begin{equation*}
\int_{\omega} h W\left(F^{n}, \bar{R}^{n}\right) \mathrm{d} \omega-W^{\text {ext }, \mathrm{n}}\left(m^{n}\right) \mapsto \min . \tag{7}
\end{equation*}
$$

w.r.t. m^{n} at fixed \bar{R}^{n}. The current deformation gradient $F^{n}=F\left(t_{n}\right)$ is

$$
\begin{equation*}
F^{n}=\left(\nabla m^{n} \mid \varrho_{m}^{n} \bar{R}_{3}^{n}\right), \tag{8}
\end{equation*}
$$

and the current boundary conditions are

$$
\begin{equation*}
m_{\left.\right|_{\gamma_{0}}}^{n}\left(t_{n}, x, y\right)=g_{\mathrm{d}}\left(t_{n}, x, y\right), \quad x, y \in \gamma_{0} \subset \partial \omega . \tag{9}
\end{equation*}
$$

The evolution equation for the rotations is mapped by a local exponential update. This implies that $\bar{R}^{n}=\bar{R}^{n}\left(\nabla m^{n}\right)$ solves the following highly nonlinear problem

$$
\begin{equation*}
\bar{R}^{n}=\exp \left(\Delta t \nu_{n}^{+} \text {skew }\left(F^{n} \bar{R}^{n, T}\right)\right) \cdot \bar{R}^{n-1} \quad \text { with } \nu_{n}^{+}=\frac{1}{\eta}\left(1+\| \text { skew } F^{n} \bar{R}^{n, T} \|\right)^{2} . \tag{10}
\end{equation*}
$$

By the properties of logarithmic and exponential mapping it can be shown that (10) converges to (6) for the limit $\Delta t \rightarrow 0$, see [1].

The finite element discretization of problem (7) considers discrete subspaces \mathcal{V}_{h} of the continuous solution spaces \mathcal{V} for the membrane's deformation. We employ

$$
\begin{equation*}
\mathcal{V}_{\mathrm{h}}=\mathcal{P}^{\mathrm{o}}{ }_{1}(\mathcal{T})^{3} \times \mathcal{P}_{0}(\mathcal{T})^{3 \times 3}, \tag{11}
\end{equation*}
$$

where $\mathcal{P}_{k}(\mathcal{T})$ denotes the linear space of \mathcal{T}-piecewise polynomials of degree $\leq k$, and, $\mathcal{P}^{\circ}{ }_{k}(\mathcal{T})$ are the continuous discrete functions in $\mathcal{P}_{k}(\mathcal{T})$ with homogeneous boundary values. Thus, the discrete problem reads: find the deformation of the midsurface of the membrane and the independent local viscoelastic rotation $\left(m_{\mathrm{h}}, \bar{R}_{\mathrm{h}}\right):[0, T] \times \mathcal{V}_{\mathrm{h}}$ such that,

$$
\begin{equation*}
\int_{\omega} h W\left(F\left(m_{\mathrm{h}}\right), \bar{R}_{\mathrm{h}}\right) \mathrm{d} \omega-W^{\text {ext }}\left(m_{\mathrm{h}}, \bar{R}_{\mathrm{h} 3}\right) \mapsto \min . \tag{12}
\end{equation*}
$$

w.r.t. m_{h} at fixed rotation \bar{R}_{h} such that R_{h} satisfies (10).

3 Example: wrinkling of a thin foil

We apply our model to the problem of a $2 \times 2 \mathrm{~m}$ elastic foil under pressure load. The foil is 1 mm thick, lies on a square obstacle (like a cloths on a table) and only the unsupported part of it can deform. A pressure of $p_{0}=0.75 \mathrm{MPa}$ acts from above.

Fig. 1 Wrinkling of a soft foil (relaxed state)

References

[1] K. Weinberg and P. Neff: A geometrically exact thin membrane model - investigation of large deformations and wrinkling, to appear in: Int. J. Numerical Methods in Engineering, published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme. 2189
[2] P. Neff: A geometrically exact viscoplastic membrane-shell with viscoelastic transverse shear resistance avoiding degeneracy in the thin-shell limit. Part I: The viscoelastic membrane-plate., Zeitschrift Angewandte Mathematik Physik, 56 (2005), 148-182.

[^0]: * Corresponding author: e-mail: kerstin.weinberg@tu-berlin.de, Phone: +493031424214, Fax: +493031424499

