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Abstract

In a multi-country model with mobile capital and global pollution this paper an-

alyzes the stability of self-enforcing environmental agreements (IEAs) when the

coalition formed by the signatory countries plays Nash. In accordance with previ-

ous environmental literature we show that there exists a unique self-enforcing IEA

consisting of two or three signatory countries if emissions tax rates are strategic

substitutes. However, emissions tax rates are strategic complements if the pollu-

tion is not too detrimental. In that case we find very small self-enforcing IEAs, as

before, but now the socially optimal agreement among all countries may be self-

enforcing as well. Special emphasis is placed on the investigation and interpretation

of the conditions which render stable the grand coalition.
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1 Introduction

The massive reduction of global carbon emissions necessary to stabilize the world climate at

safe levels cannot be achieved without an effective international environmental agreement

(IEA). However, more than 20 years of international negotiations towards such an agreement

have brought little progress. It is therefore important to investigate the conditions for the

successful formation of an IEA that is both encompassing and effective. The economic

literature on IEAs since the early 1990s is based on the proposition that sovereign countries

are reluctant to join an IEA unless it is in their self-interest. Therefore the concept of self-

enforcing agreements is crucial which requires that no signatory has an incentive to leave the

IEA and no non-signatory has an incentive to join it. The basic model of an IEA employed

by Carraro and Siniscalco (1991), Hoel (1992), Barrett (1994) and others since then is a

simple static model of identical countries without international trade. Some studies model

climate coalitions1 as Stackelberg leaders (e.g. Barrett 1994, Diamantoudi and Sartzetakis

2006, Rubio and Ulph 2006) and others portray them as Nash players along with all non-

signatories (e.g. Carraro and Siniscalco 1991, Hoel 1992, Finus 2001, Rübbelke and Finus

2013). In both variants of the basic model strong free-rider incentives prevent large stable

coalitions and large gains from cooperation.

In order to find out whether the prospects of reaching an effective IEA enhance in

more structured models, Eichner and Pethig (2013a, 2013b) extend the basic model of

coalition formation by explicitly modeling production, consumption and international trade

in fossil fuels and a composite consumption good. When the coalition is assumed to be the

Stackelberg leader (Eichner and Pethig 2013a), stable coalitions turn out to comprise up to

60% of all countries. But unfortunately, such coalitions hardly reduce climate damage below

its level in the non-cooperative scenario - regardless how large they are. When the coalition

plays Nash along with all fringe countries (Eichner and Pethig 2013b), stable conditions are

both small and ineffective similar as in the basic model without trade.

The present paper also analyzes the formation of a climate coalition in a world econ-

omy with international trade, but in contrast to Eichner and Pethig (2013a, 2013b) our

focus is now on capital mobility and capital-related global pollution. That means, we take

as our point of departure the branch of the fiscal federalism literature dealing with decen-

tralized policymaking in an economy with spillovers among jurisdictions. In their seminal

paper Oates and Schwab (1988) argue that the choice of capital taxes and environmen-

1In the present paper the terms IEA and (climate) coalition are synonymous because our exclusive focus

is on a single coalition. Also, we take as equivalent the terms ’self-enforcing IEA’ and ’stable (climate)

coalition’.
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tal standards is efficient in an economy with identical jurisdictions, mobile capital and local

pollution. Ogawa and Wildasin (2009) extend the analysis to account for transboundary pol-

lution (spillovers) and asymmetric countries, and still get efficient capital tax rates. Eichner

and Runkel (2012) point out that it is the zero capital supply elasticity which drives Ogawa

and Wildasin’s result. They adopt a two-period framework employed e.g. by Bukovetsky

and Wilson (1991) and Keen and Kotsogiannis (2002) and show that in case of strictly

positive capital supply elasticities capital tax rates are inefficiently low in the decentral-

ized equilibrium because the jurisdictions’ choice of capital taxes is then distorted by their

incentive for tax competition and their disregard of spillover effects.2

Ogawa and Wildasin (2009) and Eichner and Runkel (2012) investigate the (in)efficiency

of capital tax competition in the presence of transboundary pollution when decision-making

is decentralized, i.e. when all jurisdictions/countries act non-cooperatively. Here we will

take up the analytical framework of Eichner and Runkel (2012) with some minor simplifi-

cations3 to investigate the formation of stable coalitions when the fringe countries as well

as the coalition play Nash. Although our approach shares with Eichner and Pethig (2013b)

both Nash behavior on the part of the coalition and international trade, the pertaining

models differ significantly. In Eichner and Pethig’s one-period model there are world mar-

kets for a composite consumption good and fossil fuels; fuels are extracted and consumed

by the countries’ residents along with a consumption good that is produced without using

fuel as an input. In contrast, following Eichner and Runkel (2012) we now model world

markets for capital and a composite consumption good in the second period, and capital is

an intermediate good in the production of the consumption good.

As reported above, Eichner and Pethig (2013b) found no stable coalitions consisting

of three or more countries. Similarly, in the present paper we will demonstrate that there

exist small stable coalitions with two or three member countries. However, for a smaller

but non-empty subset of parameter values the grand coalition turns out to be also stable.

In other words, full cooperation of all countries may be self-enforcing. The crucial nec-

essary condition for this unexpected result are economies (= parameter constellations) in

which emissions tax rates are strategic complements. For given preferences and technolo-

gies strategic complementarity of taxes and stable grand coalitions are the more likely, the

2In the literature on capital tax competition (e.g. Zodrow and Mieszkowski 1986, Wilson 1986) an

additional source of inefficiency is the under-provision of public goods resulting from the requirement to

finance public goods by capital tax revenues exclusively. If lumpsum taxation is allowed along with capital

taxation, as e.g. in Eichner and Runkel (2012), the provision of public goods is efficient.
3We do not model public goods whose allocation is efficient in Eichner and Runkel (2012) anyway because

they allow for lumpsum taxation. Second, we restrict the analysis to uniformly dispersed emissions (β = 1)

which approximates the case of climate change.
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smaller the total number of countries, the less severe the climate damage of emissions and

the smaller the flow of emissions. In Eichner and Pethig (2013b) and, to our knowledge, also

in the entire theoretical literature on the formation of IEAs emissions taxes are strategic

substitutes which is why grand coalitions are always unstable in that literature.

The paper is organized as follows. Section 2 introduces and describes the formal

model and briefly characterizes the benchmark scenarios of global non-cooperation and social

optimum. Section 3 analyzes the impact of climate coalitions of different but exogenously

given size and investigates analytically and numerically economies in which emissions tax

rates are either strategic complements or strategic substitutes. Section 4 then turns to the

existence and size of self-enforcing IEAs emphasizing the conditions under which the grand

coalition is stable. Section 5 concludes.

2 The model

Consider an economy with n ≥ 2 identical countries. Each country i hosts a representative

firm that employs ki units of capital to produce good X according to the production function

X(ki) (1)

that is increasing and concave, i.e. X ′ > 0 and X ′′ < 0. The production process generates

emissions, ei, in strict proportion to the capital employed which we express by writing

ei = ψki with ψ > 0 and constant. Emissions are regulated in each country by means of

an emissions tax at rate ti. Each unit of capital is purchased on the economy-wide capital

market at the price 1+ r > 1. Normalizing the price of good X to one, profit maximization

of the after-tax profit Πi = X(ki)− (1 + r + tiψ)ki of the firm located in country i yields

X ′(ki) = 1 + r + tiψ. (2)

Each country is populated by a representative household who lives for two periods. In

the first period, country i’s resident has an endowment k̄ of first-period income that can

either be spent for first-period consumption at rate x1i or saved at rate si = k̄ − x1i . In the

second period, the resident receives capital income (1 + r)si and profit income Πi earned

in her country. The second-period budget is x2i = (1 + r)si + Πi + tiψki where x2i denotes

second-period consumption and where tiψki is the lumpsum transfer of tax revenues to the

household. The utility of country i’s resident is increasing in private consumption and is
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negatively affected by global pollution4
∑

j ej . The utility function is given by

U(x1i ) + x2i −D

(
∑

j

ej

)

. (3)

The subutility function U is increasing and concave and the damage function D is increasing

and convex. Maximizing (3) with respect to si subject to the budget constraints gives

U ′(k̄ − si) = 1 + r which determines savings as a function of the interest rate. Capital and

good X are traded on perfectly competitive world markets. The condition

∑

j

kj =
∑

j

sj (4)

clears the capital market.

Observe that combining the definition of after-tax profit with the consolidated budget

equation yields

x2i = X(ki) + (1 + r)(si − ki). (5)

When we sum (5) over all countries and account for (4) we confirm Walras’ Law according

to which the market for the second-period consumption good is in equilibrium if and only if

(4) is satisfied.5

The model introduced above is adopted from Eichner and Runkel (2012). Their

model, in turn, combines the proportionality between capital and emissions from Ogawa and

Wildasin (2009) with the two-period approach applied by Bucovetsky and Wilson (1991) and

by Keen and Kotsogiannis (2002).

For the benefit of more specific results, we will specify throughout the paper the func-

tions X, U and D by

U(x1i ) = ax1i −
b

2

(
x1i
)2
, X(ki) = αki −

β

2
k2i , D

(
∑

j

ej

)

=
δ

2

(
∑

j

ej

)2

, (6)

where a, b, α, β and δ are positive parameters. Utility maximization and profit maximization

yield the savings and capital demand, respectively,

si =
1− a+ r

b
+ k̄, ki =

α− 1− r − tiψ

β
. (7)

Inserting (7) in (4) we get after rearrangement of terms

r =
(α− 1)b+ (a− 1)β − bβk̄

b+ β
−

bψ

n(b+ β)

∑

j

tj . (8)

4For convenience of notation, we write
∑

j short for
∑j=n
j=1 .

5This observation is the rationale for the price of capital being equal to 1 + r.
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Consideration of r from (8) in (7) gives

ki =
1

b+ β

[

ζ −
tiψ(b+ β)

β
+
bψ

nβ

∑

j

tj

]

, si =
1

b+ β

[

ζ −
ψ

n

∑

j

tj

]

, (9)

where ζ := α− a+ bk̄. Observe that

∑

j

sj =
∑

j

kj =

∑

j ej

ψ
=

n

b+ β

[

ζ −
ψ

n

∑

j

tj

]

. (10)

We account for x1i = k̄ − si and (5) in (3) to get

W i(t1, . . . , tn) := U(k̄ − si) +X(ki) + (1 + r)(si − ki)−D

(
∑

j

ej

)

(11)

Since the variables si , ki, r and
∑

j ej are determined by (t1, . . . , tn) via (7) - (10),W i(t1, . . . , tn)

from (11) is the equilibrium welfare of country i for any given tax profile (t1, . . . , tn).

Business as usual. For later use as a benchmark, we briefly characterize the non-cooperative

Nash-equilibrium which we refer to as business as usual (BAU). The government of country

i chooses the tax rate ti that maximizes W i(ti, . . . , tn) for given tax rates (t1, . . . , ti−1, ti+1,

. . . , tn) of the other countries. The associated first-order condition W i
ti
= 0 implicitly deter-

mines country i’s best reply function6

ti = R̃

(
∑

j 6=i

tj

)

=
n3βδψζ

No
+

[(b+ β)b− n2βδψ2]

No

∑

j 6=i

tj, (12)

where No := (n2 − 1)(b + β)b + bβn2 + n2β(β + δψ2) > 0. The reaction function is up-

ward [downward] sloping and characterizes the countries’ tax rates as strategic complements

[substitutes] if and only if (b + β)b > [<]n2βδψ2. Sufficient for the tax rates to be strate-

gic complements are the polar cases in which either emissions are absent (ψ = 0) or there

is no damage from emissions (δ = 0). Ceteris paribus, the more emissions are generated

(ψ ↑), the more severe the damage from emissions is (δ ↑), the larger the group of countries

is (n ↑), the more likely the tax rates are strategic substitutes. Since dti
d(

∑
j 6=i dtj)

< 1 and

constant, there is a unique Nash equilibrium, say (t1o, . . . , tno). With all countries being

alike, the Nash equilibrium is characterized by t1o = . . . = tno ≡ to and hence also by

k1o = . . . = kno = s1o = . . . = sno ≡ so ≡ ko. Making use of the symmetry assumption in

(12) yields the BAU tax rate to =
n2βδψζ

b2(n−1)+bβ(2n−1)+nβ(β+nδψ2)
.

6The best-reply function is derived in the Appendix A.
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Social optimum To evaluate the non-cooperative mitigation efforts of Nash governments

we briefly determine the socially optimal tax rates. Maximizing
∑

jW
j(t1, . . . , tn) with

respect to ti yields the first order condition
∑

jW
j
ti
= 0 which can be solved for the socially

optimal tax rate7 t̂ = δψζn2

b+β+n2δψ2 . Insertion of t̂ in (7) - (11) gives the socially optimal solution

(ŵ, ê, k̂, ŝ, r̂, t̂). Comparing that allocation with the BAU allocation (wo, eo, ko, so, ro, to)

yields ŵ > wo, ê < eo, k̂ = ŝ < ko = so, t̂ > to and r̂ < ro.
8 Hence as expected, all countries

suffer a welfare loss in BAU because non-cooperative governments ignore the positive impact

of their tax on all other countries.

Note that the optimal tax rate is zero (t̂ = 0) either if no emissions are generated

(ψ = 0) or emissions are not harmful (δ = 0). In these cases we also have to = 0 such that

the BAU allocation is efficient. Hence the only cause for inefficiency are the detrimental

emissions.9 The inefficiency of BAU (in case of ψ > 0 and δ > 0) gives room for enhancing

world welfare through cooperation. Obviously, full international cooperation is the straight-

forward solution. But the insight from juxtaposing the polar cases of full cooperation and

no cooperation (BAU) is limited. Our next step is therefore to study intermediate cases of

a cooperative sub-group of countries interacting with the non-cooperative rest of the world.

3 Climate coalitions

Suppose now that some countries are members in a coalition. For the sake of the formal

analysis, we lump together the first m countries, 2 ≤ m < n, in one group, denoted group

C := {1, 2, . . . , m} with C for coalition, and collect all remaining countries in another group,

denoted group F := {m+1, . . . , n} with F for fringe. All fringe countries play Nash against

the coalition and against all fellow fringe countries. The coalition countries are assumed

to commit to cooperative climate policy such that the coalition now acts as a single player

whose payoff is the coalition countries’ aggregate welfare
∑

j∈CW
j(t1, . . . , tn) and who plays

Nash against all fringe countries. Taking advantage of the symmetry assumption we treat

all countries equally within their group. Specifically, we set ti = tc for all i ∈ C and ti = tf

for all i ∈ F from the outset. With this substantial analytical relief the best reply of the

7For the derivation of t̂ we refer to the Appendix A.
8The proof is given in the Appendix A.
9In the standard model of capital tax competition (e.g. Zodrow and Mieszkowski 1986) the tax compe-

tition is inefficient without emissions because it leads to an undersupply of national public goods if these

goods are financed via capital taxation exclusively. This channel of inefficiency is disregarded in the present

paper.
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coalition with m members to the fringe countries’ strategies tf is given by10

tc =
mn3βδθψ

N c
+
m(n−m)[b(b+ β)− n2βδψ2]

N c
tf , (13)

where N c := (n2 −m2)b(b + β) + n2β(b + β +m2δψ2). Each fringe country’s best reply is

still given by (12). We account for ti = tc for i ∈ C and ti = tf for i ∈ F and solve (12) for

tf to obtain

tf =
n3βδϕψ

Nf
+
m[b(b + β)− n2βδψ2]

Nf
tc, (14)

where Nf := b2[n(n− 1) +m] + bβ[n(2n− 1) +m] + n2β[β + (n−m)δψ2].

Clearly, a coalition-fringe equilibrium is the n-tuple ( t∗c , . . . , t
∗
c

︸ ︷︷ ︸

m-times

, t∗f , . . . , t
∗
f

︸ ︷︷ ︸

(n-m)-times

) of tax rates

solving (13) and (14). The solution turns out to be

t∗c =
mn3βδϕψ

N
and t∗f =

n3βδϕψ

N
(15)

with N := b(b+ β)[n(n− 1)−m(m− 1)] + n2β[b+ β + (n−m+m2)δϕ2]. The correspond-

ing coalition-fringe equilibrium allocation is characterized by (w∗
c , w

∗
f , e

∗
c , e

∗
f , k

∗
c , k

∗
f , r

∗, t∗c , t
∗
f ).

From (15) it is obvious that t∗c = mt∗f > t∗f which implies, in turn, k∗c < k∗f and e∗c < e∗f .

Since s∗c = s∗f due to (7), it follows from (10) that coalition countries export capital and

import the consumption good. The tighter tax rate (t∗c > t∗f ) drives capital out of coali-

tion countries. Since emissions are tied to capital the reduction of emissions in coalition

countries (ec ↓) increases the emissions in fringe countries (ef ↑) which is known as car-

bon leakage in the climate change literature. In order to further assess the coalition’s

performance we compare the countries’ welfare and their tax rates in the coalition-fringe

equilibrium with those in BAU. With the notation tc and tf we rewrite the welfare of in-

dividual countries as W c(tc, tf , m) :=W i( tc, . . . , tc
︸ ︷︷ ︸

m-times

, tf , . . . , tf
︸ ︷︷ ︸

(n-m)-times

) for all countries in group C,

as W f(tc, tf , m) := W i( tc, . . . , tc
︸ ︷︷ ︸

m-times

, tf , . . . , tf
︸ ︷︷ ︸

(n-m)-times

) for all countries in group F , and prove in the

Appendix D

Proposition 1 . The coalition-fringe equilibrium with a coalition of sizem ∈ {2, . . . , n−

1} compares with the non-cooperative Nash equilibrium (BAU) as follows:

(i) W f(t∗c , t
∗
f , m) > W c(t∗c , t

∗
f , m) > wo,

(ii) t∗c > to,

(iii) t∗f > to if and only if tax rates are strategic complements [b(b+ β) > n2βδψ2].

10For the derivation of (13) we refer to the Appendix B.
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The principal message of Proposition 1 is that the coalition enhances the welfare of all

countries compared to BAU, but grants a free-rider welfare advantage to all fringe countries.

This result is independent of whether tax rates are strategic substitutes or complements. But

according to Proposition 1(iii) the fringe countries’ tax rate (and mitigation effort) is higher

[lower] than in BAU, if tax rates are strategic complements [substitutes]. In other words, if

tax rates are strategic complements [substitutes], the fringe countries support [counteract]

the coalition’s mitigation effort.

The asymmetry in outcome for fringe and coalition countries is driven by three effects.

The first is the negative tax base effect
(
∂kc
∂tc
,
∂kf
∂tf

)

. When the coalition or a fringe coun-

try increases its tax rate, domestic investments and domestic emissions decline. The tax

base effect of coalition countries is smaller in absolute terms than that of fringe countries
(∣
∣
∣
∂kf
∂kf

∣
∣
∣ >

∣
∣
∣
∂kc
∂tc

∣
∣
∣

)

which implies that the coalition is more effective in preventing capital out-

flows than a fringe country.11 The second effect is the terms of trade effect. Since raising

the tax reduces domestic investments, total demand for capital decreases, ceteris paribus,

and thus reduces the price of capital and stimulates capital input and emissions in the other

countries. It is clearly that the coalition’s terms of trade effect is more pronounced than that

of fringe countries12

(∣
∣
∣
∂rf
∂tf

∣
∣
∣ = m

∣
∣
∣
∂rc
∂tc

∣
∣
∣

)

. Finally, the tax rates impact on the global climate.

Tightening domestic mitigation policies (tc ↑, tf ↑) does not only reduce domestic emissions,

but also causes emissions leakage thus rendering unilateral taxation rather ineffective in the

fight against global climate change. The global climate effect

(
∂(

∑
j ej)

∂tc
,
∂(

∑
j ej)

∂tf

)

answers

the question as to how strong the leakage effect is. Both climate effects are negative such

that the leakage effect is always less than 100%. Moreover, due to

∣
∣
∣
∣

∂(
∑

j ej)
∂tc

∣
∣
∣
∣
>

∣
∣
∣
∣

∂(
∑

j ej)
∂tf

∣
∣
∣
∣
the

coalition is more successful than individual fringe countries in mitigating climate change.13

According to our preceding analysis, the coalition-fringe equilibrium allocation is uniquely

determined by - and varies with - the coalition size. In the following proposition proved in

the Appendix E we present results on how the equilibrium values of tax rates and welfare

depend on the coalition size.

Proposition 2 . Denote by t∗v = T v(m) and w∗
v = Wv(m) := W v

[
T c(m), T f(m), m

]

for v = c, f the tax rates and welfare levels of coalition and fringe countries in the coalition-

fringe equilibrium with a coalition of size14 m ∈ [1, n] ∈ R+.

11Follows from ∂kc
∂tc

= −ψ[(n−m)b+nβ]
nβ(b+β) and

∂kf
∂tf

= −ψ[(n−1)b+nβ]
nβ(b+β) .

12Follows from ∂rc
∂tc

= − mbψ
β(b+β) and

∂rf
∂tf

= − bψ
β(b+β) .

13Follows from
∂(

∑
j
ej)

∂tc
= − mψ2

n(b+β) and
∂(

∑
j
ej)

∂tf
= − ψ2

n(b+β) .
14For analytical convenience we take the interval [1, n] to be the domain of these functions, keeping in

mind in our later conclusions that the domain of real-world coalitions is the set of integers {1, . . . , n}.
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(i) The welfare levels of coalition countries, Wc(m), and of fringe countries, Wf (m), are

strictly increasing in m.

(ii) The average global tax rate, mT c(m)+(n−m)T f (m)
n

, is strictly increasing in m.

(iii) Suppose tax rates are strategic complements [b(b+ β) > n2βδψ2]. Then the tax rates of

coalition countries, T c(m), and of fringe countries, T f(m), are strictly increasing in

m.

(iv) Suppose tax rates are strategic substitutes [b(b + β) < n2βδψ2]. Then the tax rates of

coalition countries, T c(m), are strictly increasing in m for m < (n + 1)/2 and the tax

rates of fringe countries, T f(m), are strictly decreasing in m.

The parts (i) and (ii) of Proposition 2 confirm the intuition that the larger the coalition,

the more effective is its fight against global change and the more beneficial it is for all

countries: Aggregate tax rates and all countries’ welfare are strictly increasing in the coalition

size. While these features are independent of whether tax rates are strategic substitutes or

complements, the relation between tax rates and the coalition size crucially depends on that

distinction. In case of strategic complements all countries step up their mitigation efforts

with increasing coalition size - with the coalition countries’ tax rate being always higher by

the factor m than that of fringe countries. In contrast, if tax rates are strategic substitutes,

the fringe countries reduce their tax rate with increasing coalition size and thus obstruct

the coalition’s mitigation effort. One might expect that in case of strategic substitutes

the coalition unambiguously increases its tax when it gets larger. But Proposition 2(iv)

establishes that result under a restrictive sufficient condition only.

Recall that we briefly compared the allocations in BAU and in the social optimum

at the end of Section 2. If we account for d[mT c(m)+(n−m)T f (m)]
ndm

> 0 (Proposition 2(iii))

in (8) and (9) it is possible to supplement that comparison by observing that r∗, s∗ and

me∗c + (n−m)e∗f are strictly decreasing in m. Hence

ro > r∗ > r̂, so > s∗ > ŝ, and eo >
me∗c + (n−m)e∗f

n
> ê. (16)

Proposition 2 provides interesting information about the dependence of the equilibrium

values w∗
c , w

∗
f , mw

∗
c + (n − m)w∗

f , t
∗
c and t∗f on the coalition size. To obtain even more

specific information on the curvature of the functions Wv, T v, v = c, f , we now proceed with

numerical illustrations of the analytical results of Proposition 2.15 Although the dependence

on coalition size of variables other than those investigated in Proposition 2 is also very

15We have varied the parameters in a large number of examples. Since the curvature turned out to be

robust with respect to parameter variations, we find it sufficient to discuss below one example each for the

cases of strategic complements and substitutes.
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important, we restrict our subsequent discussion to the curves in Proposition 2 to keep

focused on the stability issue to be addressed in the next section.

Our numerical Example 1 consists of the parameters a = 1, b = 0.1, α = 100, β = 10,

δ = 0.001 and ψ = 1. The parameters of Example 2 are the same as in Example 1 with the

exception that b = 0.1 is replaces by b = 10. In Example 1 tax rates are strategic substitutes

because best reply curves are downward sloping. In contrast, in Example 2 tax rates are

strategic complements because the corresponding best reply curves are upward sloping.
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Figure 1: National and total welfare in case of strategic substitutes (Example 1)
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Figure 2: National and total welfare in case of strategic complements (Example 2)

The Figures 1 and 2 illustrate the Propositions 1(i) and 2(i). The welfare curves in

both figures deviate in their second derivative, but otherwise there is no significant difference

between the cases of strategic substitutes and complements. In Figure 3 the average global

tax rate increases with the coalition size as required by Proposition 2(ii), regardless whether

11



tax rates are strategic complements or substitutes. As stated in the Propositions 2(iii) and

(iv) and illustrated in the Figures 4 and 5, a remarkable difference between the cases of

complements and substitutes emerges, however, with regard to the tax rates of coalition and

fringe countries. In both cases, the tax rate of coalition countries is increasing in the coalition

size,16 but in case of substitutes [complements] the fringe countries reduce [increase] their

tax rate and mitigation effort. When tax rates are substitutes, the coalition’s mitigation

effort is thwarted by the fringe countries; otherwise the fringe countries boost the coalition’s

effort. However, with growing coalition size the increase or decrease, respectively, of the

fringe countries’ tax rates is so small that it can hardly be identified in the left panels of

the Figures 4 and 5. These small tax rate variations become visible in the right panels

following a massive amplification the scale of the vertical axes. It can be shown that in the

Examples 1 and 2 national emissions respond to taxes as expected. With increasing coalition

size, the coalition countries’ emissions decline in case of complementarity and substitution,

while the fringe countries’ emissions vary hardly with the coalition size. As a consequence,

total emissions - and climate damage - are strictly decreasing in the coalition size which

is confirmed analytically by combining
∑

j ej from (10) with d[mT c(m)+(n−m)T f (m)]
dm

> 0 from

Proposition 2(ii).
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Figure 3: Average tax rates in Example 1 (left panel) and in Example 2 (right panel)

16Proposition 2(iv) does not exclude the possibility that the tax rate of coalition countries is decreasing

in the coalition size for large coalitions. That appears to be an exceptional case, however.
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Figure 4: Tax rates in case of strategic substitutes (Example 1)
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Figure 5: Tax rates in case of strategic complements (Example 2)

4 Self-enforcing IEAs

In the preceding Section 3 we have presupposed the presence of a climate coalition of given

size, and our focus has been on characterizing the coalition-fringe equilibrium and its change

in case of exogenous variations of the coalition size. Now we turn to the issue of coalition

stability. Since supranational authorities for the effective enforcement of IEAs are not avail-

able, such agreements will not be concluded unless they are self-enforcing in the sense that

no coalition country has an incentive to defect (internal stability) and no fringe country has

an incentive to join the tax agreement (external stability).17 In formal language, an IEA

with m ∈ {2, . . . , n} member countries is said to be self-enforcing or stable if it satisfies the

internal stability condition

Wc(m)−Wf (m− 1) ≥ 0 (17)

17This notion of self-enforcement or stability was originally introduced by D’Asprement et al. (1983) in

the context of cartel formation and was first applied to the formation of IEAs by Barrett (1994).
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and the external stability condition

Wf (m)−Wc(m+ 1) ≥ 0. (18)

In the first step we will apply the stability concept to the Examples 1 and 2. After

that we will seek to establish some more general stability results. The Figure 6 plots the

graphs of the functions W c(m) −W f(m − 1) and W f(m) −W c(m + 1) for the Examples

1 and 2, respectively. Coalition stability requires both graphs to have positive values. In

both Figures there is an interval - roughly between 2 and 3 - where both graphs are positive.

The integers in that interval are sizes of coalitions that are internally and externally stable.

Closer inspection shows that in Example 1 the two-country coalition and in Example 2 the

three-country coalition is stable.

1.5 2.0 2.5 3.0
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m

Wc(m) −Wf (m− 1)

Wf (m) −Wc(m+ 1)
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0.010

m

Wc(m) −Wf (m− 1)

Wf (m) −Wc(m+ 1)

Figure 6: Coalition stability in Example 1 (left panel) and in Example 2 (right panel)

In order to investigate the conditions for the stability of coalitions in a more general

way we define in the Appendix F a rather large subspace M of parameters and prove in the

Appendix F

Proposition 3 . In all economies belonging to the parameter space M there exists a

stable coalition of size m = 2 or m = 3.

The proof of Proposition 3 in the Appendix F is constructive. We cannot conclude from

Proposition 3 that stable coalitions of size two or three exist for all feasible parameter

constellations. But as the set all of all parameters, M , is very large it is unlikely that

Proposition 3 does not hold for feasible parameter constellations not contained in M . The

total number of countries, n, considered in the parameter space M range from n = 10 to
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n = 200. Hence the stable coalitions identified in Proposition 3 are small in both absolute

and relative terms and are thus hardly effective in reducing climate damage.

Let us return to the Examples 1 and 2, and to Figure 6, temporarily. It can be shown

that in both panels of Figure 6 the graph of the function W c(m)−W f(m−1) does not attain

positive values anymore for integers m larger than three. Hence the small stable coalitions

identified in Figure 6 are the only stable coalitions in the economies of the Examples 1 and

2. This is not a general result, however. To see that we consider another economy, denoted

Example 3, that differs from Example 2 only in that the parameter b is increased from

b = 10 to b = 50000. Hence Example 3 represents the case of strategic complements in a

more pronounced way than Example 2.
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Figure 7: Coalition stability in Example 3

The graphs in the left panel of Figure 7 resemble those of Figure 6 and thus demonstrate

that in Example 3 there exists a stable coalition ofm = 3. Moreover, we can show that (18) is

satisfied for all m ∈ {4, . . . , 99} and that (17) does not hold for all m ∈ {4, . . . , 99}.18 Hence

all coalitions of size m ∈ {4, . . . , 99} are unstable. But the right panel of Figure 7 reveals

the surprising result that the grand coalition is internally stable [Wc(100)−Wf(99)].19 The

finding in Example 3 that the grand coalition may be stable along with those small coalitions

identified in Proposition 3 is totally unexpected and in stark contrast to the literature on

self-enforcing IEA we are aware of. Even in the model of Eichner and Pethig (2013b)

which accounts for international trade (in a different way, though), all stable coalitions are

18We refrain from plotting the graphs of Wf (m)−Wc(m+1) and Wc(m)−Wf (m−1) on the domain [4, 99]

because it is difficult to recognize their sign on that domain unless diagrams are presented for a number of

subdomains of [4, 99] employing suitable different scales for Wf (m)−Wc(m+1) and Wc(m)−Wf (m− 1),

respectively.
19The external stability is irrelevant for m = 100 because there is no fringe country that might consider

joining or staying outside the coalition.
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small. The possibility of full cooperation being self-enforcing calls for a more systematic

investigation of the conditions under which that result holds. By definition, the grand

coalition is stable if and only if the inequality (17) is satisfied for m = n. In the Appendix

G, we show that W c(n)−W f(n− 1) ≥ 0 is equivalent to

F (b, β, δ, ψ, n) := [4(n− 1) + n2(n− 3)][(b+ β)b− n2βδψ2]− 2n2(n− 3)b(b+ β) ≥ 0. (19)

and we prove in the Appendix G

Proposition 4 .

(i) The grand coalition is stable, if and only if (b, β, ψ, δ, n) ∈ G, where

G := {(b, β, ψ, δ, n)|(19) is satisfied}. The set G is non-empty and a proper subset of

the set of feasible economies.

(ii) The strategic complementarity of tax rates is necessary for the grand coalition to be

stable.

(iii) For all (b, β, ψ, δ, n) 6∈ G there exists b̃ > b such that

(b̌, β, ψ, δ, n)

{

∈ G

6∈ G

}

⇐⇒ b̌

{

≥

<

}

b̃.

(iv) For all (b, β, ψ, δ, n) ∈ G there exists β̃ > β such that

(b, β̌, ψ, δ, n)

{

∈ G

6∈ G

}

⇐⇒ β̌

{

≤

>

}

β̃.

(v) For all (b, β, ψ, δ, n) ∈ G there exists ñ > n such that

(b, β, ψ, δ, ň)

{

∈ G

6∈ G

}

⇐⇒ ň

{

≤

>

}

ñ.

(vi) For all (b, β, ψ, δ, n) ∈ G there exists δ̃ψ̃2 > δψ2 such that

(b, β, ψ̌, δ̌, n)

{

∈ G

6∈ G

}

⇐⇒ δ̌ψ̌2

{

≤

>

}

δ̃ψ̃2.

According to Proposition 4 there is a subset of feasible economies in which the grand coalition

is stable. In other words, in these economies an all-encompassing IEA is self-enforcing.

Proposition 4 does not fully characterize the subset of these economies, but identifies its

main properties.

Recall from the discussion of (13) and from (17) and (18) that tax rates are strategic

complements, if b(b + β) > n2βδψ2. The observation in Proposition 4(ii) that strategic

complementarity of tax rates is necessary but not sufficient for the stability of the grand

coalition immediately follows from (19). Ceteris paribus, the inequality b(b + β) > n2βδψ2
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is satisfied the more likely,20

• the flatter the household’s capital supply curve (the larger b);

• the steeper the firm’s capital demand curve (the smaller β);

• the smaller the total number of countries (the smaller n);

• the less severe the climate damage of emissions (the smaller δ);

• the smaller the flow of emissions (the smaller ψ).

It is obvious from the condition b(b+β) > n2βδψ2 that tax rates are strategic complements in

the absence of the detrimental global externality as is known from the capital tax literature.

With increasing climate damage, i.e. with growing parameters n, δ and ψ, the tax rates

switch from complements to substitutes. Strategic substitutability is sufficient for unstable

grand coalitions. In the extant theoretical literature on the formation of IEAs, emissions

taxes are always strategic substitutes, to our knowledge, which is why grand coalitions are

always unstable in that literature. Although strategic complementarity is not sufficient for

the stability of the grand coalition, the parts (iii) through (vi) of Proposition 4 prove that

the conditions for stable grand coalitions are the same in qualitative terms as the conditions

for strategic complementarity: For the grand coalition to be stable, the parameter b must be

sufficiently large and the parameters β, n, δ and ψ must not be too large. The parameters

n, δ and ψ are positively correlated with total climate change and hence their role for the

stability of the grand coalition is clear: The less severe the total damage is, the more likely

is the grand coalition stable. The role of the parameters b and β for the stability of the

grand coalition is less straightforward.

One way to look at the impact of b is to observe that x1i = (a − 1 − r)/b is the

amount of good X consumed in period 1 in country i. Presupposing a > 1 + r it follows

that x1i → 0 for b → ∞. That is, increasing b shifts increasing shares of production and

consumption into period 2. Consequently, our two-period model approaches the one-period

model of Ogawa and Wildasin (2009) in which the BAU allocation is efficient.21 In other

words, the potential gains that can be reaped by moving from BAU to the social optimum

diminish with increasing parameter b (for large b). We illustrate that finding by plotting

in Figure 8 the potential gain measured by the welfare gap ŵ − wo for the Examples 1-3

as a function of the parameter b. The welfare gap function has the following properties:

limb→0(ŵ − wo) = limb→∞(ŵ − wo) = 0 and ∂(ŵ−wo)
∂b

< 0 for b > b̃. Hence, the smaller is the

20Recall that the household’s capital supply is given by U ′(k̄− si) = 1+ r with ∂si
∂r

= − 1
U ′′

= 1
b

and firm’s

capital demand is given by (2) with ∂ki
∂r

= 1
X′′

= − 1
β
.

21If b converges to infinity capital is in fixed supply.
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welfare loss in BAU compared with the social optimum, the more likely it is that the grand

coalition is stable.
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ŵ − wo

b̃

Figure 8: The welfare gap in the Examples 1-3 as a function of the parameter b (b̃ = 24504.9)

Ceteris paribus, increasing b reduces total consumption welfare by reducing the utility

from consuming good X in the first period. If b gets large the consumer shifts consumption

from period 1 into period 2 and uno actu increases the supply of capital which aggravates

climate damage, in turn. Thus increasing b (beyond some threshold) reduces all countries’

socially optimal welfare, ŵ. The total capital supply becomes more price-inelastic which

implies that abatement becomes more and more expensive. If b is sufficiently large, it is

almost impossible to increase welfare by reducing total emissions through taxation below

the level of emissions in BAU. We conclude that the relation between the size of parameter b

and the stability of the grand coalition corresponds to the conventional view that large and

(effective) coalitions are not stable, unless the potential gains from cooperation are small.22

The role of the parameter β for the stability of the grand coalition is different. Ceteris

paribus, decreasing β increases total consumption welfare by increasing the production - and

hence the consumption - of good X in the second period. The consumer shifts consumption

from period 2 into period 1 and thus reduces the supply of capital which reduces emissions

and climate damage, in turn. We invoke the emissions supply of country i,

ei = ψki =
ψ

β
[α− (1 + r + ψti)]

and verify that the emissions reduction achieved by a small tax increase, ∂ei
∂ti

= −ψ2

β
, is

increasing in β, ceteris paribus. Hence an increase in β enhances the abatement costs, and

the smaller the abatement costs are the larger the external benefit country i generates by a

marginal increase of its tax rate ti which, in turn, widens the welfare gap ŵ − wo. In fact,

22See e.g. Barrett (2003) and Finus (2001).
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the welfare gap function satisfies limβ→0(ŵ−wo) =
n2δ2k̄4(α−a+bk̄2)

2b2(b+n2δε2)
> 0, limβ→∞(ŵ−wo) = 0

and ∂(ŵ−wo)
∂β

< 0 and is illustrated for Example 3 in Figure 9. The inefficiency of the BAU

equilibrium aggravates with increasing parameter β and the stability of the grand coalition

becomes more likely. We conclude that the relation between the size of the parameter β and

the stability of the grand coalition challenges the generality of the conventional view that

large (and effective) coalitions are not stable, unless the potential gains from cooperation

are small.
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Figure 9: The welfare gap in Example 3 as function of the parameter β (β̃ = 20.5)

5 Concluding remarks

Our analysis builds on Eichner and Runkel’s (2012) two-period model of the world economy

in which capital and a consumer good are produced in symmetric countries and traded on

(second-period) world markets. Carbon emissions are proportional to capital usage and

create global climate damage. While Eichner and Runkel’s main message is that the non-

cooperative tax competition is inefficient when capital supply elasticities are positive, our

focus is on how that inefficiency can be reduced or removed via coalition formation when

the coalition and all fringe countries play Nash. Our first result is that, in general, stable

coalitions exist with only two or three member countries. That reinforces the disappointing

conclusion form the extant theoretical literature on coalition formation: self-enforcing IEAs

are not large and (therefore) unable to reduce world emissions significantly below their level

in case of global non-cooperation. The second interesting and unexpected finding is that

under certain conditions the grand coalition is stable. This result is remarkable because

in the extant theoretical literature, we are aware of, all stable coalitions are small, i.e.

full cooperation is never self-enforcing. In particular, that holds for the model in Eichner
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and Pethig (2013b) although it also assumes Nash behavior and accounts for international

trade as we do in the present paper. The crucial difference is that in Eichner and Pethig

(2013b) the polluting good ’fossil fuel’ is a final consumption good whereas here and in

Eichner and Runkel (2012) the polluting good ’capital’ is an intermediate good used as an

input in the production of a consumption good. In the former model tax rates are always

strategic substitutes while in the latter they may turn into strategic complements under

certain conditions. The case of strategic complements is a necessary condition for the grand

coalition to be stable.

Although our model has more ’economic’ structure than the basic model of the the-

oretical literature on self-enforcing IEAs (e.g. Finus 2001), it is still very stylized for the

benefit of deriving informative results. Severely restrictive assumptions are a high price to be

paid for tractability that we share with the extant theoretical literature on climate coalition

formation. We have been able to fully determine analytically the conditions for stable grand

coalitions. The second type of stable coalitions consisting of two or three member countries

could not be completely characterized. But we proved their existence for a large subset of

the space of feasible parameters gibing very strong support to the conjecture that the result

is general. Leaving limitations of generality and restrictive assumptions aside, the principle

positive message of the present paper is that the prospects for a successful encompassing

IEA may not so bleak as suggested by other studies on self-enforcing IEAs that do not model

international trade with polluting intermediate goods. It would be desirable, of course, to

know whether the conditions fo stable grand coalitions (Proposition 4) are empirically rel-

evant. We refrain from such an assessment based on our analysis above, however, because

we think our model is far too simple for that kind of application.

On the agenda for future research are checks of the internal stability of the grand

coalition when economies are modeled in a more complex and realistic way using computable

large-scale models. Our analysis suggest that such models need to place a strong focus

and much detail on international trade in intermediate polluting goods. Another obvious

necessity is to drop the assumption of symmetric countries because it abstracts unduly

from the real-world complexity and likely underestimates the difficulties of forming stable

coalitions.
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Appendix

A: Derivation and comparison of BAU and social optimum

Business as usual. Maximizing W i(t1, . . . , tn) from (11) with respect to ti yields the

first-order condition

W i
ti
= tiψ

∂ki
∂ti

+ (si − ki)
∂r

∂ti
−D′

(
∑

j

ej

)

·
∂
(
∑

j ej

)

∂ti
= 0, (A1)

where

∂r

∂ti
=

∂r

∂tj
= −

ψb

n(b+ β)
< 0, (A2)

∂ki
∂ti

= −
ψ[(n− 1)b+ nβ]

(b+ β)nβ
< 0,

∂ki
∂tj

=
ψb

nβ(b+ β)
> 0, (A3)

∂si
∂ti

=
∂si
∂tj

= −
ψ

n(b + β)
< 0,

∂ (
∑

k sk)

∂ti
=
∂ (
∑

k sk)

∂tj
= −

ψ

n(b + β)
< 0. (A4)

Making use of (A2) - (A4) the first-order condition (A1) can be rearranged to read

W i
ti
= −

ti[(n− 1)b+ nβ]

nβ
−

b

nβ

(

ti −

∑

j tj

n

)

+
δψn

b+ β

(

ζ −
ψ

n

∑

j

tj

)

= 0. (A5)

Solving (A5) with respect to ti establishes (12).

Social optimum. Maximizing
∑

jW
j(t1, . . . , tn) with respect to ti we obtain

∑

j

W j
ti
=
∑

j



tjψ
∂kj
∂ti

+ (sj − kj)
∂r

∂ti
−D′

(
∑

j

ej

)

·
∂
(
∑

j ej

)

∂ti



 = 0. (A6)

Making use of (A2) - (A4) in (A6) and the symmetry condition, we obtain t̂ = δψζn2

b+β+n2δψ2 .

Comparison of BAU and social optimum. Comparing BAU and social optimum levels

reveals

t̂− to =
n2δψζ(n− 1)(b+ β)2

(b+ β + n2δψ2)[b2(n− 1) + bβ(2n− 1) + nβ(β + nδψ2)]
> 0,

ŵ − wo =
(n− 1)2n4(b+ β)2δ2ψ4ζ2

2(b+ β + n2δψ2)[b2(n− 1) + bβ(2n− 1) + nβ(β + nδψ2)]
> 0.

k̂ = ŝ < ko = so and r̂ < ro follows from accounting for t̂ > to in (8) - (10).
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B: Derivation of the coalition’s best reply

We set ti = tc for all i ∈ C and ti = tf from the outset. Then the coalition maximizes joint

welfare

m

[

U(k̄ − sc) + sc +X(kc) + rc(sc − kc)−D

(
∑

j

ej

)]

, (B1)

where

r =
(α− 1)b+ (a− 1)β − bβk̄

b+ β
−

bψ

b+ β
·
mtc + (n−m)tf

n
, (B2)

kc =
1

b+ β

[

ζ −
(b+ β)ψ

β
· tc +

bψ

β
·
mtc + (n−m)tf

n

]

, (B3)

sc =
1

b+ β

(

ζ − ψ ·
mtc + (n−m)tf

n

)

, (B4)

∑

ej =
nψ

b+ β

(

ζ − ψ ·
mtc + (n−m)tf

n

)

(B5)

with respect to tc. The pertaining first-order condition is

tcψ
∂kc
∂tc

+ (sc − kc)
∂rc
∂tc

−D′

(
∑

j

ej

)

·
∂
∑

j ej

∂tc
= 0 (B6)

or equivalently

tc[(n −m)b+ nβ]

nβ
= −

mb

nβ

(

tc −
mtc + (n−m)tf

n

)

+
mδψn

(b+ β)

(

ζ − ψ ·
mtc + (n−m)tf

n

)

. (B7)

Solving (B7) with respect to tc yields (13).

C: Feasible constraints on the parameter space

Throughout the paper we restrict our attention to economies with positive interest rates and

emissions. Due to min {ro, r
∗, r̂} = r̂ and min

{
eo, e

∗
c , e

∗
f , ê
}
= min {e∗c , ê} we require r̂ > 0,

e∗c > 0 and ê > 0 or equivalently

b(α− 1)− (1− α+ bk̄)(β + n2δψ2) > 0, (C1)

b[n(n− 1)−m(m− 1)] + n2β − (m− 1)(n−m)n2δψ2 > 0, (C2)

α− a+ bψ > 0. (C3)
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D: Proof of Proposition 1:

Solving (13) and (14) with respect to tc and tf yields

t∗c =
mn3βδψζ

N
, (D1)

t∗f =
n3βδψζ

N
, (D2)

mt∗c + (n−m)t∗f =
(n−m+ n2)n3βδψζ

N
, (D3)

where N := b(b+ β)[n(n− 1)−m(m− 1)] + n2β[b+ β + (n−m+m2)δϕ2] > 0.

Comparing t∗c , t
∗
f and to yields

t∗c − t∗f =
(m− 1)n3βδψζ

N
, (D4)

t∗c − to =
(m− 1)n2βδψζ [b(b+ β)(n2 − n+m) + β(b+ β)n2 + (n−m)n2βδψ2]

[b(b+ β)(n− 1) + β(b+ β)n+ n2βδψ2]N
, (D5)

t∗f − to =
(m− 1)mn2βδψζ [b(b+ β)− n2βδψ2]

[b(b+ β)(n− 1) + β(b+ β)n+ n2βδψ2]N
. (D6)

(D4) and (D5) imply t∗c > t∗f and t∗c > to.

Subtracting W f(tc, tf ;m) from W c(tc, tf ;m) yields

W c(tc, rf ;m)−W f(tc, tf ;m) =
(t2f − t2c)ψ

2

2β
. (D7)

Accounting for t∗c > t∗f in (D6) establishes W f(t∗c , t
∗
f ;m) > W c(t∗c , t

∗
f ;m).

E: Proof of Proposition 2:

Differentiation of t∗c = T c(m) and t∗f = T f(m) from (D1) and (D2) with respect to m yields

T c
m =

n3βδψζ [b(b+ β)[n(n− 1) +m2] + β(b+ β)n2 + (n−m2)n2βδψ2]

N2
, (E1)

T f
m =

(2m− 1)n3βδψζ [b(b+ β)− n2βδψ2]

N2
, (E2)

∂
[
mT c + (n−m)T f

]

∂m
=

(2m− 1)n5β2δψζ(b+ β)2

N2
> 0. (E3)

If tax rates are strategic complements [b(b+ β)− n2βδψ2 > 0], then T c
m > 0 and T f

m > 0.

If tax rates are strategic substitutes [b(b+β)−n2βδψ2 < 0], then T f
m < 0. In addition, from

the parameter constraint (C2) we infer

(b+ β)n2 > b [n+m(m− 1)] + (m− 1)(n−m)n2δψ2

⇐⇒ b+ β + (n−m2)δψ2 >
b [n +m(m− 1)]

n2
+
[
n−m2 + (m− 1)(n−m)

]
δψ2

⇐⇒ b+ β + (n−m2)δψ2 >
b [n +m(m− 1)]

n2
+ [n + 1− 2m]mδψ2. (E4)
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Making use of b+ β + (n−m2)δψ2 > 0 if m < n+1
2

we obtain T c
m > 0 if m < n+1

2
.

Next, we insert (D1) and (D2) in W c(tc, tf ;m) and W f(tc, tf ;m) and differentiate with

respect to m to get after rearrangement of terms

Wc
m =

n6βδ2ψ4ζ2 [b(b+ β)[nm(n + 1)− n2 −m3]]

N3

+
n6βδ2ψ4ζ2 [n2β[(b+ β)(m− 1) +m(m2 − n)δψ2]]

N3
, (E5)

Wf
m =

(2m− 1)n6βδ2ψ4ζ2 [b(b+ β)(n2 − 1) + βn2(b+ β) + n2βδψ2]

N3
> 0. (E6)

Again, we use (C2) to obtain

(b+ β) >
b[n +m(m− 1)]

n2
+ (m− 1)(n−m)δψ2

⇐⇒ (b+ β)(m− 1) +m(m2 − n)δψ2 >
b(m− 1)[n+m(m− 1)]

n2

+
[
(m− 1)2(n−m) +m(m2 − n)

]
δψ2

⇐⇒ (b+ β)(m− 1) +m(m2 − n)δψ2 >
b(m− 1)[n+m(m− 1)]

n2

+
[
mn(m− 3) + n2(n−m)

]
δψ2. (E7)

Observe that mn(m − 3) + n2(n −m) = mn(m − 1) + n2
(
n−m− 2m

n

)
> 0 for all m and

n ≥ 3. Then accounting for (b+ β)(m− 1) +m(m2 − n)δψ2 > 0 and

nm(n + 1)− n2 −m3 = m(n2 −m2)− n(n−m) = (n−m)[m(n +m)− n] > 0

in (E5) establishes Wc
m > 0 for all n ≥ 3.
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F: Proof of Proposition 3:

Define the parameter subspaces:23

M b = {(b, β, ψ, δ, n)| 0.1 ≤ b ≤ 100000, β = 10, ψ = 1, δ = 0.001, n = 100}

Mβ = {(b, β, ψ, δ, n)| b = 0.1, 0.1 ≤ β ≤ 100000, ψ = 1, δ = 0.001, n = 100}

M̆β = {(b, β, ψ, δ, n)| b = 100000, 0.1 ≤ β ≤ 100000, ψ = 1, δ = 0.001, n = 100}

Mψ = {(b, β, ψ, δ, n)| b = 0.1, β = 10, 0.1 ≤ ψ ≤ 2, δ = 0.001, n = 100}

M̆ψ = {(b, β, ψ, δ, n)| b = 100000, β = 10, 0.5 ≤ ψ ≤ 100, δ = 0.001, n = 100}

M δ = {(b, β, ψ, δ, n)| b = 0.1, β = 10, ψ = 1, 0.0001 ≤ δ ≤ 0.1, n = 100}

M̆ δ = {(b, β, ψ, δ, n)| b = 100000, β = 10, ψ = 1, 0.01 ≤ δ ≤ 100, n = 100}

Mn = {(b, β, ψ, δ, n)| b = 0.1, β = 10, ψ = 1, δ = 0.001, 10 ≤ n ≤ 200}

M̆n = {(b, β, ψ, δ, n)| b = 100000, β = 10, ψ = 1, δ = 0.001, 10 ≤ n ≤ 200}

M := M b ∪Mβ ∪ M̆β ∪Mψ ∪ M̆ψ ∪M δ ∪ M̆ δ ∪Mn ∪ M̆n

It can be shown that the stable coalition is invariant with respect to changes of the

parameter a, α and k̄. Exemplarily we show stability for the set M b. In the Table 1 we

have determined the stable coalition for some values of b. Recall that the coalition of size

m is stable if Φ(m) > 0 (internal stability) and Φ(m + 1) ≤ 0 (external stability) where

Φ(m) := Wc(m)−Wf (m−1) is denoted as stability function. The three-dimensional graph

in Figure 9 illustrates how Φ(m) changes if m and b are varied. Thus, Figure 9 proves

that the stable coalition is two if the parameters belong to the set M b and 0.1 ≤ b ≤ 1.

Similar graphs can be plotted for the set M b and 1 ≤ b ≤ 100000 or for the other sets (if

the parameter β, ψ, δ or n is varied) introduced above. All these graphs show that the

stable coalition consists of either two or three countries. Due to space constraints these

three-dimensional graphs are omitted.

parameters stable coalition

n b β ψ δ

100 0.1 10 1 0.001 2

100 1 10 1 0.001 2

100 10 10 1 0.001 2

100 1000 10 1 0.001 3

100 100000 10 1 0.001 3

23The reason for the low values of ψ in Mψ and δ in M δ is that for higher values the coalition’s emissions

become negative.
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Table 1: Numerical examples for the set M b

Figure 10: Coalition stability for the set M b with 0.1 ≤ b ≤ 1

G: Proof of Proposition 4:

Making use of ŵ = (a−α)2+2αbk̄+(2a−bk̄)k̄(β+n2δψ2)
2(b+β+n2δψ2)

and inserting t∗c and t∗f from (D1) and (D2)

in W f(tc, tm;m) yields after rearrangement of terms

ŵ − Wf (n− 1)

=
(n− 1)n4δ2ψ4ζ2F (b, β, ψ, δ, n)

2(b+ β + n2δψ) [2b2(n− 1) + bβ(n2 + 2n− 2) + n2β[β + (n2 + 2− 2n)δψ2]]2
, (G1)

where

F (b, β, ψ, δ, n) =: 4b2(n− 1)− bβ[n2(n− 3)− 4(n− 1)]− n2β2(n− 3)

− n2βδψ2[n2(n− 3) + 4(n− 1)]. (G2)

Since the denominator in (G1) is positive, setting ŵ − Wf (n − 1) R 0 is equivalent to

F (b, β, ψ, δ, n) R 0.

Further rearranging yields

F = 4b(b+ β)(n− 1)− 4(n − 1)n2βδψ2 − n2(n − 3)(bβ + β2 + n2βδψ2)

= 4(n− 1)[(b + β)b− n2βδψ2]− n2(n− 3)[(b+ β)β + n2βδψ2]

= [4(n− 1) + n2(n− 3)][(b + β)b− n2βδψ2]− 2n2(n− 3)b(b+ β) (G3)
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and hence we obtain

F R 0 ⇐⇒
(b+ β)

β

[

4b−
n2(n− 3)β

(n− 1)

]

R n2δψ2

[
n2(n− 3)

n− 1
+ 4

]

. (G4)

Observe that

F (b, β, ψ, δ, 2) = 4(b+ β)2.

The Propositions 4(iii) through 4(vi) follow from (G4). Part (iv) of Proposition is less

straightforward than the parts (iii), (v) and (vi). But simple calculation yields

∂

∂β

{
b+ β

β

[

4b−
n2(n− 3)β

n− 1

]}

= −

[
4b2

β2
+
n2(n− 3)

n− 1

]

which is negative for n ≥ 3.
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