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Abstract
In this work an adjoint shape optimization algorithm for the Lattice-Boltzmann
method is introduced. Instead of a standard, no-slip boundary treatment, an al-
ternative approach of geometry mapping is used. The geometry is mapped through
the use of porous media. This strategy is promising, because in this way, the geom-
etry can be continuously altered from fluid to solid. Furthermore, a porosity scaling
is applied to achieve a stronger convergence to binary (0-1) solutions. This model is
then validated by comparison to results received with the standard no-slip bound-
ary treatment. Afterwards the optimization gradient is derived through the use of
adjoints in combination with the Lagrangian functional. This gradient is then vali-
dated viacomparison with the gradient obtained by finite differences. Thereafter it
is implemented in an optimization algorithm, which is then utilized in a few cases of
application.

Keywords: Lattice-Boltzmann method, porous media, adjoint optimization, shape
optimization

Zusammenfassung
In dieser Arbeit wird ein adjungiertes Formoptimierungsverfahren für die Lattice-
Boltzmann Methode eingeführt. Anstelle von standard, nicht gleitenden Randbedin-
gungen, wird ein alternativer Ansatz zur Abbildung von Geometrien verwendet. Die
Geometrie wird durch das Nutzen von porösen Medien abgebildet. Dieses Verfahren
ist vielversprechend, da auf diesem Wege die Geometrie kontinuierlich von Fluid zu
Festkörper verändert werden kann. Weiterhin wird ein Saklierungsverfahren für die
Porösitäten angewendet, um eine stärkere Konvergenz hin zu binären (0-1) Lösun-
gen zu erreichen. Als nächstes wird dieses Modell validiert durch den Vergleich mit
Resultaten, die mit der standard, nicht gleitenden Randbedingung erhalten wur-
den. Danach wird der Optimierungsgradient hergeleitet mit Hilfe von Adjungierten
in Kombination mit dem Lagrange Funktional. Dieser Gradient wird dann validiert
durch Vergleich mit Gradienten, die durch finite Differenzen berechnet wurden. Hi-
ernach wird dieser in einen Optimierungsalgorithmus implementiert, welcher dann in
wenigen Anwendungsfällen eingesetzt wird.

Schlagwörter: Lattice-Boltzmann Methode, poröse Medien, adjungierte Optimierung,
Formoptimierung
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1. Introduction

1.1. Motivation and background
Since the behavior of fluids has great impact on technical and social situation (e.g.
aircrafts, weather), there is a vast desire to predict fluid motion. Due to the increas-
ing calculation power of modern computers, methods to numerically simulate these
flows have penetrated science and industry. These methods enable us to predict fluid
flow behavior and flow parameters for different problems. Hence, the influence of
flow problems on the environment and technical systems, as well as the control of
the flow can be determined.
One method to simulate fluid flow is the lattice Boltzmann method. This method is
promising, since it has strong benefits for massive parallel calculations in comparison
to other simulation methods.

In every field in which parameters can be influenced to change an outcome, there
is a great demand for adjusting these parameters to achieve the optimal output. In
this way the cost to benefit ratio can be minimized, making these methods interesting
for industry, science and even for everyday decisions of individuals.
Heuristic optimization methods were most probably applied since humans became
able to influence their environment. For fluid flow problems, heuristic optimization
methods are limited due to complexity of the flow behavior. Hence, analytical and
algorithmic optimization methods are applied by using the aforementioned calcula-
tion power of modern computers.
Cases of application range from optimizing the geometry of artificial objects, such as
bypasses for blood flow in medicine, to minimizing the aeroacoustic noise of aircrafts.
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1.2. Aim of work
In the current thesis an adjoint shape optimization algorithm shall be implemented
and applied into an existing lattice Boltzmann solver. In order to do this, a method of
Pingen et al. [10] should be reproduced, improved and tested for shape optimization.
Porous media shall replace standard no-slip boundary conditions to map geometry
for simulation. This is promising to be a suitable, continuous method for an op-
timization algorithm. The main part of the work is to determine the optimization
gradient through adjoint equations. This gradient is then validated with comparison
to finite differences and finally applied in an optimization algorithm. A few shape
optimizations shall then be obtained to test the algorithm.

1.3. Our current state
Spaid et al. [12] presented a successful way to model flow in porous media, via the lat-
tice Boltzmann method. They intended to simulate the flow of molding applications.
Porous media is considered through a change in the calculation of the equilibrium
distribution. This modification lowers the magnitude of momentum at porous sites.
Pingen et al. [10] have later shown that an adjoint optimization algorithm can be
successfully implemented in a lattice Boltzmann solver to optimize 2D design prob-
lems. In order to achieve a continuous optimization problem, they used porous media
to map geometry into the numerical method. In order to achieve better convergence
to binary (0-1) solutions, they introduced a porosity scaling and showed its benefit.
They applied the presented algorithm for a few topology optimizations to prove the
feasibility.
In a further work Makhija et al. [5] applied the aforementioned optimization method
even for multi-component flows. In this work they successfully optimized channels
for mixers.

1.4. Outline of the project
The current report is divided into six chapters. Chapter 2 gives a short introduction of
flow simulation using the lattice Boltzmann method. In the next chapter, Chapter 3,
the main simulation setups are described with dimensions, boundary conditions etc..
Chapter 4 explains how porous media is simulated in general and why it is applied
in this work. Moreover the implementation, adaption and validation is described
therein. Chapter 5 is about optimization and adjoint optimization and the concrete
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implementation. Furthermore, both a validation and a few cases of applications are
shown. Additionally, a minor improvement is presented. At last a short closure and
outlook is given in Chapter 6.



2. The Lattice-Boltzmannmethod

In order to simulate fluid flows, there are different methods and approaches which can
be followed. All of them have to fulfill the Navier-Stokes equations which describe the
motion of fluid flows. In common methods, macro dynamic magnitudes are directly
calculated through discretization of these equations (top-down method).

The Lattice-Boltzmann method is a particularly distinct numerical method, which
is based on micro dynamic behavior of fluid flows. Macroscopic values are then cal-
culated from the resulting flow state (the so called bottom-up method). Therefore,
the first attempts in this micro dynamic direction tried to reconstruct real fluid par-
ticle collisions with energy and mass conservation collision laws. In order to achieve
this, discrete particles were used. This method is called the Lattice-Gas Cellular
Automata (LGCA) and was the predecessor of today’s Lattice-Boltzmann method.
In the modern form, instead of discrete particles, continuous distribution functions
are used. Gas kinetic theory then helps to describe the behavior of ensembles of
particles through statistical physics. In statistical physics, the Boltzmann equation
can describe the probability f = f(v,x, t), in which a particle with molecular ve-
locity v at time t is located at x. The Boltzmann equation without body forces is [13]:

∂f

∂t
+ v

∂f

∂x
= Ω(f) (2.1)

with the collision operator Ω(f) on the right hand side. The simplest collision oper-
ator, namely the BGK-collision approximation, was developed by Bhatnagar, Gross
and Krook and is as follows [13]:

Ω(f) = ω(f eq − f) (2.2)

where ω is the collision frequency which depends, among other things, on the viscosity.
f eq is the equilibrium distribution given by the Maxwell distribution function. This
distribution function, describes the state corresponding to thermodynamic equilib-
rium. The collision term relaxes the non-equilibrium distribution function f towards
f eq, hence, giving rise to the second name for the BGK model, the “single time re-
laxation” model. This model is used in the current thesis.
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Hereafter two more steps are added to reach the final form of this equation. At first
we have to discretize our equation in time and space. This is done by restricting
possible propagation velocities and directions to a discrete number, the so called
lattice velocities, as well as restricting the time to a discrete time step. Secondly
we can make the discrete Boltzmann equation non-dimensional. The result is the
Lattice-Boltzmann equation:

fα′(xi + cα,i∆t, t+ ∆t)− fα(xi, t) = −ω(fα − f eqα ) (2.3)

We then discretize the Maxwell distribution with a Taylor series [10]:

f eqα = wαρ

[
1 + 3(cα,iui) +

9

2
(cα,iui)

2 − 3

2
u2
i

]
(2.4)

Here wα’s are the lattice weightings, ρ is the density and the cα,i’s are the lattice
velocity vectors. Unfortunately, by approximating the Maxwell distribution with the
Taylor series, we are now constrained to low Mach numbers.
wα and cα,i depend on the chosen lattice model. For the model with nine velocities
and two dimensions, the so called D2Q9-model, the lattice velocities and their nu-
merations are seen in Figure 2.1.

1’1

43

0

7

6 2 5

8

Figure 2.1: D2Q9-lattice cell with an indicated neighbor cell; distribution 1 will propagate
into this neighbor cell and then will occupy the place of distribution 1’

The lattice directions link neighboring cells and are the same for each cell, even
boundary cells.
Thus, in this case cα,i is:

cα,i =

(
−1 1 0 0 1 1 −1 −1 0

0 0 −1 1 1 −1 −1 1 0

)
(2.5)
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wα is introduced to ensure isotropy of certain lattice tensors. Its entries depend on
the lattice velocity. For the D2Q9-model they are:

wα =
(

1
9

1
9

1
9

1
9

1
36

1
36

1
36

1
36

4
9

)
(2.6)

The macroscopic values density ρ, velocity in flow direction (x-direction) u and the
velocity vertical to the flow direction v are given by:

ρ =
8∑

α=0

fα (2.7)

ρu =
8∑

α=0

cα,1fα

⇔ u =
8∑

α=0

cα,1fα/ρ (2.8)

v =
8∑

α=0

cα,2fα/ρ (2.9)

The density is just a sum of all distributions contained in a cell. The macroscopic
velocities depend on the lattice model and are a result of the momentum contribution
of each distribution.
The Lattice-Boltzmann equation can be split into two steps. The collision step, where
each cell locally performs its BGK-collisions

f̃α = fα − ω(fα − f eqα ) (2.10)

and the propagation step, where the new distributions propagate along their lattice
directions to their neighbor (if not the rest distribution):

fα′(xi + cα,i∆t, t+ ∆t) = f̃α(xi, t) (2.11)

Thus, a simulation can be depicted as in Figure 2.2. The evaluation of ρ and u is
depicted separately in this figure, to clarify the algorithm, but from now on it is seen
as part of the collision step. For boundary cells this procedure varies as described
in Chapter 2.1. The advantage of the LBM against other simulation methods is the
great potential for parallel calculation, since only the propagation step has to access
neighbor cells.
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evaluation of
ρ (2.7)

u (2.8, 2.9)

collision (2.10)
(using u, ρ in 2.4)

propagation
(2.11)

repeating for
number of iterations/

time steps

Figure 2.2: flowchart of the Lattice-Boltzmann method (for non-boundary cells)

2.1. Boundary conditions
From the general Lattice-Boltzmann algorithm, it is apparent that boundary cells
have to be treated separately. This is obvious, since some incoming and outgoing
distributions have no neighbors for propagation.
In the simplest case, boundary conditions are assigned fixed values for the density or
velocities, the so called Dirichlet boundary condition. These fixed values enable the
calculation of equilibrium distributions, which are then used as new values for the
addressed distributions.
In cells next to a wall, there are also distributions which come from the outside. The
standard solution is to reflect the outgoing distributions as incoming with various
interpolation schemes [10].

2.2. LBMunits and real units
For simulations we set all the parameters in dimensionless form. A fixed Machnumber
should be chosen at about 0.1 or less to get a good compromise between calculation
cost and discretization error, as it also determines the time step.
With ū as the average velocity and by fixing the Reynolds number, the kinematic
viscosity is specified.

Re =
ūDLB

ν
(2.12)

The BGK equation can be expanded to the Navier-Stokes equations through the
Chapman-Enskog expansion [13, p. 143ff]. Its result couples the collision frequency



8 Chapter 2. The Lattice-Boltzmannmethod

ω and the viscosity as follows:

ω =
2

1 + 6ν
(2.13)

Through numerical stability analysis, it can be shown that ω has to be lower than
two for it to lead to a stable calculation [4].
The space in LBM is measured as multiples of the smallest cell length [4]:

δx =
l0
N

(2.14)

where l0 is the length of the domain and N is the number of (smallest) cell lengths
fitting into this length.
The velocity is expressed in terms of the speed of sound cs which here gets the fixed
value

cs =
1√
3

(2.15)

Whereas the time is defined as:

δt =
δx√
3 cs

(2.16)

Since dimensionless values of a system calculated in real units and Lattice-Boltzmann
units have to be equal, it is possible to convert units into the other system. For a
pressure drop this leads to:

∆pdimles =
∆pLB
ρLBū2

LB

=
∆preal
ρrealū2

real

(2.17)

with both ρ’s chosen to hold the value 1 it is:

∆preal = ∆pLB
ū2
real

ū2
LB

(2.18)

ρ and the pressure are connected via

p =
1

c2
s

ρ (2.19)
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since the system is almost incompressible.
The drag coefficient is defined as follows:

cD_real = cD_LB =
2FD,LB

ρLBū2
LBDLB

(2.20)

The lift coefficient is defined similarly:

cL_real = cL_LB =
2FL,LB

ρLBū2
LBDLB

(2.21)



3. Simulation setup

In order to accomplish shape optimization in fluid flows, practically every geometry
seems to be conceivable to start with. But since the geometry mapping with porosities
has to be validated, the first of two test cases is closely related to the 2D test case of
Schaefer and Turek [11]. Most of its data is depicted in Figure 3.1.

pressure outletD = 0.1

0.16

0.15
0.15

2.2

x
y

stationary walls

parabolic velocity inlet

(0,0)

Figure 3.1: flow channel and cylinder

As can be seen, the cylinder is placed a bit below the center in a perpendicular
direction. In this way numerical instabilities, such as those that lead to the Karman
vortex street, would emerge earlier in simulation.
A fixed value is incorporated as a boundary condition at the inlet. Therefore, a
parabolic inflow profile is given. The distributions without propagation sources then
receive their value by performing a pseudo collision step. This collision step uses
the predefined velocities for the calculation of the equilibrium function. The inlet
velocity profile is defined through:

u(y) =
3

2
Ma · cs · 4(y − y2) (3.1)

Where the perpendicular velocity v is set to zero.
At the outlet the pressure is prescribed. The distributions without propagation source
(the one effected by the condition) are set to the equilibrium distribution. This in
turn depends on the calculated u, v and the fixed density which is:

ρ′ = (1 +
8∑

α=0

fα)/2 (3.2)
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As a wall bounce back condition, the half-way, no-slip bounce back condition is
chosen. This condition just lets distributions which would hit the wall, propagate to
their opposing distribution on the same cell. Thereby all distributions in the wall
cells are set and no change in the collision step has to be implemented.
The four corner cells are only treated as inlet/outlet cells and not as wall cells.
To validate the geometry mapping through porosities, a pressure drop between the
points at (0.15, 0.2) and (0.25, 0.2) is defined like in [11].

Furthermore, a second geometry is used as a test case. In this case the elimination
of the wall influence is intended. Therefore, instead of stationary walls, periodic
boundaries are used. This can then be seen as an infinite cascade of the geometric
object. Details can be seen in Figure 3.2. The boundary conditions for the inlet and
outlet are the same as in the above case, in addition to the fact that the inlet velocity
now has a uniform profile:

u =
3

2
Ma · cs (3.3)

pressure outletD = 0.1

0.2

0.2

0.25

1

x

y

periodic boundaries

uniform velocity inlet

(0,0)

Figure 3.2: setup of the periodic domain

While the first domain will be applied for validations and a first case of application,
the last shown domain will only be used for some cases of applications.

In both shown cases the following facts are pertained: In order to achieve compara-
ble results for a set of calculations, the collision frequency has to be similar. In the
current studies it receives the value 1.8 for all calculations.
The Reynolds number also receives fixed values and is 20, if not defined differently.
For the numerical accuracy, double precision was chosen.



4. Porous media for geometry map-

ping

In the current chapter the fundamentals of porous media simulation and its use for
the current work shall be presented. Then a porosity scaling to obtain better posed
problems for geometry optimization will be introduced. Lastly this scaling, together
with boundary smoothing, will be validated by comparison to the aforementioned
test case of Schaefer and Turek [11].

For optimization of shape as well as topology it is important to find an appropriate ap-
proach to describe solid regions and their boundaries. Since these regions are updated
during optimization, special requirements are imposed on these approaches. Emerg-
ing and vanishing boundaries are not suitably described by standard wall boundary
methods. Standard wall boundary methods switch cells on or off, and then have
to rearrange boundary cells. A more continuous method is better conditioned for
optimization. Spaid and Phelan [12] showed that porous media is promising for de-
scribing geometry in optimization, because they can be continuously altered from
solid to fluid.

4.1. Simulation of porousmedia
Porous media are objects containing pores which can be perfused by a fluid. This
type of medium could be directly simulated by applying fine geometries, but this
would lead to complex geometry mapping and, therefore, high cost. If the influence
on the flow variables is known, it will then be possible to express this influence in
the flow equations.
In simulations where fluid and porous regions exist simultaneously, by default Stokes
and Brinkman equations are used [8]. The Brinkman equation then deals with the
porous regions. It is:

µe∇2u− µK−1u = ∇p (4.1)
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Where µ is the viscosity, µe is the effective viscosity, u and p are volume averaged
velocities and pressures and K is the permeability tensor.
For the LBM, an approach to solve the Brinkman equation for porous media is needed.
This has to be achieved by lowering the momentum at porous sites while conserving
its direction. Spaid and Phelan [12] show that through a small change in the collision
step, wall boundary conditions can be formulated algorithmically. Lowering of the
momentum is accomplished by decreasing the local velocities, which are used for the
calculation of the equilibrium distributions. The decrease depends on the magnitude
of the local porosity p (compare [10]).
From now on ũ will represent the unscaled velocity and u the velocity with porosity
scaling:

u(x, t) = (1− p (x)) ũ(x, t) (4.2)

where the porosity has a value of one for solid sites, zero for fluid sites and interme-
diate values at sites which are not completely solid or fluid:

0 ≤ p(x) ≤ 1 (4.3)

The loss of momentum accompanies it with a force on the porous sites. For a single
cell it is:

F(x, t) = ωp(x)ρ(x, t)ũ(x, t) (4.4)

This force can be summed up over all porous cells, which then results in the force
acting on the geometry.

4.2. Porosity scaling
The porous geometry mapping was introduced to achieve rather continuous geometry
changes. Solutions where the porosity holds values equal to zero or one, representing
fully fluid and solid sites respectively, are preferable. This kind of solution is called
a 0-1 solution. The request for such a binary solution seems to be in contrast to the
continuous approach through porosities, and in fact it is. But the porosities can be
implemented in a way that the optimization algorithm tends to 0-1 solutions.
Moreover in the following chapter the approach of mapping the geometry through
porosities will be compared to the 2D test case of Schaefer and Turek [11].
To reach a solution approximated to a 0-1 solution, the optimization algorithm has
to treat the influence of a change of intermediate porosity values, higher than for the
one being close to zero or one.
The standard porosity scaling, discussed in Chapter 4.1, can be enhanced for pro-
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viding a stronger tendency to binary solutions. This is done here (compare [10]) by
introducing an exponent κ for the porosity in the prefactor, resulting in:

u(x, t) = (1− p (x)κ) ũ(x, t) (4.5)

For low porosities, the sensitivity of the prefactor magnitude for a porosity change is
high for the standard scaling. Figure 4.1 shows this fact and the influence of other
exponents κ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

porosity p

(1
−
pκ

)

κ = 1
κ = 3
κ = 5

Figure 4.1: the porosity prefactor for different exponents κ

The gradient of the scaled velocity with respect to the porosity follows:

∂u
∂p

=
∂ũ(1− pκ)

∂p
=

{
−ũκpκ−1 if κ > 1

−ũ if κ = 1
(4.6)

At low porosities a small gradient in the prefactor is desired to compensate for the
high velocities in these sites. In this way the overall gradient stays at small values.
At fully fluid nodes (p = 0) the gradient is zero for κ > 1. This will disable the
optimization algorithm to produce a solid state somewhere in the fluid away from
the boundary. For some optimization goals, like topology optimization, achieving
this can be desirable, but not for the current shape optimization.
The velocities at solid sites, which are near the boundary, should be close to zero.
Therefore, a high gradient in the prefactor is favorable to compensate for the small
velocities in the gradient equation. Due to non existing velocities for solid sites in
the inner geometry, the gradient is practically zero at these locations. Whereas in
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regions where the porosity is intermediate, the velocities should also have intermedi-
ate values, which should then lead to the highest overall gradients. This was the aim
of the adjusted porosity scaling.
As this reveals, the gradient depends on the correlation of ũ and the porosity value.
But this connection is certainly varying for different regions of the flow domain.
Therefore, an optimal value for κ doesn’t exist for the whole domain at once.
Since the gradient in the prefactor grows unfavorably strong, even for high κ’s at
high porosities (as seen in Figure 4.1), for the current work a value of 3 for κ was
chosen. A more detailed reflection of this topic could be accomplished in the future.

4.3. Boundary smoothing of porous geometry
Before the porous boundary treatment will be validated, a smoothing of the boundary
of the porous cylinder is introduced. This is because we are going to use intermediate
values, for the representation of the geometry boundary, for optimization purposes as
well. In order to achieve such smoothing, boundary cells, which are within a certain
distance range around the geometry contour, receive intermediate porosity values.
This range is defined as two cell lengths, since this leads to an comparable boundary
to the one obtained by the filtering method for design variables, which is discussed
in the next chapter. The distance is checked by calculating the shortest distance of
each cell center to the geometry contour. As functional representation, a smoothed
Heaviside function is used. This causes fully differentiable behavior. The function is
then described by:

p =


0 if d > 1 (in flow region)

1

2
− 1

2
∗ sin

(π
2
∗ d
)
if − 1 ≤ d ≤ 1 (in smoothing region)

1 if d < −1 (in solid region)

(4.7)

With d being a dimensionless length and is, therefore, expressed as multiples of
the smallest cell length. This can be depicted as in Figure 4.3. The corresponding
mapping can be seen in Figure 4.2.

4.4. Validation of porous geometrymapping
To validate the porous geometry mapping, at first the flow solution is examined for
grid independence. This is done by accomplishing simulations at different grid levels
while fixing the flow conditions. A grid refinement of one level conforms to a splitting
of a cell into four. Here 3072 cells are present at level 7 in the whole domain. The
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Figure 4.2: cylinder mapped via porous media, at grid refinement level 9; in white the
original geometry of the cylinder

Reynolds number is 20 in every case and the respective Mach number is calculated
by using the fact, that ω is set to 1.8 for all simulations, as discussed in Chapter 3.
Next the drag coefficient cD is calculated, as explained in Chapter 4.1, and compared
to the reference value of Schaefer and Turek [11, p. 12]. This value for the drag
coefficient represents the average of all the values they collected in their work for
the same test case. The resulting diagram can be observed in Figure 4.4. As can
be seen, the result shows an asymptotic behavior towards the value of Schaefer and
Turek. From level 10 on the solution shows grid independence, as the relative change
of the result compared to the one of the next level, is near zero. At this level the
cylinder diameter (based on the given geometry contour) conforms to 46.5454545455
cell lengths.

Next we compare different values for κ with a standard wall boundary condition at
different Reynolds numbers in figure 4.5. It can be seen that a value of three for κ
fits the bounce back condition the most. Moreover, the geometry mapping through
porosities delivers good results at all investigated Reynolds numbers with this κ value.
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and Turek [11, p. 12]
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Figure 4.5: comparison of different scaling factors κ with a boundary condition by Mei
et. al. [7] through consideration of drag coefficient cD at varying Reynolds
numbers



5. Adjointoptimization for theLattice-

Boltzmannmethod

Before we dive into detailed implementation of the adjoint optimization, some general
information and components for optimization and adjoint optimization will be intro-
duced. The resulting optimization gradient will then be validated via comparison
to a discrete gradient obtained through finite differences. Next, the optimization al-
gorithm will be described in detail and finally a few cases of application will be given.

5.1. Optimization and adjoint optimization
A general optimization problem in mathematics is defined as the minimization or
maximization of a given function or functional. Such a mathematical principle can
be applied to all kind of problems where a configuration can be changed to influence
an outcome.
Following these definitions a fluid optimization problem is defined by a performance
functional F (s, f(s)), which is to be maximized or minimized (e.g. lift or drag of an
airfoil). This performance functional can be influenced by changing one or more de-
sign variables s (like shape parameters of the airfoil for example). Design parameters
in turn alter the flow state f(s), which in LBM is defined by a set of values for the
distribution functions. Furthermore, there can be one or more constraints g(s, f(s))
which have to be fulfilled (such as a maximum, minimum or an exact amount of
weight or volume).

An optimality system can be described using the Lagrangian functional with the La-
grange multipliers λ (all parameters are treated as scalars firstly; nevertheless we are
using the transpose sign ()t to lighten the switching to vector formulation):

L(s, f(s), λ) = F (s, f(s))− λ∗tg(s, f(s)) (5.1)



20 Chapter 5. Adjoint optimization for the Lattice-Boltzmannmethod

The product λ∗g(s, f(s)) is an inner product.
Then the first order optimality condition states that all derivatives have to be equal
to zero once the optimal point is reached:

δL(s, f(s), λ∗)

δs
=
δF (s, f(s))

δs
− λ∗t δg(s, f(s))

δs
= 0 (5.2)

δL(s, f(s), λ∗)

δf
=
δF (s, f(s))

δf
− λ∗t δg(s, f(s))

δf
= 0 (5.3)

δL(s, f(s), λ∗)

δλ∗
= −g(s, f(s)) = 0 (5.4)

whereby equation 5.2 gives the gradient, equation 5.3 provides the adjoint and equa-
tion 5.4 gives the constraint function.
The resulting system can be solved by three approaches [3]:

1. Either by solving the complex, coupled and nonlinear system to obtain the
optimal system in one step, hence the name “single-shot method”. Since it is
expensive enough to solve the nonlinear fluid flow system without the additional
unknowns, this method is withdrawn here.

2. Another possibility is to solve these equations is using an iterative method.
Then a gradient based method is incorporated, assuming the given equations are
smooth enough. In this method, at first the current gradient of the performance
functional with respect to the design variables will be calculated. Next it will be
used to update the design variables. This procedure is repeated until sufficient
convergence will be achieved. For this gradient based method, sensitivities can
in turn be used which are calculated for each design variable.

3. Another approach is similar to 2. but with a difference in determining the gradi-
ent. It is specified by using an adjoint system, which only has to be calculated
once, independently from the number of design variables. The optimization
algorithm based on this method is depicted in Figure 5.1.

The approach to receive the gradient is then described as follows. The variation of
the Lagrange functional is (compare [2]):

dL =
∂F

∂f
df +

∂F

∂s
ds− λ∗t

(
∂g

∂f
df +

∂g

∂s
ds

)
(5.5)

This can be converted to:

dL =

(
∂F

∂f
− ∂g

∂f

t

λ∗
)t
df +

(
∂F

∂s
− λ∗t∂g

∂s

)
ds (5.6)
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Since the state variables non-linearly depend on the design variables (geometry), df
is costly to calculate. For thousands of design parameters, also thousands of flow
states would have to be calculated to receive df . Therefore, we set

(
∂F
∂f
− ∂g

∂f

t
λ∗
)t

to
zero which makes df unnecessary to calculate.
This results to:

∂g

∂f

t

λ∗ =
∂F

∂f
(5.7)

This equation can be solved for the Lagrange multipliers, which are also called ad-
joints, since they connect the performance functional and the constraints.
The rest of equation 5.6 then gives the gradient:

dL

ds
=
∂F

∂s
− λ∗t∂g

∂s
(5.8)

initialization of design variables

initialization of state variables

flow calculation via Lattice-Boltzmann method

single linear solve for adjoints

calculation of optimization gradient using the adjoints

applying optimization algorithm to evaluate new design variables

checking for convergence

optimal state and design variables
yesno

Figure 5.1: flowchart of adjoint optimization (compare to [3] p. 56)

This gradient can then be applied in different optimization algorithms. In this case
the steepest descent or conjugated gradient method (gradient based optimization
methods) can be chosen.
For more information the reader is referred to [3].
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5.2. Defining the variables
First we identify the design variables, also called the controlling parameters. These
parameters can be designed to control a performance (or output), which is defined
later on so that the gradients of this functional could be calculated analytically. Fur-
thermore, constraint functions have to be determined.

5.2.1. Design variables
The choice of design variables depends on the given problem. If the problem is to
optimize a whole domain, for example in respect to the pressure drop, this prob-
lem is called a topology optimization. These problems generally are not described
through geometry parameters. Therefore, the porosities could change without being
dependent on other design parameters, like the radius of a cylinder. Then the design
variables in the simplest case could be the porosities themselves and thus, cause as
many design variables as cells in the domain to optimize:

pi = si (5.9)

By using this method one can calculate the gradient of the performance functional
with respect to the porosity in each cell and, therefore, with a localized effect. This
can be changed through using a filtering method where the porosity of one cell de-
pends on values which are common for multiple cells. In order to achieve this, we
define vertex values which give their respective enclosed cell its porosity value, there-
fore, reaching a staggered grid. Figure 5.2 depicts this fact.

pi =
sx,y + sx−∆x,y + sx,y−∆y + sx−∆x,y−∆y

4
(5.10)

We will later see that this filtering method enables the boundary to grow into regions
where the porosity is zero (fully fluid).

In shape optimization one wants to optimize the shape of an geometrical object. This
object is often, but not necessarily, described by parameters, such as the parameters
of an airfoil. Then the porosities are given through these parameters and the number
of design variables equals the number of free geometrical parameters:

pi = pi(sj) (5.11)
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p

s3

s2s1

s4

Figure 5.2: depiction of possible design variables; here: p = s1+s2+s3+s4
4

5.2.2. Performance functional
The performance functional analytically describes the calculation of the goal magni-
tudes.
In this study the pressure drop from inlet to outlet, the drag and lift force or a com-
bination of these are used as performance functionals.
The pressure drop ∆ppressure (not to be confused with porosity p) by using equation
2.19 is given as:

F (f) = ∆ppressure =
1

3

(
inlet cells∑

i

ρi −
outlet cells∑

i

ρi

)
=

1

3

(
inlet cells∑

i

8∑
α=0

fα −
outlet cells∑

i

8∑
α=0

fα

) (5.12)

Using equation 4.4 the drag force for the complete geometry is defined by:

F (p(s), f) = FD =

number of cells∑
i

(ωpκi ρiũi) (5.13)

The lift force is also defined similarly:

F (p(s), f) = FL =

number of cells∑
i

(ωpκi ρiṽi) (5.14)

As seen the performance functional varies depending on the choices above, therefore,
just the label F is assigned to tag the performance functional hereafter.
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5.2.3. The steady state constraint
A Lattice-Boltzmann method simulation advances in time by repeating the described
solution steps collision and propagation. A steady state can be achieved (requiring
flow conditions appropriate for a steady state solution) by repeating this procedure
until the change in all distributions between two consecutive time steps has fallen
below a chosen value. Under ideal conditions this value would be zero. This statement
can be expressed via the following equation:

R(p(s), f) = M(p(s), f)− f = 0 (5.15)

R(p(s), f) describes the residuum which depends on the design variables, the porosi-
ties p(s) and the distribution functions, and should be 0 at steady state up to ma-
chine precision. The operator M(p(s), f) depicts the Lattice-Boltzmann algorithm
and, thus, the combination of collision and propagation step like seen in Figure 2.2
and can be formulated as:

M(p(s), f) = Π(Ω(p(s), f)) (5.16)

Vividly the residuum equation can be interpreted as the difference of the current value
of a certain distribution function and the value this distribution function is updated
to. Whereby the updating is performed through the next collision and propagation
step. Attention has to be paid to distributions which are given through a boundary
condition and not through the LB-algorithm. These distributions are later treated
separately.
The steady state condition serves as constraint functional g(s, f(s)) in the Lagrangian.

5.3. Determining the derivatives
Until now the Lagrange functional and its resulting equations are present in a more
general and scalar form. Nevertheless, design variables, distributions and state vari-
ables are vectors in this case. Furthermore, from here on the Lagrange multipliers λ∗
will be called adjoints a and the steady state constraint serves as constraint g(s, f(s))
in the Lagrangian functional (equation 5.1):

L(s, f(s), a) = F− atR(p(s), f) (5.17)
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Accordingly, the needed gradient is now:

dL(s, f(s), a)

ds
=
dF
ds
− at

(
dR(p(s), f)

ds

)t
(5.18)

If the porosities are not the design variables, both terms on the right hand side of
the last equation will have to be expanded:

dF
ds

=
∂F
∂s

+
∂F
∂p(s)

dp(s)

ds
(5.19)

and

dR(p(s), f
ds

=
∂R(p(s), f)

∂s
+
∂R(p(s), f)
∂p(s)

dp(s)

ds
(5.20)

where at both expansions the first term on the right hand side would be zero (if the
performance functional does not depend on the design variables).
The adjoints a can be calculated through derivation of the Lagrangian equation with
respect to the state variables (as discussed in Chapter 5.1). In the current case the
adjoint operator simply is the transpose of the basic term. Therefore equation 5.7
results in:

a =

(
∂R(p(s), f)

∂f

)−t
∂F
∂f

(5.21)

Solving this equation for the vector with adjoints takes the major amount of compu-
tation time together with the flow solving. For the current work deal.II [1] was used
for solving this system. As appropriate solver GMRES or Bicgstab has been incor-
porated together with SparseILU or SSOR as preconditioners. The Bicgstab solver
won’t be able to solve the equation if the system is not well conditioned. However,
together with the SparseILU preconditioner which receives some extra off diagonal
entries, it is able to solve most systems in a minimum amount of time.
Equations 5.19, 5.20 and 5.21 in the gradient equation 5.18 result in the final form
of the equation to solve:

dL(s, f(s), a)

ds
=

∂F
∂p(s)

dp(s)

ds
−

[
∂F
∂f

(
∂R(p(s), f)

∂f

)−1
]t(

∂R(p(s), f)
∂p(s)

dp(s)

ds

)t
(5.22)
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local and global indexing
To assemble the above system, a FEM-like approach is chosen in this work. Therefore,
to prevent confusion, the difference between local and global indexing of distributions
is shown here. The local indices of a cell always range from zero to eight (D2Q9-
model). Whereas global indices also depend on the cell number. One can enumerate
all distributions contained in all cells in a way that every distribution receives a
unique indice. This is done by:

global_index = local_index+ cell_number · n_o_distributions (5.23)

with n_o_distributions being the distributions of one cell and, in fact, is 9 in this
case (since D2Q9-model is used). Therefore, the global indices range from zero to
(n · n_o_distributions − 1) with n being the number of cells in the whole domain.
Thus, for example for the second cell the global indices have to start at 9 and range
to 17.

5.3.1. Determination of ∂R/∂f
This is the most complex of all needed derivatives since the residuum equation,
which contains the Lattice-Boltzmann algorithm, has to be derived with respect to
all distributions. Using equation 5.15 it is:

∂R(p(s), f)
∂f

=
∂M(p(s), f)

∂f
− ∂f
∂f

(5.24)

where the result is a matrix of (n·n_o_distribution)·(n·n_o_distributions) entries.
The term ∂f/∂f, or in global index notation ∂fα/∂fβ, explains this fact clearly: α
names the row and β the column of its matrix. Hence each row of the matrix can
be associated with a certain distribution. This property holds for other derivatives,
too. Coming back to the aforementioned term which is written in index notation:

∂fα
∂fβ

=

{
1 if α = β

0 otherwise
(5.25)

This just describes the identity matrix I.
Now the first term on the right hand side can be examined. The propagation oper-
ator Π just reallocates the result of the collision operator Ω. As discussed in Chap-
ter 2, this happens in two separate steps. Therefore, we can begin by evaluating
∂Ω(p(s), f)/∂f while switching to index notation:

∂Ω(pi, fα)

∂fβ
=
∂f̃α
∂fβ

=
∂fα
∂fβ
− ω

(
∂fα
∂fβ
− ∂f eqα
∂fβ

)
(5.26)
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Now that ∂fα/∂fβ is known, ∂f eqα /∂fβ should be evaluated. The definition of the
equilibrium distribution function has been given back in equation 2.4:

f eqα = wαρ

[
1 + 3(cα,iui) +

9

2
(cα,iui)

2 − 3

2
u2
i

]
It can be seen that ui and ρ are functions depending on the distributions. The
derivative can be expanded to:

∂f eqα
∂fβ

=
∂f eqα
∂ρ

∂ρ

∂fβ
+
∂f eqα
∂u

∂u

∂fβ
+
∂f eqα
∂v

∂v

∂fβ
(5.27)

Where ∂f eqα /∂ρ, ∂f eqα /∂u and ∂f eqα /∂v are:

∂f eqα
∂ρ

= wα

[
1 + 3(cα,iui) +

9

2
(cα,iui)

2 − 3

2
u2
i

]
(5.28)

∂f eqα
∂u

= wαρ [3(cα,1) + 9cα,1(cα,1u+ cα,2v)− 3u] (5.29)

∂f eqα
∂v

= wαρ [3(cα,2) + 9cα,2(cα,1u+ cα,2v)− 3v] (5.30)

For the derivative of ρ, u and v, we recall their definitions. By using the local
indexing, ρ (equation 2.7), u (equation 2.8) and v (equation 2.9) are:

ρ = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 (5.31)

u = (1− pκ)ρũ
ρ

= (1− pκ) f1 + f4 + f5 − f0 − f6 − f7

f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8

(5.32)

v = (1− pκ)ρṽ
ρ

= (1− pκ) f3 + f4 + f7 − f2 − f5 − f6

f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8

(5.33)

The according derivatives are (using quotient rule for derivatives of u and v):

∂ρ

∂fβ
= [1, 1, 1, 1, 1, 1, 1, 1] (5.34)

∂u

∂fβ
= (1− pκ)

[
−ũ
ρ

[1, 1, 1, 1, 1, 1, 1, 1] +
1

ρ
[−1, 1, 0, 0, 1, 1,−1,−1, 0]

]
(5.35)

∂v

∂fβ
= (1− pκ)

[
−ṽ
ρ

[1, 1, 1, 1, 1, 1, 1, 1] +
1

ρ
[0, 0,−1, 1, 1,−1,−1, 1, 0]

]
(5.36)
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These formulations are only valid for local derivatives where β is in the range of
the current cell. For all other β’s, the derivatives are zero. This is caused by the
local calculation of these values and the fully localized collision step. Accordingly
the global matrix is a sparse matrix, a matrix which mostly contains zeros. It results
by combining the listed derivatives into the derivative of the collision step (equation
5.26).

Hereafter the connection between lattice model and global Jacobian will be explained
with respect to a simple example. A simple D1Q3-model with three nodes is intro-
duced here (Figure 5.3). This results in a local Jacobian with (3 · 3) entries and,
hence, a block-diagonal matrix as seen in Figure 5.4a.
The propagation operator propagates distributions according to their direction to

f0 f3 f6

f1 f4 f7

f2 f5 f8

Figure 5.3: D1Q3 lattice model with three nodes and global indexing

8
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zero value non-zero value

a b

8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8

Figure 5.4: D1Q3 lattice Jacobian for Figure 5.3; a shows the collision Jacobian, b shows
the result of propagation, propagation is indicated by arrows

their target distributions. By recalling the propagation equation 2.11

Π(Ω(fα)) = fα′(xi + cα,i∆t, t+ ∆t) = f̃α(xi, t)
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the derivative of this equation with respect to the distribution functions in index
notation is:

∂fα′(xi + cα,i∆t, t+ ∆t)

∂fβ
=
∂f̃α(xi, t)

∂fβ
(5.37)

It can be seen that the result of the collision step is assigned to a new position in
the matrix. In detail this means the entries at row α will be assigned to a new row
corresponding to the global index of its propagation target (α′). Anyway, since ∂fβ
as the denominator stays the same, the column of all entries doesn’t change through
propagation. As discussed before, every distribution has an according row and their
propagation targets are known. Therefore, the propagation operator just has to shift
each row to the row corresponding to its respective target distribution. This can be
seen in Figure 5.4b. The distributions at rest (distributions with global indexes 0, 3
and 6) stay in their row, the others propagate to their target.
For example, row one is shifted to row four, like distribution one is propagated to
distribution four. At the same time the content of row four is shifted to row seven.
Therefore no overwriting occurs.

For the D2Q9 model, the only difference is that each cell has nine distributions, that
leads to a local Jacobian with (9 · 9) entries. However, the rows are still shifted in
the same way.

Compared to the original work [10], a minor improvement is made here by directly
implementing the shifted Jacobian. In this original work, propagation and collision
operators are defined as separate matrices, which are later combined through a costly
matrix-matrix multiplication.

Two facts are apparent in the D1Q3 example above. Firstly: Distributions 2 and
7 don’t have a propagation target. Their rows just vanish. And secondly: Rows 1
and 8 don’t have a propagation source (they have no distributions propagating into
them) leading to their empty rows after propagation. This is due to the fact that we
didn’t assign boundary conditions in this example case.

Treatment of boundary cells
As discussed in Chapter 2.1, boundary conditions take care of distributions, like
those showed above, to receive a new value in each time step as well. For these
distributions the steady state constraint has to be fulfilled. Therefore, we have to
derive their defining equations instead of a collision and propagation step.

At the inlet a pseudo collision step with fixed values for u and v is used (see Chapter
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3 for more information). Thus, the derivative reads:

∂M′(p(s), f)
∂f

=
∂Ω′(p(s), fα)

∂fβ
=
∂f̃ ′α
∂fβ

=
∂fα
∂fβ
− ω

(
∂fα
∂fβ
− ∂f

′eq
α

∂fβ

)
(5.38)

Since the velocities are no longer dependent on the values of the distributions in this
cell, the expanded derivative of the equilibrium function (equation 5.27) is simplified
to:

∂f
′eq
α

∂fβ
=
∂f

′eq
α

∂ρ

∂ρ

∂fβ
+
∂f

′eq
α

∂u

∂u

∂fβ
+
∂f

′eq
α

∂v

∂v

∂fβ
=
∂f

′eq
α

∂ρ

∂ρ

∂fβ
+
∂f

′eq
α

∂u
0+

∂f
′eq
α

∂v
0 =

∂f
′eq
α

∂ρ

∂ρ

∂fβ
(5.39)

For the outlet cells a pressure outlet condition was chosen (see Chapter 3). Hence
the density ρ is given. It is set to (recalling equation 3.2):

ρ′ = (1 +
8∑

α=0

fα)/2

Then the distributions without propagation source are set to the according equilib-
rium distribution and are therefore:

∂M′′(p(s), f)
∂f

=
∂f

′′eq
α

∂fβ
(5.40)

Hence, the expanded derivative of the equilibrium function in this case is:

∂f
′′eq
α

∂fβ
=
∂f

′′eq
α

∂ρ′
∂ρ′

∂fβ
+
∂f

′′eq
α

∂u

∂u

∂fβ
+
∂f

′′eq
α

∂v

∂v

∂fβ
(5.41)

The only term which is now different to the standard derivative is:

∂ρ′

∂fβ
=

1

2
[1, 1, 1, 1, 1, 1, 1, 1] (5.42)

For cells at the wall boundary the changes are even simpler. As discussed before, the
chosen wall bounce back condition just combines the distributions in a cell through
reflection on the wall. This scheme doesn’t change the collision step (see Chapter 3).
So no changes in the derivatives are needed.
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Inserting the derivatives
To be able to test the derivative ∂R/∂f, it will be shown how the final derivative
appears:

∂fα′(xi + cα,i∆t, t+ ∆t)

∂fβ
=
∂fα
∂fβ
− ω

[
∂fα
∂fβ
−[

wα
[
1 + 3(cα,1u+ cα,2v) +

9

2
(cα,1u+ cα,2v)2 − 3

2
(u2 + v2)

]
+

wα
[
3(cα,1) + 9(cα,1u+ cα,2v)cα,1 − 3u

](
− u+ cα,1(1− pκ)

)
+

wα
[
3(cα,2) + 9(cα,1u+ cα,2v)cα,2 − 3v

](
− v + cα,2(1− pκ)

)]]
(5.43)

The second row of the equation conforms to ∂f eqα /∂ρ·∂ρ/∂fβ where ∂ρ/∂fβ is just the
vector containing ones and, therefore, was omitted. The third row is ∂f eqα /∂u·∂u/∂fβ
and the fourth row ∂f eqα /∂v · ∂v/∂fβ. ρ doesn’t occur since it is either derived or
canceled away. Notice that this equation will be valid only if indices α and β are in
the range of the same cell. Otherwise the derivative is always zero, as discussed before.

5.3.2. Determination of ∂F/∂f
This derivative again is dependent on the chosen performance functional.

For the pressure drop from inlet to outlet (see equation 5.12) it is:

∂F

∂f
=

1

3

∂
(∑inlet cells

i

∑8
α=0 fα −

∑outlet cells
i

∑8
α=0 fα

)
∂fβ

(5.44)

This results in a vector with 1/3 at all inlet distributions and −1/3 at all outlet
distributions. Therefore it contains mostly zeros.

Deriving the drag force (equation 5.13) results in:

∂FD
∂f

=
∂
∑number of cells

i (ωpκi ρiũi)

∂fβ
=

number of cells∑
i

(ωpκi
∂ρiũi
∂fβ

) (5.45)

Which is a vector where entries are zero at sites with zero porosity. The local deriva-
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tive conforms to

∂ρũ

∂fβ
=
∂(f1 + f4 + f5 − f0 − f6 − f7)

∂fβ
= [−1, 1, 0, 1, 1,−1,−1, 0]

for 0 ≤ β ≤ 8(local indexing)

(5.46)

and is otherwise zero.

5.3.3. Determination of ∂R/∂p
The porosities were defined to lower the velocities in the equilibrium distribution.
Hence the only occurrence of the porosity in the residuum function (equation 5.15)
is in the calculation of this equilibrium distribution. For the index i running over all
cells this leads to:

∂R(p(s), f)
∂p

=
∂M(p(s), f)

∂p
− ∂f
∂p

=
∂Π(Ω(fα))

∂pi
=
∂f̃α
∂pi

= ω
∂f eqα
∂pi

(5.47)

Performing this derivative a matrix will emerge with n · (n · n_o_distributions)
entries. Because only u and v are functions of the porosities this results in:

∂f eqα
∂pi

=
∂f eqα
∂u

∂u

∂p
+
∂f eqα
∂v

∂v

∂p
(5.48)

where

∂u

∂p
=
∂ũ(1− pκ)

∂p
= −ũκpκ−1 (5.49)

and

∂v

∂p
= −ṽκpκ−1 (5.50)

Since ∂f eqα /∂u and ∂f eqα /∂v were discussed earlier (Chapter 5.3.1), the given deriva-
tives can be combined.
One has to pay attention to the fact that the propagation operator is still active.
Thus, the calculated entries have to be set into the correct row.

If the design values are the porosities or vertex values, a high amount of optimization
steps will be anticipated for the geometry to develop. This is due to the fact that
in cells with a porosity of zero, also the gradient ∂u

∂p
is zero (compare equations

above). Therefore, only the aforementioned filtering method (vertex values as design
variables) enables the geometry to grow into unoccupied regions next to porous sites.
Hence, this growth has a maximal speed of one cell per optimization step.
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5.3.4. Determination of ∂p/∂s
This derivative depends on the chosen design variable. In the current work three
different kinds of design variables are used, each of them with a different influence
on the porosities. Therefore, the derivative of the porosities with respect to the par-
ticular design variable(s) have to be determined:

1. If the design variables s are just the porosities, the derivative is just 1 (leading
to the identity matrix I).

2. If the design variables are chosen to be the filtering method discussed in Chapter
5.2.1, the derivative will be:

∂p(s)

∂s
=

[
1

4
,
1

4
,
1

4
,
1

4

]
(5.51)

for the sx,y, sx−∆x,y, sx,y−∆y and sx−∆x,y−∆y (surrounding vertex values) of each
cell and 0 for every other design variable. Therefore, it is a quadratic matrix
with (n · n) entries (n number of cells).

3. If the design variable is the radius of the cylinder (see Chapter 4.3), the deriva-
tive will result by deriving the smoothed Heaviside function (equation 4.7):

∂p(s)

∂s
=

−
π

4
cos(

π

2
d) if d < 1/2 · smoothing_region

0 otherwise
(5.52)

5.3.5. Determination of ∂F/∂p
Again the chosen performance functional F affects the derivative (see Chapter 5.2.2
for used functions).

For the overall pressure difference as performance functional, this derivative is zero
since it doesn’t depend on any porosity.

If the performance functional is the drag force or lift force it yields (no Einstein
summation convention):

∂FD
∂pi

= ωκpκ−1
i ρiũi (5.53)
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and

∂FL
∂pi

= ωκpκ−1
i ρiṽi (5.54)

5.4. Optimization algorithm
The general optimization procedure was described and depicted in Chapter 5.1. But
it is still to be clarified how the calculated gradient is used to determine the new
design variables and additionally it is to define stopping criteria of the optimization
loop.

New design variables have to be received in each optimization step. In order to
achieve this, a search direction for these variables has to be defined. Two options
shall be briefly described and implemented here. The reader is referred to [9] for
more information about these methods.

At first the simplest gradient based optimization procedure is used: The steepest
descent method. As its name implies, this method searches new design variables in
the direction of the steepest descent. Therefore, for a minimization this is just the
negative gradient −dL

ds , or for a maximization the positive one.

For the conjugated gradient method a varying optimization gradient is chosen. Every
new search direction is chosen in a way that it is conjugated to all previous gradi-
ents. Only a few additions have to be made to the algorithm described in Chapter
5.1. Figure 5.5 shows those two additions. The content of the upper box has to be
added after the first calculation of the adjoint gradient and the content of the second
box has to be performed each time before “applying the optimization algorithm to
evaluate new design variables”.

After determining the optimization gradient through one of above methods, a step
length α has to be chosen. The gradient is multiplied with this step length to be
added to the old design variables:

si,new = si,old + αξi (5.55)

The step length should be chosen carefully. A step length being too high causes the
leaving of the approximately linear area around the current stance. Whereas if the
chosen step length is too small, the optimization algorithm would be slow to progress.
Therefore, some conditions were developed to minimize these risks. The so called
line search methods are about choosing a search direction and the step length. Since
here, the backtracking condition is used as line search method, only one condition
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add to initialization: ξ = dL
ds , ∇ = −ξ, h = ∇, ξ = h

calculate conjugated gradient
ξ = dL

ds
γ = (ξ+∇)ξ

∇∇
∇ = −ξ

h = ∇+ γh
ξ = h

Figure 5.5: the conjugated gradient method (compare [6]); only extensions to algorithm
in Chapter 5.1 are depicted

has to be checked. This method is depicted in Figure 5.6. The satisfaction of the
aforementioned condition then has to be proven through a new flow calculation. The
condition is:

L(s + αξ) ≤ L(s) + c1α

(
ξ · dL

ds

)
(5.56)

The factor c1 has to be chosen by trying out some values. Here it is set to 0.5 at first.
If this condition is not fulfilled, α has to get a new, smaller value. Here this is done
by:

αnew =
1

2
αold (5.57)

For the design variables, being the filtered porosities (see Chapter 5.2.1), the initial
α is set through to the fact that αξi defines the updating value of the design variables
(equation 5.55). Hence, an appropriate updating value can be estimated. At first
the entry with the absolute maximum of the gradient vector is determined. Then
the product αξmax is set to an appropriate value, for example 0.7. This then can be
solved for the initial step length αinitial. The initial step length generally should be
chosen in a way that the aforementioned condition scarcely is undershot, therefore,
the initial step length is chosen to start with a high value and from there on will be
lowered until the condition is fulfilled.

The first stopping criterion of the optimization loop is that the L2-norm of the gradi-
ent has fallen under a fraction of the starting L2-norm of the gradient. Additionally
the algorithm will be stopped, if the line search method has looped more than a
couple of times without finding an appropriate step length.
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initialization of step length α

checking condition
L(s + αξ) ≤ L(s) + c1α

(
ξ · dL

ds

)

continuing optimization algorithm

attaching new step length
αnew = 0.5 · αoldfulfilled not fulfilled

Figure 5.6: the line search method “backtracking”

Attention has to be paid to the fact that for the vertex values being the design
variables, values smaller than zero or higher than one can lead to porosities which
are not in the feasible region (0 ≤ p ≤ 1). Several methods could be used to inhibit
this behavior. Here just a limiting method is applied. Two options arise to conduct
this: Either the vertex values or the porosities resulting out of these values can be
limited to the feasible and physical region. This means: If a porosity or vertex value
exceeds one or is under zero, it just will be set back to the limit which will be violated.
This method is called clipping.
It remains to be seen which of both parameters have to be clipped to achieve the
best results in optimization, and this will, therefore, be a topic in Chapter 5.6.

5.5. Validation of gradient
Before the optimization algorithm can be used for its purpose, its validity has to be
checked. For this purpose the analytically derived gradient will be compared to a
discrete gradient. This discrete gradient is determined with an approximation by a
first order forward finite difference. With varying perturbations ε it is:

dF

ds
=
F (s)− F (s · (1 + ε))

s− (s · (1 + ε))
(5.58)

Hereby a performance functional F , the pressure from inlet to outlet is chosen and for
the design parameter, the diameter is selected. Since the steady state condition will
hold, dF

ds
can be compared to dL

ds
. As geometry the test case containing a cylinder in

channel flow, described in Chapter 3, is used again, as well as the porosity scaling and
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boundary smoothing out of Chapter 4. The Mach number is a chosen constant and
the Reynolds number varies around 20 according to the perturbation. The results
can be seen in Figure 5.7. For high perturbations, the discrete gradient was expected
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Figure 5.7: comparison of discrete and analytical gradient

to differ from the analytical. This fact can be explained by the behavior of the
performance functional, since it is only approximately linear for small stencils. Very
low perturbations on the other hand, lead to a difference which can be explained by
numerical errors due to limited decimal places. Most important is that the gradients
agree well for medium perturbations. It follows that the analytical gradient can be
used for the optimization algorithm.

In fact this method of validating the gradient by a discrete approximation has to
be done every time the performance functional or the design variables change. This
makes sure that their derivatives are implemented in the simulation code correctly.
E.g. if the design variables are the filtered porosity values (see Chapter 5.2.2), a
single design variable will be changed slightly for obtaining the discrete gradient.
Therefore, this validation is done for all cases of application without mentioning it
explicitly.

5.6. Cases of application
After implementing the optimization algorithm, it should be applied to some cases
of applications below. The design variables are now chosen to be the variables imple-
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mented at the vertices for all the following optimizations (compare Chapter 5.2.1).

5.6.1. Channel domain
Clippingmethod
It still has to be shown which clipping method discussed in Chapter 5.4 is more
efficient to avoid the leaving of the physical area (0 ≤ p ≤ 1). In order to investigate
this, an optimization with both the channel domain and the cylinder as starting
geometry was chosen. The aim of the algorithm is to minimize the performance
functional. This is defined as the difference between drag and lift force:

F (p(s), f) = FD − FL =

number of cells∑
i

(ωpκi ρiũi)−
number of cells∑

i

(ωpκi ρiṽi) (5.59)

The change of the Lagrangian value during optimization is shown in Figure 5.8. It
shows a faster and longer optimization process for the clipping of the porosities. This
can be explained with the fact that just limiting the porosities gives the optimization
algorithm more degrees of freedom in varying the design variables, leading to better
results. The Lagrangian value can still be compared with the value of the performance
functional, since the steady state constraint will hold.
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Figure 5.8: comparison of vertex value and porosity clipping
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5.6.2. Periodic Domain
To eliminate the influence of the walls in the channel flow domain, a second domain
was introduced in Chapter 3. By the use of periodic boundary conditions instead of
walls, this domain represents an infinite cascade of the design geometry. This domain
will be used in the following investigations.

Reference optimization
Firstly a simple optimization with a cylinder as starting geometry and the difference
between drag and lift force as the performance functional was performed. The results
are presented in Figures 5.9 and 5.10. The algorithm works as expected as the
Lagrangian value (and the geometry changes in a way that it can redirect the flow
to create lift and in the same time has a thin contour for low drag.
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Figure 5.9: optimization progress with periodic Domain and cylinder as starting geometry

Penalty term
To influence the geometry development, a penalty term can be implemented. Just
to test this possibility, a simple penalty term is implemented in the performance
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Figure 5.10: final geometry (step 58) of the reference optimization with the periodic Do-
main and the cylinder as starting geometry

function:

F (p(s), f) = FD − FL − penaltyTerm =

number of cells∑
i

(ωpκi ρiũi)−
number of cells∑

i

(ωpκi ρiṽi)−
1

800000
p ·
(
di
r
− 1

) (5.60)

with di being the distance of a cell to the center of the starting cylinder and r being
the radius of the cylinder. The prefactor 1

800000
is chosen in a way that the penalty

term is at the start about one sixteenth of the magnitude of the original performance
value (difference of drag and lift force). This term shall penalize porosity which
emerges outside the original starting geometry and reward geometry inside it. In this
way the growth shall be limited. Figures 5.11 and 5.12 illustrate that this seems to
work. Certainly, this is just to prove that penalty terms can be implemented. More
expedient terms can be found (like quadratic terms). Moreover constraints could be
added through slack variables and an additional Lagrange multiplier.

Change in starting geometry
Furthermore, it would be interesting to know if the starting geometry has an effect on
the final geometry under otherwise the same conditions. Therefore, an optimization
with the same options as in the reference case was executed. As starting geometry
serves a triangle. It is defined to be the upper left half of a square. This square has
the same area as the previous cylinder. Figure 5.13 depicts the progression of the
Lagrangian minimization. The effect of the optimization on the geometry is shown in
Figure 5.14. This investigation displays the fact that, independently from the starting
geometry, the optimization algorithm seems to asymptotically converge to the same
result. The comparison to the reference case (between the Lagrangian progression
and the geometries), by considering the respective figures, illustrates this. Differences
can be explained by canceling the calculation through the stopping criteria.
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Figure 5.11: optimization progress with cylinder and penalty term

Figure 5.12: final geometry with penalty term

The stopping criteria and optimizationmethod
In this last investigation two questions shall be answered. Firstly the question of
which optimization method, steepest descent or conjugated gradients (see Chapter
5.4), is better for the current optimization problem. And secondly: How long will
the optimization go on with loose stopping criteria?
Therefore, the stopping criteria were intensely loosened. Again, the triangle is the
starting geometry and the performance functional is the difference between drag and
lift force. Figure 5.15 shows that the conjugated gradient method performs a slower
progression in the first optimization steps. Whereas it clearly outpaces the steepest
descent method at a higher number of optimization steps. It also leads to a more
optimal Lagrangian value (lower value) than the steepest descent method, even in a
lower amount of optimizations steps. The stopping criteria and line search method
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Figure 5.13: optimization progress with triangle as starting geometry

(a) step 0 (b) step 18 (c) step 36 (d) step 56

Figure 5.14: geometry change during optimization with triangle as starting geometry

were the same. Probably the used parameters of the line search method or the method
itself were less efficient with the conjugated gradient method. Figure 5.16 shows the
final geometry for both methods. More investigations have to be performed here.
It can also be seen that the optimization probably would go on further even though
the improvements are minor. Overall the optimization algorithm shows the expected
slow progression rate as discussed in Chapter 5.3.3.
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Figure 5.15: optimization progress with loose stopping criteria; comparison between steep-
est descent and conjugated gradient method

(a) steepest descent; step 108 (b) conjugated gradient; step 72

Figure 5.16: comparison of final geometry



6. Summary and outlook

The aim of the project was to implement and apply an adjoint shape optimization
algorithm in a Lattice-Boltzmann solver based on the work of Pingen et al. [10].
In order to achieve a continuous approach in altering a geometry for optimization,
porous media were introduced, implemented and validated. Furthermore, an adjoint
optimization algorithm was derived, validated and used. This algorithm was then
successfully applied to a few cases of application. Thereby a filtering method was
used to slightly delocalize the optimization effect. In order to achieve this, new
parameters at the cells’ vertices were defined. The cases of application showed that
the described algorithm is able to iteratively optimize a given shape with respect
to chosen performance functionals. This was respectively proven by viewing the
magnitudes of the Lagrangian in the course of optimization.

Moreover the cases of application generated some more insights.
A method had to be chosen to limit porosity values to physical values. It was shown
that for the aforementioned filtering method which provided the design variables,
limiting the porosity values instead of the design variables appeared to be more
efficient. More degrees of freedom in choosing the values for the design variables
seems to be the explanation for this fact.
For the determination of new design variables in optimization, two methods have
been examined. In the first comparison, the conjugated gradient method proves to
be less effective during the first optimization steps, but it clearly outpaces the steepest
descent method later on. Hence, the parameters of the line search method or the
method itself, don’t seem to be ideal for the conjugated gradient method to unfold
its full potential. Therefore, the line search method and further algorithms have to
be examined in more detail.

A minor improvement in the assembling of the optimization algorithm was intro-
duced in the current thesis. This improvement emerged through the prevention of a
costly matrix-matrix multiplication which was used originally.
Furthermore, the treatment of boundary conditions was applied and described in the
presented optimization algorithm to increase accuracy, which was neglected, espe-
cially for inlet and outlet cells in the original work.

There are still some matters to be considered in further works. More constraints,
like mass constraints, can be tested. Additionally the algorithm could be applied for
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more complex, parameter described shapes like airfoil profiles. However, the major
challenge and improvement would be to parallelize the programming code. Since the
adjoint calculations are not parallelized, even the flow calculation had to run on a
single processor. Therefore, a parallelization would lead to a distinct acceleration of
the optimization algorithm. Only this would enable us to perform optimizations with
vast refinements or even 3D optimizations within an acceptable amount of time.
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