
Continuum Mech. Thermodyn. (2009) 20: 509–521
DOI 10.1007/s00161-008-0090-0

ORIGINAL ARTICLE

Maxim A. Zapara · Nikolay D. Tutyshkin ·
Wolfgang H. Müller · Kerstin Weinberg · Ralf Wille

A physico-mechanical approach to modeling of metal
forming processes—Part II: damage analysis in processes
with plastic flow of metals

Received: 13 November 2007 / Accepted: 20 November 2008 / Published online: 23 January 2009
© Springer-Verlag 2009

Abstract A damage analysis is presented for the extrusion of a case-shaped cylindrical part by using a physico-
mechanical approach for modeling metal forming processes. Two integral measures related to the hydrostatic
and deviatoric parts of the damage tensor are used for the calculation of strain damage. The combined use
of two damage measures in contrast to only one allows us to assess not only a risk of macro-fracture of the
deformed material but also the stage of formation of large cavernous defects due to coalescence of ellipsoi-
dal voids. Such a refined prediction of the actual quality of the material’s micro-structure is important when
producing metalware that is supposed to operate under intense loading and thermal conditions. In case study
of this paper the kinetic equations of damage are solved by using mutually consistent fields of stresses, flow
velocities, and strains. It is shown that the predicted damage is less than its permissible value since a high
hydrostatic pressure in the plastic zone heals the micro-defects, prevents their growth, and, thereby, increases
the processing ductility of deformed metals during extrusion.

Keywords Plasticity · Plastic flow · Deformation · Plastic strain and stress · Slip line · Velocity field ·
Micro-structure · Strain induced damage · Meso-parameters · Damage equation · Metal forming · Extrusion ·
Case-shaped part

PACS 81.40.Lm · 81.20.Hy · 46.35.+z · 46.50.+a · 62.20.F– · 61.72.Qq

1 Introduction

The physico-mechanical approach to modeling Metal Forming (MF) processes as developed in Part I of this
paper [21] is now applied to the analysis of a process with axisymmetric plastic flow. The constitutive equa-
tions describing large plastic deformations under complex loading (with changeable Lode angle) are based on
both plastic flow theory as well as damage mechanics. The definition offered for the symmetric second-rank
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order tensor of damage is physically motivated since its hydrostatic and deviatoric parts describe the evo-
lution of damage connected with a change in volume and with the shape of the micro-defects, respectively.
Consequently, this representation of damage kinetics requires us to use two integral measures (ω1 and ω2)
for the calculation of damage in deformed materials: The measure ω1 determines plastic dilatation related
to an increase in void volume. It allows for a quantitative assessment of the risk of metal fracture caused
by a critical amount of plastic dilatation (εi ·

·i cr
). In physical terms the measure ω1 is identically equal to the

measure ω in dissipative damage theory [6] and is connected with the void volume fraction ( fv) that is used as
damage measure in some models [3,12,13]. The measure ω2 accounts for the deviatoric strain of voids which
is connected with a change in their shape (

�
e). The critical deformation of ellipsoidal voids corresponds to

their intense coalescence and to the formation of large cavernous defects. It was demonstrated experimentally
that the shape of the voids strongly effects their coalescence and, consequently, the formation of cavities in
deformed material [4,8,11]. The critical deformation of ellipsoidal voids (

�
ecr ) corresponds to their intense

coalescence and to the formation of large cavernous defects. Thus, we may say that the measure ω2 assesses a
risk of material microfracture at the mesolevel. The use of ω2 is advantageous when producing metalware that
is required to operate under intense loading and thermal actions, high pressures and strain rates. Such products
and components are generally used in aerospace, automotive, and energy engineering.

Many complicated problems in research and development of MF techniques are still insufficiently inves-
tigated for products with irregular shape. In particular, for extrusion, where the processed material is under
complex loading with strong variations of the stress state, it is very difficult to analyze and optimize the full
process. The choice of an extrusion process for the case study of this paper is explained by its wide use in MF.
The compressive regime of the stress state during extrusion promotes high ductility of the processed materials
and, accordingly, a greater operational deformation. Therefore, extrusion (as a finishing operation) provides
high-strength properties of products due to strain hardening. Specifically, we shall present in this paper a
numerical analysis of the extrusion of a case-shaped part together with the prediction of its damage by using
the aforementioned two damage characteristics, ω1 and ω2.

In the next chapter we will, first, briefly state the axisymmetric MF-boundary value problem and, second,
outline how it can be solved numerically and, in particular, how the two damage measures can be determined.
This will then be followed by a results section including a discussion of the outcome of the analysis: Chap-
ter 3. We would like to point out that the extensive experience of the two Russian authors in the method of
characteristics of flow lines was used to achieve this task. Clearly, in principle, it would have been possible
using other numerical techniques instead, e.g., the Finite Element Method (FEM), maybe even in context with
commercial FE-codes and user-defined subroutines. However, this has not been done in order to demonstrate
the feasibility of the approach in due course. Alternative analyses are left to future research. Moreover note
that we will frequently refer to Part I of this paper [21] where further details of the underlying damage theory
are explained.

2 The constitutive equations for damage analysis

Extrusion is a manufacturing process in which a blank of material, usually a metal, is pressed in a forming
container by the mechanical action of a punch [18]. The container, whose shape is the inverse of the shape
of the product, forces the solid material to yield in the backward direction of the pressing punch (backward
extrusion). Extrusion results in high strength of the processed material as a consequence of strain hardening.
Furthermore, a major advantage of the extrusion process is a highly compressive stress state, i.e., stress tri-
axiality 〈σ̄ 〉 < −1. Such a state of stress promotes a certain healing of the material, e.g., cracks and voids
accumulated during MF may close, and, therefore, the obtainable degree of deformation is comparatively high
[15]. Note that this is in contrast to other forming processes, such as deep drawing, where a sheet of metal
is pressed into a forming die. In typical deep drawing processes stress triaxiality rises up to 〈σ̄ 〉 ≈ +2/3
[2]. Consequently, at approximately 60% of straining the accumulated micro-defects result in macroscopic
damage. In contrast to that the compressive regime of backward extrusion allows for straining up to 90% and
more.

In the following, we will analyze the state of stress and the material properties of an axisymmetric case-
shaped part made of a cylindrical Al-Mg bar (cf., Fig. 1, right). Specifically, two integral measures of strain
damage, ω1 and ω2, connected with the second-rank tensor of damage ωi j , will be used for the meso-structural
parameters of the plastic material during the solution of the case study in this paper. The kinetic equation for
the damage measure ω1, which is related to plastic dilatation of the deformed material due to an increase in
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Fig. 1 Some typical axisymmetric case-shaped parts obtained by extrusion (left); draft for calculations (right)

micro-defect volume, is

dω1

dt
= 1

εi ·
·i (�lim)

· dεi ·
·i (�)

d�
· d�

dt
≡

[
εi ·
·i (�)

]′
�̇

εi ·
·i (�lim)

, (1)

where εi ··i (�) is the empirically obtained dependence of plastic dilatation εi ··i (i.e., the first invariant of the plastic
strain tensor εi j ) on the cumulative strain at shear �, �̇ = d�/dt is the shear strain rate, �lim is the limit strain
of the material at the moment of its macro-destruction, t denotes time, and the dash refers to differentiation
with respect to �.

The cumulative shear strain, �, or Odquist parameter, is determined by

� =
∫

s(t)

√
2ėi ·· j ė

j ·
·i dt, (2)

where ėi ·· j denote the mixed components of the deviatoric strain rates; s(t) is a strain path [21].
The kinetic equation for the damage measure ω2, which is connected with a change in micro-defect (void)

shape under plastic deformation, takes on the following form:

dω2

dt
=

�̇
e

�
ecr

≡

√

(1/2)

(
�̇
e

i ·
· j

�̇
e

j ·
·i

)

�
ecr

, (3)

where
�̇
e is the equivalent deviatoric strain rate of voids,

�
ecr is the critical deviatoric strain of voids correspond-

ing to a stage of intense coalescence of ellipsoidal voids and formation of cavernous defects, and
�̇
e

i ·
· j are the

mixed components of the deviatoric strain rate of voids.
The damage measures are defined over the following range: ω1, ω2 ∈ [0; 1], where the upper-range value

ω1 = 1 corresponds to the moment of macro-fracture, and ω2 = 1 corresponds to the stage of formation
of cavernous defects (i.e., a stage of the micro-destruction at meso-scale). It should be noted that in [21]
the authors related their own tensorial model of damage to commonly known models of void growth (e.g.
[3,6,12,13]). The connection between the volume fraction of voids, fv (considered as a measure of damage
in a number of known models), the criterion of damage, ω (a dissipative damage theory, e.g., [6]), and the
authors’ measure of damage, ω1 (a tensorial theory), is discussed there. Two classical approaches (criteria fv
and ω) were compared with a tensorial theory (i.e., in terms of the measures ω1 and ω2).

As outlined in detail in [21] the evolution of the yield stress σs can be described by

σs = σ (is)
s exp

[
−α

(
T − T0

Tmax − T0

)q]
, (4)

where σ
(is)
s = σ

(is)
s (ei , ėi0, T0, µk) refers to isothermal hardening curves obtained for various materials at a

fixed strain rate ėi0 and an initial thermodynamic temperature T0, ei is an intensity of the cumulative strains,
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Table 1 Parameters of plastically deformed Al-Mg alloy (temperature T = 300−500 K, strain rate ėi = 5−12 s−1)

σ0, MPa σd|ω=0,MPa A, MPa m l · 10−2,mm B, MPa n0 n1 T0, K Tmax, K α q

140 211 186 1.161 0.774 273 0.439 0.267 300 800 1.380 1.000

Table 2 Material parameters for calculations of damage and internal energy of hardening

Parameters of plastic dilatation Parameters of limit plasticity Damage of the as-delivered material

b a A B c ω10 ω20

0.150 1.280 −0.033 2.833 0.569 0–0.08 0–0.10

µk are meso-structural parameters, T and Tmax are the current and the maximum temperature of the process,
respectively, α and q are parameters used in the equation for the temperature dependent yield strength σs [21].
The isothermal yield stress can be written as follows:

σ (is)
s = σ0 + (

σd/ω=0 + Aωm)
D− 1

2 l
1
2 + Be(n0−n1ei )

i , (5)

where σ0 is the initial yield stress given by the resistance to the movement of free dislocations, ω is
the strain damage related to plastic dilatation induced by micro-defect growth, and σd is a stress required
for the movement of locked dislocations which will be specified below. Moreover, A and m are parameters of
the relationship σd = σd(ω), D is average grain size, l is a characteristic distance from the grain boundary to
the nearest dislocation source, and B, n0, and n1 are scalar parameters describing the work hardening of the
yield stress in an isothermal regime.

The material of the as-delivered primary blanks is an Al-Mg alloy (after recrystallization annealing) with
material parameters summarized in Table 1. During the extrusion we assume a constant processing speed with
strain rates of ėi = 5–12 s−1 and a given temperature of T = 300–500 K. Note that this temperature is still
below the recrystallization temperature of the Al-Mg alloy.

Substituting the data of Table 1 with Eqs. (4) and (5) we may determine the yield stress of Al-Mg alloy to
depend on strain hardening and micro-structural changes by

σs = σ (is)
s exp

(
−1.38

T − 300

500

)
, σ (is)

s =140 + 0.774 · 10−2(211 + 186ω1.161) D− 1
2 + 273e(0.439−0.267ei )

i .

(6)

The strain damage of the finished part can be predicted by numerical integration of Eqs. (1) and (3) for
the damage parameters ω1 and ω2. The function of plastic dilatation, εi ··i (�), that appears in Eq. (1), is of
the power type, εi ··i (�) = b�a, where b and a denote experimentally determined parameters (cf., Table 2).
Therefore Eq. (1) becomes

dω1 = a�a−1

�a
lim

d�. (7)

The limit cumulative strain at shear, �lim, appearing in Eq. (7), corresponds to the destruction of the
deformed material. The limit strain �lim is determined by experimental diagrams of plasticity plotted for
the investigated Al-Mg alloy under prescribed temperature-speed conditions (cf., Fig. 11 in [21]). Plasticity
diagrams represent the experimentally determined dependence of the limit strain �lim on stress triaxiality 〈σ̄ 〉,
which can be approximated by a power function in the following form:

�lim = A · exp (− 〈σ̄ 〉) + B · exp (−c 〈σ̄ 〉) , (8)

where A, B, c are the experimentally determined parameters (cf., Table 2).
Proceeding in Eq. (7) with small finite increments of the strain (��) we may find the material damage

after the kth stage of deformation by numerical integration:

ω1k = ω10 +
k∑

j=1

�ω1 j , �ω1 j = a�a−1
j

�a
lim

(〈σ̄ 〉 j
)�� j , (9)
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where ω10 is the damage of the as-delivered material (cf., Table 2), � j is the strain accumulated by the material
particles up to the j th stage, �lim(〈σ̄ 〉 j ) is the limit strain corresponding to stress triaxiality 〈σ̄ 〉 j at the j th
stage.

Calculations of the damage measure ω2 by means of numerical integration of the kinetic equation (3) are

connected with the determination of the equivalent deviatoric strain rate of voids
�̇
e, and the critical deviatoric

strain
�
ecr corresponding to a stage of intense coalescence of ellipsoidal voids and formation of cavernous

defects. Calculations of the equivalent strain rate of voids necessitate an experimental determination of their
dimensions changing under deformation [11,19]. The determination of the critical equivalent strain

�
ecr of

voids in the investigated materials is based on microscopic analysis of void coalescence in test specimens
during their stage-by-stage plastic deformation. The obtained micrographs will allow us to detect a stage of
intense void coalescence into large cavernous defects. Such experiments involve great technical difficulties
[10]. This is why we shall make use of statistical characteristics of void formation.

For instance, the averaged equivalent strain rate can be applied within each Representative Volume Ele-
ment (RVE). A corresponding measure is the equivalent strain rate (ė) of the RVE. The hypothesis that it is
possible to model the void deformation by using the strain measures of the RVE requires detailed experimen-
tal verification. The experimental justification of this hypothesis will allow us to predict shape changes and
coalescence of voids by means of accompanying axes ξ i plotted as coordinate grids on deformed specimens

and manufacturing blanks. This hypothesis allows us to accept in our case
�̇
e(r, z, t) = ė(r, z, t), where the

function ė(r, z, t) can be established by a distribution of the equivalent strain increments �e(r, z, h) in cells
of the coordinate grid, i.e., ė(r, z, t) ∼= �e(r, z, t)/�t = υp · �e(r, z, h)/�h.

In order to find the critical equivalent strain of voids,
�
ecr , the experimental results obtained by Bogatov

et al. [1] were used. They investigated void coalescence and formation of cavernous defects in some structural
metals at forming. Electron-probe analysis of the micro-structure of stepwise deformed metals allowed them
to verify that the critical equivalent strain of voids can be expressed as

�
e cr = 0.6 · elim exp[0.05(1 − 〈σ̄ 〉)],

where elim = �lim/2 is the limit deviatoric strain of RVE corresponding to the moment of its destruction. In
view of the given experimental data Eq. (3) becomes

dω2 = 5 · exp [0.05 (〈σ̄ 〉 − 1)]

3 · elim
de. (10)

By using small finite strain increments, �e, in Eq. (10) we may calculate the material damage ω2 after the
kth stage of deformation by numerical integration

ω2k = ω20 +
k∑

j=1

�ω2 j , �ω2 j = 5 · exp
[
0.05

(〈σ̄ 〉 j − 1
)]

3 · elim j
(�e) j , (11)

where ω20 is the damage of the as-delivered material (cf., Table 2), and elim j is the limit deviatoric strain
corresponding to the stress state parameter 〈σ̄ 〉 j at the j th stage of deformation.

The cumulative strain � (including the equivalent strain e = �/
√

3) and stress triaxiality 〈σ̄ 〉 appears in
the constitutive equations for damage measures (1), (7), (8), (10). In turn, the cumulative strain � and stress
triaxiality 〈σ̄ 〉 can be determined in each nodal point of the deformed material by using mutually consistent
fields of stresses, σi j , and plastic flow velocities, υi . Hence, damage analysis in processes with plastic flow of
metals is a coupled problem of the calculation of stresses, flow velocities, and strains as well as mechanical
and meso-structural characteristics of the deformed material.

To calculate the stress-strain state we use the equations describing axisymmetric plastic flow of metals in
Eulerian cylindrical coordinates, where r , z, θ denote the radial, the axial, and the circumferential direction,
respectively. The basic equations of plasticity are given by the differential equations of equilibrium

∂σr

∂r
+ ∂τr z

∂z
+ σr − σθ

r
= 0 ,

∂τr z

∂r
+ ∂σz

∂z
+ τr z

r
= 0, (12)

the von Mises yield surface

(σr − σz)
2 + (σz − σθ )

2 + (σθ − σr )
2 + 6τ 2

r z = 6τ 2
s , (13)
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the condition of coaxiality of the strain rate deviator, ėi j , and the stress deviator, si j :

∂υr/∂z + ∂υz/∂r

2τr z
= ∂υr/∂z − ∂υz/∂r

σr − σz
, (14)

the condition of similarity of the deviators ėi j and si j (15), i.e., of coincidence of their Lode angles, φė and
φσ [21]

√
I2(ėi j )

I2(si j )
= 3

√
I3(ėi j )

I3(si j )
, (15)

and the incompressibility condition

∂υr

∂r
+ ∂υz

∂z
+ υr

r
= 0, (16)

where σr , σz, σθ , τr z are nonzero components of the stress tensor σi j , τs is the yield stress for shear, υr , υz are
the components of the vector of plastic flow velocity, I2(ėi j ) = ė2, I3(ėi j ), I2(si j ) = s2, I3(si j ) are the second
and the third invariants of deviatoric strain rates ėi j and deviatoric stresses si j , respectively, and ė, s denote
the equivalent deviatoric strain rate and stress.

The deformed material is considered as a rigidly-plastic solid because plastic strains amount to 70–90% at
MF being ≈ 102 larger than elastic strains [21]. The axisymmetric stress-strain state has the following features:
for the stress components we have τzθ = τθr = 0, υθ = 0. The hoop stress σθ is a principal stress. In order
to represent the axisymmetric stress-strain state completely it will be sufficient to determine a field of stresses
and flow velocities in one of the meridian cross-sections of the deformed solid.

For the analysis of MF processes with a rapidly changing stress state the basic differential equations for
axisymmetric plastic flow are solved by hyperbolic approximations [16]. The technique is based on a represen-
tation of yield zones in a special form for the stresses related to Iljushin’s deviatoric stress space [5]. Actually,
this technique represents the enhanced slip line method for solving the problems of axisymmetric plastic flow
with the intense change of stress state. The information on slip line fields (i.e., directions of microscopic shear
bands) in plastic zone of the deformed material proves to be very useful when modeling the nucleation of
voids. It is experimentally known that large voids generate microscopic shear bands. Voids nucleate, grow, and
coalesce within these shear bands, finally forming large cavities (20–30 µm) [20].

The slip lines form two families of mutually orthogonal lines (α and β) in the meridian cross-section of
the plastic zone

dz

dr
= tan δθ (at line α),

dz

dr
= −tan δθ (at line β), (17)

where δθ is the angle between the r -axis and the line α. The angle δθ is connected with the stress components
by the following relation:

tan 2δθ = −σr − σz

2τr z
, (18)

which can be used in the basic solution as the additional condition in terms of stresses.
When solving the basic equations (12)–(16) it is convenient to use a special representing space of the

parameters ϕθ , mθ , mr , mz which are introduced by the following relations:

tg2ϕθ =
√

2
3 tan 2δθ , smθ cos 2ϕθ = ταβ cos 2δθ

I1
(
s̄i j

) = mθ sin 2ϕθ − mr sign (σz − σθ ) − mzsign (σθ − σr ) = 0, I2(s̄i j ) = m2
θ + m2

r + m2
z = 1

(19)

where I1(s̄i j ) = 0, I2(s̄i j ) = 1 are the first and the second invariants of the directing stress deviator s̄i j =
si j/

√
I2(si j ) ≡ si j/s, and sign(σz − σθ ), sign(σθ − σr ) are the sign functions, i.e., the signs of the arguments

(σz − σθ ) and (σθ − σr ).
The representing space of the parameters ϕθ , mθ , mr , mz is connected with Iljushin’s deviatoric space [5].

The sign functions sign(σz − σθ ) and sign(σθ − σr ) that appear in Eqs. (19) depend on the type of processing
operations. In processes with predominant axial compression (e.g., extrusion, upsetting, bulk forging) we have

σr ≥ σθ ≥ σz, sign (σz − σθ ) = −1, sign (σθ − σr ) = −1.
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Physically speaking, the parameters mθ , mr , mz define a direction of the vector of the octahedral shear stress,
τ8, which is within the deviatoric plane (19)3 [7]. Eqs. (12) in combination with the parametric representation
of stresses (19) takes the following form in the system of coordinates α and β:

∂〈σ 〉
∂sα

− 2τsmθ

[

1 +
√

2

3
ϕ′(δθ )

]
∂δθ

∂sα

−
√

1 − m2
θ√

3
sign(σθ − σα)

∂τs

∂sα

+ mθ

∂τs

∂sβ

+τs
mθ√

3
√

1 − m2
θ

sign(σθ − σα)
∂mθ

∂sα

+ τs
∂mθ

∂sβ

− √
3
τs

r

√
1 − m2

θ cos δθ sign(σθ − σα)

−τs
mθ

r
sin δθ = 0, (20)

∂〈σ 〉
∂sβ

+ 2τsmθ

[

1 +
√

2

3
ϕ′ (δθ )

]
∂δθ

∂sβ

+ mθ

∂τs

∂sα

−
√

1 − m2
θ√

3
sign(σθ − σα)

∂τs

∂sβ

+√
3
τs

r

√
1 − m2

θ sin δθ sign(σθ − σα) + τs
∂mθ

∂sα

+ τs
mθ√

3
√

1 − m2
θ

sign(σθ − σα)
∂mθ

∂sβ

+τs
mθ

r
cos δθ = 0, (21)

where 〈σ 〉 indicates hydrostatic stress and ϕ′
θ (δθ ) = dϕ′

θ /dδθ , mα = mβ = 1√
2

√
1 − m2

θ .

Equations (14) and (16) for the velocities can be rewritten in terms of fixed coordinates α∗ and β∗ coinciding
with trajectories α and β:

∂υα∗

∂sα

− υβ∗
∂δθ

∂sα

+ υα∗ cos δθ − υβ∗ sin δθ

r
= 0, (22)

∂υβ∗

∂sβ

− υα∗
∂δθ

∂sβ

+ υα∗ cos δθ − υβ∗ sin δθ

2r
= 0. (23)

The solution of Eqs. (15), (20)–(23) satisfy Cauchy-type boundary conditions. In case of an axisymmetric
problem the Cauchy-type conditions are given by boundary values of the required functions 〈σ 〉, δθ , mθ , υα∗ ,
υβ∗ at the two-dimensional surface ω(α∗, β∗) = 0 in the space α∗, β∗.

The four partial differential equations (20)–(23) are closed w.r.t. five required functions 〈σ 〉, δθ , mθ , υα∗
and υβ∗ by means of the differential constraint (15). These four equations are of hyperbolic type and have
two pair-wise coincident sets of mutually orthogonal characteristics, α and β. The characteristic lines α and
β coincide with the slip lines and they are described by Eq. (17). This allows us to use grid-characteristic
schemes for the numerical solution of arising boundary problems.

3 Results and discussion

Since the characteristics of damage depend on strain history a stepwise analysis of the forming process together
with a detailed determination of stress-strain state is necessary for their calculation. For the purpose of the
analysis the process of extrusion will be divided into three stages. The first stage is characterized by contraction
of the blank with the initial height, h0 = 33.1 mm, and filling of the space between the container and the blank.
It ends with outflow into the clearance. During this stage the height of the blank slightly decreases with a typical
degree of deformation of εI = 0.01 − 0.02. Here we put εI = 0.018 and thus we obtain for the difference of
initial and final height in the first stage, �h1 = εI · h0 = �h1 = 0.60 mm. The second stage is characterized
by a constant shape and size of the plastic zone. Plastic flow at this stage is stationary with a decreasing height
of the blank and an outflow into the clearance between the container and the punch. In the third stage the plastic
zone spreads over all the material under the punch. The plastic flow is now non-stationary.
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Fig. 2 Extrusion of a case-shaped part (�hi denotes a displacement of the punch at a moment i , where i = 1 · · · 4)

The stress-strain state is evaluated at four stages (cf., Fig. 2), as follows:

1. at the initial moment of the second stage when �h1 = 0.60 mm,
2. at an intermediate moment when �h2 = 7.45 mm,
3. at an intermediate moment when �h3 = 14.30 mm,
4. at the final state, i.e., �h4 = 21.10 mm.

By solving the boundary problem we may construct a field of slip lines (i.e., characteristics) in the meridian
cross-section of the axisymmetrically deformed material. Then the contour of the plastic zone is determined,
and stress components are calculated (cf., Fig. 3).

Note, that the defining differential equations (2) and (20)–(23) are represented in recursive form for numer-
ical calculations [17]. When solving these boundary value problems we use a condition of maximum contact
friction at the end surface of the punch and at the back surface of the container, i.e., τc = ταβ (τc denotes the
shearing stress at the contact). The normal pressure of the deformed metal on a lateral surface of the container
is much lower than on its back surface. Therefore, a condition of the Prandtl-type for non-maximum contact
friction is realized at a lateral surface of the container

τc = f pταβ = f pmθ τs, (24)

where f p ∈ [0; 1] is a coefficient of plastic friction.
Then the flow velocity fields are determined at the observed moments of extrusion, (cf., Fig. 4). The known

field of slip lines (α, β) allows us to use the velocity equations (22) and (23) when determining the veloci-
ties υα∗ , υβ∗ in the nodal points, since the angle δθ and the coordinate arcs sα, sβ are already known from
the solution for the stress components. The velocity fields in Fig. 4 are determined by solving the boundary
problems. A grid of lines ᾱ, β̄ selected in the plastic zone consists of continuum points. This grid is coincident
with a grid of the trajectories (or characteristics) α, β at the observed moment of deformation. This grid of
the material lines ᾱ, β̄ can be considered as an associated coordinate frame [14], and the constructed veloc-
ity field (cf., Fig. 4a) can be considered as a representation of the material lines ᾱ, β̄ in the velocity plane.
A similar representation of the flow velocity field is essential when modeling the non-stationary processes of
plastic deformation. The kinematic relations (20) and (21) can be applied to the continuum lines ᾱ, β̄ which
are coincident with the slip lines α, β. During non-stationary flow a grid of the slip lines α, β [characteristics
of Eqs. (20)–(23)] is displaced w.r.t. the material lines ᾱ, β̄.
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Fig. 3 Extrusion of the axisymmetric case-shaped part (final non-stationary stage): the plastic zone, stress field, flow lines for
various punch displacements: a �h1 = 0.60 mm; b �h2 = 7.45 mm; c �h3 = 14.30 mm; d �h4 = 21.10 mm

Fig. 4 The velocity field during extrusion of the axisymmetric case-shaped part (the final non-stationary stage) for various punch
displacements: a �h1 = 0.60 mm; b �h2 = 7.45 mm; c �h3 = 14.30 mm; d �h4 = 21.10 mm
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The velocity field has the following typical feature for an axisymmetric process: The angle between the
lines ᾱ and β̄ increasingly changes from π/2 to π , when we map the lines ᾱ, β̄, which are close to the symmetry
axis of the blank, onto the plane of velocities υr , υz . Thus the representation of the material lines ᾱ and β̄ in
the plane of velocities υr , υz depends on the Lode angle.

The degree of conformity between the fields of stresses σ
(0)
i j and velocities υ

(0)
i in the basic solution is

determined by fulfilling the similarity condition (15) for the deviators ėi j and si j in the form

m(ė)
θ − m(σ )

θ ≤ [�mθ ] , (25)

[�mθ ] being a permissible mismatch error for the parameters m(ė)
θ and m(σ )

θ related to the fields of stresses
and strain rates.

For the solution of the inequality (25) the method of group relaxation is used (e.g., [9, Section 20.3–2]).
By regulating the absolute value of the difference between the parameters m(ė)

θ and m(σ )
θ in selected nodes of

the plastic zone (instead of bringing it down to be zero in the first step) it is possible to fulfill the inequal-
ity (25) already at the first correction with the permissible error [�mθ ] = 0.01. The calculated stress field
(cf., Fig. 3) and the corresponding field of flow velocities (cf., Fig. 4) satisfy the inequality (25) for the
permissible error [�mθ ] = 0.01.

The fields of stresses (σi j ) and the plastic flow velocities (υi ) found at the different stages of non-stationary
deformation allow us to calculate cumulative strains (�). Cumulative strains � appear in the kinetic equations
for meso-structural parameters (µk) of the deformed material, including the damage parameters ω1 and ω2.
Cumulative strains are calculated along trajectories of movement of the material particles. The cumulative
strains after stage k are �k = ∑k

j=1 �� j , and � = ∑n
j=1 �� j at the end of forming. In Fig. 6 the distri-

bution of the cumulative strains � is shown for the radially directed middle layer of bottom part of the finished
product (z = 0.5hb, where hb is bottom thickness).

In order to verify the calculated strain distribution the strains are experimentally determined by means
of a coordinate grid. This technique allows us to find fields of the shear strains �(r, z) at different stages of
extrusion. The fields �(r, z) are used when determining the yield stress σ

(is)
s (r, z) from the intensity of the

cumulative strains ei (r, z) = �(r, z)/
√

3, cf., Eq. (5), and, moreover, for finding the yield stress under shear
τsm.n(rm.n, zm.n) = σs(rm.n, zm.n)/

√
3. The specimen is cut through its meridian cross-section in order to plot

a coordinate grid (cf., Fig. 5). In Fig. 6 (left) the experimentally found distribution of the cumulative strains
� is shown for the radially directed middle layer of bottom part of the finished product (z = 0.5hb). The
calculated distribution of � satisfactorily fits the experimental results.

Now we have the complete information which is required to calculate damage measures using Eqs. (9)
and (11). Moreover, we know the mechanical and meso-structural parameters of the Al-alloy (cf., Tables 1
and 2) as well as stepwise values of the strain, ��i , and the limit strain �lim (as the known function of stress
triaxiality 〈σ̄ 〉 , cf., (8)).

In Fig. 6 the predicted distribution of damage (ω1 and ω2) is shown for the radially directed middle layer
of bottom of the finished product (with the coordinate z = 0.5hb). The obvious fact that the damage increases
from the symmetry axis towards the walls can be explained as follows. First, the strain (�) accumulated by
the material particles along their motion trajectories directed towards the walls increases in the same direction.
Second, large compressive hydrostatic stress 〈σ 〉 prevents the evolution of damage, and indeed, the absolute
value of 〈σ 〉 increases when moving from the walls toward the axis of symmetry.

Also note in Fig. 6 that the growth rate of ω2 is higher than that of ω1. The ratio of the increments
dω2/dω1 > 1 follows from Eqs. (7) and (10). For example, dω2/dω1 = 1.3 − 1.6 when the triaxiality is
〈σ̄ 〉 = −3 − 0.67, which is typical for MF processes. In other words, this ratio is greater for tensile regimes
of the stress state (〈σ̄ 〉 > 0) than for compressive ones (〈σ̄ 〉 < 0). These relations are physically obvious.
Void coalescence always advances macro-crack formation. And during tensile loading regimes (when tensile
stresses promote void growth) this advance will be greater than during compressive ones.

The predicted values of damage induced by micro-defects are much smaller than the allowed ones: ω1max =
0.42 < ω1lim = 1, ω2max = 0.51 < ω2lim = 1. High hydrostatic pressure in the plastic zone heals micro-
defects prevents their growth and thereby enhances the processing ductility of the deformed metal. Thus, larger
processing strains are possible during extrusion (up to 90% and more) when compared to deep-drawing (no
more than 70–75%) when producing axisymmetric case-shaped parts.
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Fig. 5 Coordinate grid in a meridian cross-section of the case-shaped Al-Mg part at the final stage of extrusion
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Fig. 6 Distribution of the strain � (left) and the damage measures ω1, ω2 (right) in the median layer (z = 0.5hb = 6mm) of the
meridian cross-section of the axisymmetric case-shaped Al-Mg part (with the outer radius rc = 57 mm) after extrusion

4 Conclusions and outlook

In this section we will discuss some results of the analysis of extrusion of the axisymmetric case-shaped part.
The type of the state of stress strongly varies within the volume of the processed metal from monoaxial com-
pression at its symmetry axis to simple shear around the clearance between the punch and the container. This
fact indicates complex loading of the deformed material, i.e., a rotation of the principal axes of the stress tensor
w.r.t. the deforming material lines and a change of proportions between the components of the stress tensor.
Conditions of complex loading necessitate using the associated rule of plastic flow for the basic equations.

Cumulative strains are irregularly distributed in the bottom part of the finished product. The largest strain is
accumulated by the material particles which appear out of the plastic zone or approach to its neighborhood at
the final moment of processing. The reliability of the predicted mechanical and mesostructural characteristics
depends on the accuracy of the calculated strain field. The strains that were experimentally determined from
a coordinate grid satisfactorily agree with the theoretically calculated strains.
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Fig. 7 Top plastic deformation of the sheet Al specimen subjected to uniaxial tension (FE simulation); bottom the plastic strain
of the zone with imitation defects (left micrograph, right FE simulation)

Comparison between the maximum values of damage measures and their allowed values, i.e. ω1max =
0.42 < ω1lim = 1, ω2max = 0.51 < ω2lim = 1, allow us to predict the quality of the material structure
after extrusion. Large processing strain at extrusion provides high-strength properties of products due to strain
hardening.

The combined use of two damage measures, ω1 and ω2, in contrast to using only ω1 or the volume fraction
of voids, fv, as in the known common models (cf., e.g., [3,6,12,13]), allows us to predict not only a risk of
macro-fracture of the deformed material but even the stage of formation of large cavernous defects due to
coalescence of voids taking a change in their shape and orientation into account. For example, when applying
deep-drawing operations (with triaxiality 〈σ̄ 〉 > 0) for manufacturing of axisymmetric case-shaped parts under
large processing deformations it can happen that ω1 < 1 while ω2 = 1. In this case using only one measure
(ω1 or fv) for calculations would indicate non-criticality of damage while the second measure (ω2 = 1)
reveals a critical stage of voids coalescence and generation of cavities. This situation is undesirable or even
unacceptable when producing metalware to be operated under intense loading and thermal actions which is
widespread in aerospace, automotive, and energy engineering.

It should be noted once again that a successful practical application of the tensor theory to modeling of MF
processes requires rather laborious experimental research on damage kinetics for deformed materials under
complex loading. Such experiments will promote the creation of a database for meso-structural properties
of plastically deformed materials which is necessary for computer simulations. To this end the authors have
already begun their experimental research on the growth, shape change, and coalescence of meso-defects dur-
ing stepwise plastic deformation of some structural metals. Tensile tests of sheet Al specimens with mock voids
(pre-machined micro-holes) gave the following results: Voids take on a precise ellipsoidal shape elongated in
the line of the principal strain axis (cf., Fig. 7). The strain �

εvoid of ellipsoidal voids is appreciably larger than
the strain εRVE of the material element (RVE) containing these imitation defects: �

εvoid/εRVE ≈ 1.4 − 1.5. It
could be verified that large imitation voids are the sources of localized strain bands which propagate in the
direction of 55–60◦ to the axis of elongation. The commercial FE code ABAQUS was applied for processing
the obtained experimental data on damage of strained materials. An example of FE calculations of equivalent
plastic strains during uniaxial tension of the sheet Al specimen with imitation meso-defects is presented in
Fig. 7. Such experimental data obtained for various types of the stress-strain state will allow us to realize a
comparative assessment of different models of ductile damage in the near future.

In a single paper it is obviously impossible to discuss (even in a compressed form) all the questions perti-
nent to the presented physico-mechanical approach. The enhanced slip line method was used here in order to
obtain the rapid and accurate solution of the applied problem. In future work the authors aim at coupling the
constitutive equations of their tensorial theory with FE codes for MF processes.
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