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Abstract

We present an overview of the modern approaches to continuum nonequilibrium
thermodynamics from the perspective of their connection with the problem of
heat conduction with finite speed.The celebrated Cattaneo and Guyer–Krumhansl
equations for the evolution of the heat flux are reinspected in the framework of
the different thermodynamic theories which, in such a way, are reviewed and
compared.

1. Preface

In this paper we provide an overview of the modern approaches to continuum
non-equilibrium thermodynamics, and of their connection with the problem
of heat conduction with finite speed of propagation. Indeed, all modern ther-
modynamic theories stem from a precise point of view on the problem of
heat conduction. On this subject, the celebrated paper by Cattaneo [1], where
it is observed that the classical heat equation leads to the “paradox” of in-
finite speeds of propagation of the thermal disturbances, stimulated several
researches into different directions. We can classify these researches in two
different categories: the conservative approaches and the nonconservative

∗In memory of Antonio Mario Tamburro, Rector Magnificus of the University of Basilicata
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300 V.A. Cimmelli

ones. The first type of approach is due to those scientists who wanted to
conserve the general schemes of the existing thermodynamic theories, such
as classical irreversible thermodynamics and rational thermodynamics, and
tried to describe hyperbolic heat conduction in the realm of these theories.The
nonconservative approaches are those that considered the classical theories
much too general to include a satisfactory treatment of the heat conduction
with finite speed of propagation, and postulated some further requirements.
Hence, new theories have been formulated and new schools of thermodynam-
ics have been founded in the last decades [2,3]. This fact should be regarded
positively, since the building up of new theories has stimulated several dis-
cussions and comparisons of different approaches. This is one of the reasons
why modern non-equilibrium continuum thermodynamics is so fascinating
today and so attractive for scientists.

Although Cattaneo was not a thermodynamicist, “paradoxically” he con-
tributed a lot to the development of modern thermodynamics, because his
paper stimulated the formulation of new theories.

Today the importance of this paper is much more related to the history of
thermodynamics rather than to the results contained therein. Indeed, a more
sophisticated analysis of Cattaneo conclusions, developed by G. Fichera [4]
and W. A. Day [5,6], proved that the celebrated Cattaneo paradox actually is
not a paradox and that also in Fourier heat conduction theory one can get finite
speeds. Notwithstanding, its influence on non-equilibrium thermodynamics
was enormous and positive beyond any doubt.

Furthermore, if we look at the different schools with more attention, we dis-
cover that these are not so far apart as might appear at the first sight, since
several connections emerge.

The aim of this presentation is to point out the differences and the similarities
between the thermodynamic theories.

In Section 2 we provide a sketch of the Fourier heat conduction theory leading
to the so-called Cattaneo paradox. The experimental conditions under which
the theory is developed, and which should be taken into account in evaluating
the speed of propagation of thermal disturbances, are pointed out.

In Section 3 we summarize the main features of heat conduction at low tem-
peratures.The equations introduced by Cattaneo [1] and by Guyer–Krumhansl
[7,8], describing, respectively, the hyperbolic and parabolic regimes, are pre-
sented. From the microscopic point of view the aforementioned regimes are
related to the so called phonon gas hydrodynamics, which determines the

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 4



Different Thermodynamic Theories and Different Heat Conduction Laws 301

behavior of some characteristic material functions such as heat conductivity
and relaxation times.

In Section 4 we analyze how the problem of finite wave speeds (second sound
propagation) is solved in the framework of rational thermodynamics [9,10]1.
This task can be achieved by using the theory of internal state variables,
either in the local or in the gradient approach. A new dynamic temperature,
which is capable of propagating with finite speed, is introduced as an internal
variable. The related initial and boundary value problem is considered and
typical numerical solutions are presented.

In Section 5 the propagation of heat waves is modelled according to the ba-
sic postulates of rational extended thermodynamics [11]2. The 4-fields and
9-fields models, both ruled by a system of balance equations following the
kinetic theory, are presented. We show that both systems are capable of de-
scribing second sound at different levels of approximation.

In Section 6 we prove that, under suitable constitutive assumptions, classical
irreversible thermodynamics [14, 15]3 yields both the 4-fields and 9-fields
systems and also the Guyer–Krumhansl equation.

In Section 7 such an equation is studied in detail. It is shown that it is com-
patible with the extended theories provided one assumes that the constitutive
functions depend on the gradients of the unknown fields. Two models are
presented. The first one leads to a strictly linear Guyer–Krumhansl equation
while the second one yields a semilinear Guyer–Krumhansl equation, with
material functions depending on the temperature. The problem of the local
form of first and second law in weakly nonlocal thermodynamics is critically
revisited. Different approaches to the extended irreversible thermodynamics,
through Jeffrey’s type constitutive equations, are analyzed too.

The paper ends with a comparison of different theories and a discussion of
future perspectives in non-equilibrium thermodynamics.

1By rational thermodynamicswe mean the thermodynamictheory foundedin the late 1950s by C.A.Truesdell,
W. Noll, R. Toupin, B. D. Coleman et al.

2By extended thermodynamics, we mean those thermodynamic theories which include in the state space
the dissipative fluxes, such as the heat flux and the stress tensor. In the realm of extended thermodynamics we
distinguish between rational extended thermodynamics, proposed by I. Müller and T. Ruggeri [11], and extended
irreversible thermodynamics, developed by D. Jou, G. Lebon, and J. Casas-Vázquez [12, 13]. Among the many
differences between the two approaches, the most important one with respect to the subject of the present paper is
that the first theory assumes that the state space is strictly local while the second one allows a nonlocal state space.
When dealing with a common property we avoid this distinction and simply refer to the extended thermodynamics.

3By classical irreversible thermodynamics we refer to the theory founded by L. Onsager [16, 17] in the early
1930s and developed by S. R. De Groot, P. Mazur, I. Gyarmati, J. Meixner et al. [15]. In such a theory one can
find also an extended approach, with the dissipative fluxes regarded as state variables [18,19].

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 4



302 V.A. Cimmelli

2. Cattaneo paradox

2.1. The classical heat equation

The classical Newtonian mechanics does not impose any limit to the speed
of thermo-mechanical perturbations. However, in some recent approaches to
non-equilibrium thermodynamics, in order to prevent the instantaneous prop-
agation of disturbances, the model equations have been formulated in the
hyperbolic form. Notwithstanding, some equations of continuum thermody-
namics, such as those of Navier–Stokes and Fourier, are parabolic. This fact
has prompted the foundation of a new thermodynamics, developed by several
authors in the last two decades, the extended thermodynamics [11,12].

It is worth noticing that the “paradoxical” theories are able to describe a wide
class of physical phenomena. Moreover, as pointed out by Fichera [4] and Day
[5,6], in some cases their paradoxical nature is only apparent (see also [20]). In
other cases, such as the second sound propagation at low temperature [21–23],
these theories are not applicable because the experimental conditions ensuring
their validity are not verified.

Let us consider a rigid heat conductor and let us suppose that its thermody-
namic state space is spanned by the absolute temperature θ together with its
gradient. In the absence of heat sources the local balance of energy reads

ė + qi,i = 0, (1)

where i = 1, 2, 3, a superposed dot means the partial time derivative, while
the subscript (, k) denotes the partial space derivative with respect to the
coordinate xk , e is the density of internal energy, and q the heat flux vector [24].
By postulating the linear constitutive equations

e = cvθ, qi = −kθ,i, (2)

where the volumetric heat capacity cv and the thermal conductivity k are
supposed to be constant, we obtain the classical diffusion equation

θ̇ = k

cv
�θ . (3)

2.2. Infinite speeds of propagation

Let us consider now the Cauchy problem for a semi-infinite wire, which we
represent by the nonnegative real axis (x ≥ 0). We suppose that at the initial
instant t = 0 the temperature, in a given system of units, takes the value 1

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 4
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for x = 0 and vanishes for x > 0. Thus we get the following initial value
problem:

θ̇ = k

cv
θxx, (4)

θ(x �= 0, 0) = 0, θ(0, 0) = 1, (5)

whose solution for t > 0 is4

θ(x, t) = 1

2

√
πkt

cv

e
− x2

4 k
cv t . (6)

By Eq. (6) it follows that for t > 0 and x∗ as large as we wish it, θ(x∗, t) > 0
results i.e., the heat has propagated from x = 0 to x = x∗ in an interval
of time no matter how small. This leads to the conclusion that the speed of
propagation of heat is infinite [1]. Such a property was considered by many
authors to be paradoxical.

2.3. Paradox removed

In order to remove the paradox, in 1948 Cattaneo [1] proposed his celebrated
evolution equation for the heat flux

τRq̇i + qi = −kθ,i, (7)

wherein τR is a constant relaxation time. Such an equation inspired several
generalizations of the classical heat conduction theory [25,26, 28].

For the semi-infinite wire considered above, by Eqs. (1) and (7), it follows the
telegraphic equation

τRθ̈ + θ̇ = k

cv
θxx, (8)

which allows the propagation of temperature pulses with finite speed,

U =
√

k

τRcv
. (9)

4Of course, function θ given by Eq. (6) satisfies Eqs. (4)–(5) only in the sense of the distributions (see [4] for
more details).

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 4
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3. Heat conduction at low temperature

3.1. Phonon gas hydrodynamics

At first, Cattaneo’s proposal did not receive much attention inside the math-
ematical community, which had been faced with parabolic equations for one
century. However, it was rediscovered by physicists at the end of the 1960s,
when second sound propagation in crystals was detected. Second sound, i.e.,
thermal wave propagation, is a typical low-temperature phenomenon which
can be observed, for instance, in dielectric crystals such as sodium fluoride
(NaF) and bismuth (Bi) [21–23]. From the microscopic point of view, the
heat transport at low temperature is modelled through the phonon gas hydro-
dynamics [29, 30]. In a solid crystal at low temperature the phonons form
a rarefied gas whose kinetic equation can be derived similarly to that of an
ordinary gas. Moving through the crystal lattice they undergo two different
types of scattering:

i) Normal (N) scattering, conserving the phonon momentum;
ii) Resistive (R) scattering, in which the phonon momentum is not conserved.

The frequencies νN and νR of normal and resistive scattering determine the

characteristic relaxation times τN = 1

νN
and τR = 1

νR
. Diffusive heat transport

takes over when νR tends to infinity and hence τR = 1

νR
tends to zero. If instead

τN = 1

νN
tends to zero, then a wave-like energy transport may occur. In such

a case the evolution of the heat flux is well described by Eq. (7). However, the
available experimental results show that the material functions k , cv, and τR
are no longer constant but depend on the absolute temperature θ .

3.2. Material parameters near the critical temperature

Usually, at low temperature crystals exhibit a maximum of the heat conduc-
tivity around a critical point, which depends on the purity of the material.

The functions e and k can be determined from experimental data, e.g., in the
case of NaF, cf. [22]. Moreover, there are also data available for the speed of
second sound pulses in dependence of the absolute temperature θ [22,31].

The heat conductivity in NaF [22] is well fitted by the family of functions
given by

k(θ) = eea+b ln,θ+c ln2,θ
. (10)

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 4
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In the sense of least squares method, one gets the best fit of the data with

a = −7.15, b = 6.53, c = −1.20,

where k is measured in W /cmK. The measured arrival times of the heat pulses
allow the identification of τR experimentally.

We denote by UE the speed of a wave running through a material at an equi-
librium state, i.e., with q ≡ 0. In NaF it depends on the temperature according
to the linear law

UE = α + γ θ

with

α = 0.41 cm/μs, γ = −0.01 cm/μsK.

For the dependence of the specific heat on the temperature, Debye’s law,

e = e0θ
4/4, (11)

with e0 = 2.3 J /cm3K 4, has been found to be valid.

From the data above the relaxation time τR can be calculated by the relation

τR = k

U 2
Ecv

. (12)

3.3. Diffusive and hyperbolic heat conduction

Near the critical point second sound appears. The diffusive non-Fourier heat
transport takes over in the neighborhood of the critical point where both
relaxation times are not negligible.This introduces dissipation and regularizes
the profile of the pulses, which, however, can still be observed [32]. Often such
a phenomenology is referred to as diffusive-hyperbolic heat conduction. This
definition comes from the observation that diffusive effects are superposed
to thermal wave propagation. It can be described by the Guyer–Krumhansl
equation [7,8]:

τRq̇i + qi = −kθ,i + 9

5

kτN

cv

(
qi,kk + 2qk,ki

)
. (13)

Such an equation, which generalizes Eq. (7), was the first in the literature to
include both relaxation times. The material coefficient τN also depends on the
temperature. According to experimental observations [21], one can get

τN ∝ θ−m,

with m ∈ {3, 4, 5} depending on the material.

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 4
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At a certain distance from the maximum of the heat conductivity, both the
relaxation times become negligible, the pulses disappear, and the Fourier dif-
fusive regime takes over. The different regimes described so far are illustrated
in Figures 1–3 below, which, along the direction orthogonal to the plane {x, t},
show the evolution in space and time of an initial temperature perturbation of
1 K .
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Figure 1 Hyperbolic heat conduction near the critical temperature.
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Figure 2 Diffusive-hyperbolic heat conduction.
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Figure 3 Transition to the Fourier diffusive regime.

4. Rational thermodynamics of heat conduction

4.1. Internal state variables

In rational thermodynamics the fundamental balances are that of mass den-
sity, linear and angular momentum and energy. Moreover, some additional
governing equations, not necessarily in the balance form, can describe the
evolution of internal parameters. The dissipative fluxes, such as heat flux and
stress tensor, do not enter the state space but are assigned through suitable con-
stitutive equations [9,10,33]. In the absence of heat source, for the rigid heat
conductor considered here we have only the balance of energy (1). Moreover,
the second law of thermodynamics reads

ṡ + Ji,i ≥ 0, (14)

where s is the entropy density and J is the entropy flux.A fundamental assump-
tion of rational thermodynamics is represented by the constitutive equation

Ji = qi

θ
. (15)

It is worth noticing that in the other thermodynamic theories the previous
assumption is questioned and more general expressions for the entropy current
are postulated. We will see in Section 7 that also in rational thermodynamics
such a hypothesis can be substituted by a weaker one.

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 4
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Equation (15), together with Eqs. (1) and (14), leads to the celebrated Clausius–
Duhem inequality

ψ̇ + sθ̇ + qi

θ
θ,i ≤ 0, (16)

with the Helmholtz free energy ψ = e − sθ .

There are several attempts to make compatible the requirement of finite
speed of propagation with the general principles of rational thermodynam-
ics [25–27]. Internal state variables offer a valid support to achieve that task.
These variables allow the description of non-equilibrium processes involving
complex thermodynamical systems [34–39]. In particular, they can be used
to model heat conduction in solid crystals at low temperature [40–42].

These additional parameters are usually introduced through ordinary differ-
ential equations, called kinetic equations, on the basis of the physical exper-
iments.5 However, this is not the most general case since a large number of
physical phenomena are directly amenable by means of spatially nonuniform
internal variables [36, 43–49], whose evolution is determined by complete
balance laws, including both a rate term and a divergence term. Then, we are
faced with a gradient theory.

4.2. Dynamical temperature

In the framework of gradient generalization to the internal state variable ap-
proach, a new theory of heat conduction was developed by Kosiński and
co-workers [42,45,50–55], which was designed to be consistent with rational
thermodynamics and capable of describing heat waves.

An additional scalar state variable β was introduced.

At equilibrium β is a function of the classical absolute temperature θ , other-
wise β follows after θ with a certain delay, controlled by a relaxation time τR.
This delay introduces hyperbolicity and, in the limit of vanishing relaxation
time, determines the transition to the classical parabolic case.

Besides the energy balance (1), the kinetic equation

β̇ = f (θ, β), (17)

5Sometimes the name internal variables denotes those non-equilibrium parameters which at the equilibrium
reduce to a function of the standard ones. The variables which instead vanish at the equilibrium are referred to as
dynamic degrees of freedom [14].

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 4
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with f to be determined through second sound measurements, is postulated.
Moreover, the constitutive equations

qi = −kβ,i, (18)

ψ = ψ(θ, (β,i)
2), (19)

are given. These equations allow identifying the function (
∂f

∂θ
)−1 with the

variable relaxation time τR appearing in Eq. (7).

The following thermodynamic restrictions are easily proved:

s = −∂ψ
∂θ
, (20)

qi = −θ ∂f

∂θ

∂ψ

∂β,i
. (21)

By Eqs. (18), (21), and (10), it follows that τR cannot depend on β. Conse-
quently,

f (θ, β) = f1(θ) + f2(β). (22)

Moreover,

ψ = ψ1(θ) + 1

2
ψ2(θ)(β,i)

2, (23)

where

ψ2(θ) = k(θ)τR(θ)

θ
. (24)

Finally, by comparison of Debye’s law (11) with

e = ψ + θs = ψ − θ
∂ψ

∂θ
, (25)

we infer

ψ1 − θ
dψ1

dθ
= e(θ), (26)

ψ2 − θ
dψ2

dθ
= 0. (27)

Hence, ψ2 = ψ20θ , and consequently, by the definition of ψ2,

k(θ)τR(θ) = ψ20θ
2. (28)

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 4
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So, from this equation together with the definition of τR we obtain a thermody-
namic compatibility condition for the right-hand side of the kinetic equation:

τR(θ) =
(
∂f

∂θ

)−1

= ψ20θ
2

k(θ)
. (29)

From this f1 can be determined up to a constant by integration of the differential
equation

ψ20

df1
dθ

= θ−2k(θ). (30)

Let us assume f2 = −f1, in such a way that the integration constant does
not enter the model. The above expression of ψ2 leads to an entropy func-
tion, which ensures that the principle of maximum entropy at equilibrium is
fulfilled.

4.3. Heat waves

For numerical solutions the data for the considered initial and boundary value
problem have been chosen to be in accordance with the heat pulse experiment
for NaF reported in [22].

At the left-hand side of a specimen of pure NaF, the temperature is raised from
the uniform value θ0 to the value θ0 + imph (impulse height) for a short time
impd (impulse duration). At the right-hand side, the temperature is measured
via the changes of an electrical resistance.

The initial temperature is 15 K, the impulse height 1.0 K, the impulse duration
is 0.2 μs, the length of the specimen 8.3 mm.

Typical numerical results are visualized in Figures 4 and 5.

In Figure 4, where the initial temperature is θ0 = 15 K, a well-determined
second sound signal is evident. When the temperature is raised above 20 K, we
observe the transition to the Fourier diffusive regime represented in Figure 5.

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 4
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Figure 4 Second sound propagation in NaF. (θ0,= 15 K, imph = 1 K, impd = 0.2μ s, length of the
specimen 8.3 mm).

Figure 5 Fourier diffusive regime in NaF. (θ0,= 20 K, imph = 1 K, impd = 0.2μ s, length of the
specimen 8.3 mm).

5. Rational extended thermodynamics of heat conduction

5.1. Hierarchical system and extended state space

Rational extended thermodynamics [11, 56] is one of the “nonconservative”
remedies to the problem of infinite pulse speeds. Actually, it is a hierarchy
of theories with an increasing number of fields. The system of governing
equations is given by an arbitrary number of balance laws, in which the flux
at step n becomes the wanted field at step n + 1. The choice of the equa-
tion number depends on the characteristic of the phenomenon considered.

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 4
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The evolution in time of the unknown fields is governed by the following
first-order hierarchical system of balance laws:

Ḟ + Fk,k = r, (31)

Ḟk + Fkj,j = rk , (32)

Ḟkj + Fkji,i = rkj, (33)
.................................

.....................................
Ḟkji...p + Fkji...pq,q = rkji....p, (34)

where functions r represent the productions of the unknown fields, while
functions F denote the fluxes at the step n but also the unknown fields at the
step n + 1. To close the system (31)–(34), one needs constitutive equations
for the last flux in the hierarchy Fkji...pq, and for the productions r, rk , rkj ,. . . ,
rkji...p, too. The constitutive quantities will depend on all the wanted fields
but are independent of their gradients. This mathematical structure stems
from statistical mechanics [57], since a fundamental hypothesis of rational
extended thermodynamics is to make its results compatible with those of the
microscopic theories [11,12].

5.2. Extended thermodynamics of phonons

In order to model heat conduction at low temperature, in rational extended
thermodynamics the balance equations of phonon gas hydrodynamics are ap-
plied [28]. The wanted fields are the internal energy e, the three components
pi of the first moment of the system of governing equations of phonon gas
hydrodynamics, connected to the heat flux by the relation qi = c2pi, where
c means the Debye phonon velocity [29, 30], and the six independent com-
ponents of the (symmetric) flux of moment N(ij), (i, j = 1, 2, 3)6. Here and
in the next section we assume that c is constant. Such an assumption is not
perfectly in accordance with the experimental evidence [32,58], however it is
suitable for describing the main properties of second sound propagation. The
interrelation of the traces of consecutive currents, following the kinetic the-
ory, in the present case is expressed by N(ii) := e. Therefore, it is convenient
to decompose the flux N(ij) into a spherical and a deviatoric part, according
to the equation [28]

N(ij) = 1

3
eδij + N<ij>, (35)

6Here and in the following, the symbol t(ij) will denote symmetric tensors while t<ij> will be used to indicate
symmetric traceless tensors.
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where N<ij> is symmetric and traceless. Due to the decomposition above,
the energy density coincides with the trace of N(ij). As a consequence, we
have only nine independent thermodynamic variables, namely e, pi , and the
five independent components of N<ij>. These nine variables obey the generic
hierarchical balance equation [28]

Ḟ(i1...iM ) +c2 M

2M + 1
F(i1...iM−1),iM +F(i1...iM iM+1),iM +1 = P(i1...iM ), (36)

where F(i1...iM ), F(i1...iM iM+1), and F(i1...iM−1) denote the fluxes of order M ,
M +1, and M −1, respectively, while P(i1...iM ) means the production of order
M . Let us take

F0 = e

c2
, Fi1 = pk , F(i1 i2) = N<hk>. (37)

In such a case the constitutive equations for the productions are [28]

P0 = 0, Pi1 = − 1

τR
pk , P(i1i2) = −1

τ
N<hk>, (38)

where

1

τ
= 1

τR
+ 1

τN
(39)

is the total collision frequency. Then, the balance (36), evaluated for M =
0, 1, 2, yields the system

ė + c2pk,k = 0, (40)

ṗk + 1

3
e,k + N<kh>,h = − 1

τR
pk , (41)

Ṅ<hk> + c2 2

5
p<h,k> + F<hk>m,m = −1

τ
N<hk>, (42)

where F<hk>m is the flux of N<hk>, to be assigned through a constitutive
equation. Below we reinspect two particular cases of the system (40)–(42),
which are often used in modelling heat wave propagation at low temperature.

5.3. The 4-fields and 9-fields systems

The 4-fields system holds if the effects due to N<hk> can be neglected. It is
able to describe qualitatively second sound effects. The governing system is

ė + c2pk,k = 0, (43)
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ṗk + 1

3
e,k = − 1

τR
pk . (44)

The calculated values of wave speeds are only qualitatively in accordance
with the measured ones [28].

The 9-fields system holds if the effects due to F<hk>m can be neglected. We
get so

ė + c2pk,k = 0, (45)

ṗk + 1

3
e,k + N<kh>,h = − 1

τR
pk , (46)

Ṅ<hk> + c2 2

5
p<h,k> = −1

τ
N<hk>. (47)

Again, the calculated values of wave speeds give only a qualitative agreement
with the measured ones [28]. Finally, both the systems above are not able to
reproduce the diffusive-hyperbolic regime.

6. Classical irreversible thermodynamics of heat conduction

6.1. The wave approach to thermodynamics

In classical irreversible thermodynamics the system of equations governing
the evolution of the unknown fields is not required to present any particular
structure. The fields can be ruled either by partial differential equations (not
necessarily in the balance form) or by ordinary differential equations. Its basic
postulate is the local-equilibrium hypothesis, according to which certain ther-
modynamic functions which are well defined only at the equilibrium states,
such as temperature or entropy, are well-suited to describe non-equilibrium
states too [14, 15, 18]. Besides the conventional extensive or intensive state
variables, such as energy, deformation, and/or internal state variables, the dis-
sipative fluxes are allowed to enter the set of the independent thermodynamic
variables [18,19].

As far as the heat transport is concerned, besides the balance of energy (1)
we have an evolution equation for q whose form can be determined by ex-
ploiting the second law [14, 15, 18]. To this end, the entropy inequality must
be reduced to a sum of products between undetermined functions and given
functions, both defined on the constitutive space. In such a way the unde-
termined functions can be represented as linear combinations of the given
functions [14,15,18]. The following constitutive equations are postulated

s(e, qi) = sE(e) + 1

2
mijqiqj, (48)
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Ji = ∂s

∂e
qi, (49)

where sE(e) is the local equilibrium entropy and mij is a negative defined
second-order tensor. The expression (48) above is suggested by the represen-
tation theorem for scalar functions depending on vector variables and by the
principle of maximum entropy at equilibrium [14]. On the other hand, due
to Eqs. (48), (49), and (1), one can get the following form of the entropy
inequality (14):(

(
∂s

∂e
),i + 1

2

(
∂mij

∂qk
qj

)
q̇k + mijq̇j

)
qi ≥ 0. (50)

The coefficient in front of q contains only one undetermined quantity, namely
q̇. Therefore, the inequality above can be solved as

(
∂s

∂e
),i + 1

2

(
∂mij

∂qk
qj

)
q̇k + mijq̇j = Lijqj, (51)

where, in general, the tensor Lij depends on the state variables. Let us observe

that, due to the presence of the term (
∂s

∂e
),i the evolution equation above

depends also on the gradient of q, i.e., it is a partial differential equation. As
a particular case, if mij is constant, this equation can reduce to the classical
Cattaneo equation with variable material functions.

It is worth noticing that sometimes the classical techniques of exploitation
of the second law, namely the Liu procedure [59, 60] or the Coleman–Noll
procedure [33], are used jointly with the previous one. The method results
in the application of the above analysis to the reduced entropy inequality
following these procedures [61–65]. However, it seems to be important to
note that the technique above is the only one which is capable of giving a set
of differential equations as thermodynamic restrictions.

6.2. Evolution of higher order fluxes

Let us consider now the case of two dissipative fluxes entering the constitutive
space [64]. The equilibrium variable will be the internal energy e, while the
first dynamic variable is supposed to be the heat flux itself. As a further
dynamic variable, let us choose a second-order tensor � whose components
will be denoted by 
ij , i, j = 1, 2, 3.

We postulate the constitutive equation as

F = F∗(e, qi,
ij), (52)
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where F means an element of the set of constitutive functions {s, J}. In fact,
as in the previous case, we assign a constitutive equation for the couple {s, J}
and apply the procedure illustrated in the previous section to obtain evolution
equations for qi and 
ij . The basic thermodynamic state space is spanned
by the 13 unknown quantities {e, qi,
ij}. Besides the balance of energy, the
system of evolution equations for the 12 wanted fields qi and 
ij is needed.
In order to derive such a system, let us calculate σs according to the classical
procedures of irreversible thermodynamics. Along with Gyarmati [18] and
Verhás [66], we represent the entropy function, out of local equilibrium, as

s(e, qi,
ij) = sE(e) + 1

2
mijqiqj + 1

2
nijkl
ij
kl . (53)

In Eq. (53) the matrices mij and nijkl are constitutive functions depending
on the basic fields e, qi, and 
ij . The principle of maximum entropy at the
equilibrium forces mij and nijkl to be negative definite. Moreover, let us assume
that they take the form

m = −mI, n = −nI, (54)

where m and n are positive real coefficients and I means the unitary tensor
in the corresponding tensorial space. Finally, along with Verhás [66], let us
represent the entropy current as

Ji = ∂s

∂e
qi + ∂s

∂qj

ji . (55)

One should notice that the previous form of the entropy current is not the most
general one and some alternative forms are also possible (see for instance
[67,68]).

Finally, according to arguments from the kinetic theory, we assume that � is
symmetric [11, 12, 28]. Under the simplifications above, exploitation of the
second law through the procedure illustrated in Section 6.1, leads to [64]

q̇i +
(ik),k = − 1

m

(
R(ik)qk + S(ikl)
(kl) − ∂2s0

∂e2
e,i
)
, (56)


̇(ij) = −1

n

(
U(ijk)qk + V(ij)(kl)
(kl)

)
− m

n
q(i,j) . (57)

From Eqs. (56)–(57) it results that the evolution of q is ruled by a set of
balance laws with gradient dependent source terms, while tensor � obeys a
set of ordinary differential equations.
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6.3. The 4-fields and 9-fields systems recovered

If one assumes
(ij) = 1

3
c2eδij, then the 4-fields system of the previous section

is recovered by Eqs. (56) and (57). In fact, if in (56) we assume

S(ikl) = 0, R(ij) = m

τR
δij, (58)

then we get

ṗi +
(1

3
− 1

mc2

∂2s0

∂e2

)
e,i = − 1

τR
pi . (59)

On the other hand, due to the high speed of phonons
(

42 × 104cmsec−1 in

NaF [53]
)

, the coefficient
1

mc2

∂2s0

∂e2
in Eq. (59) can be neglected whenever

the absolute temperature θ =
(∂s

∂e

)−1
has no jumps, i.e. whenever the Lax

conditions for shock wave formation [55,56,69–71] are not fulfilled. In such
a case Eq. (59) reduces to Eq. (44). Furthermore, assuming

U(ij)k = 0, V(ij)(kl) = 0,
m

n
= c2, (60)

and taking into account the decomposition p(i,j) = 1

3
pk,k δij +p<i,j> , Eq. (57)

can be rewritten as follows:

1

3
ėδij + 1

3
c2pk,k δij + c2p<i,j> = 0. (61)

Finally, the trace of Eq. (61) yields the balance of energy (43).

In order to obtain the 9-fields system, let us proceed with the identification


(ij) = 1

3
c2eδij + c2N<ij>, (62)

and let us postulate the constitutive equations,

S(ikl) = 0, R(ij) = m

τR
δij, U(ij)k = 0,

m

n
= c2. (63)

Moreover, let us assume

V(ij)(kl) = − m

3τ
δijδkl + m

2τ
(δikδjl + δilδjk ). (64)
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Then by Eqs, (56) and (57) we get

ṗi +
(1

3
− 1

mc2

∂2s0

∂e2

)
e,i + N<ij>,j = − 1

τR
pi, (65)

1

3
ėδij + Ṅ<ij> + 1

3
c2pk,k δij + c2p<i,j> = −1

τ
N<ij>. (66)

The trace of Eq. (66) yields the balance of the energy (45). As a consequence
of Eq. (45), the last equation reduces to

Ṅ<ij> + c2p<i,j> = −1

τ
N<ij>. (67)

Also in this case in the absence of shocks Eq. (65) reduces to Eq. (41) while
Eq. (67) differs from Eq. (47) only for the coefficient in front of p<i,j> . Such
a discrepancy is not important at that level since the 9-fields system yields
only qualitative agreement with second sound experiments.

An analogous procedure can be applied if the constitutive space is nonlocal.
In such a case, the Guyer–Krumhansl equation can be recovered [63].

7. Extended irreversible thermodynamics of heat conduction

7.1. Weakly nonlocal extended thermodynamics

In the present section we show that the Guyer–Krumhansl equation can be re-
covered in the framework of weakly nonlocal thermodynamics. Such a name
denotes a class of theories which introduce the spatial derivatives of the basic
variables into the constitutive functions [34, 62, 65]. Nonlocal state spaces
constitute a valuable tool in continuum thermodynamics, for instance, to ac-
count for material microstructure [35,36,43], to achieve nonlocal extensions
of classical local theories [32, 42, 44, 46, 72], to model fast phenomena in
miniaturized systems [73–75]. However, more familiar cases can arise. Let
us mention, as an example, Fourier heat conduction theory in rational ther-
modynamics [33], where the gradient of the absolute temperature enters the
state space.

Extended irreversible thermodynamics constitutes a valuable example of
weakly nonlocal theory. Analogously to rational extended thermodynamics,
it assumes that the unknown fields are the dissipative fluxes, but in contrast to
it, the gradients of these fluxes are permitted to enter the state space [12]. Let
us consider a rigid heat conductor with thermodynamic state space spanned
by the set

(
e, e,k, qi, qi,k

)
. Besides Eq. (1), in the spirit of extended thermo-

dynamics, we suppose that the heat flux is governed by the balance equation

q̇i +�ik,k = ri, (68)
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where �ik are the components of the flux of q, and ri are the components of
the production of q.The evolution equation we are looking for can be obtained
by the Boltzmann equation for phonons in the Debye approximation, if one
maintains terms O(τN ) only [7, 8]. For states close to equilibrium, Eq. (13)
can be rewritten as follows:

τR(T )q̇i + qi = −k(T )T,i + 9

5

k(T )τN (T )

cv(T )

(
qi,kk + 2qk,ki

)
, (69)

where

T =
(∂sE

∂e

)−1
(70)

denotes the local equilibrium temperature. Such a temperature, which is the
only one measurable in second sound experiments, will be distinguished by the
non-equilibrium absolute temperature θ , defined through the thermodynamic
relation

∂s

∂e
= 1

θ
, (71)

(see [76,77] for more details).

7.2. The linear Guyer–Krumhansl equation

The differential equation (69) is linear with respect to the heat flux and its
space and time derivatives, with scalar coefficients depending on the local
equilibrium absolute temperature T only. Such an equation is said to be semi-
linear [56]. In order to construct an appropriate thermodynamic model, one
can start with the general constitutive equations [72]

�ij = Aδij + Bqiqj − C1qi,j − C2qk,k δij − C3qj,i, (72)

ri = −a0qi − b0e,i + fjqj,i + qi,jhj + giqk,k , (73)

where all the coefficients appearing in the expressions above depend on the
wanted fields but not on their derivatives. The exploitation of the second law
is achieved through the Liu procedure [59]. As a result, one observes that
the space nonlocality does not influence the entropy but it does contribute to
the entropy flux. For isotropic materials, the following constitutive relation
ensues:

s(e, q2) = sE(e) + 1

2
φ(e)q2, (74)
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where φ(e) is an undetermined, negative definite function of e.Then, by taking
into account (71) one is led to

θ−1(e, q2) = 1

2
φ′q2 + T−1(e). (75)

Let us observe that by Eq. (75) one can infer that the absolute temperature
reduces to the equilibrium temperature either in the absence of heat flux or if
φ = const. The entropy flux is given by

Ji = T−1qi + τR

kT 2
(C1qjqj,i + C2qiqj,j + C3qjqi,j), (76)

while the evolution of the heat flux is ruled by the governing equation

τRq̇i +qi = −kT,i +τRγ1(qjqj,i −qi,jqj)+τR(C1qi,jj +C2qj,ji +C3qj,ij), (77)

where the coefficient γ1 has to be determined by the available experimental
data. For states close to equilibrium, i.e., if all the material functions are
constant, omitting in Eq. (77) the nonlinear contributions and assuming C1 =
C2 = C3, one recovers the Guyer–Krumhansl equation (69) if

C1 = 9

5

kτN

τRcv
.

The entropy flux corresponding to the linear Guyer–Krumhansl equation is
given by

Ji = T−1qi + 9τN

5cvT 2
(2qjq(i,j) + qiqj,j ). (78)

It yields the classical entropy flux of rational thermodynamics for vanishing
τN .

7.3. The semilinear Guyer–Krumhansl equation

The constitutive equations (72) and (73) are able to reproduce the semilinear
equation (69) too [78]. To this end, the second term in Eq. (72), which is
nonlinear in q, should be neglected. Moreover, the coefficients A, B, and
Ci should depend on the internal energy only. Finally, under the additional
hypothesis C1 = C3, the constitutive equation (72) can be rewritten as

�(ij) = φ1δij + φ2q(i,j) + φ3qk,k δij, (79)

where the material functions φi, i = 1, 2, 3, are supposed to depend on the
internal energy only.
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It is worth noticing that by applying a new method of exploitation of the
second law, which generalizes the classical Liu procedure (see Section 7.4
below for more detail), in [78] is proved that the constitutive equation (79) is
also compatible with nonlocal entropy.

Since the specific heat is nonnegative, there is a one-to-one correspondence
between the internal energy and the local equilibrium absolute temperature T .
So, we are allowed to regard the material functions φi, i = 1, 2, 3, as depend-
ing on T . Furthermore, let us assumeφ2 =φ3 and let us writeφ1(e(T )) = a(T ),
φ2(e(T )) = φ3(e(T )) = b(T ). Then, still taking into account the semilinear
approximation, we get

q̇i + ∂a

∂T
T,i + b(T )

(
qi,jj + 2qk,ki

)
= ri, (80)

which represents the evolution equation we are looking for. It yields the
Guyer–Krumhansl equation (69) if one assumes

a(T ) =
∫ k(T )

τR(T )
dT , (81)

ri = − qi

τR(T )
, (82)

b(T ) = −9

5

k(T )τN (T )

cv(T )τR(T )
. (83)

7.4. On the local form of the first and second law in weakly nonlocal
thermodynamics

In the realm of weakly nonlocal theories, another problem which deserves
consideration is the local form of the first and second law. Let us illustrate it
by considering rational thermodynamics of deformable bodies in the Eulerian
description. The entropy principle, in its classical formulation [9], imposes
that the differential inequality

�Ṡ + �S,ivi +
(qi

θ

)
,i

≥ �
r̂

θ
, (84)

with � as the mass density, S as the specific entropy, θ as the absolute temper-
ature, r̂ as the specific radiative heat supply, vi, i = 1, 2, 3, as the components
of the velocity, qi as the components of the heat flux, is satisfied by any solu-
tion of the local balances of mass, linear and angular momentum and energy
and, eventually, of additional equations governing the evolution of some other
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thermodynamical parameters entering the state space. The classical balances
of mass, linear and angular momentum and energy read [24]

�̇ + �,ivi + �vi,jδij = 0, (85)

�v̇i + �vi,jvj − Tij,j = �bi, (86)

�ε̇ + �ε,ivi − Tijvi,j + qi,i = �r̂, (87)

with Tij = Tji, i, j = 1, 2, 3 as the components of the Cauchy stress tensor, bi
as the components of the specific body force, ε as the specific internal energy.

Two rigorous techniques can be applied to derive the restrictions placed by
the second law of thermodynamics on the constitutive functions, namely the
Coleman–Noll procedure [33] and the Liu procedure [59].

If the classical form (87) and (84) of the first and second law holds, both the
techniques yield that only the fluxes can depend on the gradients, while the
entropy and the absolute temperature may depend only on the basic fields.

Such a conclusion leads to serious discrepancies, because it renders some
important classes of nonlocal materials, such as the Korteweg fluids, incom-
patible with thermodynamics [79]. Two different proposals, allowing us to
circumvent that problem, can be found in the literature.

The first proposal is that no constitutive equation should be postulated for the
entropy flux J [80]. This is equivalent to the introduction into the dissipation

inequality of an entropy extra-flux k = J − q

θ
such that Eq. (84) becomes

�Ṡ + �S,ivi +
(qi

θ

)
,i

+ ki,i ≥ �
r̂

θ
. (88)

The second proposal is that the local balance of energy (87) should be modified
by postulating the existence of an energy extra-flux l, due either to matter
diffusion, [81], or to the interstitial working of long range interactions [79,82],
such that Eq. (87) reads

�ε̇ + �ε,ivi − Tijvi,j + qi,i + li,i = �r̂. (89)

However, also accepting one of the two proposals above, problems arise in
dealing with first-order nonlocal systems. This is due to the fact that the
Coleman–Noll and Liu procedures, even in the presence of extra-fluxes, allow
the entropy to depend on the gradients of order m of the unknown fields
if and only if the constitutive functions depend on the gradients of order
m + 1 [33,79]. It is clear that this leads again to a local entropy in the case of
first-order nonlocality.
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In some recent papers [78, 83], a different point of view was proposed. By
applying a generalized method for the exploitation of the second law [78],
it is proved that also the entropy and the absolute temperature are nonlocal.
The basic idea of the new exploitation method is to take into account as
constraints of the entropy inequality not only Eqs. (85)–(87) but also their
gradient extensions, up to the order of the gradients entering the constitutive
equations. That way, the number of independent constraints is always equal
to the number of independent state variables. In the presence of first-order
nonlocalities, the mathematical theory developed in [78] has been applied
to study heat conduction in miniaturized systems [73], and second-grade
Korteweg-type viscous fluids [83]. In both cases the the entropy is nonlocal,
whatever the form of Eqs. (84) and (87) is. It is worth observing that, due to
thermodynamic relation (71), a nonlocal entropy implies a nonlocal absolute
temperature. Such an observation is particularly interesting in the study of
heat conduction in nanosystems, since the nonlocal terms in the temperature
contribute important nonlinear terms in the heat transport equation [73]. This
is true also if the classical expressions (84) and (87) hold, i.e., also in the
absence of extra-fluxes.

Indeed, local constitutive equations are well-suited for discrete systems, such
as rarefied gases [57]. In the continuum limit, the behavior of the material
in a point depends on its interactions with the closest particles too. From the
physical point of view, there is no any evident reason why these interactions
should influence only the fluxes and not the thermodynamic potentials.

From the considerations above it follows that in weakly nonlocal thermody-
namics the local form of the first and second law is still an open problem
and that the extra-fluxes are no longer necessary in order to make higher
grade material theories compatible with thermodynamics. This fact does not
mean that the extra-fluxes do not exist. For instance, in the classical theory
of the mixtures the effects of matter diffusion manifest themselves in the ap-
pearance of an additional energy flux related to the chemical potential and
to the relative mass flux of each constituent [81]. However, their existence
and their independency of the heat flux cannot be assumed in general but
should be determined on the base of suitable experimental results. Moreover,
although some authors consider the two modifications above of the basic laws
of thermodynamics as equivalent [81], it is easy to check that they lead to
different sets of thermodynamic restrictions. Hence, the equivalence should
be understood only in the sense that both provide a valuable tool in order to
render higher grade material theories compatible with thermodynamics. New
experiments seem to be necessary to decide which of the two options is the
more well-suited from the physical point of view.
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7.5. Jeffrey-type constitutive equations

An alternative way to model hyperbolic heat conduction is to postulate that also
the rates of the unknown fields enter the state space. This type of constitutive
equation was first introduced by Jeffrey [84] to study the wave propagation
in the Earth’s mantle. Recently, these equations have been used to construct
an alternative approach to extended irreversible thermodynamics [85, 86].
Hyperbolic heat conduction through Jeffrey-type constitutive equations was
first modelled by Muschik [87], who started from the following balances of
energy and entropy for rigid bodies at rest:

ė + qi,i = r, (90)

ṡ +
(qi

θ

)
,i

+ ki,i ≥ r

θ
. (91)

Here r is the heat supply for unit of volume while the functions ki denote
the components of the entropy extra-flux. The constitutive equations take the
form

F = F∗(ν, ν•,∇ν,∇ν•), (92)

where ν = 1

θ
and F is an element of the set {e, s, qi, ki}. Moreover, the symbol

f • denotes the co-rotational time derivative of function f (see [88] p. 6, for
details), which is necessary to make Eq. (92) frame-invariant [38,89,90]. The
compatibility of Eq. (92) with the second law is investigated through the Liu
procedure [59], while the reduced entropy inequality is solved by applying
the method illustrated in Section 6.1. As a result, one obtains

∂s

∂ν
− λ

∂e

∂ν
= âν• + b̂iν,i, (93)

qi + ∂ki

∂ν
+ (ν − λ)

(
∂qi

∂ν

)
= ĉiν

• + d̂ijν,j, (94)

ν − λ = f̂ ν• + ĝiν,i. (95)

In the restrictions above, λ denotes the Lagrange multiplier related to the
energy balance (90) [59], while the functions â, f̂ , ĉ, b̂, d̂, and ĝ depend on
the state space. The linearized balance of energy around an equilibrium state
yields

∂e

∂ν
|eq ν

• + ∂e

∂ν•
,i

|eq ν
••
,i + ∂e

∂ν,i
|eq ν

•
,i =

−
[

− ∂ki

∂ν
+
(

ĉi + f̂
∂qi

∂ν

)
ν• +

(
d̂ij + ĝi

∂qj

∂ν

)
ν,j

]
,i

. (96)
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It is proved in [87] that the equation above is hyperbolic, thus leading to finite
speed of propagation of thermal disturbances.

8. Conclusions and perspectives

We have examined the different approaches to non-equilibrium thermodynam-
ics starting from a different point of view on the problem of heat conduction
with finite wave speeds. We have pointed out that, in spite of the apparent
differences, the theories present several similarities. In particular, it seems to
be remarkable that some mathematical system of equations that is peculiar
to the extended theories can be recovered in the framework of classical irre-
versible thermodynamics. For some aspects, such a theory is the less general
one among those examined here, since it rests on the local-equilibrium hy-
pothesis and on the linearity.7 However, for the choice of the state space and
for the structure of the system of governing equations, it is the most general
one. In fact, besides the conventional and the internal variables, also the dis-
sipative fluxes can enter the constitutive equations [18, 19]. Furthermore, no
particular structure is required for the system of governing equations, as it
happens, for instance, in extended thermodynamics. Unfortunately, some of
its methodologies are rather heuristic and not based on rigorous mathemat-
ical proof (see [9], Lecture 7, for an extensive discussion). We feel that the
problem of providing to such a theory a more robust mathematical structure
deserves consideration.

All the quoted theories are able to reproduce some of the main properties of
heat conduction at low temperature, but none of them leads to an exhaustive
description which is free of technical problems. For instance, the results of
Section 7 prove that the Guyer–Krumhansl equation can be recovered in the
framework of extended irreversible thermodynamics [12] but it cannot be
obtained in rational extended thermodynamics [11] because its derivation
requires that the gradients of the wanted fields enter the constitutive equations.
On the other hand, the presence of the spatial gradients in the constitutive
equation for the flux of heat flux makes the theory parabolic and finite speeds
of propagation, in a strict mathematical sense, cannot be expected. This last
remark justifies the importance of the Guyer–Krumhansl equation in recent
discussions on the physical bases of the extended theories of thermodynamics.
In fact, all these theories stem from the requirements of accordance with
kinetic theory and finite speed of propagation of the initial perturbations. At
first sight, the Guyer–Krumhansl equation, which is a consequence of the
kinetic theory, seems to prove that none of them is capable of satisfying both

7It is worth observing that also in the other thermodynamictheories the problem of the existence of the entropy
beyond the equilibrium has not yet been solved but only circumvented by postulating that entropy is a primitive
concept, which does not require any definition [10].
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the requirements above. Indeed, this is not strictly true. In fact, in extended
irreversible thermodynamics finite speeds of propagation can be obtained in
the generalized sense clarified by G. Fichera [4] and W. A. Day [5, 6]. These
authors observed that a correct estimation of the speed of propagation of the
disturbances requires that the order of magnitude of the solution of the system
of balance equations is compared with that of the error affecting the available
experimental data which the theory aims to reproduce. In particular, if after
a finite interval of time from the beginning of a physical process the solution
of the corresponding system of balance laws is greater than the experimental
error only in a compact domain, then we can say that such a solution is
experimentally zero outside this domain. As a consequence, it has propagated
with finite speed because not all the points of the space have been reached in a
finite time. A constitutive principle of weak causality, which is in accordance
with this point of view, has been formulated in [20].

On the other hand, in rational extended thermodynamics, one can obtain the
Guyer–Krumhansl equation through a suitable approximation of the govern-
ing system. To this end one should: (i) go further with the hierarchy and
consider the balance equation for the flux of heat flux; (ii) write this equation
in such a way that the relaxation time appears explicitly in front of the time
derivative; (iii) consider regular solutions and a negligibly small relaxation
time; (iv) use the obtained equation (now in the divergence form), in order to
express the heat flux as a function of its first gradient; (v) substitute the new
form of the heat flux into the constitutive equation for the flux of heat flux.
That way, second derivatives could appear into the balance equation for the
heat flux and Guyer–Krumhansl equation could be obtained under suitable
approximations. It is worth noticing that such a procedure places the theory
very close to the traditional rational thermodynamics since a gradient type
constitutive equation together with the parabolic regularization of the solu-
tion are recovered through the additional assumption that one of the relaxation
times is negligible.

All the aforementioned theories present advantages and disadvantages, de-
pending on the phenomenology to which they are applied.

In rational thermodynamics, memory effects, as those arising in heat con-
duction with finite speed, can be modelled by integral constitutive equa-
tions [91–94], by dynamical constitutive equations [95–99], and by internal
state variables [40–42]. In the first approach the balance equations are difficult
to solve and sometimes the well-posedness of the relevant Cauchy problem is
not guaranteed [100]. In the second approach, the dynamical terms entering
the constitutive equation of the heat flux in general do not cope with the re-
quirement of material frame indifference. Hence a special definition of time
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derivative, which renders the system of equations much more difficult, must
be introduced [38, 87]. On the other hand, the internal variables, which lead
to more simple systems of equations, are “not controllable”, i.e., their value
on the boundary cannot be conditioned through the direct action of external
forces [34]. Hence it is difficult to assign appropriate boundary conditions. A
fully thermodynamic approach to the problem of boundary conditions in the
presence of internal variables has been proposed in [101,102].

In rational extended thermodynamics, in which the memory effects are instead
modelled by the hierarchical system of equations following kinetic theory, the
main problems are due to the rapidly increasing number of unknown quan-
tities. The most difficult one is the determination of the appropriate number
of equations, i.e., of the step at which the hierarchical system should be trun-
cated [103]. Moreover, also in such a theory the determination of suitable
boundary conditions is difficult, since the physical meaning of the higher
order fluxes is not clear [104]. The same is true in extended irreversible ther-
modynamics, where the higher order fluxes are necessary in modelling high-
frequency processes [74,75,105–109].

At this point it seems natural to investigate wether there exists a more gen-
eral approach to non-equilibrium thermodynamics which encompasses all the
previous ones. This important problem still remains to be solved. To this end,
it seems to be unavoidable to modify a little bit the basic postulates of all
the theories. Moreover, the requirements of finite speeds of propagation and
accordance with the kinetic theory should be revisited. We already observed
that finite speeds can be obtained in a generalized sense. On the other hand,
if we take a look at the postulates of microscopic theories, we discover that
their representation of the physical reality is neither more realistic nor more
rigorous than that of the macroscopic theories, since also in this case sev-
eral approximations are necessary in order to obtain reasonable systems of
equations. Hence, in building up a macroscopic model, the direct observa-
tion of the phenomenology could give a deeper insight into the mathematical
structure of the theory with respect to the molecular approach.
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[51] Cimmelli, V.A., Kosiński, W., Saxton, K., Modified Fourier law – comparison of
two approaches, Arch. Mech., 44 (1992), 409–415.

[52] Frischmuth, K., Cimmelli, V.A., Numerical reconstruction of heat pulse experi-
ments, Int. J. Eng. Sci., 33 (1994), 209–215.

[53] Cimmelli, V.A., Frischmuth, K., Determination of material functions through sec-
ond sound measurements in a hyperbolic heat conduction theory, Math. Comput.
Modelling, 24 (1996), 19–28.

[54] Frischmuth, K., Cimmelli, V.A., Coupling in thermo-mechanical wave propagation
in NaF at low temperature, Arch. Mech., 50 (1998), 703–713.

[55] Cimmelli,V.A., Frischmuth, K., Nonlinear effects in thermal wave propagation near
zero absolute temperature, Physica B, 355 (2005), 147–157.

[56] Ruggeri, T., Thermodynamics and symmetric hyperbolic systems, Rend. Sem. Mat.
Univ. Pol. Torino, Fascicolo Speciale: Hyperbolic Problems, (1988), 167–183.

[57] Grad, H., On the kinetic theory of rarefied gases, Comm. Pure Appl. Math., Vol. 2,
Wiley, New York, 1949.

[58] Chester, M., Second sound in solids, Phys. Rev., 131 (1963), 2013–2015.
[59] Liu, I-Shih, Method of Lagrange multipliers for exploitation of the entropy princi-

ple, Arch. Rat. Mech. Anal., 46 (1972), 131–148.
[60] Hauser, R.A., Kirchner, N.P., A historical note on the entropy principle of Müller

and Liu, Continuum Mech. Thermodyn., 14 (2002), 223–226.
[61] Ciancio, V., Cimmelli, V.A., Valanis, K.C., A thermodynamic theory of thermoe-

lastic and viscoanelastic solids with non-Euclidean structure, J. Non-Equilib.Ther-
modyn., 26 (2001), 153–166.

[62] Ván, P., Weakly nonlocal irreversible thermodynamics, Ann. Phys., 12 (2003), 142–
169.

[63] Cimmelli, V.A., Ván, P., The effects of nonlocality on the evolution of higher
order fluxes in nonequilibrium thermodynamics, J. Math. Phys., 46 (2005), 112901
(15 pages).

[64] Ciancio, V., Cimmelli, V.A., Ván, P., On the evolution of higher order fluxes in
non-equilibrium thermodynamics, Math. Comput. Modelling, 45 (2007), 126–137.

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 4



Different Thermodynamic Theories and Different Heat Conduction Laws 331

[65] Ván, P., Exploiting the second law in weakly nonlocal continuum physics, Periodica
Polytechnica, Ser. Mechan. Eng., 49 (2005), 79–94.

[66] Verhás, J., On the entropy current, J. Non-Equilib. Thermodyn., 8 (1983), 201–206.
[67] Nyı́ri, B., On the entropy current, J. Non-Equilib. Thermodyn., 16 (1991), 179–186.
[68] Jou, D., Lebon, G., Mongiovı́, M.S., Peruzza, R.A., Entropy flux in non-equilibrium

thermodynamics, Physica A, 338 (2004), 445–457.
[69] Lax, P.D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory

of Shock Waves, CBMS-NSF Regional Conferences Series inApplied Mathematics,
N. 11, Capital City Press, Montpelier, VT, 1973.

[70] Ruggeri, T., Muracchini, A., Seccia, L., Shock waves and second sound in a rigid
heat conductor: A critical temperature for NaF and Bi, Phys. Rev. Lett., 64 (1990),
2640–2643.

[71] Cimmelli, V.A., Oliveri, F., A diffusive hyperbolic model for heat conduction, Math.
Comput. Modeling, 39 (2004), 1413–1422.

[72] Lebon, G., Jou, D., Casas-Vázquez, J., Muschik, W., Weakly nonlocal and nonlinear
heat transport in rigid solids, J. Non-Equilib. Thermodyn., 23 (1998), 176–191.

[73] Cimmelli,V.A., Sellitto,A., Jou, D., Nonlocal effects and second sound in a nonequi-
librium steady state, Phys. Rev. B, 79 (2009), 014303 (13 pages).

[74] Alvarez, F.X., Jou, D., Size and frequency dependence of effective thermal conduc-
tivity in nanosystems, J. Appl. Phys., 103 (2008), 094321 (8 pages).

[75] Alvarez, F.X., Jou, D., Memory and nonlocal effects in heat transport, Appl. Phys.
Lett., 90 (2007), 083109 (3 pages).

[76] Casas-Vázquez, J., Jou, D., Nonequilibrium temperature versus local-equilibrium
temperature, Phys. Rev. E, 49 (1994), 1040–1048.

[77] Casas-Vázquez, J., Jou, D.,Temperature in non-equilibriumstates: A review of open
problems and current proposals, Rep. Prog. Phys., 66 (2003), 1937–2023.

[78] Cimmelli,V.A.,An extension of Liu procedure in weakly nonlocal thermodynamics,
J. Math. Phys., 48, (2007), 113510 (13 pages).

[79] Dunn, J.E., Serrin, J., On the thermomechanics of the interstitial working, Arch.
Rat. Mech. Anal., 88 (1985), 95–133.

[80] Müller, I., On the entropy inequality, Arch. Rat. Mech. Anal., 26 (1967), 118–141.
[81] Gurtin, M.E, Vargas, A.S., On the classical theory of reacting fluid mixtures, Arch.

Rat. Mech. Anal., f43 (1971), 179–197.
[82] Dunn, J.E., Interstitial working and a nonclassical continuum thermodynamics, In:

New Perspectives in Thermodynamics, Ed. J. Serrin, Ch. 11, pp. 187–222, Springer,
Berlin, 1986.

[83] Cimmelli,V.A., Sellitto,A.,Triani,V.,A new thermodynamic framework for second-
grade Korteweg-type viscous fluids, J. Math. Phys., 50 (2009), 053101 (16 pages).

[84] Jeffrey, H., The Earth, Cambridge University Press, Cambridge, 1929.
[85] Serdyukov, S.I., Extended irreversible thermodynamics and the Jeffreys type con-

stitutive equations, Phys. Lett. A, 316 (2003), 177–183.
[86] Serdyukov, S.I., Generalization of the evolution criterion in extended irreversible

thermodynamics, Phys. Lett. A, 323 (2004), 262–271.
[87] Muschik, W., Aspect of Non-Equilibrium Thermodynamics, World Scientific, Sin-

gapore, 1990.

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 4



332 V.A. Cimmelli

[88] Jou, D., Casas-Vázquez, J., Criado-Sancho, M., Thermodynamics of Fluids under
Flow, Springer, Berlin, 2001.

[89] Speziale, C.G., A review of material frame-indifference in mechanics, Appl. Mech.
Rev., 51 (1998), 489–504.

[90] Muschik, W., Restuccia, L., Systematic remarks on objectivity and frame-indiffer-
ence, liquid crystal theory as an example, Arch. Appl. Mech., 78 (2008), 837–854.

[91] Gurtin, M.E., Pipkin, A.C., A general theory of heat conduction with finite wave
speed, Arch. Rat. Mech. Anal., 31 (1968), 113–126.

[92] Chen, P., Gurtin, M.E., On second sound in materials with memory, Z. Angew.
Math. Phys. (ZAMP), 21 (1970), 232–242.

[93] Chen, P., Nunziato, J.,Thermodynamic restrictions on the relaxation functions of the
theory of heat conduction with finite wave speeds, Z. Angew. Math. Phys. (ZAMP),
25 (1974), 791–798.

[94] Morro, A., Temperature waves in rigid materials with memory, Meccanica, 12
(1977), 73–77.

[95] Lord, H., Shulman,Y.,A generalized dynamical theory of thermoelasticity, J. Mech.
Phys. Solids, 15 (1967), 299–309.

[96] Green, A.E., Lindsay, K.A., Thermoelasticity, J. Elasticity, 1 (1970), 1–7.
[97] Green, A.E., Naghdi, P.M., On undamped heat waves in an elastic solid, J. Thermal

Stresses, 15 (1992), 253–264.
[98] Green, A.E., Naghdi, P.M., Thermoelasticity without energy dissipation. J. Elastic-

ity, 31 (1993), 189–208.
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Abstract

On the basis of linear non-equilibrium thermodynamic theory, exergy transfer
analyses of laminar and turbulent forced convection are conducted in terms of
external flows over a flat plate. Two kinds of non-dimensional concepts involving
the definition of the local and mean exergy transfer Nusselt number and non-
dimensional exergy flux are incorporated into exergy transfer analysis. The new
analytical expressions for the local and mean exergy transfer Nusselt number
and non-dimensional exergy flux are adopted to describe the exergy transfer
characteristics over a flat plate. By taking air as working fluid, the influences
of flat plate geometry, Reynolds number, and other operating parameters on the
exergy transfer Nusselt number and non-dimensional exergy flux are examined.
It is shown how the flow geometric parameters and Reynolds number, etc., may
be selected in order to maximize the exergy utilization associated with a specific
external convection process. In addition, the results obtained from exergy transfer
analysis are compared with those obtained from traditional heat transfer analysis.

1. Introduction

External flows with heat transfer occur in many engineering installations.
Fluid flow and heat transfer through external flow over a flat plate is one of
the fundamental research topics in engineering. Heat transfer processes are
generally accompanied by thermodynamic irreversibility or entropy genera-
tion. Efficient utilization of energy has become one of the primary objectives
in the design of fluid flow and heat transfer processes. The second law analy-
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sis is the gateway for optimization in thermal equipments and systems, which
makes good engineering sense to focus on the irreversibilities of fluid flow
and heat transfer processes. Entropy generation or exergy destruction due to
heat transfer and fluid flow through a duct has been investigated by many
researchers. Bejan [1–5] was perhaps the first to examine entropy generation
in convective heat transfer and reviewed the pedagogical merits of the method
and the chronological development of the field.The competition between flow
and heat transfer irreversibilities also rules the thermodynamic design of ex-
ternal convective heat transfer arrangements, in which the flow engulfs the
solid body (walls) that it exchanges heat with. Bejan [6] analyzed entropy gen-
eration in fundamental convective heat transfer of four flow configurations:
pipe flow, boundary layer over a flat plate, single cylinder in cross-flow, and
flow in the entrance region of a flat rectangular duct, and showed how the flow
geometric parameters may be selected in order to minimize the irreversibility.
Several other studies followed along these lines, such as for external flows:
across cylinders with mixed forced and natural convection [7, 8]. Poulikakos
and Johnson [9] obtained a general expression of entropy generation for com-
bined convective heat and mass transfer in external flows and applied the
general expression to two fundamental problems of forced convection heat
and mass transfer, namely, laminar and turbulent boundary layer forced con-
vection from a flat plate and from a cylinder in crossflow. The second law
analysis of combined heat and mass transfer in internal and external flows
was carried out by Carrington and Sun [10]. A control volume method was
used to establish the rate of entropy generation due to heat and mass transfer,
accompanied by fluid friction. Budair [11] has conducted a study to deter-
mine the entropy generation of unsteady flow on a flat plate and found that
entropy generation in the space between the plates is more considerable at
initial times of motion than at later times. Chandrasekar and Baskaran [12]
applied a genuine variational principle developed by Gyarmati in the field
of thermodynamics of irreversible processes unifying the theoretical require-
ments of technical, environmental, and biological sciences to study the effects
of uniform suction and injection in the heat transfer and boundary layer flow
with power function main stream velocity and surface temperature variations,
over a wedge.

Recently, the use of exergy analysis in thermal design has been discussed and
demonstrated by numerous authors. Exergy is a thermodynamic quantity that
represents the available energy. An exergy-based performance analysis is the
performance analysis of a system based on the second law of thermodynamics
that overcomes the limit of an energy-based analysis. Lior et al. [13] gave a
brief review of the method for analyzing the space- and time-dependent exergy
and irreversibility fields in processes.Although the objectives of exergy or en-
tropy analysis appear to be obvious, it is very noteworthy to recall that one of
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the most important and useful objectives is to evaluate how they change with
any changes in the process parameters and configuration. Most of the exergy
analyses are nowadays conducted on the system level development, by eval-
uating the exergy values and changes of component input and output streams
and energy interactions. While this can indeed identify the exergy destruction
in a system component, it does not deliver detailed information about the spe-
cific process phenomena, often space and time dependent, which causes the
exergy changes in it. A useful or powerful exergy method should be capable
of providing insights on how exergy is utilized or lost in the process and hence
of suggesting directions for process improvement and optimization [14].

On the other hand, the convective heat transfer process usually contains mo-
mentum transfer and heat transfer, the common essence of which is energy
transfer and conversion. In fact, energy transfer and conversion are inevitably
accompanied by exergy transfer and conversion. However, energy is conser-
vative in its transfer and conversion processes, while exergy is known to be
non-conservative due to the irreversibility of its transfer process. As a result,
exergy transfer must have rules of its own, which are different from those
of energy transfer. In any process, the use of energy is essentially the use of
exergy. But with the further researching of energy transfer, it is found that the
energy transferred will be different by its property or energy grade, whose
effectiveness will vary with the process, and the whole energy can be divided
into an exergy part and an anergy part. Many researchers found that knowing
about the mechanism of this kind of energy transfer will be very important and
significant for optimal system design, economical control, and high-efficiency
energy-saving applications [15]. Since Soma [16] and Dunbar et al. [17] put
forward the concept of exergy transfer and its equation, the research on ex-
ergy transfer has gained some researchers’ attention. Detailed exergy balance
equations, exergy transfer rates, and exergy destruction rates for flows in com-
plex configurations have been investigated by Sun and Carrington [18, 19].
These integral equations are applicable where it is not feasible to establish
the local velocity, pressure, temperature, and concentration distributions. In
Ref. [20], a phenomenological equation of exergy transfer, which indicated
the relation between exergy flux, exergy resistance, and exergy-driving forces,
was derived by applying non-equilibrium thermodynamics to the second law
analysis, and the expressions of the exergy transfer coefficients were simulta-
neously obtained. A simplified expression for the exergy transfer coefficient
by neglecting some minor engineering couplings in exergy transfer processes
has been proposed. To date, one of the objectives in studying exergy transfer
and conversion for laminar or turbulent flow heat transfer has been to calculate
entropy generation or exergy destruction [21]. Wu et al. [22, 23] have studied
the exergy transfer characteristics of convective heat transfer through a duct
with constant wall heat flux and wall temperature by introducing an exergy
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transfer coefficient and defining the local and mean exergy transfer Nusselt
number.

As mentioned above, exergy is generally not conserved as energy but destroyed
in the system. Exergy destruction is a measure of irreversibility which is the
source of performance loss. However, it is pointed out that, whatever the con-
dition is, the entropy generation or exergy destruction is greater than zero in
convective heat transfer from the viewpoint of thermodynamics, but from the
viewpoint of exergy transfer (profit), the exergy change from convective heat
transfer of working fluids may be less than zero under a certain condition,
which means the reduction of work ability for working fluids. But this is not
the goal of convective heat transfer processes in engineering. Furthermore,
heat transfer processes are always applied to transfer exergy for the purpose of
availability (exergy) utilization; one always focuses on the amount of gained
exergy for a certain fluid in engineering, such as in the field of thermal utiliza-
tion of solar energy etc. [24] Thus, theoretically and practically, it is important
to study the rules of exergy transfer and find out the change range in the pro-
cess parameters and configuration, where the exergy change from convective
heat transfer of working fluids is greater than zero.

Although the entropy or exergy analysis for convective heat transfer through
an external flow of a flat plate has been dealt with for quite some time, it has not
been systematically approached from the perspective of exergy transfer (not
exergy destruction) in a way that is compatible and coherent with engineering
applications. It is known that external flow has some flow and heat transfer
characteristics which are different from those of internal flow, such as pipe
flow. As an extension of the authors’ previous works, the objective of this
paper is to examine the exergy transfer characteristics of forced convective
heat transfer through an external flow over a flat plate with constant wall
temperature for laminar and turbulent flow by introducing exergy transfer
Nusselt number and non-dimensional exergy flux, which is different from
that in the previous literature.

2. Exergy transfer model of convection through external flow

Consider an arbitrary differential element surface of body, whose surface area
is dA, suspended in a uniform stream with velocity, u∞, mass flow rate, G∞,
and temperature, T∞, as shown as Figure 1. The heat transfer, dΦ, is driven
by the temperature difference between the wall of body, Tw, and free stream,
T∞. In addition, a net drag force, dFD, which is transmitted through the body
to fluid, is caused by the external flow arrangement. A fixed control volume
which surrounds the body is chosen. A fluid flows around the body. The
boundaries of the control volume are positioned far away from the body (i.e.,
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Figure 1 Sketch of control volume over a differential element surface of body through external flow.

Figure 2 Sketch of forced convective heat transfer process over a flat plate.

the control volume is much larger than the body) such that the conditions at
the control volume boundary are unaffected by the body. The control volume
can be regarded as a large tube [2].

Using the definition of specific flow exergy,

e = h − h0 − T0(s − s0). (1)

Considering that e = f (T , p) with T0 = const, then de can be expressed as

de =
(
∂e

∂T

)
p

dT +
(
∂e

∂p

)
T

dp. (2)

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 4



340 S.-Y. Wu et al.

According to thermodynamics and the partial derivatives of Eq. (1) with ref-
erence to p and T , respectively, the following thermodynamic relations are
obtained:(

∂e

∂T

)
p
= cp

(
1 − T0

T

)
, (3)

(
∂e

∂p

)
T

=
(
∂h

∂p

)
T

− T0

[
1

T

(
∂h

∂p

)
T

− 1

ρT

]
. (4)

Here air is selected as a working fluid, if air is considered as an ideal gas, a
state equation and Maxwell’s relation may be applied, we have (∂h/∂p)T = 0
and (∂s/∂p)T = −1/(ρT ). Thus, Eq. (4) reduces to(

∂e

∂p

)
T

= T0

ρT
. (5)

It should be pointed out that, as the same as an ideal gas, both (∂h/∂p)T and
(∂s/∂p)T for an incompressible liquid having constant thermophysical prop-
erties, such as water, are also very small. However, when one of them is zero,
another must not be zero in order to calculate the entropy generation/exergy
destruction caused by pressure drop.

Substituting Eqs. (3) and (5) into Eq. (2), Eq. (2) may be expressed as

de = cp

(
1 − T0

T

)
dT + T0

T
· dp

ρ
. (6)

Therefore, the exergy change rate of working fluids over the control volume
is given by

dE = G∞
[

cp

(
1 − T0

T

)
dT + T0

T
· dp

ρ

]
. (7)

It is assumed that the mean quantities of the control volume are approximately
equal to the free stream quantities. This assumption is reasonable since the
control volume is much larger than the body, and the same assumption has
been used successfully by previous investigators [2, 9]. Thus, Eq. (7) may be
rewritten as

dE = dΦ

(
1 − T0

T∞

)
+ T0V∞

T∞
dp. (8)

Considering that the pressure drop of the control volume is caused by the net
drag force, dFD, thus

−V∞dp = u∞dFD. (9)
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Combining Eqs. (8) and (9) yields

dE = dΦ

(
1 − T0

T∞

)
− T0u∞

T∞
dFD. (10)

Equation (10) is a general expression regarding the exergy change rate of
working fluid over an arbitrary differential surface of convection through
external flow. It is observed from Eq. (10) that the exergy change rate of
working fluid is the result of combined effects caused by finite temperature
difference heat transfer and flow pressure drop, namely, the exergy change rate
of working fluid is equal to the difference between heat exergy rate derived
by the fluid (not heat exergy rate transferred across the boundary surface) and
the flow pressure exergy loss rate.

3. Exergy transfer analysis of forced convective heat transfer
over a flat plate

As shown in Figure 2, an external flow over a flat plate, which occurs in
numerous engineering applications, is considered. It is assumed that the flat
plate is sufficiently large. The local exergy change rate of working fluid over a
differential element surface of a flat plate may be written as follows according
to Eq. (10):

dEx = dΦx

(
1 − T0

T∞

)
− T0u∞

T∞
dFDx. (11)

The drag force dFDx at the wall of the flat plate may be expressed in terms of
a friction coefficient Cfx:

dFDx = 1

2
Cfxρu2∞dA. (12)

The heat transfer rate of the differential element control volume dΦx is

dΦx = αx(Tw − T∞)dA. (13)

Substituting Eqs. (12) and (13) into Eq. (11), the local exergy change rate of
working fluid over a differential element surface of the flat plate becomes

dEx = αx(Tw − T∞)dA

(
1 − T0

T∞

)
− T0

2T∞
Cfxρu3∞dA. (14)

In flow and heat transfer fields, the non-equilibrium conditions are due to the
exchange of momentum and energy within the fluid and at the solid bound-
aries. This non-equilibrium phenomenon causes a continuous generation of
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entropy in the flow and heat transfer fields. Every irreversible process can be
viewed as the relevant flux driven by the corresponding potential [25–27].The
flux of heat is driven by the temperature gradient, the flux of momentum is
driven by the velocity gradient, and the flux of exergy is driven by the temper-
ature gradient and the velocity gradient. Linear non-equilibrium thermody-
namics deals with the irreversible transport and rate processes and evaluates
the entropy generation/exergy destruction resulting from the irreversibilities
taking place in processes by coupling the second law analysis [28]. The lin-
ear non-equilibrium thermodynamic description of heat and mass transfer is
compatible with the classical engineering approach based on the hydrody-
namic theory of boundary layer, with transport coefficients and driving forces
[29]. In the linear non-equilibrium thermodynamic analysis, the transport and
rate processes are expressed in the form of the phenomenological equations.
These equations are capable of displaying the interactions between the various
transport and rate processes through the cross phenomenological coefficients
[30]. The flows are related to the forces in a linear form with the phenomeno-
logical coefficients through phenomenological equations. If the forces vanish,
the system goes to an equilibrium state in which the flows are zero. However,
it should be pointed out that linear non-equilibrium thermodynamics is based
on the local thermodynamic equilibrium assumption, which is the extension
of thermodynamic relations in equilibrium systems to local non-equilibrium
subsystems. As we know, if a system is not in thermodynamic equilibrium,
it means that at least some of the intensive parameters are functions of time
and/or position in this system. A local state of a substance is considered as
small elementary volumes of the system, and these small volumes should
contain a sufficient number of molecules for a macroscopic theory to be ap-
plicable. When the local thermodynamic equilibrium holds, thermodynamic
parameters in each volume element are evaluated as in a system at equilib-
rium, and some thermodynamic relations are applicable [31]. The assumption
of local thermodynamic equilibrium holds for a great variety of rate processes
in physics, chemistry, and biological systems [32].

According to the non-equilibrium thermodynamic theory, potential field gra-
dients can produce irreversible changes, and are called “forces”, and denoted
by Xk (k = 1, 2, . . ., n) for n gradients. The forces produce certain irre-
versible phenomena called the “flows” (fluxes) which are symbolized by Jj
(j = 1, 2, . . ., n). Generally, any force can cause any flow Jj (Xk) (j, k =
1, 2, . . ., n). Based on the linear relationships between the flow and force, any
flow is the result of all the forces and the phenomenological equation is [31]

Jj = ∑ LjkXk (j, k = 1, 2, . . . , n), (15)

where Ljk is the phenomenological coefficient, represents flow per unit force,
and has the characteristics of conductance.
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When the exergy flux is influenced by many potential fields, Eq. (15) can be
rewritten as

qe = ∑ LekXek (k = 1, 2, . . . , n), (16)

where Lek is the phenomenological coefficient of exergy flow caused by the
k th thermodynamic force Xek. If taking the jth potential field gradient as
the driving force of the exergy flux, and the effects of other potential field
distributions on the phenomenological coefficient of the exergy flow are still
considered, namely, it is assumed that all potential fields’ driving forces exert
the phenomenological coefficient of the exergy flux in order to compensate
the effect of other potential fields on the exergy flux. Thus, Eq. (16) can be
expressed as

qe = −αe(μ1, μ2, . . . , μn)∇μj. (17)

Equation (17) is the field synergy phenomenological law available for engi-
neering exergy transfer processes. Considering that temperature field is cou-
pled with velocity field in convective heat transfer processes, and assuming
that the temperature field is the dominant potential field and substituting the
potential field gradient with the potential difference, the exergy transfer phe-
nomenological equation of convective heat transfer for the element control
volume may be written as follows:

dΦex = αex(T , p)(Tw − T∞)dA. (18)

The role of the above phenomenological equation is the determination of the
transport coefficient. Even though the exergy is not conserved because of
irreversibilities caused by the temperature difference heat transfer and flow
pressure drop, the aim of exergy change of working fluids is consistent with
that of exergy transfer. So the assumption that the exergy change rate of
working fluids is equal to the exergy transfer rate of convective heat transfer
process is reasonable. Thus, from Eqs. (14) and (18), the local exergy transfer
coefficient αex for forced convection over a flat plate is

αex = αx

(
1 − T0

T∞

)
− CfxρT0u3∞

2T∞(Tw − T∞)
. (19)

It should be pointed out that the definition of convective exergy transfer co-
efficient in Eq. (18) serves the exergy change rate of working fluid (not heat
exergy rate transferred across the boundary surface) as a reference. However,
when the convective heat transfer coefficient is defined, the reference need not
be considered, because energy is conservative in its transfer process, and the
heat change rate of working fluid is equal to the heat rate transferred across
the boundary surface.
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3.1. The local exergy transfer Nusselt number and exergy flux

For an external flow over a flat plate, laminar boundary layer development
begins at the leading edge (x = 0) and transition to turbulence may occur
at a downstream location (xc) for which a critical Reynolds number Rec is
achieved. The local convective heat transfer coefficient αx and friction co-
efficient Cf ,x of laminar flow and turbulent flow over a flat plate are given
by [33].

For laminar flow,

αx,lam = 0.332λ(u∞ /v)1/2Pr1/3x−1/2 or

Nux,lam = αxx/λ = 0.332Re1/2
x Pr1/3, (20)

Cfx,lam = 0.664Re−1/2
x . (21)

For turbulent flow,

αx,turb = 0.0296λ(u∞ /v)4/5Pr1/3x−1/5 or

Nux,turb = 0.0296Re4/5
x Pr1/3, (22)

Cfx,turb = 0.0592Re−1/5
x (5 × 105 < Rex < 107). (23)

Combining Eqs. (20) and (21), (22) and (23) with Eq. (19) and introducing
Rex = (u∞x)/ν, respectively, the local exergy transfer coefficient of laminar
flow and turbulent flow over a flat plate are obtained:

αex,lam = 0.332λx−1/2u1/2∞ ν−1/2Pr1/3(1 − T0/T∞)

−[0.332ρT0ν
1/2u5/2∞ x−1/2]/[T∞(Tw − T∞)], (24)

αex,turb = 0.0296λx−1/5u4/5∞ ν−4/5Pr1/3(1 − T0/T∞)

−[0.0296ρT0ν
1/5u14/5∞ x−1/5]/[T∞(Tw − T∞)]. (25)

Equations (24) and (25) express the dependence of the local exergy transfer
coefficient on fluid friction and heat transfer for laminar and turbulent flow
over a flat plate.The local exergy transfer coefficient thus could be determined
by free stream velocity u∞, fluid temperature T∞, wall temperature Tw, and
wall position x on a flat plate, etc.

We define the local exergy transfer Nusselt number Nuex as follows:

Nuex = αexx

λ
. (26)
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Combining Eq. (26) with Eq. (24) leads to Nuex for laminar flow as

Nuex,lam = 0.332Re1/2
x Pr1/3(1 − T0/T∞)

−[0.332Re5/2
x ρT0ν

3]/[λx2T∞(Tw − T∞)]. (27)

Nuex can be obtained in non-dimensional form using non-dimensional vari-
ables defined as follows:

J = (ρv3)/(λT0l2), (28a)

T∗∞ = T∞/T0, (28b)

T ∗
w = Tw/T0, (28c)

x∗ = x/l, (28d)

Rel = u∞l/v. (28e)

Thus, Eq. (27) may be rewritten as

Nuex,lam = 0.332(x∗)1/2Re1/2
l Pr1/3(1 − 1/T ∗∞)

−[0.332JRe5/2
l (x∗)1/2]/[T∗∞(T ∗

w − T ∗∞)]
= (Nuex,�T)lam − (Nuex, �p)lam. (29)

Proceeding in a similar fashion, it is readily shown that Nuex for turbulent
flow is

Nuex,turb = 0.0296(x∗)4/5Re4/5
l Pr1/3(1 − 1/T∗∞)

−[0.0296JRe14/5
l (x∗)4/5]/[T∗∞(T ∗

w − T ∗∞)]
= (Nuex, �T)turb − (Nuex, �p)turb. (30)

To further reflect the exergy rate transferred by external flow, the local non-
dimensional exergy flux q∗

ex is defined as

q∗
ex = qex

T0(λ/l)
= αexΔT

T0(λ/l)
. (31)
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Applying Eqs. (24), (25), and (31) for q∗
ex of laminar and turbulent flow, we

have

q∗
ex,lam = qex,lam

T0(λ/l)
= 0.332Re1/2

l Pr1/3(x∗)−1/2(1 − 1/T∗∞)(T ∗
w − T ∗∞)

−0.332JRe5/2
l (x∗)−1/2/T ∗∞

= (q∗
ex,�T)lam − (q∗

ex,�p)lam, (32)

q∗
ex,turb = qex,turb

T0(λ/l)
= 0.0296Re4/5

l Pr1/3(x∗)−1/5(1 − 1/T ∗∞)(T ∗
w − T ∗∞)

−0.0296JRe14/5
l (x∗)−1/5/T ∗∞

= (q∗
ex,�T)turb − (q∗

ex,�p)turb. (33)

3.2. The mean exergy transfer Nusselt number and exergy flux

The mean exergy transfer coefficient can be obtained by integrating over the
laminar region (0 < x < xc) and then over the turbulent region (xc < x < l);
this equation may be expressed as

αem = 1

l

(∫ xc

0
αex,lamdx +

∫ l

xc

αex,turbdx

)
, (34)

where it is assumed that transition occurs abruptly at x = xc. Substituting from
Eqs. (24) and (25) for αex of laminar flow and turbulent flow, respectively, we
obtain

αem = λ

l

⎧⎪⎨
⎪⎩

[0.664Re1/2
c + 0.037(Re4/5

l − Re4/5
c )]Pr1/3(1 − 1/T∗∞)

−J [0.664Re5/2
c + 0.037((x∗

c )2Re14/5
l − Re14/5

c )]

(x∗
c )2T ∗∞(T ∗

w − T ∗∞)

⎫⎪⎬
⎪⎭ , (35)

where x∗
c = xc/l is the non-dimensional critical distance of a flat plate.

Thus, the mean exergy transfer Nusselt number over the entire flat plate (in-
cluding laminar and turbulent flow regions) becomes

Nuem = αeml/λ = [0.664Re1/2
c + 0.037(Re4/5

l − Re4/5
c )]Pr1/3(1 − 1/T ∗∞)

−J [0.664Re5/2
c + 0.037((x∗

c )2Re14/5
l − Re14/5

c )]

(x∗
c )2T ∗∞(T ∗

w − T ∗∞)

= Nuem, �T − Nuem, �p. (36)
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Similarly, substituting from Eqs. (32) and (33), for qex of laminar flow and
turbulent flow, respectively, it follows that the mean non-dimensional exergy
flux over the entire flat plate is

q∗
em = qem

T0(λ/l)
= [0.664Re1/2

c + 0.037(Re4/5
l − Re4/5

c )]Pr1/3(1 − 1/T ∗∞)

(T∗
w−T ∗∞) − J [0.664Re5/2

c + 0.037((x∗
c )2Re14/5

l −Re14/5
c )]/[(x∗

c )2T ∗∞]
= q∗

em,�T − q∗
em,�p. (37)

For comparison, the non-dimensional heat fluxes over a flat plate are given by
the following non-dimensional forms:

q∗
x,lam = qx

T0(λ/l)
= 0.332Re1/2

l Pr1/3(x∗)−1/2(T ∗
w − T ∗∞), (38)

q∗
x,turb = qx

T0(λ/l)
= 0.0296Re4/5

l Pr1/3(x∗)−1/5(T ∗
w − T ∗∞), (39)

q∗
m = qm

T0(λ/l)

= (T∗
w − T ∗∞)[0.664Re1/2

c Pr1/3 + 0.037Pr1/3(Re4/5
l − Re4/5

c )]. (40)

It is noted that, in light of the above, Nuex, Nuem, q∗
ex, and q∗

em are related
to the non-dimensional parameters Rel, Pr, J , T∗

w, T ∗∞, etc., and may be less
than zero when Rel, Pr, J , T ∗

w, T ∗∞, etc., are beyond the change range, which
has no significance in engineering and draws our attention to the fact that
the noteworthy parameters such as the process parameters and configuration
must be within the limits permitted by exergy transfer.

Finally, it is noted from Eqs. (29), (30), (32), (33), (36), and (37) that the non-
dimensional exergy transfer performance parameters can be expressed as the
difference between two parts, namely, the first term on the right-hand side
in each equation represents the contribution of exergy transfer parameters
associated with heat transfer caused by finite temperature difference, and
the second term represents the contribution of exergy transfer parameters
associated with flow caused by pressure drop. The expressions of each term
under different conditions are summarized in Table 1. Therefore, it can be
concluded that the flow geometric parameters and Reynolds number etc.,
which is due to the different effects of them on each part, may be selected in
order to maximize the exergy utilization associated with a specific external
convection process.
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Table 1 The contribution of non-dimensional exergy transfer performance parameters associated
with heat transfer and flow pressure drop.

Laminar flow region (local value) Turbulent flow region (local value)

Nuex,�T 0.332(x∗)1/2Re1/2
l Pr1/3(1 − 1/T ∗∞) 0.0296(x∗)4/5Re4/5

l Pr1/3(1 − 1/T ∗∞)

Nuex,�p [0.332JRe5/2
l (x∗)1/2]/[T ∗∞(T ∗

w − T ∗∞)] [0.0296JRe14/5
l (x∗)4/5]/[T ∗∞ (T ∗

w − T ∗∞)]

q∗
ex,�T 0.332Re1/2

l Pr1/3(x∗)−1/2(1 − 1/T ∗∞)(T ∗
w − T ∗∞) 0.0296Re4/5

l Pr1/3(x∗)−1/5(1 − 1/T ∗∞)(T ∗
w − T ∗∞)

qex,�p
∗ 0.332JRe5/2

l (x∗)−1/2/T ∗∞ 0.0296JRe14/5
l (x∗)−1/5/T ∗∞

Entire flat plate (mean value)

Nuem,�T [0.664Re1/2
c + 0.037(Re4/5

l − Re4/5
c )]Pr1/3(1 − 1/T ∗∞)

Nuem,�p J [0.664Re5/2
c + 0.037((x∗

c )2Re14/5
l − Re14/5

c )]/[(x∗
c )2T ∗∞(T ∗

w − T ∗∞)]

q∗
em,�T [0.664Re1/2

c + 0.037(Re4/5
l − Re4/5

c )]Pr1/3(1 − 1/T ∗∞)(T ∗
w − T ∗∞)

q∗
em,�p J [0.664Re5/2

c + 0.037((x∗
c )2Re14/5

l − Re14/5
c )]/[(x∗

c )2T ∗∞]

4. Results and discussions

In order to demonstrate the effects of different parameters on exergy transfer
characteristics of laminar and turbulent forced convection through external
flow over a flat plate, air is selected for working fluid. The environmental
temperature T0 = 298 K and a representative transition Reynolds number
Rec = 5×105 are assumed.The wall temperature of a flat plate keeps constant
and air properties are evaluated by the film temperature ((Tw + T∞)/2).

Figure 3 Variation of Nuex and Nux with x∗
having Rel as a parameter.

Figure 4 Variation of Nuem and Num with Rel
having T ∗

w as a parameter.
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Figure 3 represents the variations of Nuex and Nux with x∗, to illustrate the
effect of the non-dimensional position over the entire length of the flat plat on
exergy transfer performance. It is revealed from this figure that Nuex in both
turbulent flow and laminar flow regions increases with x∗ increment. However,
Nuex in the turbulent flow region is greater than that in the laminar flow region,
which indicates that exergy transfer performance in the turbulent flow region
is superior to that in the laminar flow region. In this figure, the variation of
Nux with x∗ has been plotted as well, to facilitate a better comparison of x∗ on
exergy transfer and heat transfer performance through a flat plate. The results
show that both Nuex and Nux increase with x∗, but Nuex is much less than
Nux, which is due to the fact that only the quality of energy is considered in
exergy transfer. Figure 4 shows the effects of Rel on Nuem and Num over the
entire length of a flat plate subjected to different T ∗

w. This figure reveals that
Num increases with the increase of Rel, whereas Nuem increases first and then
decreases with the increase of Rel. So there exists an optimal Rel to make
Nuem become maximal. Again, higher optimal Rel values are obtained for
higher T ∗

w values. But the influence of T ∗
w on Num is slight, owing to the fact

that the properties of air are slightly affected by the wall temperature of the
flat plate. To investigate the effects of Rel on Nuem,�T, Nuem,�p, and Nuem,
Figure 5 is furnished. This figure shows that Nuem initially increases with
an increase in Rel; this is due to the fact that in this region, the increase in
Nuem,�T offsets more than the increase in Nuem,�p. However, as Rel increases,
Nuem,�p eventually exceeds any increase in Nuem,�T when beyond the optimal
Rel. The combined effect thus results in a maximum for Nuem and the optimal
Reynolds number corresponding to maximal Nuem can be obtained.

Figure 5 Variation of Nuem,�T, Nuem,�p and
Nuem with Rel.

Figure 6 Variation of q∗
ex and q∗

x with x∗ having
Rel as a parameter.
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To investigate the effects of x∗ and Rel on q∗
ex and q∗

x, Figure 6 is provided,
which shows that q∗

ex in both turbulent flow and laminar flow regions decreases
with x∗ increment. However, q∗

ex in the turbulent flow region is greater than
that in the laminar flow region, which further indicates that exergy transfer
performance in the turbulent flow region is superior to that in the laminar flow
region. Furthermore, q∗

ex is much less than q∗
x. From the numerical results, it

is also noted that the trends of variations of q∗
ex,�T, q∗

ex,�p, and q∗
ex with x∗

in the turbulent flow region are the same as those in the laminar flow region,
but the magnitudes are different due to different exergy transfer performance.
Figures 7 and 8 depict the effects of Rel on q∗

em, q∗
em,�T, q∗

em,�p, and q∗
m.

As can be seen, with the increase of Rel, q∗
m increases, but q∗

em presents a
peak. In addition, higher q∗

em and q∗
m are obtained for higher T ∗

w, and higher
optimal Rel for the corresponding maximal q∗

em is obtained for higher T ∗
w.

The effects of Rel on q∗
em,�T, q∗

em,�p, and q∗
em are given in Figure 8. Similar

effects are observed as indicated in the previous Nuem,�T, Nuem,�p, and Nuem
for external flow over the entire flat plate.

Figure 7 Variation of q∗
em and q∗

m with Rel hav-
ing T ∗

w as a parameter.
Figure 8 Variation of q∗

em,�T, q∗
em,�p, and q∗

em
with Rel.

5. Conclusions

The exergy transfer characteristics of external convection through a flat plate
are examined on the basis of linear non-equilibrium thermodynamic theory.
An analytical study has been carried out to investigate the influences of var-
ious geometric and operating parameters on the exergy transfer characteris-
tics for laminar and turbulent flow over a flat plate subjected to a constant
wall temperature. The local and mean exergy transfer Nusselt number and
non-dimensional exergy flux are introduced, and a series of new generalized
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expressions are derived. Air is selected as working fluid to illustrate their use
and to demonstrate the effects of different parameters on the convective ex-
ergy transfer characteristics through external flow of a flat plate. It is found
that the exergy transfer performance in the turbulent flow region is superior
to that in the laminar flow region over a flat plate. Investigating the variation
of exergy transfer performance with Reynolds number revealed that there is
an optimum value for the Reynolds number for a given condition. In addition,
the examined results has drawn our attention to the fact that those different
benefits can be obtained by working fluids under different operating condi-
tions and that noteworthy parameters such as the process parameters and the
configuration parameters must be within the limits permitted by exergy trans-
fer. On the other hand, for better perceiving the role of different parameters
on exergy transfer performance, the corresponding results of energy transfer
have been plotted as well. The results show that the exergy transfer charac-
teristics are different from those of energy transfer. The present method thus
permits an examination of exergy transfer characteristics in an external flow
convection process. By maximizing the exergy transfer performance, a ther-
modynamic optimum can be determined for the operation of a given external
flow convection process or in the selection of an enhancement heat transfer
surface. The methods provided in this paper are also available for other forced
convective heat transfer processes through external flow.

Nomenclature

A heat (exergy) transfer area, m2

cp specific heat capacity at constant pressure, J/kg K
Cf friction coefficient
e specific flow exergy of fluid, J/kg
E exergy change rate, W
FD drag force, N
G∞ mass flow rate, kg/s
h specific enthalpy of fluid, J/kg
J flow
L phenomenological coefficient
l length of flat plate along the direction of flow, m
Nu heat transfer Nusselt number
Nue exergy transfer Nusselt number
p pressure, Pa
Pr Prandtl number
q heat flux,W/m2

qe exergy flux, W/m2
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Re Reynolds number
s specific entropy of fluid, J/kg K
T temperature, K
ΔT temperature difference between wall and free stream, K
T0 environmental temperature, K
Tw wall temperature of flat plate, K
T∞ temperature of free stream, K
u∞ velocity of free stream, m/s
V∞ volume flow rate, m3/s
X thermodynamic force
x distance from the leading edge, m
xc distance from the leading edge at which transition begins, m

Greek symbols

α convective heat transfer coefficient, W/m2 K
αe convective exergy transfer (phenomenological) coefficient, W/m2 K
ρ density of fluid, kg/m3

ν kinematical viscosity coefficient of fluid, m2/s
λ thermal conductivity of fluid, W/m K
μ potential
Φ heat transfer rate, W
Φe exergy transfer rate, W

Subscripts

0 environmental state
c critical value
lam laminar flow value
m mean value
turb turbulent flow value
x local value
ΔT contribution of exergy transfer parameters associated with heat trans-

fer caused by finite temperature difference
Δp contribution of exergy transfer parameters associated with flow caused

by pressure drop

Superscripts

* non-dimensional value
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Abstract

Diffusion and permeation are discussed within the context of irreversible ther-
modynamics. A new expression for the generalized Stokes–Einstein equation is
obtained which links the permeability to the diffusivity of a two-component solu-
tion and contains the poroelastic Biot–Willis coefficient. The theory is illustrated
by predicting the concentration and pressure profiles during the filtration of a
protein solution. At low concentrations the proteins diffuse independently while
at higher concentrations they form a nearly rigid porous glass through which the
fluid permeates. The theoretically determined pressure drop is nonlinear in the
diffusion regime and linear in the permeation regime, in quantitative agreement
with experimental measurements.

1. Introduction

By observing the flow of water through a saturated column of sand, Darcy
discovered an empirical constitutive relation between the volume flux of wa-
ter and the drop in fluid pressure [8, 18]. Irreversible thermodynamics has
been used to place several constitutive equations, such as Fick’s and Fourier’s
laws, within a unified framework [10, 46]. Darcy’s law has been somewhat
exceptional in this endeavour as there have been a great number of differ-
ent approaches used to incorporate the equation. For example, de Groot [9]
treated a porous medium as a discontinuity between two fluid systems, lead-
ing to the membrane transport models of Katchalsky and coworkers [20,21].
Vink modelled a rigid porous medium as a continuum by introducing a body
force to account for the stress supported by the porous matrix [51]. A simi-
lar approach led to the Stefan–Maxwell theory of flow through porous me-
dia [25, 26]. Rational thermodynamicists derive constitutive relations using
a non-equilibrium version of the second law as a constraint [5, 7, 35]. Later
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workers have combined this approach with averaging methods [1,15,42,56]
to develop “hybrid" theories of flow through swelling porous media [2,28].

Although much progress has been made, the fundamentals of flow through
porous media are still uncertain, particularly in more complex cases such as
swelling clays, colloidal solutions, and unsaturated systems [13, 14, 43]. It is
interesting to note that Gibbs devoted a section of his treatise to the equilibrium
thermodynamics of porous media [12]. He allowed the solid component to
support non-hydrostatic stress, but otherwise modelled a porous medium as
a single phase system, in close analogy with his treatment of fluids. In the
present work diffusion and permeation are approached by treating a porous
medium as a single thermodynamic phase. The main results are found to be
consistent with previous ones, but allow for a closer connection to be made
between chemical thermodynamics and poroelasticity. In particular, various
poroelastic quantities such as the Biot–Willis and Skempton coefficients are
defined thermodynamically, and limits are obtained on the relation between
Fick’s and Darcy’s laws. The analysis begins in Section 2 with the mass and
momentum balance equations of continuum mechanics and the hypothesis
of local equilibrium. Gibbs’s equilibrium thermodynamics is then utilized to
evaluate the partial stress tensors. In Section 3 the equivalence of Fick’s and
Darcy’s laws is demonstrated, leading to a Stokes–Einstein equation relating
the diffusivity of a binary solution to the permeability, and containing the
poroelastic Biot–Willis parameter.Two limiting exceptions to the equivalence,
infinite dilution and infinite rigidity of the solute, are also discussed, and a
relation between osmotic pressure and effective stress is obtained. The theory
is utilized in Section 4 to study the ultrafiltration of a protein solution. There
it is shown that at low concentrations the particles diffuse, while at higher
concentrations they form a nearly rigid porous glass.

2. Relative motion in two-component continua

The equations expressing balance of mass and momentum in the theory of
interacting superposed continua have been given in quite general form by
Truesdell [45, 46]. Here attention is restricted to isothermal two-component
systems in which gravity is the sole body force and there are no chemical
reactions. For convenience and without loss of generality component 1 is
referred to as the solvent and component 2 the solute. Conservation of mass
is expressed by the equations

∂ρ

∂t
+ divρv = 0,

∂ρk

∂t
+ divρkvk = 0, (1)

where ρ = ρ1 + ρ2 is the local solution density (mass per unit volume), ρk
is the partial density of component k , v is the mass-average velocity, and vk
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is the local average velocity of k with respect to the laboratory frame, related
to v by the equation ρv = ρ1v1 + ρ2v2.

Conservation of momentum can be written as

ρa = div t + ρg (2)

for the solution and

ρkak = div tk + ρkg + mk (3)

for component k . Here a is the acceleration of the mean motion, t is the total
stress tensor, and g is the acceleration due to gravity. The acceleration of
component k is ak and tk is its partial stress tensor. The force m1, exerted
on component 1 owing to its mean motion relative to component 2, can be
written as [45]

m1 = f (v2 − v1), (4)

where vk is the average velocity of component k with respect to the laboratory
frame and f is a coefficient of friction. In binary systems conservation of
momentum requires that m2 = −m1 [45].

In his mechanical theory of diffusion, Truesdell [45] considers a mixture of
ideal gases defined by the constitutive equations

div tk = −grad pk , div t = −grad P, (5)

where pk is the partial pressure of k . Here his theory is extended to the case
of a hydrostatic solution defined by the equations

div tk = −ρk gradμk, div t = −grad P, (6)

where μk is the chemical potential of component k, defined on a per unit mass
basis, and P is the thermodynamic solution pressure. For an isothermal ideal
gas mixture, Eq. (6) reduces to Eq. (5), since for an ideal gas μk = μ0

k(T ) +
RkT ln pk , where pk = ρkRkT is the partial pressure of k , Rk = R/Mk , R is
the gas constant, Mk is the molar volume of k , T is the absolute temperature,
and μ0

k is a function of temperature only [34].

For a hydrostatic solution in the absence of accelerations and relative motion,
Eqs. (2) and (3) combined with Eq. (6) reduce to the classic conditions for
thermodynamic equilibrium obtained by Gibbs [12]:

gradμk = g, grad P = ρg. (7)
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During irreversible processes the solution is assumed to be in local equilib-
rium [10]. Thus, at any point in the system the chemical potential μk and
other thermodynamic quantities are determined, at constant temperature, by
the local solution pressure P and partial density ρ2. Thermodynamic quan-
tities such as the chemical potential can be obtained from experiments on
equilibrium systems, and retain the same functional dependence on the local
values of P and ρ2 at any point in the non-equilibrium system.

3. Equivalence of Fick’s and Darcy’s laws

In the absence of accelerations, Eqs. (2), (3), and (6) combine to give the fol-
lowing equations, which express conservation of momentum in an isothermal
hydrostatic solution:

ρ1gradμ1 = ρ1g + f (v2 − v1), (8)

grad P = ρg. (9)

It is convenient to introduce the Darcy pressure p as the pressure of the pure
solvent component 1 when separated from an element of the solution by
a semi-permeable partition. The osmotic pressure � is then defined as the
difference between the solution and Darcy pressures [16]:

� = P − p. (10)

Given the local equilibrium assumption, the solution on one side of the semi-
permeable partition is at any given moment in equilibrium with the pure
solvent on the other side. Hence the chemical potential μ1 of component 1
in the solution is equal to the chemical potential μf of the pure solvent at
pressure p:

μ1(T ,P, ρ2) = μf (T , p). (11)

Differentiating μf at constant temperature gives

gradμf = υf gradp, (12)

where υf = (∂μf /∂p)T is the specific volume of pure solvent [16]. The
Darcy pressure is an intensive thermodynamic variable which, at constant
temperature and assuming local equilibrium, is a unique function of P and
ρ2. Therefore

gradp =
(
∂p

∂P

)
T ,ρ2

gradP +
(
∂p

∂ρ2

)
T ,P

gradρ2. (13)
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Combining Eqs. (10)–(13) then gives

gradμ1 = υf

α
gradP − υf

(
∂�

∂ρ2

)
T ,P

gradρ2, (14)

where

α =
(
∂P

∂p

)
T ,ρ2

(15)

is the Biot–Willis parameter [4,53,54].

Combining Eqs. (8) and (9) with Eq. (14) and defining the diffusivity D and
sedimentation coefficient s by

D = ρ2
1ρ2υ1υf

f

(
∂�

∂ρ2

)
T ,P

, s = ρ2
1υ1

f

(ρυf

α
− 1
)

(16)

leads to Fick’s law:

J = −Dgradρ2 + ρ2sg. (17)

Here J = ρ2(v2 − v0) is the mass flux of component 2 with respect to the
volume-average velocity v0 = φ1v1 + φ2v2, with φk = ρkυk the volume
fraction and υk the partial specific volume of component k. When the effect
of gravity is negligible, Eq. (17) reduces to the more familiar form

J = −Dgradρ2. (18)

Combining Eq. (8) with Eqs. (11) and (12), and defining the permeability
k = ρ2

1υ1υf η/f , leads to Darcy’s law:

q = −k

η
(gradp + ρf g), (19)

where η is the solvent viscosity, q = φ1(v1 −v2) = −J/ρ2 is the volume flux
of solvent relative to component 2, and ρf = 1/υf is the density of the pure
solvent at pressure p. Equation (19), being equivalent to Eq. (17), shows that
Darcy pressure gradients are responsible for diffusion in hydrostatic solutions.
Truesdell [45] obtained a similar result for ideal gases, and the connection
between Fick’s and Darcy’s laws has been demonstrated previously in soil
science and colloid physics [23,30,31,33, 40].

Eliminating f between the expressions for D and k gives

D = ρ2
k

η

(
∂�

∂ρ2

)
T ,P

. (20)
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The generalized Stokes–Einstein relation (20) allows the diffusion coefficient
to be calculated given measurements of the osmotic pressure and permeability.
In many osmotic pressure experiments, however, it is not (∂�/∂ρ2)T ,P that
is measured but rather (∂�/∂ρ2)T ,p [49]. That is, the pressure p of the pure
solvent is held constant while the solution pressure P and partial density ρ2
are varied. In this case, Eq. (20) can be written in the equivalent form

D = k

η

Kπ
α
, (21)

where Kπ = ρ2(∂�/∂ρ2)T ,p is the osmotic bulk modulus and α is the Biot–
Willis parameter introduced earlier. In the appendix it is shown that

α = B−1
(

1 − Kπ
K

)
, (22)

where K = ρ(∂P/∂ρ)T ,c2 is the bulk modulus of the solution, c2 = ρ2/ρ is
the solute mass fraction, and B is Skempton’s coefficient [41,53,54]:

B =
(
∂p

∂P

)
T ,c2

. (23)

With Eq. (11), the relationsυ1 = (∂μ1/∂P)T ,c2 and υf = (∂μf /∂p)T lead to a
thermodynamic expression for Skempton’s coefficient in terms of the solvent
partial specific volume

B = υ1

υf
. (24)

Interestingly, Eq. (24) indicates that in solutions with negative solvent partial
specific volumes [38,57] the Skempton coefficient is less than zero.

Eliminating f between the expressions for s and k gives

k

η
= sυf

ρυf /α − 1
. (25)

With Eqs. (22) and (24), Eq. (25) becomes, to first order in Kπ/K ,

k

η
= sB−1

ρ2(1 − υ2/υ1) + ρKπ/K
, (26)

where the relations ρ = ρ1 +ρ2 and ρ1υ1 +ρ2υ2 = 1 have been used. Equa-
tion (26) generalizes the relation between the permeability and sedimentation
coefficient by accounting for the solvent compressibility. In dilute solutions
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Kπ � K and υ1 ≈ υf , in which case Eq. (26) reduces to a form derived previ-
ously [10,24,26,30]. Hence the Skempton and Biot–Willis coefficients have
not traditionally been important parameters in irreversible thermodynamics.
However, in solutions containing sufficiently rigid solutes that Kπ ∼ K (e.g.,
colloidal glasses), it will be necessary to utilize Eqs. (21) and (26) when
calculating D and k from osmotic pressure and sedimentation data.

The equivalence of Eqs. (17) and (19) breaks down in two limiting cases:

Infinite dilution – In the dilute limit ρ2 → 0 and D → D0, where D0 is
a constant. In this case (∂�/∂ρ2)T ,P is constant and Eq. (20) yields k →
∞. Therefore k is undefined and Darcy’s law cannot be used to characterize
infinitely dilute solutions.

Infinite rigidity – For an infinitely rigid solute, Kπ → ∞ and k → k0, where
k0 is a constant. In this case, Eq. (21) yields D → ∞.Therefore D is undefined
and Fick’s law does not apply to binary solutions containing infinitely rigid
solutes. In real systems the above limits are never met, and the equivalence of
Fick’s and Darcy’s laws is quite general. Note that a rigid solute, defined by an
infinite osmotic bulk modulus, is not equivalent to an incompressible solute,
for which the partial specific volume υ2 is constant. If, in a particular system,
υ2 is constant and Kπ is infinite, then the solute is both incompressible and
rigid. A solution containing a fluid solvent and a rigid incompressible solute
provides a thermodynamic analogue of a rigid porous medium.

In order to solve particular problems it is necessary to know the functional
dependence of � on P and ρ2. For dilute solutions � = ρ2RT/Mp, where
R is the gas constant and Mp is the solute molar mass [34]. In concentrated
solutions and colloidal suspensions determining�(T ,P, ρ2) is a formidable
task, which is often simplified by assuming constant T , P and determining
�(ρ2) experimentally. A different simplification is used in the case where
the solute undergoes only small changes in concentration, such as a linearly
elastic porous matrix [3,36,54]. Rearranging Eq. (13) gives

dP = 1

ρ2
Kπdρ2 + αdp. (27)

For small variations from an initial unstressed and depressurized state where
ρ2 = ρ0

2 , P = 0, and p = 0, Eq. (27) can be integrated to yield

σ ′ = Kπε, (28)

where ε = (ρ0
2 − ρ2)/ρ2 is the volumetric strain of component 2 and

σ ′ = −P + αp (29)
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is the effective stress. Thus, by defining an effective stress as a linear com-
bination of the total stress σ = −P and the Darcy pressure p, the equation
describing the volumetric strain of component 2 takes on an identical form
to that for a nonporous linearly elastic solid, and hence well-known solu-
tions to problems in elasticity can be applied directly to problems involving
porous media [29, 54]. With Eq. (10) the relation between osmotic pressure
and effective stress is

� = (α − 1)p − σ ′ (30)

or, for nonhydrostatic stress,

� = (α − 1)pI − σ ′, (31)

where � and σ ′ are tensors and I is the unit tensor. If α is constant then
Eq. (30) gives(

∂�

∂ρ2

)
T ,p

= −
(
∂σ ′
∂ρ2

)
T ,p
, (32)

and knowledge of σ ′ can be used to determine the diffusivity in Eq. (21). In
the case of solutions undergoing large changes in concentration, the effective
stress concept is less useful and the dependence of � on P and ρ2 must be
determined experimentally or using statistical thermodynamics [17].

4. Protein ultrafiltration

The theory described above can be illustrated by considering the ultrafiltration
of a protein solution, such as bovine serum albumin (BSA). In steady-state
dead-end ultrafiltration, a fixed mass of macromolecules is placed above a
semi-permeable membrane; above the macromolecules is a solvent reservoir
[19, 22, 52]. At t = 0 the solution pressure P is increased, forcing solvent
to flow through the system. Similar processes occur in many biological and
technological settings.

As BSA is a well-characterized protein, extensive measurements of the rele-
vant transport coefficients for aqueous solutions are available. For the sedi-
mentation coefficient s the experimental measurements of Comper et al. [6]
and van den Berg et al. [47], shown in Figure 1a, can be fitted to the function

s = s0
(
1 + aρ2 + bρ2

2 + cρ3
2

)−1
, (33)

where a = 1.2×10−2 , b = 2.0×10−5 , c = 9.6×10−8, and s0 = 4.4×10−13 s
is the sedimentation coefficient in the dilute limit [47].
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Figure 1 (a) Measurements of the sedimentation coefficient of BSA (pH 7.4) as a function of
concentration (◦ Comper et al. [6]; ∗ van den Berg et al. [47]). The solid curve is a fit of the data to
Eq. (33). (b) Measurements of the osmotic pressure of BSA (pH 7.4) as a function of concentration
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Figure 2 Measurements of the diffusion coefficient of BSA (pH 7.4) as a function of concentration
(∗ Phillies et al. [32]; ◦ Fair et al. [11]). The solid curve is the prediction of the generalized Stokes–
Einstein equation.

Vilker et al. [49] measured the osmotic pressure of BSA (holding p constant),
shown in Figure 1b. As noted by Minton [27], the osmotic pressure of BSA
is well described by a hard sphere model with effective particle volume. The
solid line in Figure 1b is a fit to the data using the equation

� = RT

Mp
ρ2ZHS(φ), (34)
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where R is the molar gas constant, Mp = 69, 000 is the BSA molar mass,
and ZHS is the hard sphere compressibility factor [31,37], with φ = υeρ2 the
volume fraction and υe the effective particle specific volume.

Vilker [50] has shown that υ1 ≈ υf up to ρ2 > 400 g/cm3. Since Kπ � K
over this range in ρ2, Eqs. (21) and (26) may be utilized with α = 1 and
B = 1 to obtain D(ρ2). The predicted diffusivity is plotted on Figure 2, and
compared with the experimental measurements of Phillies et al. [32] and Fair
et al. [11], yielding good agreement. The osmotic pressure of BSA and many
colloidal suspensions diverges at higher concentrations (Figure 1b), while the
sedimentation coefficient approaches a constant (Figure 1a). Since the osmotic
pressure diverges, the Stokes–Einstein equation ensures the diffusivity must
also increase, as illustrated in Figure 2. As will be seen, the rapid increase
of � and D with ρ2 at higher concentrations has a profound effect on the
concentration and pressure profiles in ultrafiltration boundary layers [55].

At steady state in a dead-end ultrafiltration experiment, conservation of mass
for the solvent becomes ∇ · ρ1v1 = 0. Since υ1 is constant and v2 = 0 at
steady state, this can be written as ∇ · q = 0. Hence the solvent volume flux
is constant throughout the boundary layer. For a one-dimensional system,

q = −Q

A
k, (35)

where Q is a measured flow rate, A is the cross-sectional area of the membrane,
and k is the unit normal to the membrane surface. Combining Eq. (35) with
Darcy’s law (19) and Fick’s law (18) and neglecting gravity gives

Q

A
= k

η

dp

dz
= − D

ρ2

dρ2

dz
. (36)

Given the mass m of protein molecules placed above the membrane, Eq. (36)
can be integrated to obtain the concentration ρ0

2 at the membrane surface as

∫ ρ0
2

0
Ddρ2 = mQ

A2
. (37)

With ρ0
2, Eq. (36) then gives an initial value problem for ρ2(z), from which

the Darcy pressure profile p(z) can be obtained using Eqs. (10) and (34).

Wang [52] performed dead-end ultrafiltration experiments on BSA solutions
(pH 7.4, A = 3.88 cm2, m = 75μg) in which the steady flow rates Q and
Darcy pressure profiles p(z) were measured at two different transmembrane
pressures (P = 2.7 kPa and P = 5.6 kPa). The flow resistance of the mem-
brane in Wang’s system was negligible compared to that of the polarization
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Figure 4 Predicted concentration and Darcy pressure profiles during high-pressure dead-end ultra-
filtration of BSA.

layer [52]. The predicted concentration and pressure profiles from Eqs. (36)
and (10) are shown in Figure 3, along with the experimental measurements.
The Darcy pressure varies nonlinearly throughout the boundary layer (Fig-
ure 3b). From Figure 2 it is apparent that the diffusion coefficient is practically
constant throughout the boundary layer, consistent with the exponential con-
centration profiles in Figure 3a.

It is interesting to consider higher pressures than used by Wang [52]. Figure 4
shows the predicted profiles ofρ2 and p for m = 3.0×10−4 kg, P = 1.85 MPa,
and Q = 10−10 m3/s. In this case the concentration profile is no longer ex-
ponential, and a glassy solid filter cake has formed against the membrane
surface; the concentration is roughly constant within the cake. The explana-
tion for this qualitatively different behaviour is found in Figure 2, which shows
the diffusivity D diverging rapidly as the concentration increases. When D di-
verges the system adopts poroelastic behaviour, as discussed in Section 3 and
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demonstrated by the linear pressure profile in the filter cake region (Figure 4b).
In addition, a relatively small and nonlinear pressure drop occurs across the
diffuse part of the boundary layer. For solution pressures in excess of 1 MPa,
the pressure drop across the diffuse layer is negligible compared to that across
the filter cake. This result is consistent with the measurements of Trettin and
Doshi [44], who observed poroelastic behaviour during BSA ultrafiltration
as the solution pressure approached 1 MPa (“gel limited” regime). It also ex-
plains the results of Vilker et al. [48], who attempted to detect the filter cake
during dead-end filtration of BSA and found only exponential concentration
profiles. The maximum transmembrane pressure used in their experiments
was 276 kPa, well below that required to form an observable cake.
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6. Appendix

Combining the identity(
∂p

∂P

)
T ,ρ2

(
∂P

∂ρ2

)
T ,p

(
∂ρ2

∂p

)
T ,P

= −1 (38)

with Eqs. (15) and (10) yields(
∂�

∂ρ2

)
T ,P

= Kπ
ρ2α

, (39)

where Kπ = ρ2(∂�/∂ρ2)T ,p. Combining Eq. (39) with Eq. (20) gives Eq. (21).
Defining the solute mass fraction c2 = ρ2/ρ, the identity(

∂p

∂P

)
T ,c2

=
(
∂p

∂P

)
T ,ρ2

+
(
∂p

∂ρ2

)
T ,P

(
∂ρ2

∂P

)
T ,c2

(40)

combined with Eqs. (38), (15), and (10) gives Eq. (22).
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Abstract

In recent times whole-genome gene expression analysis has turned out to be a
highly important tool to study the coordinated function of a very large number
of genes within their corresponding cellular environment, especially in relation
to phenotypic diversity and disease. A wide variety of methods of quantitative
analysis has been developed to cope with high throughput data sets generated
by gene expression profiling experiments. Due to the complexity associated with
transcriptomics, especially in the case of gene regulation phenomena, most of
these methods are of a probabilistic or statistical nature. Even if these methods
have reached a central status in the development of an integrative, systematic
understanding of the associated biological processes, they very rarely constitute
a concrete guide to the actual physicochemical mechanisms behind biological
function, and the role of these methods is more on a hypotheses generating line.An
important improvement could lie in the development of a thermodynamic theory
for gene expression and transcriptional regulation that will build the foundations
for a proper integration of the vast amount of molecular biophysical data and could
lead, in the future, to a systemic view of genetic transcription and regulation.
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1. Introduction

Cellular phenotypes are mainly determined by the expression levels of many
genes and their products such as enzymes, proteins and so on. One important
tool to track down this cellular phenotypic diversity is gene expression anal-
ysis. One hard-to-grasp issue is that the process of gene expression in itself
is a complex one, both from the biochemical and thermodynamical points of
view [1]. The transcription of messenger RNA (mRNA) for a given gene from
a DNA template often is regulated by different genes and their products. This
being the case, a variety of physicochemical interactions abounds between
genetic transcript abundance, and it is a recognized fact that such complex
processes are behind the ultimate mechanisms of cell function. Under this sce-
nario, gene expression values are measured under different conditions, either
on a simultaneous [steady-state] or serial [dynamics] fashion; in many cases
the measurements are then treated as samples from a joint probability distri-
bution. Genome-wide transcriptional profiling, also called gene expression
analysis (GEA) has allowed us to go well beyond studying gene expression
at the level of individual components of a given process by providing global
information about functional connections between genes, mRNAs, and the
related regulatory proteins. GEA have greatly increased our understanding of
the interplay between different events in gene regulation and have pointed out
previously unappreciated biological functional relations, such as the coupling
between nuclear and cytoplasmic transcription and metabolic processes [2].
GEA has also revealed extensive communication within regulatory units, for
example in the organization of transcription factors into regulatory motifs.

The transcriptional behavior for every gene is simultaneously regulated by
both its related chromatin structure and associated transcription factors. In
eukaryotes (organisms with a cellular nucleus), for example, genomic DNA
is packaged into nucleosomes that are made of DNA and octamers of a class
of proteins called histones. Another set of proteins called chromatin modifiers
are able to move the histones all along the DNA chain to expose specific
regions and then replace histones with specific histone variants to convert
chromatin from a transcriptionally repressed state into a transcriptionally ac-
cessible state, hence enabling gene expression. In the case of transcription
factors (TFs), they bind at regulatory regions to either activate or repress the
transcription of their target genes. TFs do this by (respectively) promoting
or inhibiting recruitment of RNA polymerase II. Transcription factors (TFs)
also recruit chromatin-modifying enzymes to make their target DNA more
accessible to the transcriptional machinery (for a more detailed account, see
Section 3). In the past, the different steps involved in the regulation of gene
expression – transcription, mRNA processing, nuclear export, translation and
degradation – were usually analyzed in isolation by using conventional bio-
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chemical techniques. This way of looking at things has given the impression
that such processes are independent. Former investigations were focused on
the mechanisms underlying individual gene expression, or in the best sce-
nario, the behavior of a small set of genes, rather than exploring regulatory
mechanisms that can influence many genes at one time. Systematic studies of
genome-wide binding patterns made evident the existence of a great deal of
coordinated regulation among TFs. Factors that combinatorialy regulate (in a
concomitant way) a particular gene also often coordinately regulate the ex-
pression of other genes, potentially even themselves or each other. Given this
fact, they are not independent inputs that merge only at a particular promoter,
but rather are coupled. Of course, these complex phenomena will ultimately
affect a thermodynamical description of transcription regulation because the
concentrations (expression levels) and chemical potentials of mRNA tran-
scripts are combinatorialy correlated.

Nevertheless, even if we are now provided with experimental techniques to
measure the behavior of thousands of mRNA transcripts simultaneously, and
a great deal of attention has been put on the computational and statisticalanal-
ysis of such huge amounts of data, the theoretical approach is still looking at
the regulatory interactions on a one by one basis. This approach is of course
changing toward a more systematic, network-oriented understanding of gene
regulation phenomena. One usual means to understand the nature of such in-
tricate phenomena is by using the so-called gene regulatory networks (GRNs).
GRNs are powerful graph-theoretical constructs that describe the integrated
status of a cell under a specific condition at a given time [3]. The complex de-
scription given by GRNs consists, generally, in identifying gene interactions
from experimental data through the use of theoretical models and computa-
tional analysis [4].Transcriptional network analyses have showed that, instead
of being independent, different levels of gene regulation are strongly coupled.
In some cases, it has been recognized that the factors involved in a specific
stage of mRNA transcription can exhibit coordinated behavior, for example,
by finding how groups of transcription factors bind cooperatively at many
related promoters.

2. Thermodynamics of hybridization

Understanding the thermodynamical basis of the hybridization process is an
important task related to both the explicit, intrinsic mechanisms of gene ex-
pression and its experimental measurement, especially in the case of high
throughput technologies such as the gene chips. One initial approach is to
calculate hybridization thermodynamics based on the inference of free ener-
gies by means of the energetic cost of base-pair opening in the RNA com-
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plex [5]. This approach has also been applied to understanding the selective
hybridization processes related to mRNA silencing (gene switching) by means
of small interfering RNA molecules (siRNAs), which are RNA molecules that
bind (hybridize) to specific mRNA transcripts, thus forbidding their ultimate
translation into proteins [6]. In both scenarios, the thermodynamic equilib-
rium and its properties are important for understanding and quantifying the
degree of hybridization, the specificity of it, and the steady-state concentration
of mRNA transcripts after either the measurement process or the silencing, re-
spectively. In the present paper, we are more interested in the thermodynamics
associated with gene expression quantification and profiling in high through-
put experiments, since this is (at least at the moment) the ultimate and more
accurate laboratory tool for studying the mechanism of genetic transcription.

According to the Langmuir adsorption model of oligonucleotide hybridiza-
tion, the specific-hybridization intensity (or gene expression signal) for a gene
probe as measured by (for example) an Affymetrix-type gene chip [7] is given
by [5]

ϕ(c,�G) = A c e−β�G

1 + c e−β�G , (1)

where β = 1
RT , T is the local temperature, R is the gas constant, c is the

mRNA concentration for this species,�G is the free energy of hybridization,
and A is a parameter that sets the scale of the intensity corresponding to the
saturation limit c � eβ�G. A natural generalization of Eq. (1) for a probe i
within a set of M gene-probes (i = 1, . . . ,M ) is

ϕi(ci,�Gi) = Ai ci e−β�Gi

1 + ci e−β�Gi
. (2)

The local chemical potential μi of species i due to the hybridization process
is defined customarily by μi =

(
∂�Gi
∂ci

)
T ,P,cj

. From Eq. (2) it is possible to

calculate μi by means of the chain-rule as follows:

μi =
(
∂�Gi

∂ci

)
T ,P,cj

=
(
∂�Gi

∂ϕi

)
T ,P,cj

(
∂ϕi

∂ci

)
T ,P,cj

, (3)

or in terms of the direct derivatives:

μi =

(
∂ϕi
∂ci

)
T ,P,cj(

∂ϕi
∂�Gi

)
T ,P,cj

. (4)
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The first derivative is calculated as(
∂ϕi

∂ci

)
T ,P,cj

= Ai ci e−β�Gi × − e−β�Gi

(1 + ci e−β�Gi)2

+ 1

(1 + ci e−β�Gi)
× Ai e−β�Gi. (5)

If we re-arrange terms, we have(
∂ϕi

∂ci

)
T ,P,cj

= Ai e−β�Gi

(1 + ci e−β�Gi)
×
[

1 − ci e−β�Gi

1 + ci e−β�Gi

]
, (6)

which can then be expressed in terms of ϕi to read(
∂ϕi

∂ci

)
T ,P,cj

= ϕi

ci

[
1 − ϕi

Ai

]
. (7)

Now, in the case of the second derivative in Eq. (4), it is given by(
∂ϕi

∂�Gi

)
T ,P,cj

= Ai ci e−β�Gi ×
[− ci e−β�Gi(−β)

(1 + cie−β�Gi)2

]

+ 1

(1 + ci e−β�Gi)
×
[
Ai ci e−β�Gi(−β)

]
, (8)

which then simplifies to(
∂ϕi

∂�Gi

)
T ,P,cj

= Ai c2
i β e−2β�Gi

(1 + ci e−β�Gi)2 − Ai ci β e−β�Gi

1 + ci e−β�Gi
. (9)

Equation (9) could also be written in terms of ϕi:(
∂ϕi

∂�Gi

)
T ,P,cj

= β ϕ2
i

Ai
− βϕi, (10)

which gives as a result that(
∂ϕi

∂�Gi

)
T ,P,cj

= βϕi

[
ϕi

Ai
− 1

]
, (11)

recalling Eqs. (4), (7), and (11), we finally get

μi =
ϕi
ci

(
1 − ϕi

Ai

)
βϕi

(
ϕi
Ai

− 1
) = −1

β ci
(12)
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or

μi = −RT

ci
. (13)

It is interesting to notice that this level of description (two-state Langmuir
adsorption model) gives an expression (Eq. [13]) for the chemical potential
that is equivalent to that of an ideal gas, i.e. non-interacting species, for if we
calculate the equilibrium chemical-work contribution to the free energy, �i,
we obtain

�i =
∫
μi dci =

∫ −RT

ci
dci (14)

or

�i = −RT ln

(
ci

co
i

)
. (15)

This approximation is valid as long as the rate of cross-hybridized targets
stays low, since if there is only (or mostly) transcript-specific hybridization,
the chemical species (in this case the different mRNA molecules) could be
considered non-interacting. This is a realistic assumption given the low con-
centrations of every transcript in solution and also the fact that current tech-
nologies are very efficient at reducing the rate of unspecific hybridization [7].

3. Transcriptional regulation

The phenomenon of gene expression (also known as mRNA transcription
or simply transcription) is a complex one. There is a set of control mecha-
nisms collectively called transcriptional regulation that takes on the duty of
controlling when transcription occurs and also how much mRNA is created.
The transcription of a given gene by means of the RNA polymerase enzyme
(RNApol) can be regulated or controlled by at least five different biochemical
mechanisms.

• There exists a set of proteins called specificity factors that alter the specific
binding of RNApol to some given promoter or set of promoters.A promoter
is a DNA region located next – technically in the upstream cys location
or toward the 5’ region of the sense strand – to a gene that facilitates its
transcription by making that region easy to recognize by the transcriptional
machinery.

• Repressors are DNA-binding proteins whose function is the regulation of
the expression of one or more genes by decreasing the rate of transcription.
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The actual mechanism involves their attachment to an operator, hence for-
bidding the transcription of the adjacent segment of DNA by blocking the
pass of RNApol.

• Transcription factors are proteins that bind to specific DNA sequences in
order to control the rate of transcription. Transcription factors are able to
perform their function alone, or by forming a complex with other pro-
teins. Transcription factors bind to either enhancer or promoter regions of
DNA adjacent to the genes that they regulate. Depending on the transcrip-
tion factor, the transcription of the adjacent gene is either up- (i.e., higher
concentrations of the corresponding mRNA) or down-regulated (lower con-
centrations of mRNA). Transcription factors use a variety of mechanisms
for the regulation of gene expression. These mechanisms include stabiliz-
ing or blocking the binding of RNApol to DNA, catalyzing the acylation or
deacylation of DNA. The transcription factor can either do this alone or by
recruiting other proteins that possess catalytic activity.

• The DNA-binding proteins that enhance the interaction of RNApol to a
particular promoter region, thus enlarging the expression levels of the asso-
ciated gene, are called activators. Activators perform their work by means
of either electrostatic interactions with some sub-units of RNApol (attract-
ing the molecule toward them and hence toward the DNA region they are
bound to) or by inducing conformational changes in the structure of DNA
that facilitate its binding to RNApol.

• Finally, enhancers are regions in DNA that are able to be bound with acti-
vators, hence bringing promoters to the initiation complex.

4. Non-equilibrium thermodynamics for small reactive
systems: The transcriptional regulation scenario

As is already evident from the previous section, the process of gene regula-
tion within a cell is highly complex from the bio-physicochemical point of
view. Another source of complexity in the non-equilibrium thermodynamical
characterization of such a system lies in the fact that a cell is a small system,
in the sense that its dimensions do not permit an obvious application of the
thermodynamic limit. Specifically, the role of fluctuations and stochasticity
within such scenarios is not clear. Small systems thermodynamics for equilib-
rium systems has been studied in the past [11,12] and some results were even
expected to extend to local equilibrium settings within cellular sized biosys-
tems [13]. One important limitation for the development of such theoretical
frameworks at that time was the lack of proper experimental settings to test
their hypotheses. Nevertheless, with the development of modern techniques
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such as microscopic manipulation by means of atomic force microscopes, op-
tical tweezers and cold-traps, this situation has become less of a limitation. In
the meantime, theories have been developed to explain several results. These
include mesoscopic thermodynamical approaches [14, 19] and also studies
made by means of the so-called fluctuation theorems [20–22,24]. Fluctuation
thorems have also been mentioned in connection with gene-transcription pro-
cesses [23]. Some of these theoretical results have even been experimentally
tested.

4.1. Fluctuation phenomena in non-equilibrium systems

To get a better idea of the role of large local fluctuations in small systems, let
us recall an ideal gas composed of N particles. The total energy of the system
is a Gaussian distributed random variable with average < ε >∼ NkBT and
variance σ 2

ε ∼ Nk2
BT 2. In that (general) case, the fluctuations of the system are

proportional to N − 1
2 . This means that for systems of size N ≈ O[1] they are

comparable (and thus important!), whereas for a system with N ≈ O[1023],
these same fluctuations become negligible. An interesting case of study is the
cell behavior of the RNApol molecule already mentioned. As we have said,
RNApol is an enzyme that moves along the DNA to produce a newly synthe-
sized mRNA molecule. It has been mentioned that RNApol extracts energy
from its surrounding thermal bath (i.e., the cellular environment) to move,
and at the same time uses bond hydrolysis to insure that only thermal fluctua-
tions that lead to forward movement are captured. RNApol then serves as an
out-of-equilibrium thermal rectifier. The complex dynamics behind even this
(relatively) simple model of transcription demonstrate the necessity for a non-
equilibrium thermodynamical characterization that includes the possibility to
deal with fluctuations in small systems.

A very important concept in the non-equilibrium fluctuations setting is that
of a control parameter. Roughly speaking, a control parameter is a variable
that must be specified to define in an unambiguous manner the state of a non-
equilibrium system, i.e., control parameters are non-fluctuating variables. Let
us call xn (n = 1 . . . p) the set of parameters of a non-equilibrium system and
xγ the control parameter. If we vary xγ , then the total energy of the system
will vary accordingly as

dU = ∑
n �=γ

(
∂U

∂xn

)
xγ

dxn +
(
∂U

∂xγ

)
xn

dxγ . (16)

One can see that the first term(s) correspond to the variation of energy as
a result of internal configurations (we naïvely call this the heat), whereas
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the second term is the energy change due to an external perturbation (that
is the work). Of course, this formulation implies the experimental difficulty
of finding an appropriate (natural) control parameter without disturbing (too
much) the system. However, since there is a presence of thermal rectification
phenomena in non-equilibrium small systems, Eq. (16) will serve as a basis
for the extended irreversible thermodynamical description below.

4.2. Mesoscopic non-equilibrium thermodynamics

As has already been said, systems outside the realms of the thermodynamic
limit are characterized by large fluctuations and hence stochastic effects.
The classic thermodynamic theory of irreversible process (CIT) [10] gives
a rough, coarse grained description of the systems, one that ignores all the
details of the molecular nature of matter, hence studying it as a continuum
media by means of a phenomenological field theory. As such, CIT is not
suitable for the description of small systems because fluctuations ignored by
CIT could become the dominant factor in the system’s dynamical evolution
and response. Nevertheless, in many instances (such as the present case of
gene expression regulation), it would be desirable to have a thermodynamic
theoretical framework to study such so-called nano-systems. One possible
way to do so is by considering the stochastic nature of the time evolution of
small non-equilibrium systems. This is the approach followed by mesoscopic
non-equilibrium thermodynamics (MNET) [14–16]. MNET for small sys-
tems could be understood as an extension of the equilibrium thermodynamics
of small systems developed by Hill and co-workers [11–13].

The way in which stochasticity is coming into play is by means of recognizing
that scaling down the description of a physical system brings up energy contri-
butions that are usually neglected in thermodynamical descriptions either in
equilibrium or outside of it.These contributions take the form of, for example,
surface energies and bring in turn a disruption of the canonical view of exten-
sivity. An example used by Hill [12] is that of a small cluster of N identical
particles for which the equilibrium Gibbs energy is given as: G = μN +aN β

with μ the chemical potential, a an arbitrary adjusting function, and β < 1 a
size-effect exponent. Here, the second term represents these energies that are
usually disregarded whose effects become negligible for very large N since
the first term becomes dominant. In this way, at the thermodynamic limit one
gets the usual G = μN relation. It is then possible to treat the Gibbs energy as
a fluctuating quantity. Of course we can adjust the definition of the chemical
potential to account for these effects.
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Defining

μ̂ = μ+ aN β−1, (17)

it is possible to recover the standard Euler relation G = μ̂N . However, one
must be cautious since even if μ̂ accounts for the actual energy potential
involved in the thermochemical description of such a small system, it is NOT
a canonical chemical potential, since for instance, it does not a give rise to
an extensive thermodynamical description. Of course in the thermodynamic
limit μ̂ → μ.

In the same order of ideas, MNET was developed to characterize non-equilib-
rium small systems. Let us recall that any reduction of the spatio-temporal
scale description of a system would entail an increase in the number of non-
coarse grained degrees of freedom (we are looking at things with more detail
so to speak). These degrees of freedom could be related with the extended
variables in extended irreversible thermodynamics [27], but they could also be
more microscopic in nature, such as colloidal-particle velocities, orientational
states on a quasi-crystal, and so on. Hence, in order to characterize such
variables, let us say that there exist a set ϒ = {υi} of such non-equilibrated
degrees of freedom. P(ϒ, t) is the probability that the system is at a state
given byϒ at time t. If one assumes [15,17] that the evolution of the degrees
of freedom could be described as a diffusion process in ϒ-space, then the
corresponding Gibbs equation could be written as

δS = − 1

T

∫
μ(ϒ)P(ϒ, t)dϒ . (18)

μ(ϒ) is a generalized chemical potential related to the probability density,
whose time-dependent expression could be explicitly written as

μ(ϒ, t) = kBT ln
P(ϒ, t)

P(ϒ)equil
+ μequil, (19)

or, in terms of a nonequilibrium work term �W ,

μ(ϒ, t) = kBT lnP(ϒ, t) +�W . (20)

The time evolution of the system could be described as a generalized diffusion
process over a potential landscape in the space of mesoscopic variablesϒ .This
process is driven by a generalized mesoscopic-thermodynamic force ∂

dϒ (μT )
whose explicit stochastic origin could be tracked back by means of a Fokker–
Planck-like analysis [14,16,17]. MNET seems to be a good candidate theory
for describing non-equilibrium thermodynamics for small systems. In fact, the
aforementioned arguments point to MNET being a good choice, provided one
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has a suitable model or microscopic means to infer the probability distribution
P(ϒ, t).

One important setting where MNET seems appropriate is the case of activated
processes, like a system crossing a potential barrier. Chemical reactions (and
biochemical reactions like the ones involved in gene regulation too!) are clear
in this case. According to [17] the diffusion current in this ϒ-space could be
written in terms of a local fugacity defined as

z(ϒ) = exp
μ(ϒ)
kBT

, (21)

and the expression for the associated flux will be

J = −kB L
1

z

∂z

∂ϒ
. (22)

L is an Onsager-like coefficient. After defining a diffusion coefficient D and
the associated affinity A = μ2 − μ1, the integrated rate is given as

J = Jo

(
1 − exp

A

kBT

)
, (23)

with Jo = D exp μ1
kBT .

One is then able to see that MNET gives rise to nonlinear kinetic laws like
Eq. (23). In this context, MNET has been applied successfully in the past
in biomolecular processes at (or under) the cellular level or description [18].
In that scenario, non-linear kinetics are used to express, for example, RNA
unfolding rates as diffusion currents, modeled via transition state theory, giv-
ing rise to Arrhenius-type non-linear equations. In that case, the current was
proportional to the chemical potential difference (cf. equation 17 of refer-
ence [18]), so the entropy production was quadratic in that chemical potential
gradient. We will re-examine these kind of dependency later when discussing
gene expression kinetics.

Since the whole-genome transcriptional regulation process consists of a (huge)
series of biochemical reactions, and many of these have unexplored chemical
kinetics, a detailed MNET analysis such as the one described above is unattain-
able at the present moment. In what follows, we will explore a phenomenolog-
ically based approach that nevertheless takes into account (although in a more
intuitive, less explicit way) similar considerations as the MNET framework
already sketched. This phenomenological approach is based on the extended
irreversible thermodynamics assumption of enlargement of the thermody-
namical variables space [25,26].
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4.3. Extended irreversible thermodynamics

We shall start our discussion by assuming that a generalized entropy-like
function 
 exists, which may be written in the form [27,28]

d


dt
= T−1

[
dU

dt
+ p

dv

dt
− ∑

i
μi

dCi

dt
− ∑

j
Xj � d�j

dt

]
, (24)

or as a differential form:

dt
 = T−1

[
dtU + pdtv − ∑

i
μidtCi − ∑

j
Xj � dt�j

]
. (25)

We see that Eq. (25) is nothing but the formal extension of the celebrated Gibbs
equation of equilibrium thermodynamics for the case of a multi-component
out-of-equilibrium system. The quantities appearing therein are the usual
ones: T is the local temperature, p and V the pressure and volume, etc. Xj and
�j are extended thermodynamical fluxes and forces. These extended forces
and fluxes are the new elements of EIT, the ones that take into account the
aforementioned non-local effects.

In the case of a multicomponent mRNA mixture at fixed volume and pressure,
we will take our set of relevant variables to consist in the temperature T (�r, t)
and concentration of each gene species Ci(�r, t) as the slow varying (classical)
parameters set S and the mass flux of these species �Ji(�r, t) as fast variables
on the extended set F so that G = S ⋃ F . These latter variables will take
into account the presence of inhomogeneous regions (concentration domains
formed because of the gene regulatory interactions) and so will correct the
predictions based on the local equilibrium hypothesis. The non-equilibrium
Gibbs free energy for a mixture of i = 1 . . .M , mRNA transcripts at constant
pressure, then reads

dtG = −
dt T + ∑
i
μidtCi + ∑

j
Xj � dt�j . (26)

If one is to consider gene expression/regulation as a chemical process, it
must be useful to write things up in terms of the extent of reaction ξ , hence
(dtG)T ,P,�j = ∑i μ

†
i dtNi is rewritten by means of the definition of the so-

called stoichiometric coefficient νi = ∂Ni
∂ξ and of the chemical affinity A =

∑i μ
†
i νi. The stoichiometric coefficients and the chemical affinities could be

defined likewise for a set of (k = 1 . . . R) regulatory interactions (considered
as chemical reactions) as follows:

dtG = −
dt T + ∑
k

Akdtξk + ∑
j
Xj � dt�j (27)
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or

dtG = −
dt T + ∑
k

[
∑

i
μ†

i,kνi,k

]
dtξk + ∑

j
Xj � dt�j . (28)

4.4. Mean field approach

In many cases the explicit stoichiometry of the regulatory interactions is
unknown, and in the vast majority of the already studied cases the reactions are
given on a one-to-one basis, i.e., one molecule of a transcription factor on each
gene transcription site (or one molecule of each kind of transcription factor
in the case of multi-regulated gene targets). Given this, at the moment we will
assume νi = 1; ∀i. In this diluted case, we find that the extent of each reaction
is then proportional to the concentration rate of change and we recover the
non-reactive regime similar to that given by Eq. (26). It is important to stress
that this approximation is not a disparate one given the fact that the usual
DNA/RNA concentrations within the cells are in the picomolar-nanomolar
regime. Also, of the almost 30,000 different genes in humans, just a small
number of these (about 1000–1500) are known to be transcription factors.
Nevertheless, in order to take into account the scarce yet important gene
regulatory interactions (albeit in an indirect manner), we retain the generalized
force-flux terms to get

dtG = −
dt T + ∑
i
μidtCi + ∑

j
Xj � dt�j. (29)

Since gene regulation occurs within the cell, it is possible to relate an internal
work term with the regulation process itself, this being a far from equilibrium
contribution. This non-local contribution is given by the generalized force-
flux term (third term in the r.h.s. of Eq. [29]). This is the case because gene
regulation often does not occur in situ and also because it is the only way to take
into account (albeit indirectly) the changes in the local chemical potentials
that cause the long tails in the fluctuations distributions characteristic of non-
equilibrium small systems (e.g., cells). The term relating mRNA flows due
to transcriptional regulation could be written as a product of extended fluxes
�j and forces Xj. Here j = 1, . . .M refers to the different mRNA species
being regulated, that is, indexes i and j refer to the very same set of mRNA
transcripts but in one case (i) we take into account their local equilibrium
behavior (as given by their independent chemical potentials and average local
concentrations) and in the other case (j) we are interested in their highly
fluctuating (far from equilibrium) behavior as given by the term ∑j Xj � dt�j
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Now we are faced with the task of proposing a form for the extended fluxes and
forces within this highly fluctuating regime, which at the same time allows for
experimental verification, is simple enough to be solved, and it is compatible
with the axioms of extended irreversible thermodynamics.As a first approach,
we are proposing a system of linear (in the forces) coupled fluxes with memory
that was used to successfully characterize another highly fluctuating system,
a fluid mixture near the critical point [29].

The constitutive equations are

��j(�r, t) = ∑
k

∫ t

−∞
λ�j,k �u e

(t′−t)
τ�j μj,k (�r, t ′)dt ′, (30)

�Xj(�r, t) =
∫ t

−∞
λX

j e
(t′′−t)
τX
j ��j(�r, t ′′)dt ′′. (31)

The λ’s are time-independent, but possibly anisotropic amplitudes, �u is a unit
vector in the direction of mass flow (the nature of �u will not affect the rest of
our description, since we will be dealing with the magnitude of the mass flux
| ��j|), and τ ’s are the associated relaxation times considered path-independent
scalars. Since we have a linear relation between thermodynamic fluxes and
forces, some features of the Onsager–Casimir formalism will still hold. This
will be especially important when considering cross-regulatory interactions.
An interesting question for future research will be whether gene transcription
interactions as modeled here obey Onsager’s reciprocal relations.

Dynamic coupling is given by Eqs. (30) and (31); nevertheless, due to the
fact that actual transcription measurement experiments are made either on
homeostasis (steady state) settings or within time series designs with intervals
several orders of magnitude larger than the associated relaxation times (which
are of the order of a few molecular collision times), it is possible to take the
limits τ�j → 0 and τX

j → 0, then the integrals become evaluated delta
functions, giving:

��j(�r, t) = �u ∑
k

λ�j,k μj,k (�r, t), (32)

�Xj(�r, t) = λX
j

��j(�r, t). (33)

It is important to note that in the future, it will surely become possible to ex-
perimentally measure gene expression in time intervals much shorter (maybe
even in real time). In that case, the appropriate theoretical setting will be given
by Eqs. (30) and (31), which represent the dynamic nature of the coupling
better than Eqs. (32) and (33).
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Also due to the spatial nature of the experimental measurements (either RNA
blots or DNA/RNA chips measure space-averaged mRNA concentrations), it
is possible to work with the related scalar quantities instead, giving

�j(�r, t) = ∑
k

λ�j,k μj,k (�r, t), (34)

Xj(�r, t) = λX
j �j(�r, t). (35)

Substituting Eqs. (34) and (35) into Eq. (29), one gets

dtG = −
dt T + ∑
i
μidtCi + ∑

j
∑
k

(
λ�j,k μj,k

)
dt

(
λX

j �j

)
. (36)

Assuming the generalized transport coefficient λX
j to be independent of the

flux �j we are able to write

dtG = −
dt T + ∑
i
μidtCi + ∑

j
∑
k

(
λ�j,k μj,k

)
λX

j dt�j . (37)

Or in terms of the transcription regulation chemical potentials μj,k ,

dtG = −
dt T + ∑
i
μidtCi

+ ∑
j

∑
k

(
λ�j,k μj,k

)
λX

j

(
λ�j,k dtμj,k + μj,k dtλ

�
j,k

)
. (38)

In the constant transport coefficient approximation, Eq. (38) reads

dtG = −
dt T + ∑
i
μidtCi + ∑

j
∑
k

(λ�j,k )2λX
j μj,k dtμj,k . (39)

Defining

Lj,k = (λ�j,k )2λX
j

2
,

we get

dtG = −
dt T + ∑
i
μidtCi + ∑

j
∑
k

Lj,k dtμ
2
j,k . (40)

It is possible to see from Eq. (40) that genetic transcription could be char-
acterized as a second-order effect; this arises from the fact that the actual
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mechanism of gene expression is regulation by other gene products such as
enzymes and transcription factors:

dtG = −
 dtT + ∑
i
μidtCi + ∑

j
∑
k

Lj,k dtμ
2
j,k . (41)

As we have stated, fluorescence intensity signals as measured by, for example,
microarray experiments (i.e., gene chips) are the usual technique used to
acquire information about the concentration of a given gene under certain
cellular conditions. From Eq. (2), the concentration of a given gene-probe
(with hybridization energy �Gi) is a function of the intensity as follows:

ci = ϕi

Aie−β�Gi − ϕie−β�Gi
. (42)

It is not unreasonable to consider that the local single-species energy of for-
mation for a given mRNA transcript (i.e., the partial chemical potential μi in
Eq. [41]) has the same (absolute) value as the chemical potential of hybridiza-
tion for the same mRNA species, as given by Eq. (13) such that μi = +RT /ci
could be used in the thermodynamical characterization of gene expression as
given by Eq. (41). If we insert Eq. (42) into Eq. (13) we get

μi = RT
(
Aie−β�Gi − ϕie−β�Gi

)
ϕi

. (43)

Now, by taking the time derivative of Eq. (42),

dci

dt
= Ai e−β�Gi(

Ai e−β�Gi − ϕi e−β�Gi
)2
[

dϕi

dt

]
. (44)

By substitution of Eqs. (43) and (44) into Eq. (41):

dtG = −
 dtT + ∑
i

Ai e−β�Gi

βϕi
(
Ai e−β�Gi − ϕi e−β�Gi

) dtϕi

+ ∑
j

∑
k

Lj,k dtμ
2
j,k . (45)

If we define

�i = Ai e−β�Gi

βϕi
(
Ai e−β�Gi − ϕi e−β�Gi

)
as the thermodynamic conjugate variable to the probe intensity ϕi , we obtain

dtG = −
 dtT + ∑
i
�i dtϕi + ∑

j
∑
k

Lj,k dtμ
2
j,k . (46)
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5. Results and discussion

Let us examine in some detail the structure of Eq. (46). In the isothermic, non-
regulated steady state (i.e. dtG = 0, dtT = 0, dtμ

2
j,k = 0 ∀j, k), Eq. (46) is

nothing but a formal non-equilibrium extension of the Gibbs–Duhem relation
∑i �i dtϕi = 0. Without any gene regulatory mechanism, and without explicit
dissipation, the energetics of gene expression within a cell are just the ones of
a non-interacting dilute mixture of its components (in this case, the different
mRNA transcripts). A more realistic case is the regulated, isothermal steady
state given by dtG = 0, dtT = 0, and at least some dtμ

2
j,k �= 0. This is

the more interesting case that one can compare with actual gene transcription
experiments nowadays. This is so because, on the one hand, due to the specific
nature of nucleic acids (both DNA and RNA suffer thermal decay) and also
due to physiological conditions, temperature changes are subtle or negligible
within the living cell or inside a realistic biological assay.

The steady-state condition is more of a present-time situation than a defini-
tive limitation. Most dynamic gene expression studies nowadays are studied
as time series (or time courses in the biomedical language) with time steps
dictated by economical or pharmacological and not by biophysical reasons.
Typically, the smaller time steps are of the order of minutes if not hours or days.
Regulatory changes can thus be measured just in their steady-state mean-field
contributions (coarse grained in space and time) and not in their whole dy-
namical complexity. Of course, as the costs of microarray processing lower
and as the technologies advance, one expects to see better resolution time
series for transcriptional dynamics.

Let us then consider the regulated isothermal steady-state version of Eq. (46),
namely:

∑
i
�i dtϕi + ∑

j
∑
k

Lj,k dtμ
2
j,k = 0. (47)

One could see that changes in the mRNA concentration of gene i as measured
by its probe intensity ϕi could depend not only on their own characteristic
thermodynamical parameters (Ai, �Gi, and T ) but also on another mRNA
transcript (say n) via a coupling given by a term Ln,i μ

2
n,i. In that case, one

says that the n-th gene regulates the i-th gene, or that n is a transcription factor
for i (conversely, i is a transcriptional target of n).

In order to give a concrete example (for the sake of clarity), we will consider
the irreversible thermodynamic coupling that sets the process of transcrip-
tional regulation between two genes, Genes = {1, 2}. In this case we will
assume that gene number 1 is a transcription factor for gene number 2 and
that gene 1 is non-regulated (i.e., gene 1 is not a target for any TF). This means
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that μ1,2 �= 0 and that μ1,1 = μ2,1 = μ2,2 = 0. In this case, Eq. (47) will
read

�1 dtϕ1 + �2 dtϕ2 + L1,2 dtμ
2
1,2 = 0. (48)

To make explicit calculations from experimental data we will consider SYK,
the transcript responsible for the synthesis of spleen tyrosine kinase as gene
1 and IL2RB or interleukin 2 receptor, beta as gene 2. SYK is well known for
being a strong inducer of gene transcription, especially in the case of the beta
domain interleukin 2 receptor [30]. Also, there is strong evidence indicating
the possible role of these two genes in the course of the so-called C-MYC
network of reactions, a very important, cancer-related biochemical pathway.

The values of the parameters could be calculated as follows. According to the
algorithm developed by Lu et al. [6] and described by Carlon et al. (cf. table 1
of reference [5]), it is possible to obtain suitable values for �G1 = 483.55
kcal/mol and �G2 = 463.05 kcal/mol (see Table 1). From these values, we
can calculate A1 and A2 from Eq. (2) following saturation measurements in
the latin square experiments [5–7]. In this case A1 = 5513 intensity units/mol
and A2 = 1105 intensity units/mol (see Figures 1 and 2).

Given these parameters, from a time-course GEA it is possible to calculate
both �1 = �1(ϕ1) and �2 = �2(ϕ2), and via ϕ1(t) and ϕ2(t) we could as well
obtain the time evolution forμ1,2, hence characterizing in a complete form the
transcriptional regulation for this simple (almost trivial from the biological
standpoint) gene switch.

Figure 1 Gene expression intensity as a function of mRNA concentration for SYK and IL2RB.
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Figure 2 Intensity amplitude coefficient as a function of mRNA concentration for SYK and IL2RB.

Taking the aforementioned values, we have the following expressions for
the thermodynamic functions in terms of the experimentally measurable in-
tensities (in all cases, a physiological temperature of T = 37 ◦C is as-
sumed), hence β = 1.622507 × 10−6 mol kcal−1, e−β�G1 = 0.99922,
A1 × e−β�G1 = 5508.67950 intensity units/mol; also e−β�G2 = 0.99925,
and A2 × e−β�G2 = 1104.17014 intensity units/mol.

Calculating the intensity-dependent chemical potentials we obtain, from
Eq. (43) kcal/mol,

μ1 = 3.395 × 109 − 6.158 × 105 ϕ1

ϕ1
(49)

and

μ2 = 6.805 × 108 − 6.159 × 105 ϕ2

ϕ2
. (50)

As we could see from Eqs. (49) and (50) (Figure 3), there is a difference in
the transcriptional behavior of gene 1 (SYK ), which is a transcription factor,
and gene 2 (IL2RB), which is not (and, in fact, is a transcriptional target). The
maximum intensity (related to a maximum concentration peak) attainable
in both cases in the spontaneous regime is of 5513 intensity units for SYK,
whereas in the case of IL2RB is of just 1105 intensity units. This means that,
in order for IL2RB to be produced at higher rates, the presence of chemical
environment modifications (e.g., via transcription factors) is needed.
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Figure 3 Individual chemical potentials for non-regulated transcription μSYK and μIL2RB as a
function of gene expression intensity.

In a very straightforward way (similar to ourμi calculations), we are now able
to calculate expressions for �1 and �2 as follows (see Figure 4):

�1 = 5508.6795

0.008938 ϕ1 − 1.6098 × 10−6 ϕ2
1

(51)

�2 = 1104.17014

0.001795 ϕ2 − 1.6243 × 10−6 ϕ2
2

. (52)

Figure 4 Intensity parameters for non-regulated transcription �SYK and �SYK as a function of gene
expression intensity.
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If we substitute Eqs. (51) and (52) into Eq. (48), we obtain

−L1,2 dtμ
2
1,2 = 5508.6795

0.008938 ϕ1 − 1.6098 × 10−6 ϕ2
1

dtϕ1,

+ 1104.17014

0.001795 ϕ2 − 1.6243 × 10−6 ϕ2
2

dtϕ2 (53)

integrating

−L1,2μ
2
1,2 = 616321.2687 ln

∣∣∣∣ −1.6098 × 10−6 ϕ1

0.008938 − 1.6098 × 10−6 ϕ1

∣∣∣∣
+ 615, 136.5683 ln

∣∣∣∣ −1.6243 × 10−6 ϕ2

0.001795 − 1.6243 × 10−6 ϕ2

∣∣∣∣. (54)

Taking experimental values of ϕ1(t) and ϕ2(t), Eq. (54) could be solved for
μ1,2(t). As we already stated, both SYK and IL2RB are involved in the tran-
scriptional network related to the C-MYC pathway, which is very important
in the development of cancer.

In order to capture subtle regulatory dynamics, one will need experiments
with a large number of smaller time-step measurements, but in principle one is
able to observe detailed patterns even within this very simple thermodynamic
model.

Interestingly, for this single gene switch it is also possible to calculate the
dependency of the transcriptional regulation coupling μ1,2 on the particu-
lar cellular environment by solving Eq. (54) for the same two genes under
different phenotypical conditions (e.g., cancer versus normal cells, treated
vs untreated diseased cells, etc.). The systematic study of such thermody-
namic cellular-context transcription regulation theory seems to be a promis-
ing research area in the non-equilibrium thermodynamics of biosystems. In
conclusion, we have showed here that a non-equilibrium thermodynamical de-
scription of cell-level transcriptional regulation could be formulated in terms
of experimentally measurable quantities, and that essential features of gene
regulatory dynamics could be studied with it. The model has been progres-
sively simplified to match with todays technological and practical limitations;
nevertheless these simplifications are not necessary in principle, and can be
eliminated when better experimental resolution (specially with regards to
more samples and time points) can be attained.
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Book Review

Dick Bedeaux on
Ortiz de Zárate, J., Sengers, J.V., Hydrodynamic Fluctuations in Fluids
and Fluid Mixtures
Elsevier, Amsterdam, 2006, pp. 320
ISBN: 0-444-51515-1

The book gives a very clear presentation about hydrodynamic fluctuations
in fluid and fluid mixtures. The nature of these fluctuations around non-
equilibrium states is surprisingly different from their equilibrium behaviour.
In equilibrium, density and temperature fluctuations are correlated over a dis-
tance of the order of the size of the molecules, if one is not close to a critical
point or line. Away from equilibrium, new terms appear which have algebraic
long ranged tails.

The authors discuss the various misconceptions along the road to the present
understanding in a very thorough and entertaining way. In particular the mi-
croscopic picture proposed by Bogoliubov (1946, 1962) is incorrect. It was
based on the view that the fluid away from equilibrium would proceed to equi-
librium in two distinct stages: first a kinetic stage with a time scale of the order
of intermolecular collisions, after which local equilibrium is established; sec-
ond the macroscopic hydrodynamic stage. Implicit in this assumption is that
the long range contributions described in this book do not exist.

Local equilibrium is the proper assumption to understand non-fluctuating
hydrodynamic behaviour. It is clearly not correct, however, to use local equi-
librium for the correlation functions of the temperature and the densities. As
the authors explain, one should add fluctuating contributions to the dissipative
fluxes and assume that the fluctuation-dissipation theorems remain valid at
the local values of the temperature and densities in non-equilibrium states.
This simple assumption of local equilibrium for the fluctuating contributions
to the dissipative fluxes leads to the long range contributions in the correlation
functions of the temperature and the densities, derived and discussed in this
book. The first introductory chapter gives a good overview of these matters.
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The second chapter introduces non-equilibrium thermodynamics without fluc-
tuations. It prepares the reader to construct equilibrium and non-equilibrium
solutions around which the analysis of the fluctuations is done. As a first step
towards this goal, fluctuations around equilibrium and their short range na-
ture are discussed in the third chapter. In the same chapter two sources of the
long range contributions in non-equilibrium states are identified. The first is
that the strength of the noise contributions depends for instance on the tem-
perature, which varies through the system. The second are mode-coupling
contributions.

In the fourth chapter, fluctuations are studied for a one-component system in
a temperature gradient, referred to as the Rayleigh-Bénard problem. Bound-
ary effects are ignored. As everywhere in the book the governing equations
are systematically linearized in the fluctuating contributions. Appropriate ap-
proximations are made and the structure factor calculated. It is found that the
resulting Brillouin peaks have different heights. In the equal time correlation
function a long-range contribution proportional to the square of the temper-
ature gradient appears. In the direction normal to the temperature gradient
this contribution is proportional to the inverse of the fourth power of the wave
vector. Similar behaviour is found in the fifth chapter for mixtures.

Chapters six and seven discuss confinement effects. For free boundaries this
is reasonably straightforward. For the more realistic rigid boundaries this
requires considerably more, partly numerical, work. An important result is
that the behaviour of the long range contribution is proportional to the square
of the component of the wave vector normal to the temperature gradient up
to a magnetude comparable to the inverse thickness of the fluid layer, above
which it becomes proportional to the inverse of the fourth power of the wave
vector. An analysis of the real space behaviour is given which shows the long
range nature of these contributions and their dependence on the thickness of
the fluid layer.

Chapter eight treats the behaviour of the fluctuations when one approaches the
Rayleigh-Bénard instability.The authors compare their exact solution with the
results of the most unstable mode approximation and the Swift-Hohenberg
model and conclude that the most unstable mode approximation is much
better.

The analysis in the fifth chapter is extended in the ninth chapter for binary
mixtures to include the effects due to confinement. The tenth chapter dis-
cusses experimental results. In particular light scattering and shadowgraphy
are treated in detail clarifying the experimental consequences of the theoreti-
cal results. This is a very appropriate and useful chapter. In a final chapter the
authors consider a number of problems which are also very interesting: one-
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component fluids under shear; a liquid-vapour interface with a temperature
gradient along the surface; nematic liquid crystals and a reaction diffusion
system. This is material enough to write another book about.

The book is an impressive contribution to the understanding of fluctuations in
non-equilibrium systems. The authors are unbelievably thorough. The equa-
tions are explained in detail. Solutions are given. Where needed numerical
solutions are presented. Approximate solutions are compared with the numer-
ical solutions. The available literature is discussed and results compared. The
experimental verification of the results is discussed in some detail. It is a great
book.

Dick Bedeaux
Dept. of Chemistry
Norwegian University of Science and Technology
NO-7491 Trondheim, Norway
e-mail: dick.bedeaux@chem.ntnu.no
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Lebon, G., Jou, D., Casas-Vázquez, J., Understanding Nonequilibrium
Thermodynamics
325 + XIII pp., Springer, Berlin 2008
ISBN: 978-3-540-74251-7

For textbooks dealing with the fundamentals or with general aspects of a given
discipline, it is often difficult to get a clear idea of the viewpoint, level or even
contents, when only the title of the work is known. For this reason, when a
new book on nonequilibrium thermodynamics appears, one may ask two ques-
tions, either openly or tacitly: First: what does the new book contribute to the
subject?; and second: how dows it fit into the general landscape already con-
figured by previous monographies?. Regarding the book we review here, one
may compare with two previous monographies (although possibly not only
those); one is the classical text by Sybren de Groot and Peter Mazur (Non-
equilibrium thermodynamics, North-Holland 1962) and the other the work by
the same authors: Jou, Casas-Vázquez and Lebon (Extended IrreversibleTher-
modynamics, Springer 2001). On the one hand, those who learned nonequi-
librium thermodynamics from the book by de Groot and Mazur will find in
the present book a depth, rigorous, but at the same time swift, exposition of
developments not covered by the classical text; including finite-time thermo-
dynamics, instabilities and pattern formation, or fluctuations. In addition, the
current book also covers several “modern” theories (sometimes competing,
sometimes complementary) that go beyond the local-equilibrium hypothesis;
including extended irreversible thermodynamics, rational thermodynamics,
theories with internal degrees of freedom (mesoscopic nonequilibrium ther-
modynamics), and Hamiltonian formalisms (GENERIC). On the other hand,
those who know the book “Extended Irreversible Thermodynamics“ by the
same authors will notice that the aim of the present book is quite different,
since it presents on equal foot the various modern theories beyond the local-
equilibrium hypothesis. Therefore, the current text should not be considered
as an “apology” of extended irreversible thermodynamics. Indeed, in spite of

∗The contents of this book review are partly based on a comment previously published (in Spanish) in the
Revista Iberoamericana de Fı́sica.
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being considered the fathers of this particular “extension” of nonequilibrium
thermodynamics, the authors make here a successful effort to present the work
of all modern schools evenly; letting the theories speak for themselves and
looking for points of contact, so as to present them as more complementary
than one might initially expect.

The book is intended for a graduate-level course on the subject. In little more
than 300 pages we meet a pedagogically neat presentation of the material,
where topics (historical notes or detailed deductions of some equations) that
may distract the attention of the reader, are inserted into “boxes”. Furthermore,
at the end of each chapter, a set of problems is proposed. Unfortunately,
solutions to these exercises are not presented; omission that would not please
many readers, especially since some of these problems have a quite high level
of difficulty.

In the preface it is indicated that the book can be divided into two parts, the first
part (chapters 1–6) is essentially an introductory course to equilibrium and
nonequilibrium thermodynamics, the second part covers topics that are more
“specialized”. It turns out that all the material presented in chapters 1–6 is
based on the local-equilibrium hypothesis, while in chapter 7 and subsequent
chapters this assumption is abandoned, covering topics beyond the classical
theory. Indeed, the second part contains basic introductions and comparison of
the various approaches going beyond local equilibrium (extended irreversible
thermodynamics, rational thermodynamics, internal variables, Hamiltonian
formalisms). The result is quite interesting for a graduate-level course, since
the content of this second part gradually and smoothly places the students
on the research frontier. As already mentioned, the authors try hard to treat
all ideas on an equal footing, establishing equivalences and making points
of contact, to almost show all of them as complementary. They try not to
prioritise any school over the others, and conclude at the Epilogue by saying
that is the reader who has to make up his personal opinion.

However, one of the criticisms that could be raised to the general structure of
the current book is the delay of the study of fluctuations to the last chapter 11.
From a conceptual point of view, classical nonequilibrium thermodynamics
naturally includes a theory of fluctuations based on the local-equilibrium hy-
pothesis.The fluctuation-dissipation theorem and the formulation of Langevin
or Fokker-Planck equations for fluctuating thermo-hydrodynamics could be
considered as generic tools of classical nonequilibrium thermodynamics and
be placed earlier, maybe just before the chapter on instabilities and pattern
formation.

Anybody who has ever written a book knows how difficult it is to decide
on which topics to include and which ones not to include. This challenge of
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selecting and optimising contents is a difficult task and full responsibility of
the authors. In the current book they made an effort to avoid cumbersome
details and try to focus the attention of the reader on the main physical ideas.
It may happen that the consequent subject clipping will not please everybody,
and even disappoint someone expectations. For instance, in chapter 5, some
people would miss a more thoughtful discussion of topics such as global
warming, econophysics or ecology. In spite of this, we generally see a very
good balance between depth and concision.

The current work, in agreement with the stated textbook philosophy, starts in
chapter 1 with a short review of equilibrium thermodynamics, that reflects the
many years teaching experience of the authors. The result is very satisfactory,
although a more formal presentation of the laws may be missed, and the im-
portance of the equation of state could have been emphasized more strongly.
Then, the book goes on in chapters 2–3 studying irreversible processes in
the classical framework. The text of these sections is swift and easy to fol-
low. Maybe a more clear distinction between local and material derivatives
(page 41) is missing, while the critic of the classical model (pages 63–65)
is brilliant. As is well-known, chemical reactions and the link with chem-
ical kinetics may be called the “failed course” of classical nonequilibrium
thermodynamics. For this reason it is quite difficult to write meaningfully
about this topic. Nevertheless, in chapter 4 the authors are able to negotiate
the chemical reaction by including such topics as coupling among reactions,
molecular motors and, even, morphogenesis (Turing instabilities); maybe this
latter topic would be better placed in the pattern formation chapter though.

It is precisely chapter 6 devoted to instabilities and pattern formation one of the
most interesting features of the current textbook.This subject naturally fits in a
course of nonequilibrium thermodynamics, and the existence of instabilities is
one of the most striking differences between equilibrium and nonequilibrium
systems. Some readers would prefer a more detailed discussion of the various
topics (in line with the contents of “box 6.1” in page 147), however we believe
that the balance reached between clarity and concision in this chapter is quite
good. Chapter 6 includes such important topics as Rayleigh-Bénard, Bénard-
Marangoni or Taylor instabilities, as well as Lotka-Volterra or Brusselator
models.

Regarding the topics covered in chapters 7–10, in addition to what has been
said above, it is worth noticing that a detailed coverage and understanding of
this material would require more specialized monographies. It is precisely for
this reason that the concision and rigor achieved by the authors in these chap-
ters is very welcome, while presenting at the same time appropriate references
for those who want to know more.

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 4



402 Book Review

In summary, the book reviewed here may be a very useful tool for those
whishing to learn nonequilibrium thermodynamics, from the very basics to the
research frontier, with a very good balance between depth and broad coverage.
It may also be of invaluable help for those teaching or taking graduate-level
courses on the subject. It may become a reference work

M. Criado-Sancho
UNED Madrid
Spain
e-mail: •••
José M. Ortiz de Zárate
Universidad Complutense
Madrid
Spain
e-mail: •••
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