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1 Introduction to Measurement Techniques

Mathmatical Introduction

Solution 1.1 Calculating with complex numbers

a) 1+2i
3i+2

= (1+2i)(2−3i)
13

= 2+4i−3i−6i2

13
= 8

13
+ 1

13
i

b) (1+2i)(2−3i)
(1+2i)(2−2i)

= (2−3i)(2+2i)
8

= 4+4i−6i−6i2

8
= 5

4
− 1

4
i

c) ‖2 + 3i‖ =
√

(4 + 9) =
√

13

d) ‖2+3i
2i+2
‖ =

√
4+9√
4+4

=
√

13
8

e) ‖(2 + i)3‖ = ‖(2 + i)‖3 = (
√

5)3 = 5
3
2

f) eiπ = −1

g) ei2π+2 = e2

Solution 1.2 Magnitude and Phase

a) Magnitude:
‖1 + i‖ =

√
2

Phase:
Mit atan(1

1
) = +45◦ ergibt sich:

arg(1 + i) = ϕ = −360◦ + 45◦ = −315◦

b) Magnitude:
‖1− i‖ =

√
2

Phase:
Mit atan( 1

−1
) = −45◦ ergibt sich:

arg(1− i) = ϕ = 0◦ − 45◦ = −45◦
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Im

Re

−180◦ bis −270◦ −270◦ bis −360◦

−90◦ bis −180◦ 0◦ bis −90◦

ϕ

c) Magnitude:
‖ 1

1+2iω
‖ = 1√

12+4ω2

Phase:
ϕ = arg( 1

1+2iω
) = arg(1)− arg(1 + 2iω)

arg(1) = atan(0) = 0◦

− arg(1 + 2iω) = −atan(2ω
1

) = 0◦

FÃ1
4
r ω → 0: ϕ→ 0◦

FÃ1
4
r ω →∞: ϕ→ 90◦

d) Magnitude:
‖2eiπ‖ = ‖2‖‖eiϕ‖ = 2

Phase:
arg(2eiπ) = arg(2) + arg(eiπ) = 0◦ + 180◦ = 180◦

Solution 1.3 Complex Plane

a) ‖z‖ ≤ 1√
Re(z)2 + Im(z)2 ≤ 1

x = Re(z)
y = Im(z)√
x2 + y2 ≤ 1

b) Re(z) < 0
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Im

Re

Kreis r = 1 mit Rand

Im

Re

Alle Punkte ohne Im-Achse

c) Im(z)
Re(z)

< 0.9

Im

Re

42�

d) ‖z − 4‖2 ≤ 2
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Solution 1.4 Continous Time Systems

For the following transfer functions make a statement, about poles/zeros (i), about
stability (ii), if the system is oscillatory (iii), whether the system is of minimal phase
(iv), whether the system is proper or strictly proper (v), whether the system is linear
(vi).

a)

G1 =
s+ 1

s2 + 2s+ 1

b)

G2 =
s+ 2

s2 + 0.2s+ 1

c)

G3 =
s2

s

d)

G4 =
(s− 1)(s− 2)

s+ 3

e)

G5 =
s+ 1

s− 1

2 Measurement of Electrical Quantities

Solution 2.1 Measuring voltage and current

a) Calculate I0!

4
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U0=220V

I0

R69

R578

R4R123

Figure 1: Linear electrical circuit.

I0 =
U0

Rall

Rall = R123 +R4 +
1

1
R578

+ 1
R69

R123 =
1

1
R1

+ 1
R2

+ 1
R3

=
R1R2R3

R1R2 +R2R3 +R1R3

=
20 · 40 · 40 · Ω3

(20 · 40 + 402 + 20 · 40) · Ω2
= 10Ω

R578 = R5 +
1

1
R7

+ 1
R8

= 20Ω +
90 · 45 · Ω2

(90 + 45) · Ω = 50Ω

R69 = R6 +R9 = 50Ω

⇒ Rall = 10Ω + 20Ω +
502Ω2

100Ω
= 55Ω

⇒ I0 =
220V

55Ω
= 4A

b) Imagine to measure I0 by a moving coil mechanism with an internal resistance of
Rm = 1Ω. What value will be displayed? What relative error in current measurement
occurs?

IM =
U0

Rall +RM

IM =
220V

(55 + 1)Ω
= 3.929A

ErI =
I0 − IM
I0

ErI =
(4− 3.929)A

4
= 0.0179

c) Calculate U4!
See figure 1.

U4 = I0 ·R4 = 4A · 20Ω = 80V

5
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U0=220V

I0

R69

R578

R4R123

A RM

Measuring Instrument

Figure 2: Electrical circuit with current measuring instrument.

d) Imagine to measure U4 by a moving coil mechanism. Determine the internal resistance
Rm for which the relative error in voltage measurement is less than 1%!

ErV =
U4 − UM4

U4

U4 = I0 ·R4

UM4 =
R4RM

R4 +RM

· I0

U0=220V

I0

R69

R578

R4R123

V RM

Measuring Instrument

Figure 3: Electrical circuit with current measuring instrument.
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⇒ ErV ≥ ��I0R4 − R4RM
R4+RM��I0

R4��I0

ErV ≥ 1− ��R4RM

��R4(R4 +RM)

ErV (R4 +RM) ≥ R4 +�
��RM −�

��RM

RM ≥
R4(1− ErV )

ErV

RM ≥
20Ω(1− 0.01)

0.01
= 1980Ω

Question to the audience: Which way to measure current would you prefer? The
direct or indirect method, where indirect means to measure the voltage drop and
calculate the corresponding current.
Answer: The indirect method, because the realization of high resistances is much
easier and cheaper than the realization of very small and accurate resistances.

7
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Solution 2.2 Operational Amplifier Transfer Functions

Ue3

Ue2

Ue1 Ua

R4

R1

R2

R3UR3

UR2

UR1

Ie3

Ie2

Ie1

Ia UR4

Kirchhoff's current law:
All currents have to sum up
to zero at this point.

Figure 4: Voltage drop and current designations for the OpAMP circuit (a).

a) OpAmpCircuit 1

Ie1 + Ie2 + Ie3 + Ia = 0 (1)
⇒ Calculate currents Ie1 − Ie3 and Ia!

Mathematical expressions of currents should only depend on Ue1, Ue2, Ue3 and Ua�
Goal is to calculate the the equation describing the relationship between the inputs

and the output: Ua = f(Ue1, Ue2, ... Uen)

1)

(Ue1 −Mesh) : Except of R1 there is no voltage drop!
Kirchhoff’s voltage law⇒ Ue1 = UR1

⇒ Ie1 =
UR1

R1

(2)

2)

(Ue2 −Mesh) : Ie2 =
UR2

R2

(analogous to mesh 1) (3)

3)

(Ue3 −Mesh) : Ie3 =
UR3

R3

(analogous to mesh 1) (4)

4)

(Ua −Mesh) : Ia =
Ua
R4

(analogous to mesh 1) (5)

(2), (3), (4), (5) into (1) leads to:

8
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Ue1
R1

+ Ue2
R2

+ Ue3
R3

+ Ua
R4

= 0 | − Ue1
R1

;−Ue2
R2

; ...

Ua
R4

= −Ue1
R1
− Ue2

R2
− Ue3

R3
| ·R4

Ua = −R4

R1

Ue1 −
R4

R2

Ue2 −
R4

R3

Ue3

b) OpAmp circuit 2

uin

iin

iin1

iin2
iout

uout1uout2

uin

Figure 5: Voltage drop and current designations for the OpAMP circuit (b).

In general the electrical quantities of a capacitor can be calculated as follows:

u(t) =
1

C

∫ t

0

i(τ)dτ

i(t) = Cu̇(t) .

Connection of in- and output side:

iin + iout = 0 (1)

Same goal as before: ua = f(ue); here all values depend on time!
Equations for input-side:

iin = iin1 + iin2 From now on iin =̂ iin(t)

iin1 =
uin
R1

From now on uin =̂ uin(t)

iin2 = C1 · u̇in From now on uout =̂ uout(t)

⇒ iin =
uin
R1

+ C1u̇in From now on iout =̂ iout(t) (2)

Equations for output-side:

uout = uout1 + uout2

uout1 =
1

C2

∫ t

0

iout(τ)dτ ;uout2 = R2iout

⇒ uout =
1

C2

∫ t

0

iout(τ)dτ +R2iout

iout(t) =
uout
R2

− 1

C2R2

∫ t

0

ioutdτ (3)

9
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Equation 2 and 3 put in equation 1 equals to:

uin
R1

+ C1u̇in +
uout
R2

− 1

C2R2

∫ t

0

ioutdτ = 0 (4)

Solving Eqn. 4 for uout:

uout =
R2

C2R2

∫ t

0

ioutdτ −
R2

R1

uin − C1R2u̇in (5)

From Eqn. 1 we know, that iout = −iin. Together with Eqn. 2 we get:

iout = − 1

R1

uin − C1u̇in (6)

Equation 6 in 5:

uout =
R2

C2R2

∫ t

0

(− 1

R1

uin − C1u̇in)dτ − R2

R1

uin − C1R2u̇in

uout = − 1

C2R1

∫ t

0

uindτ −
C1

C2

uin −
R2

R1

uin − C1R2u̇in (7)

Finally we get:

uout(t) = −
(
C1

C2

+
R2

R1

)
uin(t)︸ ︷︷ ︸

P

− 1

R1C2

t∫
0

uin(τ)dτ

︸ ︷︷ ︸
I

−R2C1u̇in︸ ︷︷ ︸
D

(8)
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Solution 2.3 Bridge Circuit

U

UC UR

Ud
0

Cfix

RC(x)

i2i1

R

Figure 6: Bridge circuit with variable capacitance c(x).

Goal: Ud = f(C(x), Cfix, R, U0)
Complex impedance of a capacitor with capacitance C:
ZC = −j

ωC
.

We are looking at the upper mesh and sum up all voltage drops:

Ud = UR − UC (1)

The voltage drop over the capacitor and the resistance can be calculated as follows:

UR =
R

2R
U0

=
1

2
U0 and (2)

UC =
ZC(x)

ZC(x) + ZCfix
U0

=

−j
C(x)ω

−j
C(x)ω

+ −j
Cfixω

U0

=
Cfix

Cfix + C(x)
U0 (3)

(2) and (3) in (1):

UR =
1

2
U0 −

Cfix
Cfix + C(x)

U0 (4)
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Solution 2.4 Measurement of AC Quantities

a) If the meter is used to measure the voltage, what value would be displayed?
1 Volt (The instrument shows only the mean value of an alternating voltage.)
→ See script page 32

b) If the meter is used to measure the current, what value would be displayed?
1 A (The instrument shows only the mean value of an alternating current.)

c) In general a sinusoidal signal looks like the following equation:
y(t) = A · sin(ωt+ ϕ) + b
Equation for the voltage:
u(t) = 2 sin

(
2π 1

T
· t+ 2π

8

)
+ 1

Equation for the current:

i(t) = 3 sin
(
2π 1

T
· t+ 0

)
+ 1

d)

XRMS =

√
1

T

∫ T

0

x2(t)dt

⇒ URMS =

√
1

T

∫ T

0

u2(t)dt and IRMS =

√
1

T

∫ T

0

i2(t)dt

i2(t) =

(
3 sin

(
2π

1

T
t

)
+ 1

)2

⇔ 9 sin2

(
2π

1

T
t

)
+ 6 sin

(
2π

1

T
t

)
+ 1

IRMS =

√
1

T

∫ T

0

[
9 sin2

(
2π

1

T
t

)
+ 6 sin

(
2π

1

T
t

)
+ 1

]
dt

⇔

√√√√√√ 1

T

[∫ T

0

9 sin2

(
2π

1

T
t

)
dt︸ ︷︷ ︸

I1

+

∫ T

0

6 sin

(
2π

1

T
t

)
dt︸ ︷︷ ︸

I2

+

∫ T

0

1dt︸ ︷︷ ︸
I3

]

I1 =

∫ T

0

9 sin2

(
2π

1

T
t

)
dt

with the power reduction formula:

sin2 θ =
1− cos (2θ)

2
⇒ sin2

(
2π

1

T
t

)
=

1− cos
(
4π 1

T
t
)

2

12
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⇔ 9

2

∫ T

0

1− cos

(
4π

1

T
t

)
dt

⇔ 9

2

[
t
∣∣∣T
0
− T

4π
sin

(
4π

1

T
t

)∣∣∣T
0

]
⇔ 9

2
T = I1

I2 = 0 (Integration of sine over a full cycle)
I3 = T

IRMS =

√√√√ 1

T

[
9

2
T + T

]

=

√
11

2

URMS analogous!

⇒ IRMS =

√√√√ 1

T

[
4

2
T + T

]
=
√

3

13
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3 Measurement of Non-Electrical Quantities

Solution 3.1 Fill Level Measuring

a) Draw an expressive sketch.

εr

2m1.
8m

0.
03
m0.15m

1m

x

Figure 7: Sketch: Fill level of a tank

ε0 = 8.85 · 10−12 As
V m

εair = 1
εr = 3

b) Derive a function of the capacity C depending on the fill level x.
In general:

C =
ε0εrA

d
,

with the plate separation d and the one-sided area A. The overall capacity follows
the rule of 2 capacitors in parallel:

C = C1 + C2

Case by case analysis (wp: plate width, x: fill level, l: plate length):

1) x ≤ 0.03m :

C = ε0εairwp·l
d

2) 0.03 < x < 1.83m :

C = ε0εrwp
d

(x− 0.03) + ε0εairwp
d

(1.83− x)

⇔ ε0wp
d

[εrx− εr0.03 + 1.83εair − xεair]

⇔ ε0wp
d

(εr − εair)x+ ε0wp
d

(1.83εair − 0.03εr))

14
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3) x ≥ 1.83m

C = ε0εrwp·l
d

C(x) =


ε0εairwp·l

d
for x ≤ 0.03m

ε0wp
d

(εr − εair)x+ ε0wp
d

(1.83εair − 0.03εr)) for 0.03m < x < 1.83m
ε0εrwp·l

d
for x ≥ 1.83m

c) Sketch the curve of the capacity C depending on the fill level x. Up to x = 0.03m,

0 1 2

60

80

100

120

140

160

Fill level x [m]

C
a
p
a
ci
ty

C
[p
F
]

Figure 8: Sketch of C(x)

the value is C = 53.1pF. From x = 1.83m the value stays at C = 159.3pF.
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Solution 3.2 Thickness Measurement

a) Derive formula

Sketch:

s

d

εair

εr

A

Figure 9: Sketch of C(x)

The air and the plastic film can be treated as a series connection of 2 capacitors:

1

Ctot
=

N∑
i=1

1

Ci

N=2⇒ 1

Ctot
=

1

C1

+
1

C2

C1 =
εrε0A

s
(plastic film) ; C2 =

εairε0A

d− s (Air)

1

C
=

s

εrε0A
+

d− s
εairε0A

∣∣∣∣∣T

⇔ 1

C
=
sεair + (d− s)εr

εrεairε0A

∣∣∣∣∣T

⇔ εrεairε0A

C
= (εair − εr)s+ dεr

∣∣∣∣∣T
⇔ s =

εrεairε0A

C(εair − εr)
− dεr
εair − εr

b) Determine reasonable lower and upper bounds for the capacity C:
Looking at the general equation

C =
εrε0A

d
, (5)

16
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one can see, that the capacity increases with an increasing permittivity. Here the
permittivity of air is lower than the permittivity of the plastic film. So we can con-
clude, that the minimum capacity is obtained, if no plastic film is present and the
maximum capacity is obtained if no air is left between the two capacitor plates.

Cmin = 33.2 nF and
Cmax = 100 nF

C [nF] 33,2 40 60 80 100
s [µm] 0 204 536 702 802

40 60 80 100
0

0.2

0.4

0.6

0.8

1

Capac ity C [nF]

T
h
ic
k
n
e
ss

s
[m

m
]

 

 

True Relationship
Linear Approx.

Figure 10: Sketch of C(x)

c) Error function

E(c) = s(c) − g(c)

=
εrεairε0A

C(εair − εr)
− dεr
εair − εr

− 11700C + 3 · 10−4

=
K1

C K2

−K3 − 11700C + 3 · 10−4

with K1 = εrεairε0A = 7, 9650 · 10−11

K2 = −2 = εair − εr
K3 =

dεr
εair − εr

= −0, 0012

The global maximum of the absolute error is either on one edge or in between C ∈
[33,2 ; 100] nF

Left edge: E(C=33,2nF) = −8, 7988 · 10−5m = −87, 988µm
Right edge: E(C=100nF) = −6, 8250 · 10−5 = −68, 250µm

17
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To find the (local) maximum (maximum because the real function lays above the re-
gression line, see figure) of the error function we have to derive E(C) with respect to C:

E ′(C) =
dE(C)

dC
=
−K1

C2K2

− 11700

To find local extrema we have to:

E ′(C)
!

= 0

0 =
−K1

C2K2

− 11700

∣∣∣∣∣+ 11700

⇔ 11700 =
−K1

C2K2

∣∣∣∣∣ · C2; : 11700

⇔ C2 =
−K1

K2 11700

∣∣∣∣∣√
⇔ Cmax =

√
−K1

K211700
⇒ 5, 8342 · 10−8 = 58, 342nF

E(Cmax) = 1, 3479 · 10−4 = 134, 79µm← maximum error!

⇒ Er =
g(C)− s(C)

s(C)
= −0, 2605

18
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Solution 3.3 Torque Measurement with Strain Gauges

a) Sketch

U
U

U U

R

1 22

dd

0

0

R0

R  +dR0

R  +dR0

I2I1

Figure 11: Electrical circuit with current measuring instrument.

b) Transfer function Ud

I1 =
U0

2R0 + ∆R
(1)

I2 =
U0

2R0 + ∆R
(2)

U1 = (R0 + ∆R)I1; U2 = R0I2

Ud = U2 − U1

= R0 · I2 − (R0 + ∆R)I1 | with (1) and (2)

=
R0 · U0

2R0 + ∆R
− R0 + ∆R

2R0 + ∆R
U0

=
R0 −R0 −∆R

2R0 + ∆R
U0

=
−∆R

2R0 + ∆R
U0

→ Question: Can anybody explain why we got the minus sign in the numerator?

⇒ Assumed direction of Ud is false! Voltage drop over (R + ∆R) is bigger !

c) MA(Ud):

Ud =
−∆R

2R0 + ∆R
U0 (3)

∆R =
R0kMA

πr3G
(4)

19



Sensorics exercises Prof. Dr.-Ing. O. Nelles University of Siegen

4 in 3:

Ud =
−R0kMA

πr3G(2R0 + R0kMA

πr3G
)
U0

∣∣∣∣∣ T
Ud =

−R0kMAU0

2R0πr3G+R0kMA

∣∣∣∣∣ Denominator

⇔ 2R0πr
3GUd +RokMAUd = −R0kMAU0

∣∣∣∣∣ +R0kMAU0;−2πr3GR0Ud

⇔ RokMAUd +R0kMAU0 = −2R0πr
3GUd

∣∣∣∣∣ T
⇔MA(Ud + U0)R0k = −2R0πr

3GUd

∣∣∣∣∣ : (Ud + 1)R0

⇔MA =
−2��R0πr

3G

(U0 + Ud)��R0k
Ud

Ud [mV] 0 2 4 6 8 10
MA [Nm] 0 -55 -110 -165 -220 -275

0 2 4 6 8 10
−300

−200

−100

0

Ud [mV]

M
A
[N

m
]

Figure 12: Sketch: Torque MA(Ud)

→ Within the choosen range of Ud is nearly linear!
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4 Digital Measurement Techniques

Solution 4.1

MATLAB!

Solution 4.2

MATLAB!

Solution 4.3 Subsampling of a Time Signal

a)

y(t) = sin(2π · 10Hz · t) f0 = 9Hz

Shannon’s sampling theorem:

f0 > 2fmax

9Hz > 2 · 10Hz  

Because of the sampling we can transform the time t:

t =
1

f0

k = T0k with k = 0, 1, 2, ...

⇒ y(k) = sin(2π
10Hz

f0

k)

= sin

(
2π

10

9
k

)
= sin(2π(1 +

1

9
)k)

= sin(2πk +
2π

9
k)

Because the sine is 2π-periodic, this is the same as:

y(k) = sin(
2π

9
k)

= sin

2π · 1Hz︸︷︷︸
measured frequency

· 1

9Hz
k︸ ︷︷ ︸

t


2nd way to calculate the measured frequency is missing just right now... See handwritten
notes!
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We know that:

ωm = ωs ± lω0 with l = ...,−2,−1, 0,+1, ...

⇔ fm = fs ± lf0

Here:
∣∣∣∣f0

2

∣∣∣∣ = 4, 5Hz

fm = 10Hz ± l · 9Hz
Find l such that

−f0

2
< fm <

f0

2
⇒ l = −1⇒ fm = 1Hz

22
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5 Measurement Errors and Statistics

Solution 5.1 Correlation Analysis

a) Determine the coordinates of all data points in figure 1 and list them in a table.

Tabelle 1: Coordinates of all data points.
k 1 2 3 4 5
x -1 -0.5 0 0.5 1
y 1.1 0.2 0 0.2 1.1

b) Calculate the correlation coefficient for all data points of figure 1.

Equation to calculate the correlation coefficient:

ρxy =
1

N−1

∑N
k=1(x(k)− x̄)(y(k)− ȳ)

σxσy
. (5)

Because we do not know the mean values of x, y and their standard deviations, these
values are approximated as follows:

z̄ =
1

N

N∑
k=1

z(k) , (6)

σ̂z =

√√√√ 1

N − 1

N∑
k=1

(z(k)− z̄)2 . (7)

The approximated values of the mean and the standard deviation of x are:

x̄ =
1

5
[(−1) + (−0.5) + 0 + 0.5 + 1] = 0 . (8)

σ̂x =

√
1

5− 1
[(−1)2 + (−0.5)2 + 02 + 0.52 + 12] =

√
2.5

4
≈ 0.79 . (9)

The mean value as well as the standard deviation for y are missing:

ȳ =
1

5
[1.1 + 0.2 + 0 + 0.2 + 1.1] =

2.6

5
= 0.52 . (10)

σ̂y =

√
1

5− 1
[(1.1− 0.52)2 + (0.2− 0.52)2 + (0− 0.52)2 + · · · (11)

· · ·+ (0.2− 0.52)2 + (1.1− 0.52)2] ≈
√

1.15

4
≈ 0.54 . (12)
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The numerator ρxy2 · σxσy is calculated in the following:

ρxy · σxσy =
1

5− 1
[−1 · (1.1− 0.52) +−0.5 · (0.2− 0.52) + · · · (13)

0 · (0− 0.52) + 0.5 · (0.2− 0.52) + 1 · (1.1− 0.52)] (14)

=
0

4
= 0 . (15)

The correlation coefficient is exactly zero, which means, that there is no (linear)
correlation between x and y. Even though the correlation is very low, we see that in
fact there is a dependency between the two variables.

c) Now calculate two correlation coefficients for figure 1. For the first one use all data
points, where the x values are smaller or equal to zero. For the second one use all
data points, where the x values are bigger or equal to zero.

Correlation coefficient for all data points where x ≤ 0:
New values arise for the mean and standard deviation of x and y as well as for the
numerator ρxyL · σxLσyL:

x̄L =
1

3
[(−1) + (−0.5) + 0] = −0.5 . (16)

σ̂xL =

√
1

3− 1
[(−1− (−0.5))2 + (−0.5− (−0.5))2 + · · · (17)

· · ·+ (0− (−0.5))2] = 0.5 . (18)

ȳL =
1

3
[0 + 0.2 + 1.1] ≈ 0.43 . (19)

σ̂yL =

√
1

3− 1
[(0− 0.43)2 + (0.2− 0.43)2 + (1.1− 0.43)2] ≈ 0.59 . (20)

ρxyL · σxLσyL =
1

3− 1
[(−1− (−0.5)) · (1.1− 0.43) + · · · (21)

· · ·+ (−0.5− (−0.5)) · (0.2− 0.43) + · · · (22)
· · ·+ (0− (−0.5)) · (0− 0.43)] ≈ −0.28 . (23)

With these values the correlation coefficient for the left hand side is given by:

ρxyL ≈
−0.28

0.5 · 0.59
≈ −0.95 . (24)

The correlation coefficient for all data points where x ≥ 0:
Nearly all values from the left hand side maintain except for the mean of x and the
numerator ρxyR · σxRσyR:

x̄R =
1

3
[0 + 0.5 + 1] = 0.5 . (25)
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ρxyR · σxRσyR =
1

3− 1
[(1− 0.5) · (1.1− 0.43) + · · · (26)

· · ·+ (0.5− 0.5) · (0.2− 0.43) + · · · (27)
· · ·+ (0− 0.5) · (0− 0.43)] ≈ 0.28 . (28)

The absolute value of the correlation coefficient for the right hand side maintains:

ρxyR ≈
0.28

0.5 · 0.59
≈ 0.95 . (29)

For both cases we get an absolute correlation coefficient near the possible maximum
(which is 1). This indicates a high correlation between x and y if we do not incorpo-
rate all measured samples. Conclusion: High correlation values only reveal a linear
correlation between variables. More complex dependencies can not be revealed.
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Solution 5.2 Autocorrelation Function

a) Figure out which positive time shifts τ are likely to have the highest autocorrelation
function value, except for τ = 0.

In general the following two equations are used to calculate the auto-correlation
functions for positive time-shifts τ :

rxyBias(τ) =
1

N

N−|τ |∑
k=1

x(k)x(k + τ) , (30)

rxy(τ) =
1

N − |τ |

N−|τ |∑
k=1

x(k)x(k + τ) . (31)

By looking at figures 13 and 14 we realize, that there should be a maximum for
the biased as well as for the unbiased auto-correlation function at τ1 = 1, τ2 = 4,
τ3 = 8 and τ4 = 12. We should keep in mind that the values left to calculate the

0 2 4 6 8 10 12 14 16 18
−3

−2

−1

0

1

2

3

k

x(
k)

Figure 13: Function together with time-shifted function τ = 1.

0 2 4 6 8 10 12 14 16 18
−3

−2

−1

0

1

2

3

k

x(
k)

Figure 14: Function together with time-shifted function τ = 4.

auto-correlation function decreases with an increasing time-shift τ .
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1

2

3

k

x(
k)

Figure 15: Function together with time-shifted function τ = 8.

0 2 4 6 8 10 12 14 16 18
−3

−2

−1

0

1

2

3

k

x(
k)

Figure 16: Function together with time-shifted function τ = 12.

0 2 4 6 8 10 12 14 16 18
−1

−0.5

0

0.5

1

τ

x(
k)

 

 
Biased
Unbiased

Figure 17: Biased and unbiased auto-correlation functions.

b) Calculate the autocorrelation function values for the time shifts found in a) with the
unbiased equation.

For the time-shift τ = 1 six summands are not zero (N − |τ | = 18):
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rxx(τ = 1) =
1

18
[x(3) · x(3 + 1) + x(4) · x(4 + 1) + x(11) · x(11 + 1) + · · · (32)

· · ·+ x(12) · x(12 + 1) + x(15) · x(15 + 1) + x(16) · x(16 + 1)] (33)

=
1

18
[6 · 2] (34)

=
12

18
≈ 0.67 (35)

For the time-shift τ = 4 only three summands are not zero (N − |τ | = 15):

rxx(τ = 4) =
1

15
[x(11) · x(11 + 4) + x(12) · x(12 + 4) + x(13) · x(13 + 4)] (36)

=
1

15
[1 · (−1) + 2 · (−2) + 1 · (−1)] (37)

=
−6

15
≈ −0.40 (38)

For the time-shift τ = 8 the value for N − |τ | = 11 changes:

rxx(τ = 8) =
−6

11
≈ −0.55 (39)

For the time-shift τ = 12 the value for N − |τ | = 7 changes as well as the sign of the
resulting numerator:

rxx(τ = 12) =
1

7
[x(3) · x(3 + 12) + x(4) · x(4 + 12) + x(5) · x(5 + 12)] (40)

=
1

7
[1 · 1 + 2 · 2 + 1 · 1] (41)

=
6

7
≈ 0.86 (42)

c) Calculate the autocorrelation function values for the time shifts found in a) with the
biased equation.

For this step we can use the results from b). All summands stay the same, but the
denominator N−|τ | becomes N and therefore stays the same for all three time-shifts.
τ1 = 1:

rxxBiased(τ = 1) =
12

19
≈ 0.63 (43)

For the time-shifts τ = 4 and τ = 8 the auto-correlation value is (N = 19):

rxxBiased(τ = 4) = rxxBiased(τ = 8) =
−6

19
≈ −0.32 (44)
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For the time-shift τ = 12 only three summands are not zero (N = 19):

rxxBiased(τ = 12) =
6

19
≈ 0.32 (45)

In case of the biased auto-correlation estimation the division through N instead of
N − |τ | leads to a systematic error. The absolute value of this estimation is always
smaller than the unbiased one. This takes into account, that the uncertainty of the
estimation increases due to an increase in the variance error as will be explained in the
following. The number of values that are available to estimate the auto-correlation
function decreases with an increasing time-shift τ . Therefore the calculation is based
on fewer data points, which leads to a lower averaging effect and which makes the
result more sensitive to noisy data.
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Figure 18: Biased versus unbiased Auto-Correlation Functions. 30
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Solution 5.3 Correlation Coefficients

Figure 2 (a): ρxy = 0.9.
Figure 2 (b): ρxy = −1.
Figure 2 (c): ρxy = −0.4.
Figure 2 (d): ρxy = 0.
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Solution 5.4 Resistive Position Sensor

a) Sketch

R(s) = R0
s

l
; (46)

U(s) = U0

(
1− e−5

R(s)
R0

)
(47)

(1) in (2):

U(s) = U0

(
1− e−5��R0s

��R0l

)
(48)

To sketch the transfer function U(s) qualitatively, we need to know the slope of the
curve at the beginning (s=0)

d(U(s))

ds
=
dU0

ds
− d(U0e

−5 s
l )

ds

= 0− (−5

l
U0e

−5 s
l )

=
5

l
U0e

−5 s
l

dU(s = 0)

ds
=

5

l
U0

=
5

10mm
U0 =

1

2

U0

mm
= 5

V

mm

Figure 19: Sketch: Function and slope of U(s)
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b) Gaussian error propagation: ∆Us ≈ d(Us)
ds
·∆s

∆y =
∂f

∂x1

∆x1 +
∂f

∂x2

∆x2 + ...+
∂f

∂xn
∆xn Generalized equation

d(U(s))

ds
=

5

l
U0e

−5 s
l

⇒ ∆Us ≈
5

l
U0e

−5
s0
l (s− s0)︸ ︷︷ ︸

∆s
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Solution 5.5 Errorpropagation at Measuring Errors

s(t, T ) = 1
2
t
√
κLRLT –> 2 dependent variables!

a) Specify the Gaussian error propagation ∆s for the ultrasonic position sensor!

∆s =

√(
∂s

∂t
∆t

)2

+

(
∂s

∂T
∆T

)2

∂s

∂t
=

1

2

√
κLRLT ;

∂s

∂T
=

1

2
t · 1

2
√
κLRLT

·RLκL

⇒ ∆s =

√
1

4
κLRLT ·∆t2 +

1

16

t2R2
Lκ

2
L∆T 2

κLRLT

=

√
1

4
κLRLT ·∆t2 +

1

16

t2RLκL
T

∆T 2

b) Compare the values of the expressions within the square root of the Gaussian error
propagation in case of ∆t = 0.1t and ∆T = 0.1T for any operating point si(ti, Ti).

To compare the two terms underneath the square root, we calculate the ratio:

F =

(
∂s
∂t

∆t
)2(

∂s
∂T

∆T
)2

=
1
4��κL�

�RLT ·∆t2
1
16
t2��RL��κL

T
∆T 2

=
4T 2∆t2

t2∆T 2

=
4∆t2T 2

t2∆T 2
∆t = 0.1t⇔ ∆t

t
= 0.1 ; ∆T = 0.1T ⇔ T

∆T
= 10

= 4 · (0.1)2 · (10)2

= 4 · 10−2 · 102

= 4

The same relative error (0.1) causes a 4 times higher value for the first summand
than for the second one. An accurate measuring of the run time is very important
for this type of sensor!

34



Sensorics exercises Prof. Dr.-Ing. O. Nelles University of Siegen

Solution 5.6 Temperature Measurement

a) Recommendation: Number of intervals ni =
√
N

N: Number of measurements Here: 25 = N → ni = 5
Here: 25 = N ⇒ ni = 5
Lower boundary: minimum of measurements Tmin = 49.49◦C Upper boundary: ma-
ximum of measurements Tmax = 50.23◦C.

Tmin TmaxΔT

I1 I2 I3 I4 I5

Figure 20: Intervals for the histogram.

All intervals have the same width ∆T = Tmax−Tmin
ni

⇒ ∆T = 50.23−49.49
5

= 0.74
5

= 0.148

I1 : 49.49− 49.638 Number of values within interval: 2
I2 : 49.638− 49.786 Number of values within interval: 4
I3 : 49.786− 49.934 Number of values within interval: 4
I4 : 49.934− 50.082 Number of values within interval:11
I5 : 50.082− 50.23 Number of values within interval: 4

Figure 21: Histogram of the measured temperatures.
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b) Calculate the sample mean and the sample variance!

Convention: T (i) is the i-th measured temperature.

Sample mean:

T̄ =
1

N

N∑
i=1

T (i)

= 49.918◦C

Sample variance:

s2
T =

1

N − 1

N∑
i=1

(T (i)− T̄ )2

= 0.0329(◦C)2

c) Calculate in what range the true temperature will be with a probability of 99.7%!

Since the variance s2
T is estimated from the measurements in table 1, we should use

the student’s t-distribution. The factor c for the t-distribution can be obtained from
page 162 in the script. Therefore we look at the column for a confidence level of
1 − α = 99.7%. Furthermore the line for N = 20 measurements is closest to our
case, where the number of measurements to determine the standard deviation was
N = 25.

c = 3.42

T̄ − c · sT√
N
< T < T̄ + c · sT√

N

For this new measurement, where we measured a temperature of 75◦C, only one
measurement exists. So N = 1 and T̄ = 75◦C. Important: To determine the factor c
for a demanded confidence level, N is the number of measurements, that were used
to estimate the standard deviation sT .

Now we can calculate the range:

75− 3, 42 · 0.1814√
1

< T < 75 + 3.42 · 0.1814√
1

74.38◦C < T < 75.62◦C

d) What can be done to improve the accuracy of the temperature measurement without
changing the measurement instrument?

We can carry out more than just one temperature measurement to decrease the factor
sT√
N
.

36



Sensorics exercises Prof. Dr.-Ing. O. Nelles University of Siegen

6 Static and Dynamic Behavior of Sensors

Solution 6.1 Linearization and Inversion

a) Inversion of the equation︸ ︷︷ ︸
characteristic has to be strictly monotonic!

: R = R0e
b·
(

1
T
− 1
T0

)

Given equation: R = f(T )
Inverted equation: T = f(R)

R = R0e
b·
(

1
T
− 1
T0

)
|ln

⇔ lnR = lnR0 + b ·
(

1

T
− 1

T0

)
| − lnR0; : b

⇔ lnR− lnR0

b
=

1

T
− 1

T0

|+ 1

T0

⇔ lnR− lnR0

b
+

1

T0

=
1

T
|()−1

⇔ T =

(
1

b
ln
R

R0

+
1

T0

)−1

⇔ T =

(
T0ln

R
R0

+ b

T0b

)−1

⇔ T =
T0b

T0ln
R
R0

+ b

- only for strictly monotonic relationships
+ valid in the whole range
- Sensitivity can change
- often true relationship not known (no inversion possible)

b) Linearize the equation around TOP !
At first some definitions:

y = f(~x) with ~x =
[
x1 x2 x3 ... xn

]
Operating Point: ~x0 =

[
x1,0 x2,0 x3,0 ... xn,0

]
General equation for linear approximation of a function that depends on n variables:

ỹ = f ( ~x0) +
∂f

∂x1

∣∣∣∣
~x0

(x1 − x1,0) +
∂f

∂x2

∣∣∣∣
~x0

(x2 − x2,0) +
∂f

∂xn

∣∣∣∣
~x0

(xn − xn,0)

Here we want to linearize

R(T ) = R0e
b·
(

1
T
− 1
T0

)
⇒ R̃ = R(TOP ) +

∂R

∂T

∣∣∣∣
TOP

[T − TOP ]
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Therefore we have to calculate the partial differential as well as the resistance at the
operating point TOP .

∂R

∂T
= R0e

b
(

1
T
− 1
T0

)
·
(
− 1

T 2
· b
)

Finally this leads to the following linearized equation:

R̃ = R0e
b·
(

1
TOP

− 1
T0

)︸ ︷︷ ︸
R(TOP )

+ (−1)
R0b

T 2
OP

e
b
(

1
TOP

− 1
T0

)
︸ ︷︷ ︸

∂R
∂T |TOP

[T − TOP ]

=

(
1− b

T 2
OP

[T − TOP ]

)
R0e

b·
(

1
TOP

− 1
T0

)

Advantages of linear/affine characteristics:

• easy to understand and handle

• described by only one (linear) or two (affine) parameters

• identical sensitivities (slopes) in all operating points (behaviour is the same for dif-
ferent operating points)

Distinction between linear (proportional relationship) and affine (proportional relation-
ship + offset) → explanation of life and dead zero!
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Solution 6.2 Tank with Inflow and Outflow

a) Derive the differential equation of the fill level h(t)
Dependencies on time are neglected in the following.

ρgh =
1

2
ρv2 (1)

av + Aḣ(t) = V̇ (2)

From equation 1 we get the formula to calculate the velocity v:

v =
√

2gh (3)

Put equation 3 in equation 2:

a
√

2gh+ Aḣ = V̇ | : A;− a
A

√
2gh

⇐⇒ ḣ =
1

A
V̇ − a

A

√
2gh

b) Derive the differential equation of the fill level for a stationary operating point.
At a stationary operating point the change of the fill level is zero and the volume
flow V̇ is approximtely constant

=⇒ 0 =
1

A
V̇0 −

a

A

√
2gh0 |+ a

A

√
2gh0

⇔ a

A

√
2gh0 =

1

A
V̇0 | · A

a

⇔
√

2gh0 =
V̇0

a
|()2

⇔ 2gh0 =
V̇0

2

a2
| : 2g

⇔ h0 =
V̇0

2

2ga2

c) Linearize the differential equation around a stationary operating point (h0, V̇0).
For simplicity and avoiding confusion we substitute
h(t)→ y, which is our system output
V̇ (t)→ u, which is our system input

ḣ =
1

A
V̇ − a

A

√
2gh

⇐⇒ ḣ+
a

A

√
2gh− 1

A
V̇ = 0

⇐⇒ ẏ +
a

A

√
2gy − 1

A
u = 0

→ this kind of equation is needed to use the generalized equation to linearize a
nonlinear dynamic system with 1 input and 1 output
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y0 +
∂f

∂y

∣∣∣∣
OP

(y − y0) +
∂f

∂y(1)

∣∣∣∣
OP

(y(1) −
�
�y

(1)
0 ) +

∂f

∂y(2)

∣∣∣∣
OP

(y(2) −
�
�y

(2)
0 ) + · · ·+ · · ·

· · ·+ ∂f

∂y(n)

∣∣∣∣
OP

(y(n) −
�
��y

(n)
0 ) +

∂f

∂u

∣∣∣∣
OP

(u− u0) +
∂f

∂u(1)

∣∣∣∣
OP

(u(1) −
�

��u
(1)
0 ) + · · ·+ · · ·

· · ·+ ∂f

∂u(m)

∣∣∣∣
OP

(u(m) −�
��u
(m)
0 ) = 0

Following derivatives have to be calculated:

∂f

∂y
=

a2g

A2
√

2gy

∂f

∂y

∣∣∣∣
OP

=
ag

A
√

2gy0

∂f

∂ẏ
= 1

∂f

∂ẏ

∣∣∣∣
OP

= 1

∂f

∂u
= − 1

A

∂f

∂u

∣∣∣∣
OP

= − 1

A

⇒ y0 +
ag

A
√

2gy0

(y − y0) + 1 (ẏ −��̇y0)− 1

A
(u− u0) = 0

7 Introduction to Signal Processing

No exercises for this chapter yet.
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8 Time-Discrete Systems and Signals

Solution 8.1 Relationship Between Unit Impulse and Unit Step

Figure 22: Comparision Dirac-Impulse and Kronecker-Delta.

Figure 23: Comparision of the continous time and discrete time unit-step.

Relationship: Relationship:

δt =
dσt

dt
δK(k) = σ(k)− σ(k − 1)︸ ︷︷ ︸

Approximation of the time
derivative in the discrete World
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Solution 8.2 Transforming a Differential Equation into a Difference Equa-
tion

k-1 k

y(k)-y(k-1)T0

y(k)

y(k-1)

Figure 24: Derivative approximation.

In the continuous time case, the derivative with respect to time can be approximated
as follows:

ẏ(t) ≈ y(t)− y(t−∆t)

∆t
.

In the discrete time case this corresponds to:

ẏ(t) ≈ y(kT0)− y(kT0 − 1 · T0)

T0

.

For our given equation this leads to:

ẏ(t) + ay(t) = bu(t) |Transformation into the continuous time
y(kT0)− y(kT0 − 1T0)

T0

+ ay(kT0) = bu(kT0) | · T0

y(kT0)− y(kT0 − 1T0) + T0ay(kT0) = T0bu(kT0) |Equationtransformation
y(kT0)[1 + T0a]− y(kT0 − 1T0) = T0bu(kT0) |+ y(kT0 − 1T0); : (1 + T0a)

y(kT0) =
T0b

1 + T0a︸ ︷︷ ︸
b0

u(kT0) +
1

1 + T0a︸ ︷︷ ︸
a1

y(kT0 − 1T0)

We can see that the coefficients b0 and a1 of the resulting difference equation both
depend on the sampling time T0.
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Solution 8.3 Gain of a Time Discrete System

The gain K of the system is the end value of the step response h(t):

K = lim
t→∞

h(t)

= lim
s→0

sH(s)

In principle there are two ways to determine the gain of the system:

1st way: For k →∞ y(k) and y(k-1) both equal the end value of the step response:

y(k) = y(k →∞) = lim
k→∞

h(k) = K

The unit step is one for all time steps equal or greater than k → u(k →∞) = 1
This leads us to the following gain of the time discrete system:

y(k) = 0, 2u(k) + 0, 9y(k − 1) |k →∞
K = 0, 2 · 1 + 0, 9K | − 0, 9K

K [1− 0, 9] = 0, 2 | : [1− 0, 9]

K =
0, 2

1− 0, 9

= 2

2nd way: Using the relationship between time t, the Laplace variable s and the time
shift operator z:
t ∼ 1

s

To determine the gain of the system we are searching for the value if t reaches infinity:
t→∞ this is equivalent to k →∞ in the time discrete case.
In the Laplace domain this means s→ 0
With the definition of z = esT0 we are searching the value of the system for z=1!

K = lim
s→0

sH(s) = lim
z→1

(z − 1)H(z) (see script page 232)

H(z) = G(z) · U(z)︸︷︷︸
Unit step

y(k) = 0, 2u(k) + 0, 9y(k − 1)dt

Y (z) = 0, 2U(z) + 0, 9z−1Y (z) | − 0, 9z−1Y (z)

Y (z)
[
1− 0, 9z−1

]
= 0, 2U(z) | :

[
1− 0, 9z−1

]
⇔ G(z) =

0, 2

1− 0, 9z−1
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z-Transform of a unit step:

u(k) = σ(k) d tU(z) =
1

1− z−1
=

z

z − 1

So the gain can be calculated:

K = lim
z→1

����(z − 1) · 0, 2

1− 0, 9z−1
· z

���z − 1

=
0, 2

1− 0, 9
=

0, 2

0, 1
= 2
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Solution 8.4 Difference Equation and z-Transform

a) Derivation of the difference equation from the following block diagram

u(k)

z-1

z-1

z-1

b0

b1

b2

b3

y(k)

Figure 25: Block diagram of a third order system.

y(k) = b0u(k) + b1u(k − 1) + b2u(k − 2) + b3u(k − 3)

b) Because y(k) only depends on the input u the system’s response to an impulse is of
finite length!

c) Definition of a transfer function G(z) = Y (z)
U(z)

y(k) = b0u(k) + b1u(k − 1) + b2u(k − 2) + b3u(k − 3)dt
Y (z) = b0U(z) + b1z

−1U(z) + b2z
−2U(z) + b3z

−3U(z)

⇒ G(z) =
Y (z)

U(z)
= b0 + b1z

−1 + b2z
−2 + b3z

−3 |T

⇔ G(z) =
b0z

3 + b1z
2 + b2z + b3

z3︸︷︷︸
3 poles at z=0 are typical for FIR-System

d) Step response H(z) = G(z) · U(z) with U(z) = 1
1−z−1 = z

z−1

H(z) =
b0 + b1z

−1 + b2z
−2 + b3z

−3

1− z−1

= b0
1

1− z−1
+ b1

1

1− z−1
z−1 + b2

1

1− z−1
z−2 + b3

1

1− z−1
z−3

dt

h(k) = b0σ(k) + b1σ(k − 1) + b2σ(k − 2) + b3σ(k − 3)
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e) If there is no information about former input or output signals we always assume
these values to be zero!

h(0) = b0 = 0, 25

h(1) = b0 + b1 = 0, 5

h(2) = b0 + b1 + b2 = 0, 75

h(3) = b0 + b1 + b2 + b3 = 1

h(4) = h(3) = 1

h(5) = h(3) = 1

Figure 26: step response of the time discrete system
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Solution 8.5 Block Diagram and z-Transform

a) The block diagram of the given difference equation:

Figure 27: Blockschaltbild

b) Here we have an IIR-System because the current output depends on former outputs!

c) Transfer function G(z) = Y (z)
U(z)

y(k) + a1 · y(k − 1) + a2 · y(k − 2) = b0 · u(k) + b1 · u(k − 1) + b2 · u(k − 2)

�
⇒ Y (z) + a1 · z−1 · Y (z) + a2 · z−2 · Y (z) = b0 · U(z) + b1 · z−1 · U(z) + b2 · z−2 · U(z)

⇔ Y (z) · (1 + a1 · z−1 + a2 · z−2) = U(z) · (b0 + b1 · z−1 + b2 · z−2)

⇒ G(z) = Y (z)
U(z)

= b0+b1·z−1+b2·z−2

1+a1·z−1+a2·z−2

d) With a2 = b2 = 0 we get the equation:

y(k) = −a1 · y(k − 1) + b0 · u(k) + b1 · u(k − 1)

with

u(k) = δk(k) =

{
1 k = 0
0 else

For u(k) = δk(k) we get the impulse response:

y(0) = g(0) = −a1 y(−1)︸ ︷︷ ︸
=0

+b0 u(0)︸︷︷︸
=1

+b1 u(−1)︸ ︷︷ ︸
=0

= b0

y(1) = g(1) = −a1 y(0)︸︷︷︸
=b0

+b0 u(1)︸︷︷︸
=0

+b1 u(0)︸︷︷︸
=1

= −a1b0 + b1

y(2) = g(2) = −a1y(1) + b0 u(2)︸︷︷︸
=0

+b1 u(1)︸︷︷︸
=0

= −a1 (−a1b0 + b1) = (−a1)2b0 + (−a1)1b0

y(3) = g(3) = −a1y(2) + b0 u(3)︸︷︷︸
=0

+b1 u(2)︸︷︷︸
=0

= (−a1)2 (−a1b0 + b1) = (−a1)3b0 + (−a1)2b0

y(4) = g(4) = −a1y(3) + b0 u(4)︸︷︷︸
=0

+b1 u(3)︸︷︷︸
=0

= (−a1)4b0 + (−a1)3b0

...
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⇒ g(k) =

{
b0 for k = 0

b0 · (−a1)k + b1 · (−a1)k−1 for k ≥ 1
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Solution 8.6 z-Transform of the Unit Step

Definition of the unit step:

σ(k) =

{
1 k ≥ 0

0 else

The unit step can be interpreted as a train of impulses:

u(k) = δk(k) + δk(k − 1) + δk(k − 2) + · · ·
If we transform the discrete signal u(k) into the z-domain, the equation becomes:

U(z) = 1 · z0 + 1 · z−1 + 1 · z−2 + · · ·

=
∞∑
i=0

(z−1)k

This geometrical series can easily be transformed (see script on p. 223) into:

U(z) =
1

1− z−1

=
z

z − 1

If we now use the z-transform of the unit step as a transfer function and apply an unit
step to this ’system’, we will see the integrating behavior. At first we transform the

U(z) Y(z)
z
z-1

Figure 28: z-Transform of the unit step as a transfer function.

system from the z-domain back to the discrete time domain:

Y (z) =
1

1− z−1
U(z) | · (1− z−1)

Y (z)[1− z−1] = U(z) |Equation transformation
Y (z) = U(z) + z−1Y (z) |Transformation into the discrete time domain
y(k) = u(k) + y(k − 1)

Now we apply the unit step to our discrete time system:

y(0) = u(0) + y(−1)

= 1 + 0 = 1

y(1) = u(1) + y(0)

= 1 + 1 = 2

y(2) = u(2) + y(1)

= 1 + 2 = 3

...

We can see, that our transfer function sums up all input values. In discrete time this is
analogous to an integrator in the continuous time.
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Solution 8.7 First Order IIR-System

The following difference equation is given: y(k) = 0, 2 · u(k) + 0, 6 · y(k − 1).

a) Impulse Response:

u(k) = δK(k) =

{
1 for k = 0
0 else

g(0) = 0.2 · 1︸︷︷︸
u(0)

+0.6 · 0︸︷︷︸
y(−1)

= 0.2

g(1) = 0.2 · 0︸︷︷︸
u(1)

+0.6 · 0.2︸︷︷︸
y(0)

= 0.2 · 0.6

g(2) = 0.2 · 0︸︷︷︸
u(2)

+0.6 · 0.6 · 0.2︸ ︷︷ ︸
y(1)

= 0.2 · 0.62

g(3) = 0.2 · 0︸︷︷︸
u(3)

+0.6 · 0.62 · 0.2︸ ︷︷ ︸
y(2)

= 0.2 · 0.63

...
⇒ y(k) = 0.2 · 0.6k

Step Response:

u(k) = σ(k) =

{
1 for k ≥ 0
0 else

h(0) = 0.2 · 1︸︷︷︸
u(0)

+0.6 · 0︸︷︷︸
y(−1)

= 0.2

h(1) = 0.2 · 1︸︷︷︸
u(1)

+0.6 · 0.2︸︷︷︸
y(0)

= 0.2 · (1 + 0.6)

h(2) = 0.2 · 1︸︷︷︸
u(2)

+0.6 · 0.2 · (1 + 0.6)︸ ︷︷ ︸
y(1)

= 0.2 · (1 + 0.6 + 0.62)

h(3) = 0.2 · 1︸︷︷︸
u(3)

+0.6 · 0.2 · (1 + 0.6 + 0.62)︸ ︷︷ ︸
y(2)

= 0.2 · (1 + 0.6 + 0.62 + 0.63)

...

⇒ y(k) = 0.2 ·
k∑
i=0

(0.6)i

b) Transformation into the time domain
The geometrical series has already been determinded in a)!

g(k) = 0.2 · (0.6)k

�
⇒ G(z) = g(0) · z0 + g(1) · z−1 + g(2) · z−2 + . . .

= 0.2 · z0 + 0.2 · 0.6 · z−1 + 0.2 · 0.62 · z−2 + . . .

= 0.2 ·
∞∑
k=0

(0.6)k · z−k = 0.2 ·
∞∑
k=0

(
0.6 · z−1

)k

50



Sensorics exercises Prof. Dr.-Ing. O. Nelles University of Siegen

With the help of the following relationship

∞∑
k=0

xi =
1

1− x ,

we obtain the transfer function:

⇒ G(z) = Y (z)
U(z)

= 0.2
1−0.6·z−1 = 0.2·z

z−0.6

c) Transfer function:

G(z) =
0, 2

1− 0, 6 · z−1

• Biproper property:
Because the numerator and denominator have the same order the biproper pro-
perty is given!
b0 = 0, 2 6= 0 →u(k) has a direct influence on y(k)!

• Dead Time:
This system has no dead time because no term of kind z−d can be factored out
(in the writing with only negative exponents!)

• Causality:
Because the degree of the numerator and denominator are equal (in the writing
with only positive exponents) the system is causal! (No future values must be
predicted!)

• Stability:
System is stable
One pole at 0, 6 = z < 1!

Gain of the system:
The value of step response after infinite time!

t ∼ 1
s
; z = esT0

h(k →∞) = G(z = 1)

because: h(k →∞) = lim
z→1

(z − 1) · G(z) · z

z − 1︸ ︷︷ ︸
step U(z)︸ ︷︷ ︸

step response H(z)

= lim
z→1

G(z) · z = G(z = 1)

⇒h(k →∞) =
0.2

1− 0.6
=

0.2

0.4
= 0.5
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Solution 8.8 Step Response of a PT1-System

Transfer function of the PT1-system:

G(z) =
1

1− 0.8z−1
.

To calculate the end value of the step response, we need to know the z-transform of the
unit step, which is:

u(k) = σ(k) d tU(z) =
z

z − 1
.

Now we can calculate the end value as follows:

h(k →∞) = lim
z→1

����(z − 1)
1

1− 0.8z−1
· z

���z − 1

=
1

1− 0.8
· 1

=
1

0.2
= 5

The end value is 5.
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Solution 8.9 Comparison of the Invariance of the Impulse Response and
the Step Response

d)a) The relationship between the impulse response g(t) and the step response h(t) is
given by (see script page 218):

h(t) =

t∫
0

g(τ)dτ =

t∫
0

K

T
· e− τ

T dτ

Hint:
∫
ea·xdx = 1

a
· ea·x

h(t) =
K

T

t∫
0

e−
τ
T dτ =

K

T
·
[
−T · e− τ

T

]t
0

=
K

T
·

−T · e− t
T −

(
−T · e0

)︸ ︷︷ ︸
=T


⇒ h(t) = K

(
1− e tT

)
with K = 5;T = 5⇒ h(t) = 5 ·

(
1− e− t5

)
Because of sampling the continous time t becomes kT0:

t = kT0

⇒ h(kT0) = h(k) = 5 ·
(

1− e− k5
)

Transformation (every value at a discrete time is multiplied by a time shifted impul-
se):

H(z) =
∞∑
k=0

h(k) · z−k =
∞∑
k=0

5 ·
(

1− e− k5
)
· z−k

⇒ H(z) = 5 ·
[
∞∑
k=0

z−k −
∞∑
k=0

e−
k
5 · z−k

]

= 5 ·
[
∞∑
k=0

z−k −
∞∑
k=0

(
e−

1
5 · z−1

)k]

Geometrical series:
∞∑
k=0

xk = 1
1−x

here: xk = z−k =
(
z−1
)k ⇒ x = z−1 =

1

z
⇒

∞∑
k=0

z−k =
1

1− z−1

and: xk =
(
e−

1
5 · z−1

)k
⇒ x = e−

1
5 · z−1 ⇒

∞∑
k=0

(
e−

1
5 · z−1

)k
=

1

1− e− 1
5 · z−1

⇒ H(z) = 5 ·
[

1

1− z−1
− 1

1− e− 1
5 · z−1

]
→ step response in the z-domain!
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To get the transfer function G(z) of the system we use the following relationship:

H(z) = G(z) · 1

1− z−1

with σ(k)�
1

1− z−1

⇔G1(z) = H(z) ·
(
1− z−1

)
|Transfer function via the invariance of the step response!

G1(z) = 5 ·
[

1

1− z−1
− 1

1− e− 1
5 z−1

] (
1− z−1

)
= 5 ·

(
1− 1− z−1

1− e− 1
5 z−1

)
G1(z) = 5 · �1− e

− 1
5 z−1

��−1 + z−1

1− e− 1
5 z−1

G1(z) = 5 ·

(
1− e− 1

5

)
z−1

1− e− 1
5 z−1

mit e−
1
5 ≈ 0.82

⇒ G1(z) =
0.9 · z−1

1− 0.82 · z−1
=

0.9

z − 0.82

b) The following impulse response is given: g(t) = K
T
· e− t

T .

g(t) =
K

T
· e− t

T with: K = 5, T = 5

⇒ g(t) = e−
t
5

Sampling:

t = k · T0 → g(k) = e−
kT0
5

T0 = 1 → g(k) = e−
k
5

z-Transformation:

G2(z) =
∞∑
k=0

g(k) · z−k =
∞∑
k=0

e−
k
5 · z−k ⇒ G2(z) =

∞∑
k=0

e−
k
5 · z−k =

∞∑
k=0

(
e−

1
5 · z−1

)k
Geometrical series:

∞∑
k=0

xk = 1
1−x

with: xk =
(
e−

1
5 · z−1

)k
⇒ x = e−

1
5 · z−1 ⇒

∞∑
k=0

(
e−

1
5 · z−1

)k
=

1

1− e− 1
5 · z−1

⇒ G2(z) =
1

1− e− 1
5 · z−1

mit e−
1
5 ≈ 0.82

⇒ G2(z) =
1

1− 0.82 · z−1
6= G1(z) =

0.9 · z−1

1− 0.82 · z−1
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Comparison of the stability of G(z) and G2(z):

→ Same denominator, same stability properties! Both transfer functions have one
pole at p = 0.82, so both are stable!

Gain-Comparison:

h1(k →∞) = lim
z→1

(z − 1)H1(z)

= lim
z→1

(���z − 1)
0.9

1− 0.82
· z

���z − 1

=
0.9

1− 0.82
= 5

h2(k →∞) = lim
z→1

(z − 1)H2(z)

= lim
z→1

(���z − 1)
1

1− 0.82
· z

���z − 1

=
1

1− 0.82
= 5, 56

⇒5 6= 5.56⇒ h1(k →∞) 6= h2(k →∞)

Biproper Comparison:

G1(z) =
Y (z)

U(z)
=

0.9z−1

1− 0.82z−1
⇒ y1(k) = 0.82y1(k − 1) + 0.9u(k − 1)

⇒ System 1 is not biproper because there is no feedthrough (b0 = 0).

G2(z) =
Y2(z)

U(z)
=

1

1− 0.82z−1
⇒ y2(k) = 0.82y2(k − 1) + u(k)

⇒ System 2 is biproper because of the feedthrough (b0 6= 0).

c) Step responses of the time continous system, of G1(z) and of G2(z)

At first we calculate the systems output, where we demanded the invariance of the
step response:

G1(z) =
Y (z)

U(z)
=

0, 9 · z−1

1− 0, 82 · z−1
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Figure 29: Step response of the time continous system (blue), of the time discrete sys-
tem with invariance of the step response (green) and of the time discrete system with
invariance of the impulse response (red).

→ y1(k) = 0, 82y1(k − 1) + 0, 9u(k − 1)

y1(k = 0) = 0

y1(k = 1) = 0, 9

y1(k = 2) = 0, 82 · 0, 9 + 0, 9 · 1 = 1, 638

y1(k = 3) = 2, 24

y1(k = 4) = 2, 73

y1(k = 5) = 3, 14

y1(k = 6) = ...

...
y1(k = 10) = 4, 31

y1(k = 20) = 4, 91

y1(k = 30) = 4, 99

Then we calculate the system output, where we demanded the invariance of the
impulse response:

G2(z) =
Y2(z)

U(z)
=

1

1− 0, 82 · z−1
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→ y2(k) = 0.82 · y2(k − 1) + u(k)

y2(k = 0) = 1

y2(k = 1) = 0.82y(0) + 1 = 0.82 + 1 = 1.82

y2(k = 2) = 1 + 0.82y(1) = 1 + 0.82(1 + 0.82) = 1 + 0.82 + 0.822 ≈ 2.5

y2(k = 3) = 1 + 0.82y(2) = 1 + 0.82(1 + 0.82 + 0.822) = 1 + 0.82 + 0.822 + 0.823 ≈ 3.04

y2(k = 4) = 3, 5

y2(k = 5) = 3, 9

d) Impulse response values G1(z)
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Figure 30: Impulse response of the time continous system (blue), of the time discrete
system with invariance of the step response (green) and of the time discrete system with
invariance of the impulse response (red).

g1(k) = 0.82g1(k − 1) + 0.9u(k − 1)

g1(k = 0) = 0.82 · 0 + 0.9 · 0 = 0

g1(k = 1) = 0.82 · 0 + 0.9 · 1 = 0.9

g1(k = 2) = 0.82 · 0.9 + 0.9 · 0 = 0.738

g1(k) = 0.9 · 0.82k−1

g1(k) =

{
0 for k ≤ 0

0.9 · 0.82k−1 else
g1(k = 3) = 0.605

g1(k = 4) = 0.496

g1(k = 5) = 0.407

g1(k = 6) = 0.334

Impulse response values G2(z)

g2(k) = 0.82g2(k − 1) + u(k)
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here you could also use the sampled impulse response g2(k) = e−
k
5 because the trans-

fer function G2 is derived via impulse response invariance!

g2(k) = 0.82k

g2(k = 0) = 1

g2(k = 1) = 0.82

g2(k = 2) = 0.672

g2(k = 3) = 0.551

g2(k = 4) = 0.452

g2(k = 5) = 0.371

g2(k = 6) = 0.304
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Solution 8.10 Converting an IIR-System to a FIR-System

To convert the given system

G(z) =
Y (z)

U(z)
=

0.5 + 0.5z−1

1− 0.6z−1

to an FIR-system of order 8 we simply calculate the first eight values of the impulse
response in the time domain. These values are used as coefficients for the FIR-system.
At first we convert from the z-domain to the discrete time domain:

Y (z)− 0.6z−1Y (z) = 0.5U(z) + 0.5z−1U(z) |Transformation to discrete time domain
y(k)− 0.6y(k − 1) = 0.5u(k) + 0.5u(k − 1)

Now we calculate the value sequence of the impulse response

(u(k) = δk(k) =

{
1 for k = 0

0 else
). To determine a general equation to calculate the value

sequence of the impulse response we use the coefficients a1 = 0.6, b0 = 0.5 and b1 = 0.5.

y(0) = a1y(−1) + b0u(0) + b1u(−1)

= a1 · 0 + b0 · 1 + b1 · 0
= b0

y(1) = a1y(0) + b0u(1) + b1u(0)

= a1 · b0 + b0 · 0 + b1 · 1
= a1b0 + b1

y(2) = a1y(1) + b0u(2) + b1u(1)

= a1 · (a1b0 + b1) + b0 · 0 + b1 · 0
= a1 · (a1b0 + b1)

y(3) = a1y(2) + b0u(3) + b1u(2)

= a1 · a1 · (a1b0 + b1) + b0 · 0 + b1 · 0
= a2

1 · (a1b0 + b1)

y(4) = a3
1 · (a1b0 + b1)

...

The value of the impulse response for an arbitrary value of k, can be calculated as
follows:

y(k) =


0 for k < 0

b0 = 0.5 for k = 0

(a1b0 + b1) · ak−1
1 = 0.8 · 0.6k−1 else.

Now we can determine the coefficients of the FIR of order 8:

ŷ(k) = b̃0u(k) + b̃1u(k − 1) + b̃2u(k − 2) + · · ·+ b̃8u(k − 8)

with b̃i = y(k = i). The whole FIR equation becomes:

ŷ(k) = 0.5u(k) + 0.8u(k − 1) + 0.8 · 0.61u(k − 2) + 0.8 · 0.62u(k − 3) + 0.8 · 0.63u(k − 4) + · · ·
+ 0.8 · 0.64u(k − 5) + 0.8 · 0.65u(k − 6) + 0.8 · 0.66u(k − 7) + 0.8 · 0.67u(k − 8)

59



Sensorics exercises Prof. Dr.-Ing. O. Nelles University of Siegen

Comparison of the impulse responses
This is really easy because of the way we constructed the FIR-system. The value sequence
will be the same until k becomes 9. From that point on the values of the FIR-system
will be zero. For smaller values of k the values of the impulse responses will exactly be
the same!
Comparison of the step responses
We calculate the sequence of values for a unit step for both systems (IIR and FIR). At
first the values for IIR-system.

y(0) = 0.6y(−1) + 0.5u(0) + 0.5u(−1)

= 0.5

y(1) = 0.6y(0) + 0.5u(1) + 0.5u(0)

= 0.6 · 0.5 + 0.5 + 0.5︸ ︷︷ ︸
=1will maintain in all following steps

= 1.3

y(2) = 0.6 · 1.3 + 1 = 1.78

y(3) = 0.6 · 1.78 + 1 = 2.068

...
y(8) = 2.4664

y(9) = 2.4798

The end value of the IIR-system’s steps response is:

y(k →∞) = lim
z→1

(z − 1)GIIR(z)
z

z − 1
= 2.5 .

If we look at the FIR-system’s response, we discover that all values up to the 8th equals
the ones from the IIR-system. In every step one more summand comes into play (is no
longer being zero).

ŷ(k) =
k∑
i=0

b̃i

Only a few values are shown below:

ŷ(0) = b̃0 = 0.5

ŷ(1) = b̃0 + b̃1 = 0.5 + 0.8 = 1.3

...
ŷ(8) = 2.4664

ŷ(9) = 2.4664

Because after 8 discrete time steps no more coefficients are left to sum up, the value
keeps the same from the 8th value on. So the end value of the IIR-system can not be
reached.
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9 Transformation into the Frequency Domain (Dis-
crete Fourier Transform)

Solution 9.1 Relationship between the Fourier-Transformation and the Dis-
crete Fourier-Transformation

Fourier-Transform in the continuous case:

X(iω) =

∫ ∞
−∞

x(t)e−iωtdt .

At first we discretize the time t→ kT0:

X(iω) =
∞∑

k=−∞

x(kT0)e−iωkT0 .

Then we discretize the frequencies ω → nω0

N
with the number of samples N and n =

0, 1, · · · , N − 1. After the discretization of the continuous time and the frequencies, we
obtain the following equation:

X(iω)→ X(n) =
N−1∑
k=0

x(kT0)e−in
ω0
N
kT0 .

With the knowledge about the definition of the sampling frequency ω0 = 2πf0 = 2π 1
T0
,

we see that the sampling time T0 in the exponent cancels out:

X(n) =
N−1∑
k=0

x(kT0)e
−in 2π

N��T0
k��T0 .

The equation for the discrete Fourier-Transform finally becomes:

X(n) =
N−1∑
k=0

x(kT0)e
−in2πk
N .

With the abbreviation WN = e
−i2π
N we get:

X(n) =
N−1∑
k=0

x(kT0)W nk
N .

Solution 9.2 Superposition Principle of the FFT

MATLAB!
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Solution 9.3 DFT of an Impulse

At first we can sketch the signal x(k) over the discrete time k. For the calculation of the

1

0

r=0 r=1 r=2 r=3

k

x(k)

r=4

Figure 31: Signal x(k) over the discrete time k.

DFT we look at one period of the whole signal:

DFT{x(k)} = X(n) =
N−1∑
k=0

x(k)W nk
N .

Here N = 5, which leads to:

X(n) =
4∑

k=0

x(k)W nk
5 with

W nk
5 = e−i

2πnk
5 .

Now we calculate at the values for the discrete frequencies n:

X(0) = x(0)W 1·0
5︸ ︷︷ ︸

=1

+x(1)W 0
5 + x(2)W 0

5 + x(3)W 0
5 + x(4)W 0

5︸ ︷︷ ︸
=0

X(1) = x(0)W 1·0
5︸ ︷︷ ︸

=1

+x(1)W 1·1
5 + x(2)W 1·2

5 + x(3)W 1·3
5 + x(4)W 1·4

5︸ ︷︷ ︸
=0

...
X(4) = 1 .

Because all values except for x(0) are zero, the DFT equals:

X(n) = 1 .

1

0 n

|X(n)|

1 2 3 4

Figure 32: Signal |X(n)| over the discrete frequency n.
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Solution 9.4 DFT of a Periodic Sequence of Values

a) At first determination of the periodicity N
Here: N=4
sequence of values that are repeated: ~x

~x =


3
−2

0
1

 mit k = 0, 1, 2, 3, n = 0, 1, 2, 3

In general:

DFT{x(k)} = X(n) =
3∑

k=0

x(k) ·W nk
4 , mit W4 = e−i

2π
4 = e−i

π
2

DFT: As system of equations:

n = 0 : X(0) = x(0)W 0·0
4 + x(1)W 0·1

4 + x(2)W 0·2
4 + x(3)W 0·3

4

n = 1 : X(0) = x(0)W 1·0
4 + x(1)W 1·1

4 + x(2)W 1·2
4 + x(3)W 1·3

4

n = 2 : X(0) = x(0)W 2·0
4 + x(1)W 2·1

4 + x(2)W 2·2
4 + x(3)W 2·3

4

n = 3 : X(0) = x(0)W 3·0
4 + x(1)W 3·1

4 + x(2)W 3·2
4 + x(3)W 3·3

4

In matrix-vector notation:
X(0)
X(1)
X(2)
X(3)

 =


1 1 1 1
1 W 1

4 W 2
4 W 3

4

1 w2
4 W 4

4 W 6
4

1 W 3
4 W 6

4 W 9
4

 ·

x(0)
x(1)
x(2)
x(3)


b) In general Z(ϕ) = r · eiϕ

Calculation of the Fourier-coefficients W nk
N :

WN = W4 = e−i
2π
4 = e−i

π
2 =̂− 90

◦
-Drehung des komplexen Zeigers

W 0
4 = 1 = W 4

4 = W 8
4 ...

W 1
4 = e−i

π
2 = cos

(
−π

2

)
︸ ︷︷ ︸

=0

+i sin
(
−π

2

)
︸ ︷︷ ︸

=−1

= −i = W 5
4 = W 9

4 ...

W 2
4 = e−i

π
2
·2 = cos(−π)︸ ︷︷ ︸

=−1

+i sin(−π)︸ ︷︷ ︸
=0

= −1 = W 6
4 = W 10

4 ...

W 3
4 = e−i

π
2
·3 = cos

(
−3

2
π

)
︸ ︷︷ ︸

=−0

+i sin

(
−3

2
π

)
︸ ︷︷ ︸

=1

= i = W 7
4 = W 11

4 ...

W 4
4 = e−i

π
2
·4 = cos(−2π) + i sin(−2π) = 1

...

Depicted in the complex plane, Bild 34.
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Figure 33: Relation complex plane

Figure 34: Fourier-coefficients in the complex plane
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c) Discrete amplitude spectrum:
X(0)
X(1)
X(2)
X(3)

 =


1 1 1 1
1 −i −1 +i
1 −1 1 −1
1 +i −1 −i



x(0)
x(1)
x(2)
x(3)


→ X(0) = 3− 2 + 0 + 1 = 2

X(1) = 3 + 2i+ 0 + i = 3 + 3i

X(2) = 3 + 2 + 0− 1 = 4

X(3) = 3− 2i+ 0− i = 3− 3i

⇒ ~X =


2

3 + 3i
4

3− 3i

⇒ | ~X| =


2√
32 + 32

4√
32 + (−3)2

 =


2

4.24
4

4.24


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Solution 9.5 Another DFT of a Periodic Sequence of Values

a) Fourier-Transform in matrix-vector notation.
x(k) is a periodic sequence, that repeats after N = 10 values. For the discrete Fourier-
Transform we can focus on only one period of the signal (in this case k ∈ [0, 9]).

x(k) =

{
1 0 ≤ k ≤ 4

0 4 < k ≤ 9

The discrete Fourier-Transform is:

DFT{x(k)} = X(n) =
9∑

k=0

x(k)W nk
10 .

Because all summands where k > 4 are zero, the equation can further be simplified:

DFT{x(k)} = X(n) =
4∑

k=0

x(k)W nk
10 .

All values x(k) equal one, such that:

DFT{x(k)} = X(n) =
4∑

k=0

1 ·W nk
10 ,

with W10 = ei2π/10. The following equation system arises:

X(0) = W 0
10 +W 0

10 +W 0
10 +W 0

10 +W 0
10

X(1) = W 0
10 +W 1

10 +W 2
10 +W 3

10 +W 4
10

X(2) = W 0
10 +W 2·1

10 +W 2·2
10 +W 2·3

10 +W 2·4
10

X(3) = W 0
10 +W 3·1

10 +W 3·2
10 +W 3·3

10 +W 3·4
10

X(4) = W 0
10 +W 4·1

10 +W 4·2
10 +W 4·3

10 +W 4·4
10

X(5) = W 0
10 +W 5·1

10 +W 5·2
10 +W 5·3

10 +W 5·4
10

X(6) = W 0
10 +W 6·1

10 +W 6·2
10 +W 6·3

10 +W 6·4
10

X(7) = W 0
10 +W 7·1

10 +W 7·2
10 +W 7·3

10 +W 7·4
10

X(8) = W 0
10 +W 8·1

10 +W 8·2
10 +W 8·3

10 +W 8·4
10

X(9) = W 0
10 +W 9·1

10 +W 9·2
10 +W 9·3

10 +W 9·4
10 .

In matrix-vector notation, this equation system becomes:

~X(n) =



1 1 1 1 1
1 W 1

10 W 2
10 W 3

10 W 4
10

1 W 2
10 W 4

10 W 6
10 W 8

10

1 W 3
10 W 6

10 W 9
10 W 12

10

1 W 4
10 W 8

10 W 12
10 W 16

10

1 W 5
10 W 10

10 W 15
10 W 20

10

1 W 6
10 W 12

10 W 18
10 W 24

10

1 W 7
10 W 14

10 W 21
10 W 28

10

1 W 8
10 W 16

10 W 24
10 W 32

10

1 W 9
10 W 18

10 W 27
10 W 36

10


·


x(0)
x(1)
x(2)
x(3)
x(4)

 .
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b) Simplification of the result.
For one discrete frequency n, the corresponding discrete Fourier-Transform value can
be calculated as follows:

X(n) =
4∑

k=0

1 · (W n
10)k .

In more detail, the sum that has to be calculated looks like:

X(n) = (W n
10)0 + (W n

10)1 + (W n
10)2 + (W n

10)3 + (W n
10)4 . (4)

If we multiply X(n) with W n
10 we get:

W n
10X(n) = (W n

10)1 + (W n
10)2 + (W n

10)3 + (W n
10)4 + (W n

10)5 . (5)

Now we subtract equation 5 from 4:

X(n)−W n
10X(n) = (W n

10)0 − (W n
10)5 |Transformation

X(n)[1−W n
10] = 1− (W n

10)5 | : [1−W n
10]

X(n) =
1− (W n

10)5

1−W n
10

.

Now we have to proof the following statement:

1− (W n
10)5

1−W n
10

= e−i4π
n
10
sin(n

2
π)

sin( n
10
π)

.

At first we use the Euler-Equation for the sine functions:

sin(
n

2
π) = sin(

5n

10
π) =

1

2i

(
eiπ

5n
10 − e−iπ 5n

10

)
,

sin(
n

10
π) =

1

2i

(
eiπ

n
10 − e−iπ n

10

)
,

sin(n
2
π)

sin( n
10
π)

=
eiπ

5n
10 − e−iπ 5n

10

eiπ
n
10 − e−iπ n

10

.

Now we do some transformations:

1− (W n
10)5

1−W n
10

=
1− e−i2π 5n

10

1− e−i2π n
10

| · e
iπ n

10

eiπ
n
10

=
eiπ

n
10 − e−iπ 9n

10

eiπ
n
10 − e−iπ n

10

|Transformation

= e−i4π
n
10
eiπ

5n
10 − e−iπ 5n

10

eiπ
n
10 − e−iπ n

10

Through some transformations, we see, that the expressions are equivalent.

Solution 9.6 Leakage Effect and Picket Fence Effect

MATLAB!

Solution 9.7 Leakage Effect

MATLAB!
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10 Filters

Solution 10.1 Types of Filters

a) Frequency responses:

• top left: band-stop
ω → 0 , ω → ω0

2
(Nyquist-Frequency) : |G(iω)| = 0 dB = 1 ⇒ pass band

0 < ω < ω0

2
: |G(iω)| = −80 dB ≈ 0.0001 ⇒ stop band

• top right: low-pass
ω → 0 : |G(iω)| = 0 dB = 1 ⇒ pass band
ω → ω0

2
: |G(iω)| → −∞ dB = 0 ⇒ stop band

• bottom left: high pass
ω → 0 : |G(iω)| → −∞ dB = 0 ⇒ stop band
ω → ω0

2
: |G(iω)| → 0 dB = 1 ⇒ pass band

• bottom right: band-pass
ω → 0 , ω → ω0

2
: |G(iω)| → −∞ dB = 0 ⇒ stop band

0 < ω < ω0

2
: |G(iω)| ≈ 1 dB = 1 ⇒ pass band

Sampling frequency:

Amplitude responses end at ω ≈ 30 rad
s . This is the Nyquist-Frequency. The Nyquist-

Frequency equals

ωNy =
1

2
ω0 ⇒ 60

rad
s

= ω0

ω0 = 2πf0 ⇒ f0 =
ω0

2π
=

30

π
Hz ≈ 9, 55Hz

b) • top left: high-pass
ramp very low frequency

• top right: low-pass
only the high frequency is suppressed

• bottom left: band-pass
very low frequencies and high frequencies are suppressed

• bottom right:band-stop
low and high frequencies are not suppressed
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Solution 10.2 Properties of an Ideal Filter

a) stop-band: 0/ −∞ dB
pass-band: 1/ 0 dB

b) Phase shifts are not desireable → 0◦

c) Steepness: −∞ (no transition range, just one frequency where the amplitude response
suddenly changes!)

69



Sensorics exercises Prof. Dr.-Ing. O. Nelles University of Siegen

Solution 10.3 Requirements for Filters

a) In contrast to FIR-Filters, IIR-Filters can become unstable!

b) Filter with linear phase:
’System with pure dead time’ or ’group propagation delay’: τg = −dϕ

dω

Can exactly only be achieved through FIR-Filters!
Filter with linear phase means that the phase is shifted by a function of the following
type:

ϕ(ω) = α · ω (linear equation!) (1)

Mathematically a phase shift looks as follows:

y = A · sin(ωt+ ϕ︸︷︷︸
phase shift

) (2)

(1) in (2):

y = A · sin(ωt+ αω)

= A · sin(ω(t+ α))

As can be seen from this equation all frequencies are shifted in the same manner!
→ very important in acoustic environments because our ears are very sensitive to
frequency-dependent phase differences!

c) An acausal filter needs values from the “future”to caluclate the current system/ filter
output.
→ This is only possible for offline applications or systems where buffers can be used!
Advantage: The phase shift of a filter can be eliminated! (see script page 316)
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Solution 10.4 Properties of IIR- and FIR-Filters

a) IIR

b) FIR

c) FIR

d) IIR

e) FIR
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Solution 10.5 Impulse Response and Step Response of IIR- and FIR-Filters

a) Filter order: 3 ⇒ u(k − 3) most delayed signal
⇒ 4 terms (from 0. . . 3) ⇒ all terms have the same coefficient 1

4
(averaging!)

y(k) =
1

4
u(k) +

1

4
u(k − 1) +

1

4
u(k − 2) +

1

4
u(k − 3)

Impulse Response:

u(k) =

{
1 for k = 0

0 else

→ y(0) =
1

4
=

1

4
u(0) +

1

4
u(−1)︸ ︷︷ ︸

=0

+
1

4
u(−2)︸ ︷︷ ︸

=0

+
1

4
u(−3)︸ ︷︷ ︸

=0

y(1) =
1

4
= +

1

4
u(1)︸ ︷︷ ︸
=0

+
1

4
u(0) +

1

4
u(−1)︸ ︷︷ ︸

=0

+
1

4
u(−2)︸ ︷︷ ︸

=0

y(2) =
1

4

y(3) =
1

4
y(4) = 0

...
y(k > 3) = 0

⇒ FIR; after 3 time steps the impulse response reaches exactly 0 and keeps beeing
zero!
Step- Response:

u(k) =

{
1 for k ≥ 0

0 else

y(0) =
1

4

y(1) =
2

4
=

1

2

y(2) =
3

4

y(3) =
4

4
= 1

y(k > 3) = 1

→ In every future step all delayed inputs maintain their value of 1!

b) New difference equation:

y(k) = 0.5u(k) + 0.25u(k − 1) + 0.25u(k − 2) + 0.25u(k − 3)
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Problem: The gain changes!
Step- Response:

u(k) =

{
1 for k ≥ 0

0 else

y(0) = 0, 5

y(1) = 0, 75

y(2) = 1

y(3) = 1, 25

y(k ≥ 3) = 1, 25 6= 1 (value before the change of the first coefficient)

Solution: Decrease of other coefficients such that the sum of all coefficients keeps the
same!
For example: 2 last coefficients reduced to 1

8

→ y(k) = 0, 5u(k) +
1

4
u(k − 1) +

1

8
u(k − 2) +

1

8
u(k − 3)

Step-response: y(0) = 0, 5; y(1) = 0, 75; y(2) = 0, 875; y(k ≥ 3) = 1

c) y(k) = 0, 5u(k) + 0, 5y(k − 1) with y(k < 0) = 0

Impulse- Response:

u(k) =

{
1 for k = 0

0 else

y(0) = 0, 5u(0) + 0, 5y(−1) = 0, 5

y(1) = 0, 5u(1) + 0, 5y(0) = 0, 5 · 0, 5 = 0, 25

y(2) = 0 + 0, 5y(1) = 0, 53

...
y(k) = 0, 5k+1

y(k →∞)→ 0 ; For any integer k > 0 y(k) > 0⇒ IIR!

Step- Response:

u(k) =

{
1 for k ≥ 0

0 else

y(0) = 0, 5u(0) + 0, 5y(−1) = 0, 5

y(1) = 0, 5 + 0, 5y(0) = 0, 5 + 0, 5 · 0, 5︸ ︷︷ ︸
b0+b0a1=b0(1+a1)

= 0, 75

y(2) = b0 + b0(1 + a1)︸ ︷︷ ︸
y(1)

a1 = b0(1 + a1 + a2
1) = 0, 5(1 + 0, 5 + 0, 52) = 0, 875
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y(k) = b0

k∑
i=0

ai1 = 0, 5
k∑
i=0

0, 5i

→ s =
k∑
i=0

0, 5i

0, 5s =
k+1∑
i=1

0, 5i

s− 0, 5s = 0, 50 − 0, 5k+1

⇒ s =
1− 0, 5k+1

1− 0, 5
= 2

(
1− 0, 5k+1

)
y(k →∞)→ 1; For every integer of k<∞, 1 is not exactly reached!

Approximated FIR-Filter: Impulse response values up to the desired order are used!

y(0) = 0, 5; y(1) = 0, 25 = 1
4
; y(2) = 0, 125 = 1

8

G
(2)
FIR = 0, 5 +

1

4
z−1 +

1

8
z−2 =

Y (z)

U(z)

y(k) =
1

2
u(k) +

1

4
u(k − 1) +

1

8
u(k − 2)

Step- Response:
y(0) = 1

2
; y(1) = 1

2
+ 1

4
= 3

4
; y(2) = 1

2
+ 1

4
+ 1

8
= 7

8

y(k ≥ 2) = 7
8
(values maintain -> FIR)

Step response should at least tend to 1!
Solution: Increasing one or move of the coefficients such that

2∑
i=0

bi = 1

i.e. 0, 5 +
1

4
+ x = 1 ?

⇒ x =
1

4
instead of

1

8

⇒ G
(2)
FIR = 0, 5 +

1

4
z−1 +

1

4
z−2
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Solution 10.6 Acausal Filter

a) Which of the following 3 filters is causal, which is acausal and why?
To determine if a filter is causal or acausal, one way is to compare the maximum
degree of the numerator and the denominator. If n is the maximum degree of the
numerator and m the maximum degree of the denominator, a filter is causal, if the
following statement holds:

m ≥ n .

Now we transform the filter transfer functions into the writing with only positive
exponents and determine, if they are causal or acausal:

G1(z) =
0.2z

z − 0.8
→ causal filter

G2(z) =
0.2z

1− 0.8z−1
| · z
z

=
0.2z2

z − 0.8
→ acausal filter

G3(z) =
0.2

z−1 − 0.8z−2
| · z

2

z2

=
0.2z2

z − 0.8
→ acausal filter

b) Design an acausal filter of order 2, that has no phase shift. Sketch the response to
a time-shifted step σ(k − 3) of the acausal filter and explain why there is no phase
shift.
Acausal filter of order 2:

y(k) =
1

3
u(k − 1) +

1

3
u(k) +

1

3
u(k + 1) .

Now we calculate the step response to a time shifted unit step σ(k − 3) ={
1 for k ≥ 3

0 else
:

k = 0 : y(0) =
1

3
[u(−1) + u(0) + u(1)]

=
1

3
[0 + 0 + 0] = 0

k = 1 : y(1) =
1

3
[u(0) + u(1) + u(2)]

=
1

3
[0 + 0 + 0] = 0

k = 2 : y(0) =
1

3
[u(1) + u(2) + u(3)]

=
1

3
[0 + 0 + 1] =

1

3

k = 3 : y(3) =
1

3
[u(2) + u(3) + u(4)]

=
1

3
[0 + 1 + 1] =

2

3
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k ≥ 4 : y(4) =
1

3
[u(3) + u(4) + u(5)]

=
1

3
[1 + 1 + 1] = 1

Why is there no phase shift? To answer this question we take a closer look at the

0 1 2 3 4 5 6 7
0

0.3333

0.6667

1

k

y(
k)

; m
 (k
−3

)

 

 
Unit Step
Step response

Figure 35: Step response of an acausal filter.

filter’s transfer function:

G(z) =
1

3

(
z−1 + 1 + z+1

)
|z = esT0withs = iω

=
1

3

(
1 + e−iωT0 + eiωT0

)
(1)

Now we use the following relationships:

eiφ = cos(φ) + isin(φ)

cos(−φ) = cos(φ)

sin(−φ) = −sin(φ) .

With this relationships equation 1 becomes:

G(z) =
1

3
(1 + cos(ωT0)− isin(ωT0) + cos(ωT0) + isin(ωT0))

=
1

3
(1 + 2cos(ωT0))

The equation to calculate the phase shift is:

ϕ = tan−1

(
Im(G(z))

Re(G(z))

)
.

The imaginary part of our transfer function is exactly zero. So the phase shift becomes
zero as well.
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Solution 10.7 Bilinear Transformation

The equation to perform the bilinear transform is:

s =
2

T0

1− z−1

1 + z−1
.

With the sampling time T0 = 1 we can calculate the bilinear transform:

GBT (z) =
5

1 + 5 ·
(

2
1

1−z−1

1+z−1

) |Transformation

=
5(1 + z−1)

1 + z−1 + 10(1− z−1)
|Transformation

=
5 + 5z−1

11− 9z−1
| ·

1
11
1
11

=
5
11

+ 5
11
z−1

1− 9
11
z−1

We substitute the fractions, with their rounded values: 5
11
≈ 0.45 and 9

11
≈ 0.82:

GBT (z) =
0.45 + 0.45z−1

1− 0.82z−1
.

Now we compare GBT (z) with G(z) with respect to the poles, zeros, gain and properness.

We start with the poles: Because both denominators are equal, there are no differences
between the two discrete transfer functions regarding the stability. Both transfer func-
tions have the same pole at p0 = 0.82. Because |p0| < 1, the transfer functions are
stable.

Note: Through the bilinear transform no stability properties are affected, but the exact
pole-location may differ (in general).

Comparison of the gain: Starting with the gain of G(z):

y(k →∞) = lim
z→1

(z − 1)
0.9z−1

1− 0.82z−1︸ ︷︷ ︸
G(z)

z

z − 1︸ ︷︷ ︸
Unit step

= 5 .

Now the gain of the transfer function GBT (z) is calculated:

y(k →∞) = lim
z→1

(z − 1)
0.45 + 0.45z−1

1− 0.82z−1︸ ︷︷ ︸
GBT (z)

z

z − 1︸ ︷︷ ︸
Unit step

= 5 .

→ no difference - the correct gain of the continuous time system is reached.

Comparison of zeros:

G(z) =
0.9

z − 0.82
→ no zeros!

GBT (z) =
0.45z + 0.45

z − 0.82
→ one zero at z = −1
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The continuous time system has no zeros.

Properness:

G(z) =
0.9

z − 0.82
→ strictly proper

Maximum degree of the numerator is smaller than the maximum degree of the denomi-
nator.

GBT (z) =
0.45z + 0.45

z − 0.82
→ proper (not strictly! - system with feed-through)

Maximum degree of the numerator is equal the maximum degree of the denominator.
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Solution 10.8 Properties of Common Filters

a) Butterworth-Filter

b) Chebyshev
Type 1 (Ripples in the pass-band)
Type 2 (Ripples in the stop-band)

c) Bessel-Filter

d) Cauer-Filter

e) Bessel → Butterworth → Chebyshev → Cauer
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Solution 10.9 Block-Diagram of a Time-Discrete Filter

a) Transform the transfer function into the form with only negative powers of z and
evaluate the corresponding difference equation.

G(z) =
Y (z)

U(z)
=

2z3 + 3z2

z3 + 2z2 + z + 5
| · z

−3

z−3

⇔ Y (z)

U(z)
=

2 + 3z−1

1 + 2z−1 + z−2 + 5z−3
| · Transformation

⇔ Y (z) + 2Y (z)z−1 + Y (z)z−2 + 5Y (z)z−3 = 2U(z) + 3U(z)z−1

This equation can easily be transformed into the discrete time domain:

y(k) + 2y(k − 1) + y(k − 2) + 5y(k − 3) = 2u(k) + 3u(k − 1)|Transformation
y(k) = 2u(k) + 3u(k − 1)− (2y(k − 1) + y(k − 2) + 5y(k − 3))

b) Sketch the corresponding block-diagram.

z-1

5

u(k)

u(k-1)

y(k-2)

y(k-3)

y(k-1)

(-)

z-1

z-1

z-1

2

2

1

3

y(k)

Figure 36: Block diagram of the filter G(z).
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Solution 10.10 Symmetric FIR-Filter

Determine the phase shift for both filters.

2

2

1

10-2 -1

For the acausal filter the transfer function is:

G(z) = g(−2) · z2 + g(−1) · z1 + g(0) · z0 + g(1) · z−1 + g(2) · z−2

Now we rearrange some terms:

G(z) = g(2) ·
(
z2 + z−2

)
+ g(1) ·

(
z1 + z−1

)
+ g(0) .

Note:

z±n = e±inωT0 = cos (nωT0)± i sin (nωT0) .

Phase shift:

ϕ (H(iω)) = arctan

(
Im {H(iω)}
Re {H(iω)}

)
.

For conjugate complex pole pairs the following holds (the cos-function is point-
symmetrically):

zn + z−n = einωT0 + e−inωT0

= cos (nωT0) +������
i sin (nωT0) + cos (nωT0)−������

i sin (nωT0)

= 2 cos (nωT0) .

⇒ ϕ
(
zn + z−n

)
= arctan (0) = 0! .

It follows, that the phase shift of the acausal filter is exactly zero!

For the causal filter the transfer function is:

G(z) = g(0) + g(1) · z−1 + g(2) · z−2 + g(3) · z−3 + g(4) · z−4

= z−2 ·
[
g(0) · z2 + g(1) · z1 + g(2) · z0 + g(3) · z−1 + g(4) · z−2

]
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2

2

1

10

-2

-1

3 4

Once again we rearrange some terms and use the following relationships (see figure
above):

g(0) = −g(4) and
g(1) = −g(3)

G(z) = z−2 ·
[
g(0) ·

(
z2 − z−2

)
+ g(1) ·

(
z1 − z−1

)]
(1)

Note:

zn − z−n = cos (ωnT0) + i · sin (nωT0)− (cos (nωT0)− i · sin (nωT0))

= 2 i sin (ωnT0) (2)

Combining 1 and 2 leads to the transfer function for the causal filter:

G(iω) = e−2iωT0 (g(1) · 2i sin (ωT0) + g(0) · 2i sin (2ωT0))

= i · e−2iωT0 (2g(1) sin (ωT0) + 2g(0) sin (2ωT0))

= ei
π
2 · e−2iωT0 (2g(1) sin (ωT0) + 2g(0) sin (2ωT0))

= e

i

(π
2
− 2ωT0

)
︸ ︷︷ ︸

phase (2g(1) sin (ωT0) + 2g(0) sin (2ωT0))︸ ︷︷ ︸
amplitude
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