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omplexity.1. Introdu
tionIn this paper we 
onsider GMRES in order to solve an equation Tu = f approximately,where T : H ! H is a bije
tive bounded linear operator in a real or 
omplex Hilbert spa
eand moreover f 2 H holds. For the subsequent numeri
al analysis we suppose that T andf are repla
ed by some bounded linear operator S : H ! H and g 2 H with S � T andg � f , respe
tively. Using these approximations, GMRES by de�nition generates a sequen
exn 2 H; n = 1; 2; : : : , that has the following properties:xn 2 Kn(S; g); (1.1)jjSxn � gjj = minx2Kn(S;g) jjSx� gjj; (1.2)with Krylov subspa
esKn(S; g) = spanf g; Sg; : : : ; Sn�1g g; n = 1; 2; : : : :The sequen
e formally terminates when the residual Sxn � g 2 H vanishes for some n. Ifthe right-hand side g belongs to a �nite-dimensional subspa
e of H whi
h is invariant with
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t to the operator S then (1.1){(1.2) 
an be formulated in a matrix-ve
tor-setting. Inthat situation there exist some s
hemes for the 
omputation of the approximations xn. Themost well-known s
heme is based on Arnoldi's method where the Krylov subspa
es Kn(S; g)are su

essively orthonormalized for n = 1; 2; : : : ; see e. g. Greenbaum [5℄, Trefethen andBau [18℄ or [13℄ for details. Another s
heme is based on an orthonormalization of SKn(S; g),see [17℄ for the details.We return to the general situation 
onsidered in (1.1){(1.2). From the basi
 property(1.2) it follows immediately thatjjSxn � gjj � infpn2�n;pn(0)=1 jjpn(S)jj jjgjj; (1.3)where �n denotes the set of polynomials of degree � n. The outline of this paper is asfollows: �rst a 
ondition on the spe
trum of the original operator T is imposed that allowsus to provide an estimate of the right-hand side of the inequality of (1.3) showing that thespeed of 
onvergen
e of the residuals (1.2) is r-superlinear (for that notation see Ortega andRheinboldt [12℄). The 
orresponding result is applied to a 
lass of linear equations that ariseif the boundary integral method is applied to boundary value problems on two-dimensionalbounded and simply 
onne
ted domains with smooth boundaries. Finally the results of somenumeri
al experiments are presented.2. Convergen
e speed of GMRES for perturbations of a 
lass ofwell-posed equationsIn the sequel we spe
ify the 
onditions on the bounded linear operator T : H ! H, where His a real or 
omplex Hilbert spa
e: we suppose that the spe
trum �(T ) � C of the operatorT satis�es the following 
onditions:0 62 �(T );�(T ) is a 
ountable set, i.e.; �(T ) = f�1; �2; : : :g;limk!1�k exists; if �(T ) is in�nite. 9>>=>>; (2.1)The most prominent examples of operators T : H ! H satisfying the 
onditions in (2.1) areof the form T = I + K where the operator K : H ! H is 
ompa
t and T is supposed tohave a trivial nullspa
e.As a preparation we re
all the formula rA = limk!1 jjAkjj1=k where rA = maxf j�j : � 2�(A) g denotes the spe
tral radius of a bounded linear operator A : H ! H. We are now ina position to state our main result on the superlinear 
onvergen
e of the GMRES residuals(1.2).Theorem 2.1. Let T : H ! H be a bounded linear operator in a Hilbert spa
e H, with aspe
trum �(T ) that satis�es the 
onditions (2.1). Then for ea
h real number 0 < q < 1 thereexists a 
onstant 
q and a real number � = �q > 0 su
h that for ea
h bounded linear operatorS : H ! H with jjS � T jj � � the following holds:infpn2�n;pn(0)=1 jjpn(S)jj � 
qqn for n = 1; 2; : : : : (2.2)
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 integral equations by GMRES 3Proof. For notational 
onvenien
e we restri
t the 
onsiderations to the 
ase that the spe
-trum �(T ) is in�nite, and we use the notation �� = limk!1 �k, where �(T ) = f�1; �2; : : : g.Without loss of generality we suppose moreover that j�1 � ��j � j�2 � ��j � : : : holds. Wede�ne sn(�) = nYj=1 �1� ��j� for n = 1; 2; : : : :Then sn 2 �n and sn(0) = 1. Clearly �(sn(T )) 
onsists of 0 and Qnj=1 �j��k�j ; k > n. Sin
ej�j � �kj � 2j�j � ��j for k > n, we haversn(T ) � nYj=1 2j�j � ��jj�jj for n = 1; 2; : : : :Hen
e r1=nsn(T ) ! 0 as n!1 and thus for ea
h real number 0 < q < 1 there exists an integernq � 1 with rsnq (T ) � 12qnq . Sin
e jjsknq(T )jj1=k ! rsnq (T ) holds as k ! 1, there exists aninteger kq � 1 with jjskqnq(T )jj � 12qkqnq :Sin
e skqnq is a polynomial, there exists a real number � = �q > 0 su
h thatjjskqnq(S)� skqnq(T )jj � 12qkqnq for jjS � T jj � �is satis�ed. It follows that jjskqnq(S)jj � qkqnq holds for ea
h bounded linear operator S :H ! H with jjS � T jj � �, and thusjjskqmnq (S)jj � qkqnqm for jjS � T jj � �; m = 1; 2; : : : :We are now in a position to prove the statement of the theorem. Let n be an arbitrary integer� 1. In the situation n < kqnq the polynomial pn = 1 obviously satis�es pn 2 �n; pn(0) = 1and jjpn(S)jj = 1 � q�kqnqqn. If otherwise n � kqnq holds, then for some integer m � 1 wehave kqnqm � n � kqnq(m + 1), and then the polynomial pn = skqmnq satis�es pn 2 �kqnqm ��n and pn(0) = 1, and moreover jjpn(S)jj � qkqnqm � (q�kqnq)qn. Thus the statement of thetheorem follows, with the 
onstant 
q = q�kqnq .Remark 2.1. 1. The basi
 purpose of Theorem 2.1 (see also [17℄ for a similar result) isto show for GMRES superlinear 
onvergen
e whi
h is uniform with respe
t to operatorperturbations. Note that only assumptions on the spe
trum of the underlying opera-tor are required, normality or diagonalizability is not needed. Moreover note that noresolvent integration is involved in the proof.2. Superlinear 
onvergen
e of GMRES for solving a 
lass of �nite-dimensional approxi-mations of well-problems is obtained in Campbell, Ipsen, Kelley, Meyer and Xue [2℄.The general setting 
onsidered there is motivated by applying Nystr�om's method to in-tegral equations of the se
ond kind, and the obtained 
onvergen
e results for GMRESare also uniform with respe
t to the 
onsidered operator perturbations, whi
h is knownalso as mesh independen
e. Other results on the superlinear 
onvergen
e of GMRES inan in�nite-dimensional setting 
an be found in Campbell, Ipsen, Kelley and Meyer [1℄,Kelley and Xue [8℄ and Moret [10℄. For further results on GMRES under more gen-eral 
onditions on the spe
trum of the underlying operator we refer to Nevanlinna [11℄,Chapter 3.3.



4 R. Plato, G. Vainikko3. Additionally we mention here some papers in whi
h GMRES is 
onsidered in a �nite-dimensional setting and for di�erent purposes than ours, e. g., Elman [3℄, Freund,Golub and Na
htigal [4℄, Greenbaum, Pt�ak and Strak�os [6℄, Liesen [9℄, van der Vorstand Vuik [20℄ and Saad and S
hulz [15℄; in the latter paper GMRES is introdu
ed.The result in Theorem 2.1 on the 
onvergen
e speed of the residuals asso
iated with GMRES
an be applied to provide upper bounds for the number of iterations that is needed until aspe
i�
 stopping 
riterion applies. In fa
t, we 
onsider a posteriori stopping 
riterions of thefollowing form: for some appropriate value of Æ > 0, 
ompute the GMRES iterates x1; x2; : : :(see (1.1)-(1.2)) until the 
onditionjjSxn � gjj � Æjjgjj (2.3)is satis�ed for the �rst time. The termination index is denoted by nÆ := n � 0.As an immediate 
onsequen
e of Theorem 2.1 we obtain the following asymptoti
al estimateof the stopping index.Theorem 2.2. Let T : H ! H be a bounded linear operator in a Hilbert spa
e H, with aspe
trum �(T ) that satis�es the 
onditions in (2.1). Then for ea
h real number " > 0 thereexist real numbers Æ" > 0 and �" > 0 su
h that the following holds: for ea
h bounded linearoperator S : H ! H with jjS � T jj � �" and ea
h ve
tor g 2 H we havenÆ � " log(1=Æ) for 0 < Æ � Æ";where nÆ is the stopping index 
onsidered in (2.3).Proof. For any real number 0 < q < 1 and any bounded linear operator S : H ! Hsatisfying jjS � T jj � �, with � > 0 
hosen a

ording to Theorem 2.1, we obtain Æjjgjj �jjSxnÆ�1 � gjj � 
qqnÆ�1jjgjj, where without loss of generality we may assume that nÆ � 1holds. Thus we have nÆ � 1 + log 
qlog(1=q)| {z }=: Kq + log(1=Æ)log(1=q) : (2.4)Now for an arbitrary real number " > 0 we 
hoose a real number q with 0 < q = q" < 1 sosmall su
h that 2=" � log(1=q) is satis�ed. Then we obtain the statement of the theorem fromestimate (2.4) by 
hoosing � = �" a

ording to Theorem 2.1, and by 
hoosing Æ" suÆ
ientlysmall su
h that 2Kq=" � log(1=Æ") is satis�ed.Remark 2.2. Thus, nÆ = O(log(1=Æ)) as Æ ! 0 holds uniformly with respe
t to operatorperturbations as 
onsidered in Theorem 2.2.3. An appli
ation to periodi
 integral operatorsIn the sequel we 
onsider a 
lass of periodi
 integral equations that arise e. g. from a boundaryintegral equation formulation of interior or exterior boundary value problems in a two-dimensional domain with a smooth boundary. In what follows we have several quotationsof the monograph [17℄ but most of the statements are 
overed also by the papers [19℄ and[16℄; see also [14℄ where it is shown that the CGNR{method, this is, the 
onjugate gradientmethod of Hestenes and Stiefel applied to the normal equations, 
an be used also as a fastsolver for the 
lass of periodi
 integral equations that is 
onsidered in the sequel.
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 integral equations by GMRES 53.1. The 
lass of operatorsIn the sequel we 
onsider equations of the following form,Au = f; (3.1)where f : R ! C is a 1-periodi
 fun
tion, and the operator A has the formA = qXp=0 Ap; (A0u)(t) = Z 10 ��+0 (t� s) a+0 (t; s) + ��0 (t� s) a�0 (t; s)�u(s) ds; (3.2)(Apu)(t) = Z 10 �p(t� s) ap(t; s) u(s) ds; t 2 [ 0; 1 ℄; p = 1; 2; : : : ; q:(3.3)Here q 2 N = f 1; 2; : : :g, and a�0 and ap are 
omplex-valued 1-biperiodi
 C1-smooth fun
-tions de�ned on R2 . It is supposed thatb+(t) := a+0 (t; t) + a�0 (t; t) 6= 0; (3.4)b�(t) := a+0 (t; t) � a�0 (t; t) 6= 0 (t 2 R); W (b+) = W (b�); (3.5)whereW (b) denotes the winding number of a 
ontinuous 1-periodi
 fun
tion b. In parti
ular,W (b+) = 0 = W (b�) if a�0 (t; s) are real fun
tions. Often A0 has the form (3.3), i.e.,a�0 (t; s) = 0; a+0 (t; s) =: a0(t; s) and �+0 (t) =: �0(t). In that 
ase 
onditions (3.4), (3.5)redu
e to a0(t; t) 6= 0 (t 2 R).Further, ��0 and �p; p = 1; : : : ; q, are 1-periodi
 fun
tions or distributions with knownFourier 
oeÆ
ients�̂�0 (m) := Z 10 ��0 (t) e�im2�t dt; �̂p(m) := Z 10 �p(t) e�im2�t dt; m 2 Z:We suppose that the following 
onditions are satis�ed,�̂�0 (m) = sign (m)�̂+0 (m) (0 6= m 2 Z) (3.6)
00jmj� � j�̂+0 (m)j � 
01jmj� (0 6= m 2 Z) (3.7)���̂+0 (m) � �̂+0 (m� 1)�� � 
1m��1 (m 2 Z) (3.8)j�̂p(m)j � 
0m���p (m 2 Z; p = 1; 2; : : : ; q); (3.9)with a 
ertain parameter � 2 R and positive integers �1; �2; : : : ; �q, and 
0; 
1; 
00 and 
01are some positive 
onstants. Moreover we use the notationm = � jmj; if m 6= 01 ; if m = 0 (m 2 Z):Later 
onditions (3.8), (3.9) will be strengthened (see (3.23), (3.24)). Equations of theform (3.1) with operators A as in (3.2){(3.3) satisfying 
onditions (3.4){(3.9) arise, if theboundary integral method is applied to a boundary value problem on a two-dimensionalbounded and simply 
onne
ted domain with a smooth boundary. An asso
iated examplewill be presented in Se
tion 3.2 but �rst the basi
 mapping properties of the operator A
onsidered in (3.2){(3.3) are stated and some transformation of the equation Au = f is
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onsidered. As a preparation for any � 2 R we 
onsider the Sobolev spa
e H� of thosefun
tions or distributions u whi
h satisfyjjujj� := �Xm2Zm 2�jû(m)j2�1=2 <1;where û(m) := Z 10 u(t) e�im2�t dt; m 2 Z;and L(H�1; H�2) denotes the spa
e of bounded linear operators from H�1 into H�2 (�1; �2 2R). As a 
onsequen
e of the 
onditions (3.6), (3.7) and (3.9) we have for any � 2 RA0 2 L(H�; H���); Ap 2 L(H�; H���+�p) for p = 1; 2; : : : ; q;see [17℄ for the details. We thus have A = Pqp=0Ap 2 L(H�; H���). Under the given
onditions this operator A moreover 
an be transformed into an operator that di�ers fromthe identity operator only by some 
ompa
t operator K : H� ! H�. For this purpose we
onsider the operator B = �(1=b+)P+ + (1=b�)P��G�10 ; (3.10)where P+u = Xm�0 û(m)eim2�t; P�u = Xm<0 û(m)eim2�t; (3.11)(G0u)(t) = û(0) + X06=m2Z�̂+0 (m)û(m)eim2�t: (3.12)The operators G0 2 L(H�; H���) and [(1=b+)P+ + (1=b�)P�℄ 2 L(H�; H�) are isomor-phisms for ea
h � 2 R, and thus B 2 L(H���; H�) is also an isomorphism for ea
h � 2 R.It is easy to see that BA0 = I + R holds with some operator R 2 L(H�; H�+1). Thus mul-tiplying both sides of the equation Au = f in (3.1) by the operator B yields the equivalentequation B qXp=0 Ap| {z }=: T u = Bf: (3.13)From the previous observations it follows that the operator T introdu
ed in (3.13) 
an bewritten as follows:Tu = u+Ku with K = B qXp=0 Ap � I : H� ! H�+�; � = minf1; �1; �2; : : : ; �qg: (3.14)This in parti
ular means that K : H� ! H� is a 
ompa
t operator for ea
h � 2 R. We�nally note that from the property (3.14) it follows that the nullspa
e N(T ) of the operatorT satis�es N(T ) � C1. Thus, if the 
onditionv 1{periodi
 C1{fun
tion, Tv = 0 =) v = 0 (3.15)is satis�ed, then for ea
h � 2 R the operator T 2 L(H�; H�) is an isomorphism with aspe
trum that satis�es 
ondition (2.1).
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 integral equations by GMRES 73.2. An exampleIn the sequel we 
onsider a prominent example, 
f. [17℄.Example 3.1. Symm's integral equation for 
losed C1{smooth boundaries in parametrizedform looks as follows,(Au)(t) = � Z 10 log jx(t)� x(s)j u(s) ds = f(t); t 2 [ 0; 1 ℄;where x : R ! R2 is a C1{smooth 1-periodi
 parametrization of the 
orresponding boundarywith x0(t) 6= 0 for t 2 R. We 
onsider the following de
omposition,(Au)(t) = Z 10 �0(t� s) u(s) ds + Z 10 a1(t; s) u(s) ds; t 2 [ 0; 1 ℄;with �0(t) = � log j sin�tj anda1(t; s) = 8>><>>: � log jx(t)� x(s)jj sin�(t� s)j ; if t 6= s;� log jx0(t)j� ; if t = s:Here j � j also denotes the Eu
lidian norm in R2 . Note that a1 is a 1-biperiodi
 C1-fun
tion,and the Fourier 
oeÆ
ients of �0 have the following form,�̂0(m) = 8<: 12jmj ; if 0 6= m 2 Z;log 2; if m = 0:Thus the 
onditions (3.4){(3.9) are satis�ed (with �1 � 1) for � = �1 and any �1 > 0.Further examples are, e.g., some integral equation formulations of the biharmoni
 problem,the Cau
hy integral equation, the Hilbert integral equation and the hypersingular integralequation.3.3. A spe
i�
 approximation of T3.3.1. Some preparationsWe again suppose that A is an operator of the form (3.2){(3.3) that satis�es the 
onditions(3.4){(3.9). For the subsequent 
onsiderations on the full dis
retization of the 
onsideredequation (3.13) we need spa
es of trigonometri
 trial polynomials TN . They are de�ned asfollows, TN := n Xm2ZN bmeim2�t : bm 2 C for m 2 ZN o;where ZN := n m 2 Z : �N2 < m � N2 o; N 2 N :In the sequel for a given integerN we 
onstru
t an operator SN : TN ! TN that approximatesT , and moreover for ea
h fun
tion vN 2 TN the fun
tion SNvN 2 TN 
an be 
omputed fully
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retely by O(N logN) arithmeti
al operations. We 
ontinue with several preparations.The Fourier proje
tors asso
iated with TN are given byPNu = Xm2ZN û(m)eim2�t �u 2 H� for some � 2 R�:We shall need also the interpolation proje
tor QN onto the spa
e TN whi
h is de�ned asfollowsQNu 2 TN ; (QNu)� jN � = u� jN �; j = 1; 2; : : : ; N �u 2 H� for some � > 12�:The following estimates will be needed later:jj(I � PN)ujj� � (N2 )���jjujj� for u 2 H� (�1 < � � � <1); (3.16)jjuN jj� � (N2 )���jjuN jj� for uN 2 TN (�1 < � � � <1); (3.17)jj(I �QN )ujj� � 
�(N2 )���jjujj� for u 2 H� (0 � � � � <1; � > 12); (3.18)with 
� = (1 +P1j=1 1j2� )1=2, 
f. [17℄ for the details. Further, let L 2 N ; L < N . By QL;L wedenote the following two-dimensional interpolation operator,QL;L 2 TL;L; (QL;L )� j1L ; j2L � =  � j1L ; j2L � for j1; j2 = 1; 2; : : : ; L;TL;L := n Xm1;m22ZL bm1m2eim12�teim22�s : bm1m2 2 C for m1; m2 2 ZLo;where  : R ! C is a 1-biperiodi
 C1-smooth fun
tion. Finally we 
onsider the followingset DL � Z2, DL = � (m1; m2) 2 Z2 : jm1j+ jm2j � L=2	; (3.19)and PDL denotes the 
orresponding Fourier proje
tion operator,PDLv = X(m1;m2)2DL v̂(m1; m2)eim12�teim22�swhere v̂(m1; m2) = Z 10 Z 10 v(t; s) e�im1�t e�im2�s ds dt; m1; m2 2 Z:3.3.2. A spe
i�
 approximation of ap for p � 0We again suppose that A is an operator of the form (3.2){(3.3) that satis�es the 
onditions(3.4){(3.9). In the sequel we re
all the basi
 features of [17℄ on a spe
i�
 approximation toA and will present its elementary 
onsequen
es for the transformed operator T = BA. Inthe sequel for L 2 N ; L < N , we 
onsider the fun
tiona�0;L = PDLQL;La�0 ; ap;L = PDLQL;Lap; p = 1; 2; : : : ; q; (3.20)where the set DL � Z2 is as in (3.19). Note that for the 
omputation of the fun
tion ap;L,only the values of the fun
tion ap at the grid points � j1L ; j2L �, j1; j2 = 1; 2; : : : ; L, are needed.
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 integral equations by GMRES 93.3.3. Approximation of Ap on TLAn approximation of the operator Ap is obtained if the kernels a�0 and ap are repla
ed bya�0;L and ap;L as de�ned in (3.20), respe
tively:(A0;Lu)(t) = Z 10 ��+0 (t� s) a+0;L(t; s) + ��0 (t� s) a�0;L(t; s)�u(s) ds;(Ap;Lu)(t) = Z 10 �p(t� s) ap;L(t; s) u(s) ds; p = 1; 2; : : : ; q: (3.21)We have Ap;L 2 L(H�; H���+�p) for ea
h � 2 R, with �0 := 0, and moreover the followingestimate holds:jjAp;L � ApjjL(H�;H���) � 
�;rL�r (� 2 R; p = 0; 1; : : : ; q) 8 r � 0; (3.22)
f. [17℄ for details. This approximation Ap;L to Ap in fa
t is used on TL.The following 
an be stated on the 
omputational 
osts: if L � N� holds for some 0 < � �1=2, then the system matrix asso
iated with Ap;L : TL ! T2L has fully dis
rete entries that
an be 
omputed by O(N logN) arithmeti
al operations. Moreover, for ea
h vL 2 TL withknown Fourier 
oeÆ
ients, the ve
tor wL = Ap;LvL 2 T2L 
an be 
omputed byO(L2) = O(N)arithmeti
al operations.3.3.4. Approximation of Ap on the subspa
e TN 	 TLIn order to obtain an approximation of the operator Ap that allows to keep the number ofarithmeti
al operations suÆ
iently small, on the subspa
e TN 	 TL = span f eim2�t : m 2ZNnZL g an asymptoti
 approximation to Ap by operators of simpler stru
ture is 
onsidered.For this we need the following additional 
onditions on the operator A:j4j�̂�0 (m)j � 
jm��j (m 2 Z; j = 0; 1; : : : ); (3.23)j4j�̂p(m)j � 
jm���p�j (m 2 Z; j = 0; 1; : : : ; p = 1; 2; : : : ; q): (3.24)Here 
j denote some positive 
onstants, and 4 denotes the forward di�eren
e operator, i.e.,4v̂(m) = v̂(m + 1) � v̂(m); m 2 Z:For Symm's integral operator 
onsidered in Example 3.1, the 
onditions (3.23)-(3.24) aresatis�ed, for example. The mentioned asymptoti
 approximation Ap;L;d of Ap;L with aninteger d � 0 has the following form for p = 1; 2; : : : ; q:Ap;L;d = d�b�p
�1Xj=0 Bp;L;j; (Bp;L;ju)(t) = bp;L;j(t)Xm2Z�4j�̂p(m)�û(m) eim2�t;if d � b�p
 + 1, and Ap;L;d = 0 if d � b�p
. The asymptoti
 approximation A0;L;d of A0;L issimilarly 
onstru
ted. The fun
tion bp;L;j 2 T2L has the following spe
i�
 form,bp;L;j(t) = 1j! �[j℄s ap;L(t; s)���s=t; t 2 [ 0; 1 ℄;j = 0; 1; : : : ; d� b�p
 � 1;



10 R. Plato, G. Vainikkowhere bx
 denotes the biggest integer smaller or equal to a real number x 2 R. Moreover,�[0℄s = 1; �[1℄s = 12�i ��s;�[j℄s = � 12�i ��s � j + 1� : : :� 12�i ��s � 1� 12�i ��s; j = 2; 3; : : : :The Fourier 
oeÆ
ients of the fun
tions bp;L;j 
an be obtained re
ursively for j = 0; 1; : : : ; d�b�p
 � 1, 
f. [17℄ for the details. It follows from the 
onditions (3.23){(3.24) that Ap;L;d 2L(H�; H���+�p) holds, and { as a basi
 purpose of this 
onstru
tion { we moreover havethat the di�eren
e Ap;L;d � Ap is an operator of lower order than Ap: Ap;L;d � Ap 2L(H�; H���+maxfd;�pg) and�����Ap;L;d � Ap�(I � PL)����L(H�;H���) � 
�L�maxfd;�pg (� 2 R; p = 0; : : : ; q); (3.25)with a 
onstant 
� whi
h in fa
t is independent of the parameter L; 
f. again [17℄ for thedetails.The following 
an be stated on the 
omputational 
osts: for ea
h vN 2 TN with knownFourier 
oeÆ
ients, the fun
tion wN = AL;dvN 2 TN+2L 
an be 
omputed by a fully dis
retes
heme that requires O(N logN) arithmeti
al operations, if the FFT is applied.3.3.5. Approximation of Ap on the subspa
e TNThe basi
 approa
hes 
onsidered in [17℄ { whi
h we re
alled in the Se
tions 3.3.3 and 3.3.4{ in our situation �nally yield the following approximation to the operator A =Pqp=0Ap,AL;d = � qXp=0 Ap;L�PL + � qXp=0 Ap;L;d�(I � PL) (3.26)with the following properties, AL;d 2 L(H�; H���) for ea
h �; � 2 R with � � �, andjjAL;d �AjjL(H�;H���) � 
�;�L�(d+���) (�; � 2 R with � � �); (3.27)with some 
onstant 
�;� � 0.3.3.6. Approximation of BAn approximation of the operator B is obtained by repla
ing in the de�nition of B thefun
tions 1=b+ and 1=b� by its trigonometri
 interpolants 2 TL, respe
tively:BL = �QL(1=b+)P+ + QL(1=b�)P��G�10 : (3.28)The fun
tions 1=b+ and 1=b� are 1-periodi
 C1-fun
tions, and we thus havejjBL � BjjL(H���;H�) � 
�;rL�r (� 2 R) 8 r � 0; (3.29)
f. [17℄ for the details. The following 
an be stated on the 
omputational 
osts: for ea
hvN 2 TN+2L with known Fourier 
oeÆ
ients, the fun
tion wN = PNBLvN 2 TN 
an be
omputed by a fully dis
rete s
heme that requires O(N logN) arithmeti
al operations, if theFFT is applied.
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i�
 appli
ationIn the sequel we suppose that the right-hand side f in equation (3.1) satis�esf 2 H��� for some � > �+ 1=2; (4.1)and 
onsider the following approximations:SN := PNBLAL;d : TN ! TN ; gN := PNBLQNf 2 TN : (4.2)In the sequel we 
onsider GMRES applied with the operator SN and the right-hand side gNin (4.2), and with respe
t to the Sobolev spa
e H�: let the sequen
e xn 2 TN ; n = 0; 1; : : : ,be given byxn 2 Kn(SN ; gN); jjSNxn � gN jj� = minx2Kn(SN ;gN ) jjSNx� gN jj�: (4.3)We note that at ea
h step of GMRES, one appli
ation of the operator SN to an elementfrom TN has to be employed. The following a posteriori stopping 
riterion is 
onsidered:terminate the iteration at step n =: nN whenjjSNxn � gN jj� � 
N���jjgN jj� (4.4)is satis�ed for the �rst time, where 
 denotes some positive 
onstant. As a preparation forthe formulation of the following basi
 theorem we spe
ify the 
onditions on the parametersL and d: L � N�; 0 < � < 1; d � 1��� (�� �): (4.5)Theorem 4.1. Suppose that A is an operator of the form (3.2){(3.3) whi
h satis�es the
onditions (3.4){(3.9) and (3.15) as well as (3.23){(3.24), and moreover let (4.1) and (4.5)be satis�ed. Then then exists an N0 su
h that for ea
h integer N with N � N0 we havejjxnN � ujj� � 
�;�N���jjujj�; (� � � � �); (4.6)nN = O(logN): (4.7)Proof. As a preparation for the proof of the two statements of the theorem we 
onsiderthe operator eSN = I � PN + PNBLAL;d 2 L(H�; H�). On TN the operator eSN 
oin
ideswith SN , so that the 
orresponding GMRES sequen
es in fa
t 
oin
ide. Moreover we haveeSN � BA = (I � PN)(I � BA) + PN(BLAL;d � BA), and from the two estimates (3.29) and(3.27) with the spe
i�
 
hoi
e � = � as well as from the mapping properties of the operatorI � BA stated in (3.14) it then follows thatjjeSN � BAjjL(H�;H�) � 
�(N�� + N��d) (� 2 R) (4.8)holds with some 
onstant 
� � 0. From this estimate it follows, for suÆ
iently large N � N0and for ea
h � 2 R, that the operators eSN 2 L(H�; H�) are invertible with jjeS�1N jjL(H�;H�) � 
0�for some 
onstant 
0� � 0.We now are in a position to present a proof of the estimate (4.6). In fa
t, we havejjxnN � ujj� � 
0�jjeSNxnN � eSNujj� � 
0��jjeSNxnN � gN jj� + jjeSNu� gN jj��: (4.9)



12 R. Plato, G. VainikkoThe �rst term on the right-hand side of the last estimate 
an be estimated with the help ofthe inverse estimate (3.17):jjeSNxnN � gN jj� � �N2 ����jjeSNxnN � gN jj� � 
�N�(���)jjujj� (� � � � �)with some 
onstant 
� � 0. The last estimate in fa
t follows from the stopping 
riterion(4.4) and the mapping properties of the operators that are used in the de�nition of thefun
tion gN 2 TN de�ned in (4.2). For the estimation of the last term in (4.9) we observethat eSNu�gN = (I�PN)u+PNBL(AL;du�QNAu), and the last term of the right-hand sideof the latter identity 
an be written as follows: AL;du�QNAu = (AL;d�A)u+(I�QN )Au.We thus obtainjjeSNu� gN jj� � �N2 ��(���)jjujj� + jjAL;du�QNAujj��� � 
0�;�N�(���)jjujj�;where the mapping properties of the operator A and the error estimates (3.27) as well asthe approximation properties (3.16), (3.18) of the Fourier proje
tion and the interpolationproje
tion have been used, respe
tively. This 
ompletes the proof of estimate (4.6). Theestimate (4.7) follows from Theorem 2.2 applied with the operator S = eSN and the fun
tiong = gN , and with Æ = 
N�(���). Note that it follows from estimate (4.8) that Theorem 2.2is appli
able in fa
t.Remark 4.1. From estimate (4.7) and the 
onsiderations in Se
tion 3.3 on the 
omplex-ity of one appli
ation of the involved operators, respe
tively, it follows that O(N(logN)2)arithmeti
al operations are needed to 
ompute the approximation xnN 2 TN if the 
ondition0 < � � 1=2 is satis�ed.5. Numeri
al experiments5.1. Introdu
tory remarksIn ea
h of the following two Se
tions 5.2 and 5.3, a spe
i�
 equation of the form Au = fis 
onsidered where the operator A ful�ls the 
onditions (3.4){(3.9) and (3.23){(3.24) for� = �1. Moreover, the solution u : R ! R is the 1-periodi
 extension of the followingfun
tion, u(t) = ( 1; if 0:25 � t � 0:75;0; if 0 � t < 0:25 or 0:75 < t � 1; (5.1)and then u 2 H1=2�"; f 2 H3=2�" for ea
h " > 0; (5.2)u 62 H1=2; f 62 H3=2: (5.3)For ea
h spe
i�
 equation, di�erent 
hoi
es of N are 
onsidered, and for ea
h 
hoi
e of N ,the values of the fun
tion f = Au at the grid points in fa
t are 
omputed numeri
ally witha high pre
ision.We 
onsider the following spe
i�
 
hoi
es of N and L,N = 2k; L = 2dk=2e: (5.4)
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 integral equations by GMRES 13The relation (5.4) means L � N1=2 as k !1, and in the numeri
al experiments we 
onsiderthe spe
i�
 
hoi
es k = 5; 6; 7; 8. In the present situation we may 
hoose d = 2 for theasymptoti
al approximation.GMRES is applied with SN = PNBLAL;d : TN ! TN and gN 2 TN as in Se
tion 4. A

ordingto the general analysis presented in Se
tion 4, it is reasonable to terminate the iteration atstep n =: nN when jjSNxnN � gN jj�1 � N�3=2jjgN jj�1is satis�ed for the �rst time, where xn denotes the n-th iterate of GMRES. The error estimate(4.6) yields jjxnN � ujj�1 = O(N�3=2+") for any " > 0. Note that due to the property (5.3)one 
annot 
on
lude from the error estimate (4.6) that the quotient jjxnN �ujj�1=N�3=2 staysbounded for experiments with di�erent and in
reasingly ordered values of N . On the otherhand, however, due to (5.2) it is not surprising that these quotients stay bounded in ourexperiments; noti
e also that jju�PNujj�1 � �Pjmj�N=2m�4�1=2 � N�3=2. All 
omputationsare performed in MATLAB.5.2. Symm's integral equation for an ellipseIn the sequel we present the numeri
al results for Symm's integral equation, 
f. Example3.1, whi
h is 
onsidered here for x(t) = (12 
os 2�t; 14 sin 2�t)>; t 2 R; parametrizing a spe
ialellipse �. Table 1 
ontains the results obtained by GMRES.Table 1. Numeri
al results with GMRES, for Symm's integral equation for an ellipseN L jjxnN � ujj�1 jjxnN � ujj�1=N�3=2 nN64 8 2.03e{02 10.41 3128 8 1.01e{02 14.58 3256 16 4.59e{03 18.79 4512 16 1.97e{03 22.86 41024 32 6.59e{04 21.61 45.3. A model problemIn the sequel we 
onsider the following model problem, 
f. [7℄ for a similar example:Z 10 �0(t� s)a0(t; s) u(s) ds = f(t); t 2 [ 0; 1 ℄;with �̂0(m) = 8><>: 4� 14m� 1 ; if 0 6= m 2 Z;43� ; if m = 0;a0(t; s) = b(t) b(s); b(t) = 3 + X06=m2Z2�4jmjeim2�t:Here we have q = 0, with an asymptoti
al approximation 
orresponding to A0 whi
h isnon-trivial. Table 2 
ontains the results obtained by GMRES.
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