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Abstract

In this note, we take a second look at a predictor–corrector method which was intro-

duced in a paper by Diethelm, Ford and Freed in 2004 for solving initial value problems

for fractional differential equations. One purpose of the present text is the application of

a discrete weakly singular Gronwall type inequality to avoid in the main results possible

restrictions of the interval of interest for the independent variable. In addition, we present

an expansion of the solution which allows, under minimal smoothness conditions, best

possible convergence rates for the considered numerical scheme for all fractional orders

less than one.

1 Introduction

In the following, we consider a predictor–corrector method introduced by Diethelm, Ford and

Freed for solving initial value problems for fractional differential equations, cf. [5] and also [3,

Appendix C]. For applications of their results, see e.g., [20, 27]. In the present note, we extent

the results in [5] (a) by using a special weakly singular discrete Gronwall inequality and (b) by

considering an expansion of the solution which allows best possible convergence rates under

minimal smoothness conditions for all fractional orders less than one.

The outline of the paper is as follows. The following section introduces the problem and

provides some basics. In Section 3, details of the considered predictor–corrector method are

given, where in fact the product rectangle rule and the product trapezoidal rule serve as pre-

dictor and corrector, respectively. In Section 4, we employ an expansion assumption on the

solution of the considered problem. In addition, we recall some basic error estimates for the

two underlying quadrature methods which can be applied directly to the terms occurring in

the considered expansion of the solution. In Section 5, we consider a weakly singular discrete

Gronwall inequality which is needed to proceed with an estimation of the accumulated error.

Meanwhile, it is shown that the considered discrete Gronwall inequality can be derived from a

continuous analog. In the concluding section, we present an expansion of the solution which

belongs to the class of solutions considered in our basic assumption presented in Section 4,

provided that the considered fractional differential equation is sufficiently smooth.

2 Preliminaries

2.1 Fractional integration and differentiation

As a preparation, we recall basic definitions and properties of fractional integration and the Ca-

puto fractional derivative. For any β > 0, the Riemann–Liouville fractional integral operator
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Iβ is given by

(Iβu)(t) =
1

Γ(β)

∫ t

0
(t− s)β−1u(s) ds for 0 ≤ t ≤ T,

where u : [ 0, T ] → R is an integrable function, and Γ denotes Euler’s gamma function. We

have, e.g.,

Iβ tq

Γ(q + 1) =
tq+β

Γ(q + β + 1) for q > −1. (2.1)

Other basic properties are as follows (see, e.g., Gorenflo and Vessella [14]):

• (I1u)(t) =
∫ t

0
u(s) ds, where u : [ 0, T ] → R is an integrable function.

• (Iβu)′ = Iβu′ for u ∈ C1[ 0, T ], u(0) = 0.

• Semigroup property: Iβ+γ = IβIγ on L1(0, T ) for β, γ > 0.

For the second identity see, e.g., [11, p. 3] or [17, Corollary 2.2]. We next recall the Caputo

fractional derivative operator. For 0 < α < 1, it is given by

Dα = I1−αD, (2.2)

whereD denotes the differentiation operator, i.e.,Du := u′ for u ∈ C1[ 0, T ]. Basic properties

are as follows:

• Dα tq

Γ(q+1) =
tq−α

Γ(q−α+1) for q ≥ 1.

• IαDαu = u− u(0) for u ∈ C1[ 0, T ].

• DαIαu = u for u ∈ C1[ 0, T ], u(0) = 0.

There exist a variant of the Caputo fractional derivative, cf. [24, Section 2.4], or [3, Defini-

tion 3.2], which allows to extent the domain of definition:

Dαu = Dα
RL(u− u(0)) for u ∈ u(0) + Iα(C[ 0, T ]), (2.3)

where Dα
RL := DI1−α denotes the Riemann–Liouville fractional differential operator.

Both representations (2.2) and (2.3) coincide for u ∈ C1[ 0, T ]. However, (2.3) is more

appropriate in the context of the fractional differential equations considered below, since equiv-

alence to a Volterra integral equation, cf. (3.1) below, can easily be derived then. Further exten-

sions of the domain of definitions in (2.2) and (2.3) are possible but not needed here. Note that

for the extended version (2.3), we still have Dαu ∈ C[ 0, T ] due to the semigroup property of

fractional integration.

2.2 Initial value problems for fractional differential equations

Throughout this paper, let 0 < α < 1 and f : [ 0, T ]×R → R be a given function, if not further

specified. For given y0 ∈ R, we consider the following initial value problem for a fractional

differential equation:

Dαy = f(t, y) for 0 ≤ t ≤ T, y(0) = y0, (2.4)

with Dα as in (2.3). For applications, see, e.g., the references given in the introduction of [10].
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Example 2.1. For q > 0 and 0 < α < 1, the solution of the initial value problem

Dαy = tq

Γ(q+1) for 0 ≤ t ≤ T, y(0) = 0,

is given by y(t) = tq+α

Γ(q+α+1) for 0 ≤ t ≤ T , cf. the basic properties of the Caputo fractional

derivative considered above.

As a preparation for the next example, we recall the classical one-parametric Mittag-Leffler

function Eα : C → C (α > 0) which is given by

Eα(z) =
∞∑
n=0

zn

Γ(αn+ 1)
, z ∈ C.

This in particular means E1 = exp. For an introduction to Mittag-Leffler functions and their

numerical computation, see, e.g., [12, 13].

Example 2.2. For λ > 0 and 0 < α < 1, the solution of the initial value problem

Dαy = λy on [ 0, T ], y(0) = y0,

is given by y(t) = y0Eα(λt
α) for 0 ≤ t ≤ T , cf. e.g., [3, Theorem 6.11]. In fact:

Dαy = λy on [ 0, T ], y(0) = y0 ⇐⇒ y − y0 = λIαy ⇐⇒ y = (id − λIα)−1y0.

By considering the Neumann series for the quasinilpotent operator λIα and the semigroup

property of fractional integration, e.g., on L1(0, T ), we obtain

y =
∞∑
n=0

λnIαny0 = y0
∞∑
n=0

λn
tαn

Γ(αn+ 1)
= y0

∞∑
n=0

(λtα)n

Γ(αn+ 1)
= y0Eα(λt

α). △

3 Predictor–corrector method based on product rectangle and trape-

zoidal rule

Fractional integration of the initial value problem (2.4) leads to the following (equivalent) non-

linear, weakly singular Volterra integral equation of second kind on C[ 0, T ],

y = y0 + Iαf(·, y(·)) on [ 0, T ],

i.e.,

y(t) = y0 +
1

Γ(α)

∫ t

0
(t− s)α−1f(s, y(s)) ds, 0 ≤ t ≤ T. (3.1)

This representation is the starting point of the predictor–corrector method considered below.

For the quadrature of weakly singular Volterra integrals (Iαu)(t), we make use of the prod-

uct rectangle rule and the product trapezoidal rule which are recalled next. As a preparation,

consider on the interval [ 0, T ] equidistant grid points

tn = nh for n = 0, 1, . . . , N, with h =
T

N
. (3.2)

This notation is used throughout the paper without further notice.
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3.1 Product rectangle rule

The product rectangle rule for the numerical quadrature of (Iαu)(tn) is of the form

hα
n−1∑
j=0

bn−ju(tj) = (Iαu)(tn) + τ∗n(h, u), n = 1, 2, . . . , N,

with weights

bn =
1

Γ(α+ 1)
{nα − (n− 1)α } for n = 1, 2, . . . , (3.3)

and τ∗n(h, u) denotes the quadrature error of the method at tn with respect to the function u.

The product rectangle rule is obtained by replacing in the weakly singular integral (Iαu)(tn)
the function u on the interval [ tj , tj+1 ] by the constant term u(tj) (j = 0, 1, . . . , n − 1), and

the resulting integrand including the weakly singular kernel is computed exactly.

For convergence results on the product rectangle rule for solving weakly singular Volterra

integral equations of the first kind, see [8]. It is an immediate consequence of the definition in

(3.3) that

bn = O(nα−1) as n→ ∞. (3.4)

Estimates of the quadrature error τ∗n(h, u) related with the product rectangle rule may be found

in Proposition 4.6 below.

3.2 Product trapezoidal rule

The product trapezoidal rule for the numerical quadrature of (Iαu)(tn) is of the form

hα
n∑

j=1
an−ju(tj) + ãnu(0) = (Iαu)(tn) + τn(h, u), n = 1, 2, . . . , N. (3.5)

The nonnegative coefficients a0, a1, . . . and ã1, ã2, . . . in (3.5) are given by

an =
1

Γ(α+ 2)
{(n + 1)α+1 − 2nα+1 + (n− 1)α+1 }, n = 1, 2, . . . , a0 =

1

Γ(α+ 2)
, (3.6)

ãn =
1

Γ(α+ 2)
{(n − 1)α+1 − nα+1 + (α+ 1)nα }, n = 1, 2, . . . . (3.7)

In addition, τn(h, u) denotes the quadrature error of the method at tn with respect to the func-

tion u. The product trapezoidal rule is obtained by replacing in the weakly singular integral

(Iαu)(tn) the function u on the interval [ tj , tj+1 ] by the polynomial of up to first degree that

interpolates u at the grid points tj and tj+1 (j = 0, 1, . . . , n − 1). The resulting integrand

including the weakly singular kernel is computed exactly then.

For convergence results on the product trapezoidal rule for solving weakly singular Volterra

integral equations of the first kind, see [8, 9, 23, 25]. There holds

an = O(nα−1), ãn = O(nα−1) as n→ ∞, (3.8)

which is left as an exercise. Relevant estimates of the quadrature error τn(h, u) related with

the product trapezoidal rule are given in Proposition 4.7 below.
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3.3 Predictor–corrector method

Let 0 < α < 1. We consider the following predictor–corrector method (PCM) for solving the

fractional initial value problem (2.4): for n = 1, 2, . . . , N , let

yn = y0 + hα
(
ãnf(0, y0) +

n−1∑
j=1

an−jf(tj, yj) + a0f(tn, y
P
n)
)
, (3.9)

where

yP
n = y0 + hα

n−1∑
j=0

bn−jf(tj, yj). (3.10)

This means that yP
n and yn are computed by the product rectangle rule (the predictor) and the

product trapezoidal rule (the corrector), respectively. In other terms, we are dealing with a

predictor–corrector method for solving the given fractional differential equation, with a frac-

tional variant of the explicit Euler scheme serving as predictor, and a fractional version of the

implicit one-step Adams–Moulton method performs as corrector. For an introduction of those

classes for nonfractional ODEs, see, e.g., [22].

4 Error analysis

4.1 A first error estimate for the method

Assumption 4.1. Let 0 < α < 1. In addition, let f : [ 0, T ]×R → R satisfy a global Lipschitz

condition with respect to the second argument, uniformly in t, i.e.,

|f(t, u)− f(t, v)| ≤ L|u− v | for u, v ∈ R, t ∈ [ 0, T ], (4.1)

with some finite constant L > 0. We suppose that a unique solution of the initial value problem

(2.4) exists on the considered interval [ 0, T ]. △

The Lipschitz condition (4.1) implies uniqueness of the solution, cf. e.g., [4, Theorem 3.3].

Existence of a solution can be guaranteed at least on a sufficiently short range of the indepen-

dent variable, if f is a continuous function; see, e.g., [3, Theorems 6.1 and 6.5] for details.

In what follows, for given h = T
N

, we denote by

en = yn − y(tn), n = 0, 1, . . . , N, (4.2)

the errors of the predictor–corrector method at the grid points. We next present a first estimate

of the quadrature error of the predictor–corrector method.

Theorem 4.2. Let the propositions of Assumption 4.1 be satisfied. For the errors (4.2) of the

predictor–corrector method (3.9)–(3.10), we have

|en | ≤ Chα
n−1∑
j=1

(n− j)α−1|ej |+ rn, with rn = O(τn(h, u)) + hαO(τ∗n(h, u)),

uniformly for n = 1, 2, . . . , N , where C > 0 denotes some constant, and u(t) := f(t, y(t))
for 0 ≤ t ≤ T .
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Proof. We start with the error estimation of the corrector. Utilizing the initial condition y(0) =
y0, from (3.9) and (3.5) we obtain

|en | ≤ hα
n−1∑
j=1

an−j |f(tj, yj)− f(tj, y(tj))|+ hαa0|f(tn, y
P
n)− f(tn, y(tn))|+ |τn(h, u)|

≤ hαL
n−1∑
j=1

an−j |ej |+ hαLa0|y
P
n − y(tn)|+ |τn(h, u)|.

The error of the predictor can be estimated as follows:

|yP
n − y(tn)| ≤ hα

n−1∑
j=1

bn−j|f(tj, yj)− f(tj, y(tj))|+ |τ∗n(h, u)|

≤ hαL
n−1∑
j=1

bn−j|ej |+ |τ∗n(h, u)|.

We thus arrive at

|en | ≤ hαLmax{La0T
α, 1}

n−1∑
j=1

(an−j + bn−j)|ej |+O(τn(h, u)) + hαO(τ∗n(h, u)).

The statement of the theorem now follows from the asymptotics (3.4) and (3.8) of the quadra-

ture weights.

4.2 A solution representation

4.2.1 Basic assumption

As a preparation, for 0 < λ < 1 and q ∈ N0, we introduce the spaces

Cq,λ[ 0, T ] = {u ∈ Cq[ 0, T ] | ∃ c ≥ 0 : |u(q)(s)− u(q)(t)| ≤ c|s − t|λ },

C
q,λ
0 [ 0, T ] := {u ∈ Cq,λ[ 0, T ] | u(0) = u′(0) = · · · = u(q)(0) = 0 },

where C0[ 0, T ] := C[ 0, T ].

Assumption 4.3. Let 0 < α < 1. The solution y : [ 0, T ] → R of Dαy = f(t, y) for

0 ≤ t ≤ T, y(0) = y0, admits a power function expansion of the form

y(t) = y0 + c1t
β1 + c2t

β2 + · · · + crt
βr + ψ∗, (4.3)

with remainder ψ∗ ∈ Iα(C1,α
0 [ 0, T ]), r ≥ 0, certain coefficients c1, c2, . . . , cr ∈ R, and

powers that satisfy either βj = α or 2α ≤ βj < 2α+ 1 for j = 1, 2, . . . , r.

As a consequence of Assumption 4.3, the function Dαy has a power function expansion of

the form

f(t, y(t)) = d0 + d1t
γ1 + d2t

γ2 + · · ·+ drt
γr + ϕ∗, (4.4)

with remainder ϕ∗ ∈ C
1,α
0 [ 0, T ], r ≥ 0, certain coefficients d0, d1, . . . , dr ∈ R, and powers

that satisfy α ≤ γj < α+ 1 for j = 1, 2, . . . , r. The expansion (4.4) is the basic ingredient for

the numerical analysis considered below.
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Example 4.4. For Example 2.1, the conditions of Assumption 4.3 are satisfied, if q ≥ α

holds. The solution arising in Example 2.2 also satisfies this assumption, with r = ⌈ 1
α
⌉ + 1,

where ⌈x⌉ denotes the smallest integer larger than or equal to x, and, in addition, βj = jα for

j = 1, 2, . . . , r.

Remark 4.5. The assumption on the remainder ψ in Assumption 4.3 can be expressed in terms

of Hölder spaces. In fact, we have

Iα(C1,α
0 [ 0, T ]) =

{
C

1,2α
0 [ 0, T ] for α < 1

2 ,

C
2,2α−1
0 [ 0, T ] for α > 1

2 .
(4.5)

Note that the case α = 1
2 is excluded in (4.5). The representation (4.5) can be derived from a

seminal paper by Hardy and Littlewood, see [15, Theorems 14, 19 and 20 and their proofs]. Re-

lated results may also be found in monographs by Samko, Kilbas and Marichev [24, Theorem

3.1] and Brunner [1, Theorem 8.1.5] and a paper by Li and Cai [19, Theorem 1.7].

4.2.2 The powers in the solution expansion (4.3) for smooth f

For sufficiently smooth functions f , representations (4.3) with exponents of the form

βj = kj + ℓjα (4.6)

and a certain smooth remainder function ψ∗ are available, where kj and ℓj are nonnegative

integers, not simultaneously vanishing. Below we give some references to the existing litera-

ture.

• For a comprehensive treatment of this topic, see Lie, Xie and Zhang [18]. In that paper,

the considered intervals for the powers βj and the degree of smoothness of the remainder

function ψ∗ differ from those considered in Assumption 4.3.

• In [21], Lubich has shown that an analytic function f allows a representation y(t) =
Y (t, tα), with a function Y that is analytic in a neighborhood of the origin.

• For related results, see Diethelm, Ford and Freed [5], and Daftardar-Gejji, Sukale and

Bhalekar [2].

In the appendix, see Section 6, it is shown that for f sufficiently smooth, Assumption 4.3 is

exactly satisfied, with exponents that are of the form (4.6). In particular, it turns out that for
1
α
6∈ N, the case βj = 1 may be excluded from the expansion. Note that for α > 1

2 , the case

βj = 1 in (4.6) violates the conditions made in Assumption 4.3.

4.3 Error estimates for the quadrature error

Next we take a closer look at the quadrature errors of the functions appearing in the represen-

tation (4.3). For this purpose, we recall some results by Diethelm, Ford and Freed presented

in [5] on the quadrature errors of the two product integration methods under consideration; cf.

also [3, Appendix C]. We recall the notation from (3.2).

Proposition 4.6 (quadrature error, product rectangle rule). Let 0 < α < 1.

(a) For u ∈ C1[ 0, T ] we have

τ∗n(h, u) = O(h) as h→ 0 uniformly in n = 1, 2, . . . , N.
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(b) For 0 < γ < 1, there holds

τ∗n(h, t
γ) = O(tγ+α−1

n h) as h→ 0 uniformly in n = 1, 2, . . . , N.

Proof. See [5, Theorem 2.4]. Part (a) also follows from Eggermont [8, proof of Theorem 6.2].

Proposition 4.7 (quadrature error, product trapezoidal rule). Let 0 < α < 1.

(a) For u ∈ C1,α[ 0, T ] we have

τn(h, u) = O(hα+1) as h→ 0 uniformly in n = 1, 2, . . . , N.

(b) For 0 < γ < 1, there holds

τn(h, t
γ) = O(tα−1

n hγ+1) as h→ 0 uniformly in n = 1, 2, . . . , N.

(c) For 1 < γ < α+ 1, there holds

τn(h, t
γ) = O(tγ+α−2

n h2) as h→ 0 uniformly in n = 1, 2, . . . , N.

Proof. This follows from [5, Theorem 2.5].

We note that Propositions 4.6 and 4.7 imply τ∗n(h, t
γ) = O(tα−1

n h) for any γ > 0 and

τn(h, t
γ) = O(tα−1

n hα+1) for any γ ≥ α, respectively. Below, we utilize those two facts.

As a consequence of Theorem 4.2 and the error representations in Propositions 4.6 and 4.7, we

obtain the following corollary. Notice that the quadrature errors τ∗n(h, u) and τn(h, u) of the

considered product integration rules are linear with respect to the function u, respectively.

Corollary 4.8. Let the representation (4.3) hold. For the errors of the predictor–corrector

method (3.9)–(3.10), we have

|en | ≤ Chα
n−1∑
j=1

(n− j)α−1|ej |+O(tα−1
n hα+1), n = 1, 2, . . . , N, (4.7)

uniformly for n, with some constant C > 0 which is independent of h.

5 A weakly singular Gronwall inequality

The further treatment of estimate (4.7) requires a special discrete Gronwall type inequality. As

a preparation, we consider a suitable (non-discrete) weakly singular Gronwall inequality with

a weakly singular inhomogeneity. Such kind of inequalities with constant inhomogeneities

or, more general, non-decreasing inhomogeneities are the subject of some research papers or

monographs, see, e.g., [1, Lemma 3.1.13] or [7]. Our version deals with an inhomogeneity

that has a power-type weak singularity at the origin, cf. Henry [16, Exercise 4, p. 190]. This

result may be also easily derived from [26, proofs of corollaries 1 and 3], where an inductive

argument is used. See also [28] and the references therein. Below, we use an ordered Banach

space argument.
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Theorem 5.1. Let 0 < α < 1 and η, c > 0. Then there exists some finite constant c1 > 0 such

that for each ε ∈ L1(0, T ) satisfying

ε(t) ≤ ηtα−1 + c
∫ t

0
(t− s)α−1ε(s) ds a. e. on (0, T ),

there holds

ε(t) ≤ c1ηt
α−1 a. e. on (0, T ),

where a. e. means almost everywhere.

Proof. We consider a Neumann series expansion of the quasinilpotent operator Iα on L1(0, 1).
By using the semigroup property of fractional integration, for c2 = cΓ(α) we obtain the identity

(id − c2I
α)−1 =

∞∑

n=0

cn2I
nα on L1(0, T ). (5.1)

This implies, on the one hand, that id − c2I
α is inverse positive in the ordered Banach space

sense, i.e., for u ∈ L1(0, T ) we have

u− c2I
αu ≥ 0 a. e. =⇒ u ≥ 0 a. e. (5.2)

From (5.1), in addition it follows that the second-kind linear integral equation

F (t) = ηtα−1 + c2

∫ t

0
(t− s)α−1F (s) ds, t > 0,

is solved by the function

F (t) = ηΓ(α)tα−1Eα,α(c2t
α), t > 0, (5.3)

where the analytic two-parametric Mittag-Leffler function Eα,β : C → C (α, β > 0) is given by

Eα,β(z) =
∑∞

n=0
zn

Γ(αn+β) , z ∈ C. From representation (5.3) it follows that F (t) ≤ c1ηt
α−1

for 0 < t ≤ T , where c1 denotes some finite constant. Consideration of u = F − ε in (5.2)

finally implies ε ≤ F ≤ c1ηt
α−1 on ( 0, T ].

We note that the representation (5.3) in the proof above can also be derived easily, e.g., from

[12, representations (4.23), (4.45)].

We next present a discrete version of Theorem 5.1. This result may also be found in [6],

where it is verified by an inductive argument.

Theorem 5.2 (Weakly singular discrete Gronwall type inequality). Let c1 and c2 be two posi-

tive constants. Let N,h and tn be as in (3.2), and let v1, v2, . . . , vN ≥ 0 be given. If

vn ≤ c1h
α
n−1∑
j=1

(n− j)α−1vj + c2t
α−1
n hα+1 for n = 1, 2, . . . , N (5.4)

is satisfied, then for some constant c3 which only depends on c1, c2, we have

vn ≤ c3t
α−1
n hα+1 for n = 1, 2, . . . , N. (5.5)
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Proof. We apply the generalized Gronwall inequality from Theorem 5.1 with a suitable step

function, i.e., ε(t) ≡ vn on the interval (tn−1, tn] for n = 1, 2, . . . , N . For n fixed and any

tn−1 < t ≤ tn we then have, by assumption,

ε(t) = vn ≤ c1h
α
n−1∑
j=1

(n − j)α−1vj + c2t
α−1
n hα+1.

For any 1 ≤ j ≤ n− 1, there holds

hα(n − j)α−1vj ≤ 21−αhα(n− j + 1)α−1vj = 21−α
∫ tj

tj−1

(tn − tj−1)
α−1ε(s) ds

≤ 21−α
∫ tj

tj−1

(t− s)α−1ε(s) ds,

and thus

ε(t) ≤ c2t
α−1
n hα+1 + c12

1−α
∫ tn−1

0
(t− s)α−1ε(s) ds

≤ c2t
α−1hα+1 + c12

1−α
∫ t

0
(t− s)α−1ε(s) ds.

The statement of the corollary is now a direct consequence of Theorem 5.1.

As a consequence of Theorem 5.2 and the error representation in Corollary 4.8, we obtain the

following main result of the present paper.

Corollary 5.3. Let the conditions stated in Assumption 4.1 be satisfied, and let the solution

representation (4.3) hold. Then for the error of the predictor–corrector method (3.9)–(3.10),

we have

|en | = O(tα−1
n hα+1) uniformly in n = 1, 2, . . . , N (h→ 0). (5.6)

Notice that (5.6) means |en | = O(h2α) near the origin, and |en | = O(hα+1) away from

the origin.

6 Appendix: An expansion of the solution

In this section, we present an expansion of the solution of (2.4). For preparatory discussions,

we refer back to Section 4.2.

Theorem 6.1. For some T0 > 0 and some η > 0, let f : [ 0, T0 ] × [ y0 − η, y0 + η ] → R be

(m+ 1)-times continuously differentiable, with m being the smallest integer satisfying mα ≥
1. Then for some 0 < T ≤ T0 small enough, we have the expansion

y(t) = y0 + c1t
α + c2t

2α + · · ·+ cm+1t
(m+1)α + etα+1 + (Iαϕ∗)(t), 0 ≤ t ≤ T, (6.1)

where c1, c2, . . . , cm+1, e ∈ R denote suitable coefficients, and ϕ∗ ∈ C
1,α
0 [ 0, T ]. Here, y :

[ 0, T ] → R denotes the (unique) solution of the initial value problem (2.4). In the case

mα = 1, we may set e = 0.
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Proof. For functions of the form (6.1), with ϕ∗ replaced by ϕ, and with the notation

p(t) =
∑

β∈Aα

cβt
β, Aα := {α, 2α, . . . ,mα, α + 1, (m+ 1)α }, (6.2)

the initial value problem (2.4) takes the following form,

ϕ = f(·, y0 + p+ Iαϕ)−Dαp. (6.3)

As a further preparation, we consider a Taylor expansion of order m of the function f at (0, y0),

f(t, y) = Ym(t, y) +Rm(t, y), Ym(t, y) =
∑

k,ℓ≥0, k+ℓ≤m

ckℓt
ℓ(y − y0)

k, (6.4)

with suitable coefficients ckℓ ∈ R, and Rm(t, y) denotes the corresponding Taylor remainder.

Below, it turns out that a representation (6.3) can be obtained by performing the following three

steps.

• Step 1: We first determine p introduced in (6.2) by using the Taylor polynomial in (6.4):

determine the coefficients cβ (β ∈ Aα) of the function p such that power functions tβ with

β ∈ −α+Aα = { 0, α, 2α, . . . , (m− 1)α, 1,mα } (6.5)

are eliminated from the difference function Ym(·, y0 + p) − Dαp. This results in a repre-

sentation of the form

Ym(·, y0 + p)−Dαp =: q, with q ∈ span{ tβ | β ≥ α+ 1 }, (6.6)

which means q ∈ C
1,α
0 [ 0, T ] for any T > 0.

• Step 2: We then consider the mapping properties of the operator

Sψ := f(·, y0 + p+ ψ)−Dαp. (6.7)

More specifically, we show that Sψ ∈ C
1,α
0 [ 0, T ] for ψ ∈ C

1,α
0 [ 0, T ], if ‖ψ‖∞ and T > 0

are sufficiently small, where ‖ · ‖∞ denotes the maximum norm of a continuous function.

Here and in what follows, such smallness restrictions are always made to guarantee that

f(·, y0 + p + ψ) is well-defined, with one exception at the end of the present proof; there,

smallness is required to satisfy a contraction condition.

• Step 3: Finally, we show that the fixed point equation

ϕ = f(·, y0 + p+ Iαϕ)−Dαp on [ 0, T ] (6.8)

has a solution ϕ = ϕ∗ ∈ C
1,α
0 [ 0, T ], where T > 0 is sufficiently small.

(a) First, we consider step 1 in more detail and show that the coefficients cβ for β ∈ −α+Aα,

cf. (6.5), can be uniquely determined in increasing order of β.

• For this purpose, we first take a closer look at the Taylor polynomial introduced in (6.4).

From identity (2.1) and an application of the multinomial theorem to the powers pk, it follows

that the function Ym(·, y0 + p) can be written as a linear combination of power functions of the

form
( ∏

β∈Aα

c
kβ
β

)
tℓ+

∑
β∈Aα

kββ for ℓ, kβ ∈ N0, k =
∑

β∈Aα

kβ ≤ m− ℓ, (6.9)

where N0 := { 0, 1, 2, . . . }. Notice that the coefficients of the linear combination of terms

considered in (6.9) do not depend on cβ (β ∈ Aα).
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• In (6.9), the powers ℓ +
∑

β∈Aα
kββ either belong to −α + Aα or to {β | β ≥ α+ 1 }.

Terms with powers belonging to the latter set may be assigned to the function q.

• For β∗ ∈ −α + Aα fixed, we next consider the elimination of the power function tβ∗ in

Ym(·, y0 + p) − Dαp. This in fact corresponds to the determination of the coefficient cβ∗+α.

For this purpose we take a closer look at those power functions in (6.9) whose exponents satisfy

the identity ℓ+
∑

β∈Aα
kββ = β∗. The case kβ = 0 means that cβ in the product in (6.9) has

no impact. The other case, kβ ≥ 1, necessarily implies β ≤ β∗. As a result, the coefficient

cβ∗+α, being part of the coefficient of tβ∗ appearing in Dαp, can be determined such that all

power functions tβ∗ occurring in Ym(·, y0 + p)−Dαp annihilate.

• We finally note that the case ℓ = 1, k = 0 results in a multiple of the monomial t = t1.

It can be eliminated if the Taylor coefficient c01 = ∂f
∂t
(0, y0) from (6.4) vanishes or mα = 1

holds.

(b) We next consider step 2 introduced above in more detail, and for this purpose let ψ ∈
C

1,α
0 [ 0, T ] be arbitrary but fixed, with ‖ψ‖∞ and T > 0 sufficiently small. Starting point is

again the Taylor expansion (6.4). From a multinomial expansion of the powers (p + ψ)k and

the relation tβC
1,α
0 [ 0, T ] ⊂ C

1,α
0 [ 0, T ] for β ≥ α, it follows that (p+ψ)k = pk + r1,k(ψ) for

some r1,k(ψ) ∈ C
1,α
0 [ 0, T ]. This yields

Ym(·, y0 + p+ ψ) = Ym(·, y0 + p) + r1(ψ),

with r1(ψ) ∈ C
1,α
0 [ 0, T ] appropriately chosen. Representation (6.6) then gives

Dαp = Ym(·, y0 + p+ ψ) + q + r1(ψ), (6.10)

with q as in (6.6).

It remains to be verified that the function Rm(·, y0+p+ψ) belongs to C
1,α
0 [ 0, T ]. This follows

from a careful consideration of the three terms on the right-hand side of the identity

d

dt
Rm(·, y) =

∂

∂t
Rm(·, y) +

∂

∂y
Rm(·, y)p′ +

∂

∂y
Rm(·, y)ψ′,

where y = y0 + p+ ψ. We omit the simple but tedious details, only noting that the inclusion

{ g ∈ C1(0, T ] | g′(t) = O(tα−1) as t→ 0 } ⊂ C0,α[ 0, T ]

and estimates of the form

∂r

∂tr1∂yr2
Rm(t, y) = O(tm+1−r + |y − y0 |

m+1−r), r1, r2 ≥ 0, r = r1 + r2 ≤ 2,

are applied repeatedly. Note that T has to be chosen sufficiently small to guarantee |(p +
ψ)(t)| ≤ η for each 0 ≤ t ≤ T . This completes step 2.

(c) We next consider step 3 introduced above, i.e., in the space C
1,α
0 [ 0, T ] we are seeking for

a fixed point of the composition operator Φ := S ◦ Iα. The following items (i)–(iii) provide

some preparations.

(i) As a framework for fixed point theory, we consider the Banach space

C1
0 [ 0, T ] := {ϕ ∈ C1[ 0, T ] | ϕ(0) = ϕ′(0) = 0 }, (6.11)

equipped with the norm C1
0 [ 0, T ] ∋ ϕ 7→ ‖ϕ′ ‖∞.
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(ii) We next list some more properties of the fractional integration operator Iα:

‖(Iαϕ)′ ‖∞ ≤ Tα

Γ(α+1)‖ϕ
′ ‖∞ for ϕ ∈ C1

0 [ 0, T ], (6.12)

Iα : C1
0 [ 0, T ] → C

1,α
0 [ 0, T ]. (6.13)

Property (6.13) follows from [14, Theorem 4.1.4 for p = ∞]); cf. also [19, Theorem 1.7], or

[24, Theorem 3.1].

(iii) The operator S satisfies a Lipschitz condition, i.e.,

‖(Sψ1)
′ − (Sψ2)

′ ‖∞ ≤ L‖ψ′
1 − ψ′

2 ‖∞ for ψ1, ψ2 ∈ B(̺) ∩ C1,α
0 [ 0, T ], (6.14)

B(̺) := {ϕ ∈ C1
0 [ 0, T ] | ‖ϕ′ ‖∞ ≤ ̺ },

where T > 0 and ̺ are chosen sufficiently small, and L > 0 denotes some constant which

depends on ̺. The verification of (6.14) is again straightforward; we only note that at some

steps of the verification, estimates of the form

|ψ(t)| ≤ t‖ψ′ ‖∞ for 0 ≤ t ≤ T, ψ ∈ C1
0 [ 0, T ], (6.15)

are needed. Further details are left to the reader. Notice that from (6.15) it follows that ‖ψ′ ‖∞
sufficiently small implies ‖ψ‖∞ sufficiently small.

The statements in the items (i)–(iii) allow us to complete step 3. From the two estimates (6.12)

and (6.14), it follows that Φ has the following mapping property,

Φ = S ◦ Iα : B(̺) → B(̺), (6.16)

and it is moreover a contraction operator with respect to the norm of C1
0 [ 0, T ], provided that

T > 0 is chosen sufficiently small. Thus, the operator Φ has a unique fixed point in B(̺).
From the mapping property stated in step 2, it follows that this fixed point necessarily belongs

to C
1,α
0 [ 0, T ]. This completes the proof of the theorem.

Remark 6.2. Note that the solution representation (6.1) contains a monomial t if only if 1
α

is

an integer. This in particular means that for α > 1
2 , the monomial t is not part of the solution

representation. This is of vital significance for the convergence rate obtained for the numerical

method considered in this paper,
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