
Predictive Control and Optimization

Exercises

Prof. Dr.-Ing. O. Nelles
Automatic Control – Mechatronics

University of Siegen

12.04.2022



PRO Exercises Prof. Dr.-Ing. O. Nelles – Universität Siegen 12.04.2022

Task 1: Least Squares - Linear Regression

a) In Tab. 1, you can see the power and consumption data of di�erent cars.

Table 1: Power and consumption data of di�erent cars

Car Power [PS] Consumption [l/100 km]
Opel Corsa 1.6 Turbo OPC 207 7.5

Honda Civic Type R2.0 310 7.3
BMW X6 M 575 11.1

Porsche Panamera GTS 440 10.3
BMW M6 Coupé M6 560 13.9

Jaguar F-Type R Coupé R 505 10.7
BMW M4 Coupé M4 431 8.3

Toyota GT86 200 7.1
Ferrari 488 GTB Coupé 670 11.4

Plot the data with power on the x-axis and consumption on the y-axis.

b) It is assumed that there is a linear (a�ne) relationship between power and consump-
tion. To describe this relationship, a linear regression is to be performed. Set up the
regression matrix X and the output vector y.

c) Calculate the optimal parameters ◊ using the least squares (LS) equation. Plot the
resulting regression line into the data plot.
Implementation: The most e�cient way in MATLAB to calculate a inverse of a

matrix is the backslash operator

Example for a square matrix B : a = B
≠1

c

1 a = B \ c;

d) Reformulate the linear regression problem into the standard formulation of a
quadratic program (without constraints). Some helpful remarks can found in the
lecture notes. Create a anonymous function with the name f_quad of the standard
cost function.
Implementation: Anonymous functions are important in MATLAB while dealing with

optimization problems. They can be defined in the following way:

Example function: f(◊) = 5 · ◊1 + 7 · ◊
2
2

1 f = @(theta) 5 * theta(1) + 7 * theta(2)^2;

e) Plot the resulting quadratic loss function in the parameter space (◊1, ◊2)
Implementation: To plot a two-dimensional function di�erent options exist:

1 surf(X,Y,Z);
2 contour(X,Y,Z);

1



PRO Exercises Prof. Dr.-Ing. O. Nelles – Universität Siegen 12.04.2022

X,Y and Z must be matrices. X and Y consists of the variables the function depends

on and Z contains the corresponding output of the function.

To create such matrices the following functions are helpful:

1 [X,Y] = meshgrid(range1,range2);
2 x = reshape(X,dimx,dimy);

2



PRO Exercises Prof. Dr.-Ing. O. Nelles – Universität Siegen 12.04.2022

Task 2: Least Squares - Linear Regression 2

This task deals with data from di�erent start-up companies (see 50_Startups.csv).
The influence of di�erent expenses on the profit of the company shall be investigated.
R&D and marketing spending are to be examined as potential influencing factors.

a) Calculate the parameters of two individual linear regression models – one for each of
the expenses (R&D and marketing). Calculate the error between the resulting model
and the collected data. Use the root-mean-squared-error (RMSE) for this purpose.

RMSE =
ı̂ıÙ 1

N

Nÿ

i=1
(ŷ(i) ≠ y(i))2

b) Now a linear model with two inputs shall be estimated. Use R&D and marketing
investments as inputs of a two dimensional model. Calculate the parameters of the
regression model. Calculate the error between the resulting model and the collected
data. Of which dimension is the resulting loss function in standard formulation?

c) Plot the resulting model and the data points.
Implementation: To plot data points in a three-dimensional space, use the following

MATLAB command:

1 plot3(x,y,z,'o');

d) Corresponding to the calculated model, which of the expenses promises a higher
profit?

3



PRO Exercises Prof. Dr.-Ing. O. Nelles – Universität Siegen 12.04.2022

Task 3: Quadratic Program (QP)

In this task, the following quadratic cost function is investigated:

J(◊) = 1
2◊

T

C
3 0.5

0.5 1

D

¸ ˚˙ ˝
H

◊ +
C
≠5
≠2

D
T

¸ ˚˙ ˝
gT

◊ . (1)

a) Define an anonymous function of the cost function and plot it in the parameter space.
Take a range of [≠10 . . . 10] for both ◊1 and ◊2.

b) Optimize the unconstrained cost function with the least squares (LS) solution.

c) Apart from the analytical least squares solution, it is also possible to optimize the
loss function numerically. MATLAB provides di�erent tools to solve such a problem.
Use the following two methods to solve the unconstrained loss function numerically.
Are the solutions of all of the algorithms the same? What could be a reason for
possible deviations?

1 quadprog(H,g,A,b);
2 fmincon(@functionHandle,theta_0,A,b);
3 % A and b can be choosen empty [] for unconstrained

optimization

d) Now, constraints shall be taken into account during the optimization. The following
constraints shall be satisfied.

◊1 Ø 3 (2)
0.5◊1 ≠ ◊2 Æ 5 (3)
≠◊1 ≠ ◊2 Ø ≠6 (4)

Plot these constraints into the same plot as the loss function before.

e) Reformulate the constraints into the following format.

A ◊ ≠ b Æ 0 (5)

f) Now the constraints will be taken into account for optimization. Use the two methods
given above to solve the constraint problem. Plot the optimal ◊ into the plot with
the constraints and cost function.

g) Which of the constraints are active and therefore directly influence the optimal so-
lution?

4



PRO Exercises Prof. Dr.-Ing. O. Nelles – Universität Siegen 12.04.2022

Task 4: Model Predictive Control: DMC - Part I

1.) Change the prediction horizon Np, the control horizon Nu and the weighting factor
⁄. How do these factors influence the result/performance of the control?

2.) So far, only the analytical calculation of the optimal manipulated variable sequence
has been implemented. Extend the source code to use also constraints during the
Optimization. The constraints are defined in the variable Constraints. Proceed as
follows:

1) Define a cost function
I = @(du_plus) ... .

Hint: Use for H
+
Np ”=Nu

= H
+

H̃

2) Optimize I using fmincon (first without constraints)
Hint: Set useConstraints= 1;(line 16) if you want to check your code.

3) Define the matrices A, b. For this use the values in Constraints:
• Constraints.u_max
• Constraints.u_min
• Constraints.du_max
• Constraints.du_min

Hint: You can use the functions eye(), ones(), zeros(), tril(), triu().

4) Optimize I using fmincon with constraints.
5) Change the constraints. How do these factors influence the control?
6) What happens with the controlled variable when the u_max constraint is too

low and why?
Hint: Rewriting of A, b, example Nu = 2:

Notation: A · �u
+

< b

u(k ≠ 1) + �u(k) < umax

u(k ≠ 1) + �u(k) + �u(k + 1)< umax

A =
C

1 0
1 1

D

, b =
C

1
1

D

(umax ≠ u(k ≠ 1))

u(k ≠ 1) + �u(k) > umin

u(k ≠ 1) + �u(k) + �u(k + 1)> umin

A = ≠
C

1 0
1 1

D

, b = ≠
C

1
1

D

(umax ≠ u(k ≠ 1))

�u(k) > �umin

�u(k + 1)> �umin

A =?, b =?

5



PRO Exercises Prof. Dr.-Ing. O. Nelles – Universität Siegen 12.04.2022

�u(k) < �umax

�u(k + 1)< �umax

A =?, b =?

3.) Make some changes that the model is not equal to the process, i.e. change some
coe�cients of the transfer function of the model. How the MPC performance is
influenced? Why the reference value can be reached, even with a wrong model?

4.) Add output noise (white Gaussian noise) on the measurement of the controlled
variable. Use the predefined variance variable sigma2. How does the figure change?

6



PRO Exercises Prof. Dr.-Ing. O. Nelles – Universität Siegen 12.04.2022

Task 5: Model Predictive Control: State Space - Part II

The goal of this task is to implement a model predictive controller (MPC) in state
space. In this exercise we focus on the control of a lane change scenario. As a car
model a single-track model is used, where only the lateral direction (Y -position) should
be controlled. The steering angle is used as input u for the car model and a constant
velocity in longitudinal direction is assumed. The task is to implement an MPC which
optimizes the steering angle to follow a given reference trajectory.

1.) Get familiar with the code. How does the car behave, if a step signal is given to
the manipulated variable (steering angle)? Is this behavior also visible in the given
scopes?

2.) Now we want to control the Y -position of the car. For this purpose, add an MPC
Controller block in SIMULINK. In the script MPC_init we already defined an
MPC Controller named MPC. Also make sure that we do not have any additional
input ports, since we do not measure any disturbance. Please connect all the input
and output ports of the MPC block. How does the MPC behave, if only the first
entry of the reference is given to the MPC. Now also the future reference values
should be used in the MPC block. How does the behavior change?

3.) Add the estimated states in the MPC (this is done via Kalman filter) as an additional
output port of the MPC Controller and compare them to the real ones of the system.
Can you see any di�erence?

4.) Open the MATLAB script MPC_init. A lane change maneuver to Y = 4 should be
performed. Do all necessary changes in the reference value.

5.) Implement a lane limit in Y -direction of 2 m. Also slow down the lane change
maneuver.

6.) What happens, if you increase the control horizon? Try it in the simulation.

7.) Add measurement noise to the Y -position. This measured Y -position should also
be used in the MPC controller (Band-Limited White Noise block). Try di�erent
noise powers, start with 0.0001. How robust is the MPC?

8.) Now we want to improve the lane change trajectory by changing the reference tra-
jectory. Implement for example filtering (filter), ramp (linspace), etc.

7



PRO Exercises Prof. Dr.-Ing. O. Nelles – Universität Siegen 12.04.2022

Task 6: Optimization: Nonlinear Problems – Part I

The Rosenbrock function has the form

f(◊) = f(◊1, ◊2) = (a ≠ ◊1)2 + b(◊2 ≠ ◊
2
1)2

,

where commonly a = 1 and b = 100.

1.) Visualize the Rosenbrock function in the interval ◊1 ◊ ◊2 œ [≠2.25, 2.25] ◊
[≠1.25, 3.25]. For later ease of use, define the Rosenbrock function as anonymous
function:

1 rosenbrock = @(theta) (1-theta(1,:)).^2+100*(theta(2,:)-theta(1,:)
.^2).^2;

The function can then be evaluated as:
1 y = rosenbrock([theta_1;theta_2]);

2.) Search for the minimum of the Rosenbrock function in the interval ◊1 ◊ ◊2 œ
[≠2.25, 2.25] ◊ [≠1.25, 3.25] with a) grid search and b) random search. Analyze
your obtained result with respect to di�erent numbers of (grid) points that you
choose. For the random search, use uniformly distributed data with rand() and
shift the data points according to the interval.

3.) Implement the steepest gradient descent method. For that, first calculate the gradi-
ent g(◊) analytically and implement it as anonymous function in MATLAB. Use a

step size of ÷ = 0.002, start at the initial parameter vector ◊0 =
C
≠1.5
0.5

D

, and run the

algorithm for 1000 iterations. Analyze the convergence behavior of steepest descent
when the initial vector, the step size and the number of iterations changes.
Optional: Implement a learning rate scheduling with an exponentially decaying
learning rate.

4.) Implement the Newton method. First, calculate analytically the Hessian matrix
H(◊) and implement it as anonymous function in MATLAB. Use a the initial pa-

rameter vector ◊0 =
C
≠1.5
0.5

D

, and run the algorithm for 5 iterations. Analyze the

convergence behavior of the Newton method when the initial vector or the number
of iterations changes.

8



PRO Exercises Prof. Dr.-Ing. O. Nelles – Universität Siegen 12.04.2022

Task 7: Optimization: Nonlinear Problems – Part II

The Rosenbrock function has the form

f(◊) = f(◊1, ◊2) = (a ≠ ◊1)2 + b(◊2 ≠ ◊
2
1)2

,

where commonly a = 1 and b = 100.

1.) Find the minimum of the Rosenbrock function using MATLAB’s fminsearch func-
tion. fminserach uses the Nelder-Mead-Algorithm, which is a special case of
the downhill simplex method. Initialize fminserach with the parameter vector

◊0 =
C
≠1.5
0.5

D

.

2.) Find the minimum of the Rosenbrock function using MATLAB’s fminunc function.

Initialize fminunc with ◊0 =
C
≠1.5
0.5

D

.

3.) Now let’s assume that we want to find the minimum of the Rosenbrock function
under the constraint that the solution has to lie inside a circle with the center
c =

C
≠1
0

D

and radius r = 1.5 in parameter space. How does the minimum change,

when the location and radius of the circle changes? Incorporate in a second step an
additional equality constraint ◊2 ≠ ◊1 = 0. Use the MATLAB function fmincon to
solve this problem. The constraints can be implemented with the nonlcon option.
You can use the deal function to return two output arguments within an anonymous
function

1 ineq_c = @(theta) deal(�inequality constraint�,0);

4.) Use MATLAB’s predifined dataset polydata (get data with load polydata) and fit
to it a third-order polynomal function

y = ◊1x
3 + ◊2x

2 + ◊3x + ◊4

using fminunc. For this, use the vectors x and y from the dataset. In a second step,
use fmincon to incorporate the constraint that the squared sum of all parametersqn◊

i=1 ◊
2
i

< t. How does the function y di�er for di�erent values of t?

9


	Least Squares - Linear Regression
	Least Squares - Linear Regression 2
	Quadratic Program (QP)
	Model Predictive Control: DMC - Part I
	Model Predictive Control: State Space - Part II
	Optimization: Nonlinear Problems – Part I
	Optimization: Nonlinear Problems – Part II
	Least Squares - Linear Regression
	Least Squares - Linear Regression 2
	Quadratic Program (QP)
	Model Predictive Control: DMC - Part I
	Model Predictive Control: State Space - Part II
	Optimization: Nonlinear Problems – Part I
	Optimization: Nonlinear Problems – Part II

