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2 R. Plato, G. Vainikkorespet to the operator S then (1.1){(1.2) an be formulated in a matrix-vetor-setting. Inthat situation there exist some shemes for the omputation of the approximations xn. Themost well-known sheme is based on Arnoldi's method where the Krylov subspaes Kn(S; g)are suessively orthonormalized for n = 1; 2; : : : ; see e. g. Greenbaum [5℄, Trefethen andBau [18℄ or [13℄ for details. Another sheme is based on an orthonormalization of SKn(S; g),see [17℄ for the details.We return to the general situation onsidered in (1.1){(1.2). From the basi property(1.2) it follows immediately thatjjSxn � gjj � infpn2�n;pn(0)=1 jjpn(S)jj jjgjj; (1.3)where �n denotes the set of polynomials of degree � n. The outline of this paper is asfollows: �rst a ondition on the spetrum of the original operator T is imposed that allowsus to provide an estimate of the right-hand side of the inequality of (1.3) showing that thespeed of onvergene of the residuals (1.2) is r-superlinear (for that notation see Ortega andRheinboldt [12℄). The orresponding result is applied to a lass of linear equations that ariseif the boundary integral method is applied to boundary value problems on two-dimensionalbounded and simply onneted domains with smooth boundaries. Finally the results of somenumerial experiments are presented.2. Convergene speed of GMRES for perturbations of a lass ofwell-posed equationsIn the sequel we speify the onditions on the bounded linear operator T : H ! H, where His a real or omplex Hilbert spae: we suppose that the spetrum �(T ) � C of the operatorT satis�es the following onditions:0 62 �(T );�(T ) is a ountable set, i.e.; �(T ) = f�1; �2; : : :g;limk!1�k exists; if �(T ) is in�nite. 9>>=>>; (2.1)The most prominent examples of operators T : H ! H satisfying the onditions in (2.1) areof the form T = I + K where the operator K : H ! H is ompat and T is supposed tohave a trivial nullspae.As a preparation we reall the formula rA = limk!1 jjAkjj1=k where rA = maxf j�j : � 2�(A) g denotes the spetral radius of a bounded linear operator A : H ! H. We are now ina position to state our main result on the superlinear onvergene of the GMRES residuals(1.2).Theorem 2.1. Let T : H ! H be a bounded linear operator in a Hilbert spae H, with aspetrum �(T ) that satis�es the onditions (2.1). Then for eah real number 0 < q < 1 thereexists a onstant q and a real number � = �q > 0 suh that for eah bounded linear operatorS : H ! H with jjS � T jj � � the following holds:infpn2�n;pn(0)=1 jjpn(S)jj � qqn for n = 1; 2; : : : : (2.2)



Fast solution of periodi integral equations by GMRES 3Proof. For notational onveniene we restrit the onsiderations to the ase that the spe-trum �(T ) is in�nite, and we use the notation �� = limk!1 �k, where �(T ) = f�1; �2; : : : g.Without loss of generality we suppose moreover that j�1 � ��j � j�2 � ��j � : : : holds. Wede�ne sn(�) = nYj=1 �1� ��j� for n = 1; 2; : : : :Then sn 2 �n and sn(0) = 1. Clearly �(sn(T )) onsists of 0 and Qnj=1 �j��k�j ; k > n. Sinej�j � �kj � 2j�j � ��j for k > n, we haversn(T ) � nYj=1 2j�j � ��jj�jj for n = 1; 2; : : : :Hene r1=nsn(T ) ! 0 as n!1 and thus for eah real number 0 < q < 1 there exists an integernq � 1 with rsnq (T ) � 12qnq . Sine jjsknq(T )jj1=k ! rsnq (T ) holds as k ! 1, there exists aninteger kq � 1 with jjskqnq(T )jj � 12qkqnq :Sine skqnq is a polynomial, there exists a real number � = �q > 0 suh thatjjskqnq(S)� skqnq(T )jj � 12qkqnq for jjS � T jj � �is satis�ed. It follows that jjskqnq(S)jj � qkqnq holds for eah bounded linear operator S :H ! H with jjS � T jj � �, and thusjjskqmnq (S)jj � qkqnqm for jjS � T jj � �; m = 1; 2; : : : :We are now in a position to prove the statement of the theorem. Let n be an arbitrary integer� 1. In the situation n < kqnq the polynomial pn = 1 obviously satis�es pn 2 �n; pn(0) = 1and jjpn(S)jj = 1 � q�kqnqqn. If otherwise n � kqnq holds, then for some integer m � 1 wehave kqnqm � n � kqnq(m + 1), and then the polynomial pn = skqmnq satis�es pn 2 �kqnqm ��n and pn(0) = 1, and moreover jjpn(S)jj � qkqnqm � (q�kqnq)qn. Thus the statement of thetheorem follows, with the onstant q = q�kqnq .Remark 2.1. 1. The basi purpose of Theorem 2.1 (see also [17℄ for a similar result) isto show for GMRES superlinear onvergene whih is uniform with respet to operatorperturbations. Note that only assumptions on the spetrum of the underlying opera-tor are required, normality or diagonalizability is not needed. Moreover note that noresolvent integration is involved in the proof.2. Superlinear onvergene of GMRES for solving a lass of �nite-dimensional approxi-mations of well-problems is obtained in Campbell, Ipsen, Kelley, Meyer and Xue [2℄.The general setting onsidered there is motivated by applying Nystr�om's method to in-tegral equations of the seond kind, and the obtained onvergene results for GMRESare also uniform with respet to the onsidered operator perturbations, whih is knownalso as mesh independene. Other results on the superlinear onvergene of GMRES inan in�nite-dimensional setting an be found in Campbell, Ipsen, Kelley and Meyer [1℄,Kelley and Xue [8℄ and Moret [10℄. For further results on GMRES under more gen-eral onditions on the spetrum of the underlying operator we refer to Nevanlinna [11℄,Chapter 3.3.



4 R. Plato, G. Vainikko3. Additionally we mention here some papers in whih GMRES is onsidered in a �nite-dimensional setting and for di�erent purposes than ours, e. g., Elman [3℄, Freund,Golub and Nahtigal [4℄, Greenbaum, Pt�ak and Strak�os [6℄, Liesen [9℄, van der Vorstand Vuik [20℄ and Saad and Shulz [15℄; in the latter paper GMRES is introdued.The result in Theorem 2.1 on the onvergene speed of the residuals assoiated with GMRESan be applied to provide upper bounds for the number of iterations that is needed until aspei� stopping riterion applies. In fat, we onsider a posteriori stopping riterions of thefollowing form: for some appropriate value of Æ > 0, ompute the GMRES iterates x1; x2; : : :(see (1.1)-(1.2)) until the onditionjjSxn � gjj � Æjjgjj (2.3)is satis�ed for the �rst time. The termination index is denoted by nÆ := n � 0.As an immediate onsequene of Theorem 2.1 we obtain the following asymptotial estimateof the stopping index.Theorem 2.2. Let T : H ! H be a bounded linear operator in a Hilbert spae H, with aspetrum �(T ) that satis�es the onditions in (2.1). Then for eah real number " > 0 thereexist real numbers Æ" > 0 and �" > 0 suh that the following holds: for eah bounded linearoperator S : H ! H with jjS � T jj � �" and eah vetor g 2 H we havenÆ � " log(1=Æ) for 0 < Æ � Æ";where nÆ is the stopping index onsidered in (2.3).Proof. For any real number 0 < q < 1 and any bounded linear operator S : H ! Hsatisfying jjS � T jj � �, with � > 0 hosen aording to Theorem 2.1, we obtain Æjjgjj �jjSxnÆ�1 � gjj � qqnÆ�1jjgjj, where without loss of generality we may assume that nÆ � 1holds. Thus we have nÆ � 1 + log qlog(1=q)| {z }=: Kq + log(1=Æ)log(1=q) : (2.4)Now for an arbitrary real number " > 0 we hoose a real number q with 0 < q = q" < 1 sosmall suh that 2=" � log(1=q) is satis�ed. Then we obtain the statement of the theorem fromestimate (2.4) by hoosing � = �" aording to Theorem 2.1, and by hoosing Æ" suÆientlysmall suh that 2Kq=" � log(1=Æ") is satis�ed.Remark 2.2. Thus, nÆ = O(log(1=Æ)) as Æ ! 0 holds uniformly with respet to operatorperturbations as onsidered in Theorem 2.2.3. An appliation to periodi integral operatorsIn the sequel we onsider a lass of periodi integral equations that arise e. g. from a boundaryintegral equation formulation of interior or exterior boundary value problems in a two-dimensional domain with a smooth boundary. In what follows we have several quotationsof the monograph [17℄ but most of the statements are overed also by the papers [19℄ and[16℄; see also [14℄ where it is shown that the CGNR{method, this is, the onjugate gradientmethod of Hestenes and Stiefel applied to the normal equations, an be used also as a fastsolver for the lass of periodi integral equations that is onsidered in the sequel.



Fast solution of periodi integral equations by GMRES 53.1. The lass of operatorsIn the sequel we onsider equations of the following form,Au = f; (3.1)where f : R ! C is a 1-periodi funtion, and the operator A has the formA = qXp=0 Ap; (A0u)(t) = Z 10 ��+0 (t� s) a+0 (t; s) + ��0 (t� s) a�0 (t; s)�u(s) ds; (3.2)(Apu)(t) = Z 10 �p(t� s) ap(t; s) u(s) ds; t 2 [ 0; 1 ℄; p = 1; 2; : : : ; q:(3.3)Here q 2 N = f 1; 2; : : :g, and a�0 and ap are omplex-valued 1-biperiodi C1-smooth fun-tions de�ned on R2 . It is supposed thatb+(t) := a+0 (t; t) + a�0 (t; t) 6= 0; (3.4)b�(t) := a+0 (t; t) � a�0 (t; t) 6= 0 (t 2 R); W (b+) = W (b�); (3.5)whereW (b) denotes the winding number of a ontinuous 1-periodi funtion b. In partiular,W (b+) = 0 = W (b�) if a�0 (t; s) are real funtions. Often A0 has the form (3.3), i.e.,a�0 (t; s) = 0; a+0 (t; s) =: a0(t; s) and �+0 (t) =: �0(t). In that ase onditions (3.4), (3.5)redue to a0(t; t) 6= 0 (t 2 R).Further, ��0 and �p; p = 1; : : : ; q, are 1-periodi funtions or distributions with knownFourier oeÆients�̂�0 (m) := Z 10 ��0 (t) e�im2�t dt; �̂p(m) := Z 10 �p(t) e�im2�t dt; m 2 Z:We suppose that the following onditions are satis�ed,�̂�0 (m) = sign (m)�̂+0 (m) (0 6= m 2 Z) (3.6)00jmj� � j�̂+0 (m)j � 01jmj� (0 6= m 2 Z) (3.7)���̂+0 (m) � �̂+0 (m� 1)�� � 1m��1 (m 2 Z) (3.8)j�̂p(m)j � 0m���p (m 2 Z; p = 1; 2; : : : ; q); (3.9)with a ertain parameter � 2 R and positive integers �1; �2; : : : ; �q, and 0; 1; 00 and 01are some positive onstants. Moreover we use the notationm = � jmj; if m 6= 01 ; if m = 0 (m 2 Z):Later onditions (3.8), (3.9) will be strengthened (see (3.23), (3.24)). Equations of theform (3.1) with operators A as in (3.2){(3.3) satisfying onditions (3.4){(3.9) arise, if theboundary integral method is applied to a boundary value problem on a two-dimensionalbounded and simply onneted domain with a smooth boundary. An assoiated examplewill be presented in Setion 3.2 but �rst the basi mapping properties of the operator Aonsidered in (3.2){(3.3) are stated and some transformation of the equation Au = f is



6 R. Plato, G. Vainikkoonsidered. As a preparation for any � 2 R we onsider the Sobolev spae H� of thosefuntions or distributions u whih satisfyjjujj� := �Xm2Zm 2�jû(m)j2�1=2 <1;where û(m) := Z 10 u(t) e�im2�t dt; m 2 Z;and L(H�1; H�2) denotes the spae of bounded linear operators from H�1 into H�2 (�1; �2 2R). As a onsequene of the onditions (3.6), (3.7) and (3.9) we have for any � 2 RA0 2 L(H�; H���); Ap 2 L(H�; H���+�p) for p = 1; 2; : : : ; q;see [17℄ for the details. We thus have A = Pqp=0Ap 2 L(H�; H���). Under the givenonditions this operator A moreover an be transformed into an operator that di�ers fromthe identity operator only by some ompat operator K : H� ! H�. For this purpose weonsider the operator B = �(1=b+)P+ + (1=b�)P��G�10 ; (3.10)where P+u = Xm�0 û(m)eim2�t; P�u = Xm<0 û(m)eim2�t; (3.11)(G0u)(t) = û(0) + X06=m2Z�̂+0 (m)û(m)eim2�t: (3.12)The operators G0 2 L(H�; H���) and [(1=b+)P+ + (1=b�)P�℄ 2 L(H�; H�) are isomor-phisms for eah � 2 R, and thus B 2 L(H���; H�) is also an isomorphism for eah � 2 R.It is easy to see that BA0 = I + R holds with some operator R 2 L(H�; H�+1). Thus mul-tiplying both sides of the equation Au = f in (3.1) by the operator B yields the equivalentequation B qXp=0 Ap| {z }=: T u = Bf: (3.13)From the previous observations it follows that the operator T introdued in (3.13) an bewritten as follows:Tu = u+Ku with K = B qXp=0 Ap � I : H� ! H�+�; � = minf1; �1; �2; : : : ; �qg: (3.14)This in partiular means that K : H� ! H� is a ompat operator for eah � 2 R. We�nally note that from the property (3.14) it follows that the nullspae N(T ) of the operatorT satis�es N(T ) � C1. Thus, if the onditionv 1{periodi C1{funtion, Tv = 0 =) v = 0 (3.15)is satis�ed, then for eah � 2 R the operator T 2 L(H�; H�) is an isomorphism with aspetrum that satis�es ondition (2.1).



Fast solution of periodi integral equations by GMRES 73.2. An exampleIn the sequel we onsider a prominent example, f. [17℄.Example 3.1. Symm's integral equation for losed C1{smooth boundaries in parametrizedform looks as follows,(Au)(t) = � Z 10 log jx(t)� x(s)j u(s) ds = f(t); t 2 [ 0; 1 ℄;where x : R ! R2 is a C1{smooth 1-periodi parametrization of the orresponding boundarywith x0(t) 6= 0 for t 2 R. We onsider the following deomposition,(Au)(t) = Z 10 �0(t� s) u(s) ds + Z 10 a1(t; s) u(s) ds; t 2 [ 0; 1 ℄;with �0(t) = � log j sin�tj anda1(t; s) = 8>><>>: � log jx(t)� x(s)jj sin�(t� s)j ; if t 6= s;� log jx0(t)j� ; if t = s:Here j � j also denotes the Eulidian norm in R2 . Note that a1 is a 1-biperiodi C1-funtion,and the Fourier oeÆients of �0 have the following form,�̂0(m) = 8<: 12jmj ; if 0 6= m 2 Z;log 2; if m = 0:Thus the onditions (3.4){(3.9) are satis�ed (with �1 � 1) for � = �1 and any �1 > 0.Further examples are, e.g., some integral equation formulations of the biharmoni problem,the Cauhy integral equation, the Hilbert integral equation and the hypersingular integralequation.3.3. A spei� approximation of T3.3.1. Some preparationsWe again suppose that A is an operator of the form (3.2){(3.3) that satis�es the onditions(3.4){(3.9). For the subsequent onsiderations on the full disretization of the onsideredequation (3.13) we need spaes of trigonometri trial polynomials TN . They are de�ned asfollows, TN := n Xm2ZN bmeim2�t : bm 2 C for m 2 ZN o;where ZN := n m 2 Z : �N2 < m � N2 o; N 2 N :In the sequel for a given integerN we onstrut an operator SN : TN ! TN that approximatesT , and moreover for eah funtion vN 2 TN the funtion SNvN 2 TN an be omputed fully



8 R. Plato, G. Vainikkodisretely by O(N logN) arithmetial operations. We ontinue with several preparations.The Fourier projetors assoiated with TN are given byPNu = Xm2ZN û(m)eim2�t �u 2 H� for some � 2 R�:We shall need also the interpolation projetor QN onto the spae TN whih is de�ned asfollowsQNu 2 TN ; (QNu)� jN � = u� jN �; j = 1; 2; : : : ; N �u 2 H� for some � > 12�:The following estimates will be needed later:jj(I � PN)ujj� � (N2 )���jjujj� for u 2 H� (�1 < � � � <1); (3.16)jjuN jj� � (N2 )���jjuN jj� for uN 2 TN (�1 < � � � <1); (3.17)jj(I �QN )ujj� � �(N2 )���jjujj� for u 2 H� (0 � � � � <1; � > 12); (3.18)with � = (1 +P1j=1 1j2� )1=2, f. [17℄ for the details. Further, let L 2 N ; L < N . By QL;L wedenote the following two-dimensional interpolation operator,QL;L 2 TL;L; (QL;L )� j1L ; j2L � =  � j1L ; j2L � for j1; j2 = 1; 2; : : : ; L;TL;L := n Xm1;m22ZL bm1m2eim12�teim22�s : bm1m2 2 C for m1; m2 2 ZLo;where  : R ! C is a 1-biperiodi C1-smooth funtion. Finally we onsider the followingset DL � Z2, DL = � (m1; m2) 2 Z2 : jm1j+ jm2j � L=2	; (3.19)and PDL denotes the orresponding Fourier projetion operator,PDLv = X(m1;m2)2DL v̂(m1; m2)eim12�teim22�swhere v̂(m1; m2) = Z 10 Z 10 v(t; s) e�im1�t e�im2�s ds dt; m1; m2 2 Z:3.3.2. A spei� approximation of ap for p � 0We again suppose that A is an operator of the form (3.2){(3.3) that satis�es the onditions(3.4){(3.9). In the sequel we reall the basi features of [17℄ on a spei� approximation toA and will present its elementary onsequenes for the transformed operator T = BA. Inthe sequel for L 2 N ; L < N , we onsider the funtiona�0;L = PDLQL;La�0 ; ap;L = PDLQL;Lap; p = 1; 2; : : : ; q; (3.20)where the set DL � Z2 is as in (3.19). Note that for the omputation of the funtion ap;L,only the values of the funtion ap at the grid points � j1L ; j2L �, j1; j2 = 1; 2; : : : ; L, are needed.



Fast solution of periodi integral equations by GMRES 93.3.3. Approximation of Ap on TLAn approximation of the operator Ap is obtained if the kernels a�0 and ap are replaed bya�0;L and ap;L as de�ned in (3.20), respetively:(A0;Lu)(t) = Z 10 ��+0 (t� s) a+0;L(t; s) + ��0 (t� s) a�0;L(t; s)�u(s) ds;(Ap;Lu)(t) = Z 10 �p(t� s) ap;L(t; s) u(s) ds; p = 1; 2; : : : ; q: (3.21)We have Ap;L 2 L(H�; H���+�p) for eah � 2 R, with �0 := 0, and moreover the followingestimate holds:jjAp;L � ApjjL(H�;H���) � �;rL�r (� 2 R; p = 0; 1; : : : ; q) 8 r � 0; (3.22)f. [17℄ for details. This approximation Ap;L to Ap in fat is used on TL.The following an be stated on the omputational osts: if L � N� holds for some 0 < � �1=2, then the system matrix assoiated with Ap;L : TL ! T2L has fully disrete entries thatan be omputed by O(N logN) arithmetial operations. Moreover, for eah vL 2 TL withknown Fourier oeÆients, the vetor wL = Ap;LvL 2 T2L an be omputed byO(L2) = O(N)arithmetial operations.3.3.4. Approximation of Ap on the subspae TN 	 TLIn order to obtain an approximation of the operator Ap that allows to keep the number ofarithmetial operations suÆiently small, on the subspae TN 	 TL = span f eim2�t : m 2ZNnZL g an asymptoti approximation to Ap by operators of simpler struture is onsidered.For this we need the following additional onditions on the operator A:j4j�̂�0 (m)j � jm��j (m 2 Z; j = 0; 1; : : : ); (3.23)j4j�̂p(m)j � jm���p�j (m 2 Z; j = 0; 1; : : : ; p = 1; 2; : : : ; q): (3.24)Here j denote some positive onstants, and 4 denotes the forward di�erene operator, i.e.,4v̂(m) = v̂(m + 1) � v̂(m); m 2 Z:For Symm's integral operator onsidered in Example 3.1, the onditions (3.23)-(3.24) aresatis�ed, for example. The mentioned asymptoti approximation Ap;L;d of Ap;L with aninteger d � 0 has the following form for p = 1; 2; : : : ; q:Ap;L;d = d�b�p�1Xj=0 Bp;L;j; (Bp;L;ju)(t) = bp;L;j(t)Xm2Z�4j�̂p(m)�û(m) eim2�t;if d � b�p + 1, and Ap;L;d = 0 if d � b�p. The asymptoti approximation A0;L;d of A0;L issimilarly onstruted. The funtion bp;L;j 2 T2L has the following spei� form,bp;L;j(t) = 1j! �[j℄s ap;L(t; s)���s=t; t 2 [ 0; 1 ℄;j = 0; 1; : : : ; d� b�p � 1;



10 R. Plato, G. Vainikkowhere bx denotes the biggest integer smaller or equal to a real number x 2 R. Moreover,�[0℄s = 1; �[1℄s = 12�i ��s;�[j℄s = � 12�i ��s � j + 1� : : :� 12�i ��s � 1� 12�i ��s; j = 2; 3; : : : :The Fourier oeÆients of the funtions bp;L;j an be obtained reursively for j = 0; 1; : : : ; d�b�p � 1, f. [17℄ for the details. It follows from the onditions (3.23){(3.24) that Ap;L;d 2L(H�; H���+�p) holds, and { as a basi purpose of this onstrution { we moreover havethat the di�erene Ap;L;d � Ap is an operator of lower order than Ap: Ap;L;d � Ap 2L(H�; H���+maxfd;�pg) and�����Ap;L;d � Ap�(I � PL)����L(H�;H���) � �L�maxfd;�pg (� 2 R; p = 0; : : : ; q); (3.25)with a onstant � whih in fat is independent of the parameter L; f. again [17℄ for thedetails.The following an be stated on the omputational osts: for eah vN 2 TN with knownFourier oeÆients, the funtion wN = AL;dvN 2 TN+2L an be omputed by a fully disretesheme that requires O(N logN) arithmetial operations, if the FFT is applied.3.3.5. Approximation of Ap on the subspae TNThe basi approahes onsidered in [17℄ { whih we realled in the Setions 3.3.3 and 3.3.4{ in our situation �nally yield the following approximation to the operator A =Pqp=0Ap,AL;d = � qXp=0 Ap;L�PL + � qXp=0 Ap;L;d�(I � PL) (3.26)with the following properties, AL;d 2 L(H�; H���) for eah �; � 2 R with � � �, andjjAL;d �AjjL(H�;H���) � �;�L�(d+���) (�; � 2 R with � � �); (3.27)with some onstant �;� � 0.3.3.6. Approximation of BAn approximation of the operator B is obtained by replaing in the de�nition of B thefuntions 1=b+ and 1=b� by its trigonometri interpolants 2 TL, respetively:BL = �QL(1=b+)P+ + QL(1=b�)P��G�10 : (3.28)The funtions 1=b+ and 1=b� are 1-periodi C1-funtions, and we thus havejjBL � BjjL(H���;H�) � �;rL�r (� 2 R) 8 r � 0; (3.29)f. [17℄ for the details. The following an be stated on the omputational osts: for eahvN 2 TN+2L with known Fourier oeÆients, the funtion wN = PNBLvN 2 TN an beomputed by a fully disrete sheme that requires O(N logN) arithmetial operations, if theFFT is applied.



Fast solution of periodi integral equations by GMRES 114. GMRES for the spei� appliationIn the sequel we suppose that the right-hand side f in equation (3.1) satis�esf 2 H��� for some � > �+ 1=2; (4.1)and onsider the following approximations:SN := PNBLAL;d : TN ! TN ; gN := PNBLQNf 2 TN : (4.2)In the sequel we onsider GMRES applied with the operator SN and the right-hand side gNin (4.2), and with respet to the Sobolev spae H�: let the sequene xn 2 TN ; n = 0; 1; : : : ,be given byxn 2 Kn(SN ; gN); jjSNxn � gN jj� = minx2Kn(SN ;gN ) jjSNx� gN jj�: (4.3)We note that at eah step of GMRES, one appliation of the operator SN to an elementfrom TN has to be employed. The following a posteriori stopping riterion is onsidered:terminate the iteration at step n =: nN whenjjSNxn � gN jj� � N���jjgN jj� (4.4)is satis�ed for the �rst time, where  denotes some positive onstant. As a preparation forthe formulation of the following basi theorem we speify the onditions on the parametersL and d: L � N�; 0 < � < 1; d � 1��� (�� �): (4.5)Theorem 4.1. Suppose that A is an operator of the form (3.2){(3.3) whih satis�es theonditions (3.4){(3.9) and (3.15) as well as (3.23){(3.24), and moreover let (4.1) and (4.5)be satis�ed. Then then exists an N0 suh that for eah integer N with N � N0 we havejjxnN � ujj� � �;�N���jjujj�; (� � � � �); (4.6)nN = O(logN): (4.7)Proof. As a preparation for the proof of the two statements of the theorem we onsiderthe operator eSN = I � PN + PNBLAL;d 2 L(H�; H�). On TN the operator eSN oinideswith SN , so that the orresponding GMRES sequenes in fat oinide. Moreover we haveeSN � BA = (I � PN)(I � BA) + PN(BLAL;d � BA), and from the two estimates (3.29) and(3.27) with the spei� hoie � = � as well as from the mapping properties of the operatorI � BA stated in (3.14) it then follows thatjjeSN � BAjjL(H�;H�) � �(N�� + N��d) (� 2 R) (4.8)holds with some onstant � � 0. From this estimate it follows, for suÆiently large N � N0and for eah � 2 R, that the operators eSN 2 L(H�; H�) are invertible with jjeS�1N jjL(H�;H�) � 0�for some onstant 0� � 0.We now are in a position to present a proof of the estimate (4.6). In fat, we havejjxnN � ujj� � 0�jjeSNxnN � eSNujj� � 0��jjeSNxnN � gN jj� + jjeSNu� gN jj��: (4.9)



12 R. Plato, G. VainikkoThe �rst term on the right-hand side of the last estimate an be estimated with the help ofthe inverse estimate (3.17):jjeSNxnN � gN jj� � �N2 ����jjeSNxnN � gN jj� � �N�(���)jjujj� (� � � � �)with some onstant � � 0. The last estimate in fat follows from the stopping riterion(4.4) and the mapping properties of the operators that are used in the de�nition of thefuntion gN 2 TN de�ned in (4.2). For the estimation of the last term in (4.9) we observethat eSNu�gN = (I�PN)u+PNBL(AL;du�QNAu), and the last term of the right-hand sideof the latter identity an be written as follows: AL;du�QNAu = (AL;d�A)u+(I�QN )Au.We thus obtainjjeSNu� gN jj� � �N2 ��(���)jjujj� + jjAL;du�QNAujj��� � 0�;�N�(���)jjujj�;where the mapping properties of the operator A and the error estimates (3.27) as well asthe approximation properties (3.16), (3.18) of the Fourier projetion and the interpolationprojetion have been used, respetively. This ompletes the proof of estimate (4.6). Theestimate (4.7) follows from Theorem 2.2 applied with the operator S = eSN and the funtiong = gN , and with Æ = N�(���). Note that it follows from estimate (4.8) that Theorem 2.2is appliable in fat.Remark 4.1. From estimate (4.7) and the onsiderations in Setion 3.3 on the omplex-ity of one appliation of the involved operators, respetively, it follows that O(N(logN)2)arithmetial operations are needed to ompute the approximation xnN 2 TN if the ondition0 < � � 1=2 is satis�ed.5. Numerial experiments5.1. Introdutory remarksIn eah of the following two Setions 5.2 and 5.3, a spei� equation of the form Au = fis onsidered where the operator A ful�ls the onditions (3.4){(3.9) and (3.23){(3.24) for� = �1. Moreover, the solution u : R ! R is the 1-periodi extension of the followingfuntion, u(t) = ( 1; if 0:25 � t � 0:75;0; if 0 � t < 0:25 or 0:75 < t � 1; (5.1)and then u 2 H1=2�"; f 2 H3=2�" for eah " > 0; (5.2)u 62 H1=2; f 62 H3=2: (5.3)For eah spei� equation, di�erent hoies of N are onsidered, and for eah hoie of N ,the values of the funtion f = Au at the grid points in fat are omputed numerially witha high preision.We onsider the following spei� hoies of N and L,N = 2k; L = 2dk=2e: (5.4)



Fast solution of periodi integral equations by GMRES 13The relation (5.4) means L � N1=2 as k !1, and in the numerial experiments we onsiderthe spei� hoies k = 5; 6; 7; 8. In the present situation we may hoose d = 2 for theasymptotial approximation.GMRES is applied with SN = PNBLAL;d : TN ! TN and gN 2 TN as in Setion 4. Aordingto the general analysis presented in Setion 4, it is reasonable to terminate the iteration atstep n =: nN when jjSNxnN � gN jj�1 � N�3=2jjgN jj�1is satis�ed for the �rst time, where xn denotes the n-th iterate of GMRES. The error estimate(4.6) yields jjxnN � ujj�1 = O(N�3=2+") for any " > 0. Note that due to the property (5.3)one annot onlude from the error estimate (4.6) that the quotient jjxnN �ujj�1=N�3=2 staysbounded for experiments with di�erent and inreasingly ordered values of N . On the otherhand, however, due to (5.2) it is not surprising that these quotients stay bounded in ourexperiments; notie also that jju�PNujj�1 � �Pjmj�N=2m�4�1=2 � N�3=2. All omputationsare performed in MATLAB.5.2. Symm's integral equation for an ellipseIn the sequel we present the numerial results for Symm's integral equation, f. Example3.1, whih is onsidered here for x(t) = (12 os 2�t; 14 sin 2�t)>; t 2 R; parametrizing a speialellipse �. Table 1 ontains the results obtained by GMRES.Table 1. Numerial results with GMRES, for Symm's integral equation for an ellipseN L jjxnN � ujj�1 jjxnN � ujj�1=N�3=2 nN64 8 2.03e{02 10.41 3128 8 1.01e{02 14.58 3256 16 4.59e{03 18.79 4512 16 1.97e{03 22.86 41024 32 6.59e{04 21.61 45.3. A model problemIn the sequel we onsider the following model problem, f. [7℄ for a similar example:Z 10 �0(t� s)a0(t; s) u(s) ds = f(t); t 2 [ 0; 1 ℄;with �̂0(m) = 8><>: 4� 14m� 1 ; if 0 6= m 2 Z;43� ; if m = 0;a0(t; s) = b(t) b(s); b(t) = 3 + X06=m2Z2�4jmjeim2�t:Here we have q = 0, with an asymptotial approximation orresponding to A0 whih isnon-trivial. Table 2 ontains the results obtained by GMRES.
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