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1. Introduction

In this paper we consider GMRES in order to solve an equation Tu = f approximately,
where T : H — H is a bijective bounded linear operator in a real or complex Hilbert space
and moreover f € H holds. For the subsequent numerical analysis we suppose that T and
f are replaced by some bounded linear operator S : X — H and g € ‘H with S ~ T and
g ~ [, respectively. Using these approximations, GMRES by definition generates a sequence
rn € H, n=1,2,..., that has the following properties:

r, € K,.(S,9), (1.1)
|S7,—gl = _min Sz =gl, (12)
with Krylov subspaces
K.(S,g) = span{g,Sg,...,S" g}, n=12....

The sequence formally terminates when the residual Sx,, — ¢ € H vanishes for some n. If
the right-hand side g belongs to a finite-dimensional subspace of ‘H which is invariant with
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respect to the operator S then (1.1)-(1.2) can be formulated in a matrix-vector-setting. In
that situation there exist some schemes for the computation of the approximations z,,. The
most well-known scheme is based on Arnoldi’s method where the Krylov subspaces C,,(S, g)
are successively orthonormalized for n = 1,2,...; see e. g. Greenbaum [5], Trefethen and
Bau [18] or [13] for details. Another scheme is based on an orthonormalization of SIC,(S, ¢g),
see [17] for the details.

We return to the general situation considered in (1.1)—(1.2). From the basic property
(1.2) it follows immediately that

[Szn =gl < inf = 1pa(S)] |9l (1.3)

Pn ell, sPn (0)

where II,, denotes the set of polynomials of degree < n. The outline of this paper is as
follows: first a condition on the spectrum of the original operator 7" is imposed that allows
us to provide an estimate of the right-hand side of the inequality of (1.3) showing that the
speed of convergence of the residuals (1.2) is r-superlinear (for that notation see Ortega and
Rheinboldt [12]). The corresponding result is applied to a class of linear equations that arise
if the boundary integral method is applied to boundary value problems on two-dimensional
bounded and simply connected domains with smooth boundaries. Finally the results of some
numerical experiments are presented.

2. Convergence speed of GMRES for perturbations of a class of
well-posed equations

In the sequel we specify the conditions on the bounded linear operator T' : H — H, where H
is a real or complex Hilbert space: we suppose that the spectrum o(7T) C C of the operator
T satisfies the following conditions:

0¢a(T),
a(T) is a countable set, i.e., o(T) = { i, \a, ...}, (2.1)

lim A exists, if o(T) is infinite.
k—o00

The most prominent examples of operators T': H — H satisfying the conditions in (2.1) are
of the form T = I + K where the operator K : H — H is compact and T is supposed to
have a trivial nullspace.

As a preparation we recall the formula r, = limy_,o |AF|"* where r4 = max{|\| : X €
0(A) } denotes the spectral radius of a bounded linear operator A : H — H. We are now in

a position to state our main result on the superlinear convergence of the GMRES residuals
(1.2).

Theorem 2.1. Let T' : H — H be a bounded linear operator in a Hilbert space H, with a
spectrum o(T) that satisfies the conditions (2.1). Then for each real number 0 < q < 1 there
exists a constant ¢, and a real number n = n, > 0 such that for each bounded linear operator

S:H — H with |S —T| < n the following holds:

inf S < n =1,2,.... 59
pneni,r,l,n(o)zl IPn(S)] < cqq for n )
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Proof. For notational convenience we restrict the considerations to the case that the spec-
trum o(7T') is infinite, and we use the notation A\, = limy_,o A\x, where o(T) = { A1, Ag, ... }.
Without loss of generality we suppose moreover that [\ — A.| > [A2 — A.| > ... holds. We

define
A
N =T[(1-=)  for n=1.2....
Sn(N) (1 )\j> or n 1,2

i=1

Then s, € IT, and s,(0) = 1. Clearly o(s,(T)) consists of 0 and [[j_, Aj;)‘k, k > n. Since
J
IA; — il < 2|\ — A, for k > n, we have

n

2| — A
Tsn(T) < HT for n = 1,2,... .

J=1

Hence T’Z?T) — 0 as n — oo and thus for each real number 0 < ¢ < 1 there exists an integer

ng > 1 with ry, () < 5¢". Since ||5§q (T)|'* — Tsn,(r) holds as k — oo, there exists an
integer £, > 1 with
sz (D) < g™

Since sf{; is a polynomial, there exists a real number 1 = n, > 0 such that

[sni (S) = spe(T)] < 3¢™™  for |S—T|<n
is satisfied. It follows that ||sz‘;(5)|| < ¢Fa" holds for each bounded linear operator S :
H — H with |S —T| <n, and thus

|skam(S)| < gFamam for |S—-T|<n, m = 1,2,....

Ng

We are now in a position to prove the statement of the theorem. Let n be an arbitrary integer
> 1. In the situation n < k,n, the polynomial p, = 1 obviously satisfies p,, € I1,,, p,(0) =1
and |p,(S)| = 1 < g7*mag™. If otherwise n > k,n, holds, then for some integer m > 1 we
have k,nysm <n < ksny(m + 1), and then the polynomial p, = sfﬁqm satisfies p,, € Il n,m C
I1, and p,(0) = 1, and moreover |p,(S)| < ¢gF«me™ < (q *"¢)¢™. Thus the statement of the
theorem follows, with the constant ¢, = ¢ %", O

Remark 2.1. 1. The basic purpose of Theorem 2.1 (see also [17] for a similar result) is
to show for GMRES superlinear convergence which is uniform with respect to operator
perturbations. Note that only assumptions on the spectrum of the underlying opera-
tor are required, mormality or diagonalizability is not needed. Moreover note that no
resolvent integration is involved in the proof.

2. Superlinear convergence of GMRES for solving a class of finite-dimensional approzi-
mations of well-problems is obtained in Campbell, Ipsen, Kelley, Meyer and Xue [2].
The general setting considered there is motivated by applying Nystrom’s method to in-
tegral equations of the second kind, and the obtained convergence results for GMRES
are also uniform with respect to the considered operator perturbations, which is known
also as mesh independence. Other results on the superlinear convergence of GMRES in
an infinite-dimensional setting can be found in Campbell, Ipsen, Kelley and Meyer [1],
Kelley and Xue [8] and Moret [10]. For further results on GMRES under more gen-
eral conditions on the spectrum of the underlying operator we refer to Nevanlinna [11],
Chapter 3.3.
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3. Additionally we mention here some papers in which GMRES is considered in a finite-

dimensional setting and for different purposes than ours, e. g., Elman [3], Freund,
Golub and Nachtigal [4], Greenbaum, Ptdk and Strakos [6], Liesen [9], van der Vorst
and Vuik [20] and Saad and Schulz [15]; in the latter paper GMRES is introduced.

The result in Theorem 2.1 on the convergence speed of the residuals associated with GMRES
can be applied to provide upper bounds for the number of iterations that is needed until a
specific stopping criterion applies. In fact, we consider a posteriori stopping criterions of the
following form: for some appropriate value of 6 > 0, compute the GMRES iterates z1, x5, . ..
(see (1.1)-(1.2)) until the condition

|S2n — gl < dlg] (2.3)
is satisfied for the first time. The termination index is denoted by ns :=n > 0.

As an immediate consequence of Theorem 2.1 we obtain the following asymptotical estimate
of the stopping index.

Theorem 2.2. Let T : H — H be a bounded linear operator in a Hilbert space H, with a
spectrum o(T') that satisfies the conditions in (2.1). Then for each real number e > 0 there
exist real numbers 6. > 0 and n. > 0 such that the following holds: for each bounded linear
operator S : H — H with |S — T| < n. and each vector g € H we have

ns < elog(1/0) for 0<§ <46,
where ng is the stopping index considered in (2.3).

Proof. For any real number 0 < ¢ < 1 and any bounded linear operator S : H — H
satisfying |S — T| < n, with n > 0 chosen according to Theorem 2.1, we obtain d|g| <
1Szp—1 — g] < ¢ t|g|, where without loss of generality we may assume that n; > 1
holds. Thus we have

. log ¢, log(1/0)
— log(l/q)  log(1/q)
= Kq

ns (2.4)

Now for an arbitrary real number £ > 0 we choose a real number ¢ with 0 < ¢ =¢. < 1 so
small such that 2/ < log(1/q) is satisfied. Then we obtain the statement of the theorem from
estimate (2.4) by choosing n = 7. according to Theorem 2.1, and by choosing ¢, sufficiently
small such that 2K,/e <log(1/d.) is satisfied. O

Remark 2.2. Thus, ns = o(log(1/0)) as § — 0 holds uniformly with respect to operator
perturbations as considered in Theorem 2.2.

3. An application to periodic integral operators

In the sequel we consider a class of periodic integral equations that arise e. g. from a boundary
integral equation formulation of interior or exterior boundary value problems in a two-
dimensional domain with a smooth boundary. In what follows we have several quotations
of the monograph [17] but most of the statements are covered also by the papers [19] and
[16]; see also [14] where it is shown that the CGNR-method, this is, the conjugate gradient
method of Hestenes and Stiefel applied to the normal equations, can be used also as a fast
solver for the class of periodic integral equations that is considered in the sequel.
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3.1. The class of operators

In the sequel we consider equations of the following form,
Auv = f, (3.1)
where f: R — C is a 1-periodic function, and the operator A has the form

A= ZAP’ (Agu)(t) = /0 [k (t = s)af(t,s) + ky(t—s)aq(t,s)]u(s) ds, (3.2)

p=0

(Apu)(t) :/0 kp(t — s)ap(t,s)u(s)ds, t€[0,1], p=1,2,...,q.(3.3)

Here g € N={1,2,...}, and af and a, are complex-valued 1-biperiodic C'*°-smooth func-
tions defined on R?. It is supposed that
br(t) = ag(tt) + ag(tt) #0, (3.4)
1) = af(tt) — ap(t,t) A0 (R, W) = W),  (35)
where W (b) denotes the winding number of a continuous 1-periodic function b. In particular,
W) = 0 = W(b™) if aF(t,s) are real functions. Often Ay has the form (3.3), i.e.,

ag (t,8) = 0, ag (t,5) =: ao(t,s) and kg (t) =: ko(t). In that case conditions (3.4), (3.5)
reduce to ag(t,t) # 0 (t € R).

Further, Iioi and k,, p = 1,...,q, are 1-periodic functions or distributions with known
Fourier coefficients

1 1
P (m) = /0 KE () e-m2m gy o (m) = /0 w)e ™ g mel.

We suppose that the following conditions are satisfied,

ko (m) = sign(m)ig (m) (0#£m € Z) (3.6)

coolm|™ < [ (m)] < cor|m|” (0#m € Z) (3.7)

kg (m) — kg(m=1)] < em! (m e Z) (3.8)

|fp(m)] < com,™ (mez, p=1,2,... ,q), (3.9)

with a certain parameter o € R and positive integers (i, 52, ... , B4, and ¢y, c1, coo and coy

are some positive constants. Moreover we use the notation

m|, if m#0
m, = {|1|, ifmio (m € Z).
Later conditions (3.8), (3.9) will be strengthened (see (3.23), (3.24)). Equations of the
form (3.1) with operators A as in (3.2)—(3.3) satisfying conditions (3.4)—(3.9) arise, if the
boundary integral method is applied to a boundary value problem on a two-dimensional
bounded and simply connected domain with a smooth boundary. An associated example
will be presented in Section 3.2 but first the basic mapping properties of the operator A
considered in (3.2)—(3.3) are stated and some transformation of the equation Au = f is
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considered. As a preparation for any A € R we consider the Sobolev space H* of those
functions or distributions « which satisfy

1/2
fulh i= (3 amPla(m)P) " < o,

meZ

1
where a(m) := / u(t) e M dt, m € 7,
0

and L(H*', H**) denotes the space of bounded linear operators from H*' into H*? (A, Ay €
R). As a consequence of the conditions (3.6), (3.7) and (3.9) we have for any A € R

Ay € L(H?, H), A, € L(HN HPr)  for p=1,2,... ¢,

see [17] for the details. We thus have A = Y77 (A, € L(H* H**). Under the given
conditions this operator A moreover can be transformed into an operator that differs from
the identity operator only by some compact operator K : H* — H?>. For this purpose we
consider the operator

B = [(1/b")PT + (1/b7)P7]G, ", (3.10)
where

P+u — Z,&(m)eim%rt, Py = Z,&(m)eim%rt, (311)

m>0 m<0

(Gou)(t) = a(0) + Y &f(m)a(m)e™, (3.12)

0#meZ
The operators G, € L(H* H*=%) and [(1/b*)P* + (1/b7)P~] € L(H*, H") are isomor-
phisms for each A\ € R, and thus B € £L(H*~®, H*) is also an isomorphism for each \ € R.
It is easy to see that BAg = I + R holds with some operator R € L(H?*, H*!). Thus mul-

tiplying both sides of the equation Au = f in (3.1) by the operator B yields the equivalent
equation

q

BY A,u = Bf. (3.13)
p=0
=T

From the previous observations it follows that the operator 7" introduced in (3.13) can be
written as follows:

q
Tu=u+Ku with K=BY A, —T:H"— H"? g=min{l,B,5,...,5]} (3.14)
p=0

This in particular means that K : H* — H” is a compact operator for each A € R. We
finally note that from the property (3.14) it follows that the nullspace N(T) of the operator
T satisfies N(T) C C*. Thus, if the condition

v 1-periodic C*°—function, Tv=0 =— v =0 (3.15)

is satisfied, then for each A € R the operator T € L(H*, H*) is an isomorphism with a
spectrum that satisfies condition (2.1).
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3.2. An example

In the sequel we consider a prominent example, cf. [17].

Example 3.1. Symm’s integral equation for closed C'°*°—smooth boundaries in parametrized
form looks as follows,

(Au)(t) = —/0 log |z(t) — ()| u(s) ds = [f(t),  te[0,1],

where x : R — R? is a C®—smooth 1-periodic parametrization of the corresponding boundary
with x'(t) # 0 for t € R. We consider the following decomposition,

(Au)(t) = /0 Ko(t — s)u(s) ds + /0 ai(t, s) u(s) ds, tef0,1],
with ko(t) = —log|sinnt| and

o 7 = 2(5)]

|sinm(t — s)]

!
gl
™

; if t#s,
ai(t,s) =

, if t=s.

Here | -| also denotes the Euclidian norm in R?. Note that a, is a 1-biperiodic C*®-function,
and the Fourier coefficients of ko have the following form,

1
N —_—, if 0#£m eZ,
fo(m) = 4 2m V07

log 2, if m=0.

Thus the conditions (3.4)-(3.9) are satisfied (with k1 = 1) for o« = —1 and any B; > 0.

Further examples are, e.g., some integral equation formulations of the biharmonic problem,
the Cauchy integral equation, the Hilbert integral equation and the hypersingular integral
equation.

3.3. A specific approximation of 7T
3.3.1. Some preparations

We again suppose that A is an operator of the form (3.2)—(3.3) that satisfies the conditions
(3.4)—(3.9). For the subsequent considerations on the full discretization of the considered
equation (3.13) we need spaces of trigonometric trial polynomials Ty. They are defined as
follows,

Tn = { Z bne™™ . b, € C for mEZN},
meZ N

N N
where ZN::{ meLZ: —§<m§§}, N eN.

In the sequel for a given integer N we construct an operator Sy : Ty — Ty that approximates
T, and moreover for each function vy € Ty the function Syvy € Ty can be computed fully



8 R. Plato, G. Vainikko

discretely by O(Nlog N) arithmetical operations. We continue with several preparations.
The Fourier projectors associated with Ty are given by

Pyu = Z ai(m)em2mt (u€ H* for some X € R).

meEZ N

We shall need also the interpolation projector (Qx onto the space Ty which is defined as
follows

Qnu € Ty, (QNU)(%) = u(%), j=12,...,N (ueH)‘ for some )\>%).

(I = Py)uly < () #ul,  for uwe H" (—o0 < A < p < 00), (3.16)
lunl, < (B Mun|a for uy € Ty (—o00 < A < p < 0), (3.17)
I(T—Qv)uly < %5 ul,  for weH" (0<A<p<oo, p>3),(3.18)

with 7, = (1 + Y72, =7)"/?, of. [17] for the details. Further, let L € N,L < N. By Q1,1 we
denote the following two-dimensional interpolation operator,
QL,L¢ € 72,L7 (QL,L¢)(%)%) = ¢(%7%) for jla j? = 1727"' 7L7
ToL = { Z bmlmeiml?”teimﬂ” D bmym, € C for my, me € Zy, },

m1,mo€ZLy,

where ¢ : R — C is a 1-biperiodic C"*°-smooth function. Finally we consider the following
set D; C 72,

Dp = {(mi,ms) €2 : [m| +|ms| < L/2}, (3.19)
and Pp, denotes the corresponding Fourier projection operator,

PDLU — E : 7}(Tnl,77,7/2)6177112711617712271'5

(m1,m2)€Dy,

1 e
where o(my, my) = / / v(t, s) e7 M eTIMATS (g (]t my, my € Z.
o Jo

3.3.2. A specific approximation of a, for p >0

We again suppose that A is an operator of the form (3.2)—(3.3) that satisfies the conditions
(3.4)=(3.9). In the sequel we recall the basic features of [17] on a specific approximation to
A and will present its elementary consequences for the transformed operator "= BA. In
the sequel for L € N, . < N, we consider the function

a()i’L - PDLQL,LaOi; Qp L = PDLQL,Lap; b = 1727' - q, (320)

where the set Dy, C Z? is as in (3.19). Note that for the computation of the function a, ,

only the values of the function a, at the grid points (%, %), Ji, Jo = 1,2,..., L, are needed.
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3.3.3. Approximation of A, on T

An approximation of the operator A, is obtained if the kernels a(jf and a, are replaced by
ag, and app as defined in (3.20), respectively:

(Ao ru)(t) = / (kg (t—s) ag(t,s) + ko (t—s)ag(t, s)]u(s) ds,
0 (3.21)

(Apru)(t) = /0 kp(t — s) ap.r(t,s) u(s) ds, p = 1,2,....,q.

We have A, ; € L(H* H*=2*5») for each A € R, with 3, := 0, and moreover the following
estimate holds:

1A, L — A <ex, LT ANeR p = 0,1,...,9) Vr>0, (3.22)

L(HX,HA*O‘) —

cf. [17] for details. This approximation A, to A, in fact is used on 7.

The following can be stated on the computational costs: if L ~ N7 holds for some 0 < o <
1/2, then the system matrix associated with A, 1 : 7, — T2z has fully discrete entries that
can be computed by O(N log N) arithmetical operations. Moreover, for each v, € Ty, with
known Fourier coefficients, the vector wy, = A, rvr, € Tor, can be computed by O(L?*) = O(N)
arithmetical operations.

3.3.4. Approximation of A, on the subspace Ty © T},

In order to obtain an approximation of the operator A, that allows to keep the number of
arithmetical operations sufficiently small, on the subspace Ty © T, = span{e™?™ : m €
Zn\Zy, } an asymptotic approximation to A, by operators of simpler structure is considered.
For this we need the following additional conditions on the operator A:

Ak (m)] < g

| < =y (meZ, j=0,1,...), (3.23)
|ARp(m)| < ¢

a=pp=j (meZ, j=0,1,..., p=12,...,q). (3.24)

EME

Here c; denote some positive constants, and A denotes the forward difference operator, i.e.,

A

Av(m) = ov(m+1) — 0(m), m € Z.

For Symm’s integral operator considered in Example 3.1, the conditions (3.23)-(3.24) are
satisfied, for example. The mentioned asymptotic approximation A, 4 of A, with an
integer d > 0 has the following form for p =1,2,... ,¢:

d—[Bp]-1
Apra = Z By 1., (Bp.ju)(t) = byr;(t) Z [Aj/%p(m)]ﬁ(m) eim2t
=0 meZ

ifd>|B,] +1,and Ay q=01if d < |B,]. The asymptotic approximation Ay s, 4 of Aoz, is
similarly constructed. The function b, 1, ; € T, has the following specific form,

1 )
bszsj (t) = ﬁ a'?}ap’L(t, S) S:t, t E [07 ]' )
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where |z| denotes the biggest integer smaller or equal to a real number z € R. Moreover,

1 0
ol — 1 ol = — =
s ’ s 271 0s’
, 1 0 1 0 1 0
ol — <___ : 1)...(—_—1)——, = 2,3,....
: omios T ori Os ori Os /
The Fourier coefficients of the functions b, 1, ; can be obtained recursively for j = 0,1,... ,d—

|Bp] — 1, cf. [17] for the details. It follows from the conditions (3.23)—(3.24) that A, 14 €
L(H* H*~**P») holds, and — as a basic purpose of this construction — we moreover have

that the difference A, ;. — A, is an operator of lower order than A, A,;,— A, €
,C(H)‘, H/\faerax{d,,Bp}) and

H (A:D,L,d - A:D) (I - PL)HE(HA’foa) S C)\Li max{d,fp} ()‘ € Ra p= 0; cee 7Q)7 (325)

with a constant ¢, which in fact is independent of the parameter L; cf. again [17] for the
details.

The following can be stated on the computational costs: for each vy € Ty with known
Fourier coefficients, the function wy = Ay 4un € Tyt2r can be computed by a fully discrete
scheme that requires O(N log N) arithmetical operations, if the FFT is applied.

3.3.5. Approximation of A, on the subspace Ty

The basic approaches considered in [17] — which we recalled in the Sections 3.3.3 and 3.3.4
— in our situation finally yield the following approximation to the operator A = ZZ:O A,

Ang = (zq: Apr) Py + (zq: Apr,a) (I = Py) (3.26)

with the following properties, A 4 € L(H*, H*=®) for each y, A € R with A\ < y, and

|ALs — Al < ey LY (g, A € R with A < p), (3.27)

L(HE,HA)

with some constant cy , > 0.

3.3.6. Approximation of B

An approximation of the operator B is obtained by replacing in the definition of B the
functions 1/b% and 1/b~ by its trigonometric interpolants € Ty, respectively:

By = [Qu(1/67)P* + Qu(1/b7)P~]Gy " (3.28)
The functions 1/b™ and 1/b~ are 1-periodic C'*-functions, and we thus have

1B, — B| < e, LT (A € R) V>0, (3.29)

L(H = HN)
cf. [17] for the details. The following can be stated on the computational costs: for each
vy € Tniop with known Fourier coefficients, the function wy = PyBrvy € Ty can be
computed by a fully discrete scheme that requires O(N log N) arithmetical operations, if the
FFT is applied.
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4. GMRES for the specific application
In the sequel we suppose that the right-hand side f in equation (3.1) satisfies
f e H'® for some > a+1/2, (4.1)
and consider the following approximations:
Sy = PyBrAra:Tv — Tw, gy = PyBrQnf € Tn. (4.2)

In the sequel we consider GMRES applied with the operator Sy and the right-hand side gy
in (4.2), and with respect to the Sobolev space H*: let the sequence z,, € Ty, n=0,1,...,
be given by

Tn € Kn(Sn, gn), |SNTn — gnla = min |Sne — gn|a- (4.3)
IE’Cn(SNagN)
We note that at each step of GMRES, one application of the operator Sy to an element
from 7Ty has to be employed. The following a posteriori stopping criterion is considered:
terminate the iteration at step n =: ny when

|Svan — gnla < eN*#|gn]a (4.4)

is satisfied for the first time, where ¢ denotes some positive constant. As a preparation for
the formulation of the following basic theorem we specify the conditions on the parameters
L and d:

L ~ N 0<o<l, d>L12(n—a). (4.5)

Theorem 4.1. Suppose that A is an operator of the form (3.2)-(3.3) which satisfies the
conditions (3.4)-(3.9) and (3.15) as well as (3.23)-(3.24), and moreover let (4.1) and (4.5)
be satisfied. Then then exists an Ny such that for each integer N with N > Ny we have

leny —uly < ex N ul,, (@ <A< p), (4.6)
ny = o(logN). (4.7)
Proof. As a preparation for the proof of the two statements of the theorem we consider
the operator Sy = I — Py + PyBrArqa € L(H*, H*). On Ty the operator Sy coincides
with Sy, so that the corresponding GMRES sequences in fact coincide. Moreover we have
Sy —BA= (I —Py)(I—BA)+ Py(BrLAL4— BA), and from the two estimates (3.29) and
(3.27) with the specific choice u = A as well as from the mapping properties of the operator
I — BA stated in (3.14) it then follows that

ISy — BA| < (NP + N7  (AeR) (4.8)

L(HN,HN)

holds with some constant ¢y > 0. From this estimate it follows, for sufficiently large N > Nj
and for each \ € R, that the operators Sy € L(H?*, H*) are invertible with | Sy
for some constant ¢\ > 0.

/
ﬁ(HA,HX) S C/\

We now are in a position to present a proof of the estimate (4.6). In fact, we have

[y = uly < AlSvTay = Snulx < A(ISvTay —gnlx + [Svu—gnly).  (49)
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The first term on the right-hand side of the last estimate can be estimated with the help of
the inverse estimate (3.17):

ISy — gnln < (5) 1SxTny — gnla < AN~V (<A< p)
with some constant ¢, > 0. The last estimate in fact follows from the stopping criterion
(4.4) and the mapping properties of the operators that are used in the definition of the
function gy € Ty defined in (4.2). For the estimation of the last term in (4.9) we observe
that Syu —gy = (I = Py)u+ PyBr (AL su—QnAu), and the last term of the right-hand side
of the latter identity can be written as follows: A qu —QnAu = (AL qa— A)u+ (I —Qn)Au.
We thus obtain

~ — (=X o
ISvu—gnln < () " Vuly + JArau — QuAulr o < N Vul,,

where the mapping properties of the operator A4 and the error estimates (3.27) as well as
the approximation properties (3.16), (3.18) of the Fourier projection and the interpolation
projection have been used, respectively. This completes the proof of estimate (4.6). The
estimate (4.7) follows from Theorem 2.2 applied with the operator S = Sy and the function
g = gn, and with 6 = cN~(#=®)_ Note that it follows from estimate (4.8) that Theorem 2.2
is applicable in fact. O

Remark 4.1. From estimate (4.7) and the considerations in Section 3.3 on the complez-
ity of one application of the involved operators, respectively, it follows that o(N (log N)?)
arithmetical operations are needed to compute the approrimation x,, € Ty if the condition
0 <o <1/2 is satisfied.

5. Numerical experiments

5.1. Introductory remarks

In each of the following two Sections 5.2 and 5.3, a specific equation of the form Au = f
is considered where the operator 4 fulfils the conditions (3.4)—(3.9) and (3.23)-(3.24) for

a = —1. Moreover, the solution u : R — R is the 1-periodic extension of the following
function,
1 if 0.25<t<0.75
u(t) = & TS (5.1)
0, if 0<t<0.25 or 0.75<t<1,
and then
we HY?>¢ fe HY?>* foreach e > 0, (5.2)
ug H'?, f ¢ HY2 (5.3)

For each specific equation, different choices of N are considered, and for each choice of N,
the values of the function f = Auw at the grid points in fact are computed numerically with
a high precision.

We consider the following specific choices of N and L,

N = 2t L = ok (5.4)
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The relation (5.4) means L ~ N'/2 as k — oo, and in the numerical experiments we consider
the specific choices k& = 5,6,7,8. In the present situation we may choose d = 2 for the
asymptotical approximation.

GMRES is applied with Sy = PyBrArq: Tv — Ty and gy € Ty as in Section 4. According
to the general analysis presented in Section 4, it is reasonable to terminate the iteration at
step n =: ny when

|Snny — gnl-1 < N732|gn| -1

is satisfied for the first time, where x,, denotes the n-th iterate of GMRES. The error estimate
(4.6) yields |7, —u|_1 = O(N3/2%%) for any £ > 0. Note that due to the property (5.3)
one cannot conclude from the error estimate (4.6) that the quotient |z,, —u|_,/N~3/2 stays
bounded for experiments with different and increasingly ordered values of N. On the other
hand, however, due to (5.2) it is not surprising that these quotients stay bounded in our
experiments; notice also that |u — Pyul 1 ~ (3.5 n/2 m‘“)l/2 ~ N73/2_ All computations
are performed in MATLAB.

5.2. Symm’s integral equation for an ellipse

In the sequel we present the numerical results for Symm’s integral equation, cf. Example
3.1, which is considered here for z:(t) = (% cos 2mt, i sin 27t)", t € R, parametrizing a special
ellipse I'. Table 1 contains the results obtained by GMRES.

Table 1. Numerical results with GMRES, for Symm'’s integral equation for an ellipse

N | L| ooy —uly | oy —ul /N2 | ny
64| 8| 2.03e 02 10.41 3
128 8| 1.01e-02 14.58 3
256 | 16 |  4.59¢-03 18.79 4
512 |16 |  1.97¢-03 22.86 4
1024 | 32 | 6.5904 21.61 4

5.3. A model problem

In the sequel we consider the following model problem, cf. [7] for a similar example:

/0 kot — $)ao(t, ) u(s) ds = f(1),  te[0,1],

with
4 1
I if 0 7£ m & Z,
o _ T 4dm —1
ko(m) = h
%7 if m= 0,
ao(t,s) = b(t)b(s), bt) = 3 + Z o 4lm| jim2rt
0#me7Z

Here we have ¢ = 0, with an asymptotical approximation corresponding to A, which is
non-trivial. Table 2 contains the results obtained by GMRES.



14

R. Plato, G. Vainikko

Table 2. Numerical results with GMRES, for the model problem

N | L| |#ay—uly | |#ay —ul /N2 | ny
64 | 8| 2.02e02 10.33 4
128 8| 9.81e03 14.20 4
256 | 16 | 4.59¢03 18.80 4
512 |16 |  1.97¢03 22.84 5
1024 | 32 | 6.59%03 21.60 5
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