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Numerishe Mathematik manusript No.(will be inserted by the editor)
Frational multistep methods for weakly singular Volterraintegral equations of the �rst kind with perturbed dataR. Plato ⋆Institute of Mathematis, Tehnial University Berlin,Straÿe des 17. Juni 135, 10623 Berlin, Germany,Email: plato�math.tu-berlin.deReeived: date / Revised version: dateSummary In this paper we onsider the regularizing properties of frational multistep methodsfor the stable solution of linear weakly singular Volterra integral equations of the �rst kind withperturbed right�hand sides.1 IntrodutionIn this paper we onsider linear weakly singular Volterra integral equations whih are of thefollowing form,

(Au)(x) =
1

Γ (α)

∫ x

0
(x− y)−(1−α)k(x, y)u(y) dy = f(x) for 0 ≤ x ≤ L, (1.1)with 0 < α < 1 and some real number L > 0, and with a su�iently smooth kernel funtion

k : [0, L ]×[0, L ] → R, and Γ denotes Euler's gamma funtion. For appliations see e.g. Durbin [5℄and Lerhe/Zeitler [13℄, where rossing probabilities for Brownian motions and the inversion ofthe two-dimensional Radon transform are onsidered, respetively. In the sequel we will supposethat the kernel funtion does not vanish on the diagonal 0 ≤ x = y ≤ L, and without loss ofgenerality we then may assume that
k(x, x) = 1 for 0 ≤ x ≤ L (1.2)holds. Moreover, the funtion f : [0, L ] → R is supposed to be known approximately, and afuntion u : [0, L ] → R satisfying equation (1.1) has to be determined.There exists many lasses of methods for the approximate solution of equation (1.1) if the right�hand side f is exatly given, see e.g., Brunner/van der Houwen [2℄ and Hakbush [8℄. One ofthese lasses are frational multistep methods whih are introdued by C. Lubih ([14℄, [15℄).In the present paper we review these methods (f. Setions 2 and 3) and then onsider theirregularizing properties when the right�hand side in equation (1.1) is only approximately given(f. Setion 4). Finally frational BDF methods are onsidered in more detail and numerialillustrations are presented (f. Setion 5).

⋆ Supported by the DFG Researh Center "Mathematis for key tehnologies" (FZT 86) in Berlin.



2 R. Plato2 Review of a lass of onvolution quadrature methods and the basi notationsIn this setion we reall (with slight modi�ations oasionally) the basi notations and resultsfrom the paper [14℄.2.1 Quadrature methods of onvolution formAs a �rst step we onsider in (1.1) the speial situation k ≡ 1, with the orresponding integraloperator being the lassial Abel integral operator
(Vαu)(x) =

1

Γ (α)

∫ x

0
(x− y)−(1−α)u(y) dy for 0 ≤ x ≤ L, (2.1)where u : [0, L ] → R is supposed to be a ontinuous funtion. For the numerial approximationof the integral (Vαu)(x) with 0 ≤ x ≤ L we onsider onvolution quadrature methods of the form

(Ωhu)(x) = hα
n

X

j=0

ωn−j u(jh) for h = x/n, n = 1, 2, . . . . (2.2)Here ω0, ω1, . . . denotes an in�nite sequene of real oe�ients whih is assumed to be indepen-dent of the onsidered point x and the stepsize h. More onditions on these weights as well asexamples will be onsidered later in this subsetion.The error of the onvolution quadrature method (2.2) at a point 0 ≤ x ≤ L is then given by
(Ehu)(x) = (Ωhu)(x) − (Vαu)(x) for h = x/n, n = 1, 2, . . . . (2.3)The onvergene order of a quadrature method (2.2) is determined by the error of the method withrespet to monomials, see the following de�nition. As a preparation we note that the onsideredquadrature method of ourse may be applied to funtions u whih are de�ned on other intervalsthan [0, L ]. In addition, the approximation (Ωhu)(x) is independent of the right�hand endpoint

L so that it is not neessary to refer to the partiular hoie of L, f. De�nition 1 below.De�nition 1 The onvolution quadrature method (2.2) for the numerial integration of (2.1) isalled onvergent of p ≥ 1, if
(Ehy

q)(1) = O(hq+1) as h = 1/n → 0 (q = 0, 1, . . . , p− 1). (2.4)Note that in (2.4) the error is onsidered only at the point x = 1. For a given su�iently smoothfuntion u : [0, L ] → R we next onsider the error (Ehu)(x) of the onvolution quadraturemethod (2.2). This error an be written as follows,
(Ehu)(x) =

p−1
X

r=0

u(r)(0)

r!
(Ehy

r)(x) + (EhRp)(x) for h = x/n, (2.5)for n = 1, 2, . . ., with the remainder Rp(y) =
1

(p − 1)!

∫ y
0 (y − z)p−1u(p)(z) dz. For a onvolutionquadrature method (2.2) of onvergene order p, subsequently for eah point x = nh the weightsfor the starting values u(jh) for j = 0, 1, . . . , p − 1 will be modi�ed to eliminate the errors

(Ehy
r)(x) for r = 0, 1, . . . , p − 1, f. Setion 2.3 for more details. It then basially remains toonsider the quadrature error of the remainder, whih will be done �rst (f. Setion 2.2).



Frational multistep methods for weakly singular Volterra equations of the �rst kind with noisy data 3We onlude this subsetion with some preparatory onsiderations. First, it turns out to be usefulto extent the de�nition of the onvolution quadrature method (2.2) to arbitrary step sizes h andpoints x as follows,
(Ωhu)(x) = hα

⌊x/h⌋
X

j=0

ωj u(x− jh) for h > 0, 0 ≤ x ≤ L, (2.6)where ⌊z ⌋ denotes the largest integer ≤ z. The error (Ehu)(x) onsidered in (2.3) then an easilybe extended to arbitrary step sizes h by using the extended de�nition (2.6) of the onsideredquadrature method. For this extended de�nition of the onsidered quadrature method there holds
(Eh (u ∗ v ))(x) = ((Ehu) ∗ v )(x) for h > 0, 0 ≤ x ≤ L (2.7)for ontinuous funtions u, v : [0, L ] → R. We reall that the onvolution ϕ ∗ ψ : [0, L ] → R oftwo arbitrary ontinuous funtions ϕ, ψ : [0, L ] → R is given by (ϕ ∗ψ )(x) =

∫ x
0 ϕ(x−y)ψ(y) dyfor 0 ≤ x ≤ L. Additionally for integers q = 0, 1, . . . we have

(Ehy
q)(x) = xα+q(Eh/xy

q)(1) for h > 0, x > 0. (2.8)Both representations (2.7) and (2.8) follow from similar properties of the Abel integral operatorand the quadrature method, respetively.We need some properties of the weights ω0, ω1, . . . onsidered in the onvolution quadraturemethod (2.2), and for this purpose these weights are onsidered as the oe�ients of a powerseries,
ω(ξ) =

∞
X

n=0

ωn ξ
n, (2.9)whih is alled the generating funtion of the quadrature method (2.2). We suppose that thispower series onverges for |ξ | < 1, and in addition in this paper we restrit the onsiderations tothose generating funtions ω(ξ) whih an be represented as follows,

ω(ξ) = (1 − ξ)−α ω̃(ξ), ω̃(ξ) holomorphi on B1+ε = { ξ ∈ C : |ξ | < 1 + ε }, (2.10)
ω̃(ξ) 6= 0 for ξ ∈ B1+ε, (2.11)with some real number ε > 0. The representation (2.10)�(2.11) has impliations on the deay ofthe oe�ients ωn,

ωn = an−(1−α) + O(n−(2−α)) as n→ ∞ (2.12)with some real onstant a 6= 0. In fat, (2.12) is a stability property. Examples of generatingfuntions satisfying (2.10)�(2.11) are given in Setion 5.2.2 Appliation of the onsidered quadrature method to the Taylor expansion remainder: anerror analysisWe next present an error representation of the onvolution quadrature method (2.2) applied tothe Taylor expansion remainder onsidered in (2.5). This representation di�ers from the errorexpansion onsidered in [15℄ and requires in the subsequent proofs slightly less smoothness ofthe involved funtions. For an integer r ≥ 1, in the following Cr[0, L ] denotes the set of r�timesontinuously di�erentiable funtions f : [0, L ] → R.



4 R. PlatoProposition 1 Let the onvolution quadrature method (2.2) be onvergent of order p ≥ 1 and berepresentable as in (2.10)�(2.11). Then for eah funtion u ∈ Cp+1[0, L ], the quadrature errorof the remainder onsidered in (2.5) an be written as
(EhRp)(x) = cph

p+α
n

X

j=0

ωn−j u
(p)(jh) + O(hp+α) for x = nh,

n = 0, 1, . . . , N (2.13)for h→ 0 uniformly with respet to x, with some real onstant cp.Proof As a �rst step one derives the following error representation for general step sizes,
(Ehy

p−1)(1) = c(h)hp + O(hp+1) for 0 < h ≤ 1, h→ 0, (2.14)where the funtion c : [0, 1] → R is de�ned on subintervals as follows,
c(h) =

p
X

s=0

as(h
−1 − n)s for 1

n + 1
< h ≤

1
n
, n = 1, 2, . . . .Here a0, a1, . . . , ap denote some oe�ients whih are independent of h. The veri�ation of therepresentation (2.14) requires several simple tehnial omputations whih are omitted here.We now onsider the error of the onvolution quadrature method (2.2) applied to the Taylorexpansion remainder onsidered in (2.5),

(EhRp)(x) =
1

(p− 1)!

∫ x

0
(Ehy

p−1)(z)u(p)(x− z) dz =: 1
(p−1)!(I1 + I2),with the integrals (with x = nh)

I1 =

∫ h

0
zα+p−1(Eh/z y

p−1)(1)u(p)(x− z) dz

I2 =

∫ nh

h
� dz,where the identities (2.7) and (2.8) have been applied. It follows easily that I1 = O(hp+α) holdsas h → 0, and we now onsider the seond integral I2. Here we use the asymptoti behavior ofthe quadrature error (Ehy

p−1)(1) onsidered in (2.14). The term O(hp+1) appearing there is ofsu�iently good auray, and the �rst term on the right�hand side of the identity (2.14) anbe treated as follows,
∫ nh

h
zα+p−1c

(
h
z

)
(h

z )pu(p)(x− z) dz = eph
p+α

n−1
X

j=1

(n− j)−(1−α)u(p)(jh) + O(hp+α)

= cph
p+α

n
X

j=0

ωn−ju
(p)(jh) + O(hp+α)with the onstants ep =

∑p
s=0 as/(s + 1) and cp = ep/a, where the number a orresponds tothe asymptoti expansion (2.12). The onstants in the two appearing Landau symbols dependon max0≤x≤L |u(p+1)(x)| and max0≤x≤L |u(p)(x)|, respetively, and they do not depend on theonsidered grid point x = nh. This ompletes the proof.Remark 1 For the produt-trapezoidal rule, in Eggermont [6℄ an error representation is givenwhih is similar to the representation onsidered in Proposition 1. Some orresponding resultsonsidered in a more general ontext an be found in Cameron/MKee [4℄.



Frational multistep methods for weakly singular Volterra equations of the �rst kind with noisy data 52.3 Starting weightsIn the sequel the onvolution quadrature method (Ωhu)(x) given by (2.2) is onsidered at uni-formly distributed grid points x = nh for n = 1, 2, . . . , N , where the integer N and the step size
h are related as follows,

h = L/N.In addition we suppose that the onvolution quadrature method (Ωhu)(x) has onvergene order
p and onsider then the modi�ation

(Ω̃hu)(x) :=

= (Ωhu)(x)︷ ︸︸ ︷
hα

n
X

j=0

ωn−j u(jh) + hα
p−1
X

j=0

wn,j u(jh) for x = nh (2.15)as approximations to the frational integral (Vαu)(x) for x = nh with n = 1, 2, . . . , N , respe-tively. Here, wn,j for j = 0, 1, . . . , p− 1 are ertain orretion weights for the starting values tobe spei�ed. Due to the form of the seond sum in (2.15) it is neessary to impose the tehnialondition h(p − 1) ≤ L.In the modi�ed quadrature method (2.15), for eah n = 1, 2, . . . , N a reasonable approah is tohoose starting weights suh that (2.15) is exat at x = nh for all polynomials of degree ≤ p− 1,i.e.,
(Ω̃hy

q)(x) = (Vαy
q)(x) for q = 0, 1, . . . , p− 1. (2.16)This means

p−1
X

j=0

wn,j j
q =

Γ (q + 1)

Γ (α + q + 1)
nα+q −

n
X

j=0

ωn−j j
q for q = 0, 1, . . . , p− 1, (2.17)whih in fat is a linear system of p equations for the unknowns wn,j, j = 0, 1, . . . , p− 1 with aVandermonde matrix whih does not depend on n. Sine the right�hand side of the identity in(2.17) is O(n−(1−α)), there holds the estimate

wn,j = O(n−(1−α)) as n→ ∞ for j = 0, 1, . . . , p− 1. (2.18)Note that the onsidered approah for determining the starting weights annot be applied in thease x = 0. In that ase one obtains (Ω̃hy
q)(0) = 0 for q = 0, 1, . . . , p− 1 whih annot be usedin the subsequent onsiderations on the numerial solution of integral equations of the �rst kind.We now onsider the error of the modi�ed quadrature method,

(Ẽhu)(x) = (Ω̃hu)(x) − (Vαu)(x) for h = x/n, n = 1, 2, . . . .For �xed step size h this error an be written as
(Ẽhu)(x) = (EhRp)(x) + hα

p−1
X

j=0

wn,jRp(jh). (2.19)With the same assumptions as in Proposition 1, the �rst term on the right�hand side of (2.19)an be written in the form cph
p+α

∑n
j=0 ωn−j u

(p)(jh) +O(hp+α). In addition, the sum in (2.19)



6 R. Platois of the form O(hp+1) whih follows from (2.18). As an immediate result we obtain the followingrepresentation of the error of the modi�ed quadrature method:
(Ẽhu)(x) = cph

p+α
n

X

j=0

ωn−j u
(p)(jh) + O(hp+α) for x = nh,

n = 0, 1, . . . , N, (2.20)for h→ 0 uniformly with respet to x, with some real onstant cp.3 Numerial solution of weakly Volterra integral equations of the �rst kind by themodi�ed quadrature method3.1 Introdutory remarks and the basi algorithmIn this setion we reall the basi result of the paper [15℄. For this purpose we again onsider theweakly singular Volterra integral equation of the �rst kind (1.1) and suppose that it has a uniquesolution u : [0, L ] → R (su�ient onditions are given at the end of Setion 4). Additionally wesuppose that the values of the right�hand side of equation (1.1) are exatly given at uniformlydistributed grid points
xn = nh for n = 1, 2, . . . , N, (3.1)respetively. In the sequel we onsider a onvolution quadrature method of the form (2.2) whihhas onvergene order p. In addition modi�ed starting weights as in (2.15) are used to determineapproximations un ≈ u(xn) for n = 1, 2, . . . , N . This means that for a given starting value

u0 ≈ u(0), approximations u1, u2, . . . , uN have to be determined suh that the identities
hα

n
X

j=0

ωn−j k(xn, xj)uj + hα
p−1
X

j=0

wn,j k(xn, xj)uj = f(xn) (3.2)are satis�ed for n = 1, 2, . . . , N . Note that the assumption k ≡ 1 is now omitted, and thegeneral situation for the kernel k is onsidered in the sequel. The proedure for determiningthese approximations is as follows:(a) First determine a starting value u0 ≈ u(0). One of the reasonable algorithms is onsideredat the end of Setion 4.(b) Then solve (3.2) for n = 1, 2, . . . , p− 1. This leads to a linear system of p− 1 equations forthe p− 1 unknowns u1, u2, . . . , up−1.() The identities (3.2) then are used suessively for n = p, p + 1, . . . , N to determine theapproximations up, up+1, . . . , uN , respetively.We next present the approximation properties of the sheme (3.2). As a preparation we formulatethe basi assumptions.Assumption 1 (a) The onvolution quadrature method (2.2) is onvergent of order p ≥ 1,(b) the orresponding generating funtion ω(ξ) onsidered in (2.9) an be represented as in(2.10)�(2.11),() the starting weights are determined aording to the onditions in (2.16),(d) the kernel funtion k in the integral operator (1.1) has ontinuous partial derivatives up to theorder p+1 on [0, L ]× [0, L ], and the solution u of the integral equation (1.1) is (p+1)-timesontinuously di�erentiable on the interval [0, L ],



Frational multistep methods for weakly singular Volterra equations of the �rst kind with noisy data 7(e) and k(x, x) = 1 holds for eah 0 ≤ x ≤ L.At the end of Setion 4, onditions on the right�hand side of the onsidered weakly singularVolterra integral equation of the �rst kind are given whih guarantee the existene of a solution
u satisfying (d) in Assumption 1.As another preparation we present a useful result on the quadrature error for general kernels k.For this we introdue notations for the error of the sheme (3.2),

en := u(xn) − un for n = 0, 1, . . . , N. (3.3)If the onditions in Assumption 1 are satis�ed, then there holds
hα

n
X

j=0

ωn−j k(xn, xj)ej + hα
p−1
X

j=0

wn,j k(xn, xj)ej

= cph
p+α

n
X

j=0

ωn−jϕ(xj) + O(hp+α) for n = 1, 2, . . . , N (3.4)uniformly with respet to n, with the funtion ϕ(x) = dp

dyp

{
k(x, y)u(y)

}
|y=x

for 0 ≤ x ≤ L.For eah n the representation (3.4) follows from the representation (2.20), with the funtion ureplaed by the funtion y 7→ k(xn, y)u(y) onsidered on the interval [0, xn ] there.3.2 Uniqueness, existene and approximation properties of the starting valuesWe now onsider uniqueness, existene and approximation properties of the starting values u1,

u2, . . . , up−1. As a �rst step we onsider in more detail the linear system of equations
hα

p−1
X

j=0

(ωn−j +wn,j
︸ ︷︷ ︸

=: ωn,j

)k(xn, xj)uj = f(xn) for n = 1, 2, . . . , p− 1, (3.5)with the notation ωn = 0 for n < 0. The linear system of equations (3.5) an be written in theform
=: S︷ ︸︸ ︷

hα




ω1,1k1,1 ω1,2k1,2 · · · ω1,p−1k1,p−1

ω2,1k2,1 ω2,2k2,2 · · · ω2,p−1k2,p−1... ... ...
ωp−1,1kp−1,1 ωp−1,2kp−1,2 · · · ωp−1,p−1kp−1,p−1







u1

u2...
up−1




(3.6)
=




f(x1)

f(x2)...
f(xp−1)




− hα




ω1,0k0,0

ω2,0k1,0...
ωp−1,0kp−1,0



u0



8 R. Platowith the notation
kn,j = k(xn, xj) for 0 ≤ j, n ≤ p− 1.It turns out that the matrix S = S(h) ∈ R

(p−1)×(p−1) in (3.6) is non�singular for su�ientlysmall values h, and ‖S−1‖∞ = O(h−α) holds for h → 0 where ‖ · ‖∞ denotes the matrix normindued by the maximum norm for vetors. This estimate for the matrix S−1 is obtained byonsidering �rst the ase k ≡ 1 and applying the representation (2.17), and the general ase isthen obtained by using a perturbation argument.We now present the approximation properties of the onsidered starting values u1, u2, . . . , up−1.Proposition 2 Let Assumption 1 be satis�ed, let u0 be a starting value with u0 −u(x0) = O(hp)as h → 0, and let the other starting values u1, u2, . . . , up−1 be determined by (3.2) for n = 1, 2,

. . . , p− 1. Then there holds
max

n=1,2,...,p−1
|un − u(xn)| = O(hp) as h→ 0. (3.7)Proof We repeat from [15℄ the basi steps of the proof sine some of these steps are also neededin the proof of the main result in the present paper (f. Setion 4). The error representation (3.4)and the assumptions on the approximation properties of the starting value u0 yield

hα
p−1
X

j=1

ωn,j k(xn, xj)ej = O(hp+α) for n = 1, 2, . . . , p− 1. (3.8)A matrix�vetor formulation of (3.8) gives
‖SEh‖∞ = O(hp+α) as h→ 0, with Eh := (e1, e2, . . . , ep−1)

⊤with the matrix S from (3.6) whih is non�singular for su�iently small values h, with ‖S−1‖∞ =

O(h−α) as h→ 0, see the statements above. Here and in the sequel, ‖ ·‖∞ denotes the maximumnorm for vetors as well as the indued matrix norm, respetively. From this the estimate (3.7)follows.3.3 The approximation properties of the values up, up+1, . . . , uNWe now present the main result on the onvergene order of the approximations obtained by thesheme (3.2). As a preparation onsider the reiproal
1

ω(ξ)
=

∞
X

n=0

ω(−1)
n ξnof the generating funtion ω(ξ) =

∑∞
n=0 ωn ξ

n. It is an immediate onsequene of the represen-tation (2.10)�(2.11) that the oe�ients of the reiproal funtion 1/ω(ξ) satisfy
ω(−1)

n = O(n−α−1) as n→ ∞. (3.9)We now present a speial version of the main result of the paper by Lubih [15℄:



Frational multistep methods for weakly singular Volterra equations of the �rst kind with noisy data 9Theorem 2 Let the onditions of Proposition 2 be satis�ed. Then the approximations up, up+1,

. . . , uN (determined by (3.2) for n = p, p+ 1, . . . , N , respetively) an be estimated as follows,
max

n=p,p+1,...,N
|un − u(xn)| = O(hp) as h→ 0.Proof Again some of the steps in this proof are needed also in Setion 4, therefore we repeatfrom [15℄ the basi steps of the proof. Moving the seond sum on the left�hand side of the errorrepresentation (3.4) to the right�hand side gives the following error representation,

hα
n

X

j=0

ωn−j k(xn, xj)ej = cph
p+α

n
X

j=0

ωn−jϕ(xj) + O(hp+α) for n = 0, 1, . . . , N (3.10)for h → 0 uniformly with respet to n. We next onsider a matrix�vetor formulation of (3.10).As a preparation we onsider the matrix Aα
h ∈ R

(N+1)×(N+1) with
Aα

h = hα




ω0k0,0 0 · · · · · · · · · 0

ω1k1,0 ω0k1,1 0 0... ω1k2,1 ω0k2,2
. . . ...... . . . . . . . . . ...... . . . . . . 0

ωN kN,0 · · · · · · · · · ω1kN,N−1 ω0kN,N


with the notation

kn,j = k(xn, xj) for 0 ≤ j ≤ n ≤ N.Additionally we onsider the matrix Bα
h ∈ R

(N+1)×(N+1) given by
Bα

h = hα




ω0 0 · · · · · · · · · 0

ω1 ω0 0 0

ω2 ω1
. . . . . . ...... . . . . . . . . . . . . ...... . . . . . . . . . 0

ωN · · · · · · ω2 ω1 ω0




,

and the vetors
Eh = (e0, e1, . . . , eN )⊤, G = cph

p(ϕ(x0), ϕ(x1), . . . , ϕ(xN ))⊤.Using all these notations, the linear system (3.10) beomes
Aα

hEh = Bα
hG + Fα

h , with some Fα
h ∈ R

N+1, ‖Fα
h ‖∞ = O(hp+α) as h→ 0. (3.11)



10 R. PlatoFor a further treatment of the identity (3.11) we now onsider the inverse matrix of Bα
h , this is

Dα
h ∈ R

(N+1)×(N+1) with
Dα

h = h−α




ω
(−1)
0 0 · · · · · · · · · 0

ω
(−1)
1 ω

(−1)
0 0 0

ω
(−1)
2 ω

(−1)
1

. . . . . . ...... . . . . . . . . . . . . ...... . . . . . . . . . 0

ω
(−1)
N · · · · · · ω

(−1)
2 ω

(−1)
1 ω

(−1)
0




. (3.12)
We now apply the matrix Dα

h to both sides of (3.11) and obtain
‖Dα

hA
α
hEh‖∞ = O(hp) as h→ 0, (3.13)where the estimates

‖Dα
h‖∞ = O(h−α), ‖G‖∞ = O(hp) as h→ 0 (3.14)have been used, and the �rst estimate in (3.14) follows from the deay (3.9) of the oe�ients ofthe reiproal of the generating funtion ω. It then turns out (f. Eggermont [6℄ for more details)that the lower triangular matrix Dα

hA
α
h an be written as follows

Dα
hA

α
h = I + hKh with Kh = (kh,ℓ,j) ∈ R

(N+1)×(N+1) stritly lower triangular,
max

1≤j<ℓ≤N+1
|kh,ℓ,j | = O(1) as h→ 0.This representation and the disrete version of Gronwall's inequality now yields

‖(Dα
hA

α
h)−1‖∞ = O(1) as h→ 0. (3.15)The statement of the theorem now follows from the estimates (3.13) and (3.15).Remark 2 (a) For the produt-trapezoidal rule, a similar approah as in the proof of Theorem2 is onsidered in Eggermont [6℄.(b) It follows from the proof of Theorem 2 that in the situation of Assumption 1 the sheme(3.2) an be applied for n = p, p+1, . . . , N with starting values u1, u2, . . . , up−1 that are obtainedby other approahes. The only requirement is that estimate (3.7) is satis�ed.4 Perturbed dataWe now start with the main purpose of the present paper, this is, the onsideration of theregularizing properties of the sheme (3.2). Here we onsider the situation that only perturbeddata f δ

n are available at the grid points xn, respetively, with
|f δ

n − f(xn)| ≤ δ for n = 1, 2, . . . , N, (4.1)



Frational multistep methods for weakly singular Volterra equations of the �rst kind with noisy data 11where δ > 0 is a known noise level. In that situation the disrete equations (3.2) are modi�edas follows: For some given starting value uδ
0 ≈ u(0) determine approximations uδ

n ≈ u(xn) for
n = 1, 2, . . . , N suh that the identities

hα
n

X

j=0

ωn−j k(xn, xj)u
δ
j + hα

p−1
X

j=0

wn,j k(xn, xj)u
δ
j = f δ

n (4.2)are satis�ed for n = 1, 2, . . . , N . The proedure for determining these approximations is similarto the proedure for exatly given right�hand sides, f. Setion 3.1.We are now in a position to formulate the main results of this paper. As a preparation we onsiderthe following assumptions:Assumption 3 (a) The onditions in Assumption 1 are satis�ed,(b) the onditions (4.1) on the noise are satis�ed,() and uδ
0 is a starting value with uδ

0 − u(x0) = O(hp + δ/hα) as (h, δ) → 0.The following proposition provides an error estimate for the starting values.Proposition 3 Let the onditions of Assumption 3 be satis�ed, and let starting values uδ
1, u

δ
2,

. . . , uδ
p−1 be given by (4.2) for n = 1, 2, . . . , p− 1, respetively. Then there holds

max
n=1,2,...,p−1

|uδ
n − u(xn)| = O

(
hp +

δ
hα

) as (h, δ) → 0.Proof Due to the results in [15℄ whih are realled in the present paper it is su�ient to estimatethe di�erenes between the perturbed and the unperturbed approximations,
∆δ

n := uδ
n − un for n = 1, 2, . . . , p− 1.Here the approximations u1, u2, . . . , up−1 satisfy the unperturbed disrete equations (3.2), and

u0 denotes an arbitrary starting value with u0 − u(x0) = O(hp) as h → 0. A omparison of theidentities (4.2) and (3.2) gives
hα

p−1
X

j=1

ωn,j k(xn, xj)∆
δ
j = O(hp+α + δ) for n = 1, 2, . . . , p− 1, (4.3)where the weights ωn,j are introdued in (3.5). Note that the summation in (4.3) begins with

j = 1. A matrix�vetor formulation of (4.3) yields
‖SEδ

h‖∞ = O(hp+α + δ) as (h, δ) → 0, with Eδ
h = (∆δ

1, ∆
δ
2, . . . ,∆

δ
p−1)

⊤,with the matrix S from (3.6) whih is non�singular for su�iently small values h and satis�es
‖S−1‖∞ = O(h−α) as h→ 0, f. Setion 3. From this the statement of the proposition follows.The following theorem provides an error estimate for the approximations uδ

p, u
δ
p+1, . . . , u

δ
N .Theorem 4 Let the onditions of Poposition 3 be satis�ed. Then the error for the approximationsgiven by (4.2) for n = p, p+ 1, . . . , N an be estimated as follows:

max
n=p,p+1,...,N

|uδ
n − u(xn)| = O

(
hp +

δ
hα

) as (h, δ) → 0. (4.4)



12 R. PlatoProof Again it is su�ient to estimate the di�erenes
∆δ

n := uδ
n − un for n = 0, 1, . . . , N,where the approximations u1, u2, . . . , uN satisfy the unperturbed disrete equations (3.2) for

n = 1, 2, . . . , N , and u0 denotes an arbitrary starting value with u0 − u(x0) = O(hp) as h → 0.From that we obtain
hα

n
X

j=0

ωn−j k(xn, xj)∆
δ
j = O(hp+α + δ) as (h, δ) → 0 for n = 0, 1, . . . , N (4.5)uniformly with respet to n. Here the assumptions on the approximation properties of the start-ing values and the boundedness of the starting weights are used, f. (2.18). A matrix�vetorformulation of (4.5) is as follows,

‖Aα
hE

δ
h‖∞ = O(hp+α + δ) as (h, δ) → 0, with Eδ

h = (∆δ
0, ∆

δ
1, . . . ,∆

δ
N )⊤, (4.6)with the same notations for the matrix Aα

h ∈ R
(N+1)×(N+1) as in the proof of Theorem 2 on theerror of the onsidered sheme (3.2) with unperturbed data. From the estimate ‖(Aα

h)−1‖∞ =

O(h−α) as h → 0 (f. estimates (3.14) and (3.15) in the proof of Theorem 2) we �nally obtainthe estimate (4.4).As an immediate onsequene of Proposition 3 and Theorem 4 we obtain the following mainresult of this paper.Corollary 1 Let Assumption 3 be satis�ed, and let h = h(δ) be step sizes with h ∼ δ1/(p+α) as
δ → 0. Then the error for the approximations (given by (4.2) for n = 1, 2, . . . , N , respetively)an be estimated as follows:

max
n=0,1,...,N

|uδ
n − u(xn)| = O(δp/(p+α)) as δ → 0.Here h ∼ δ1/(p+α) means that there exist real onstants c2 ≥ c1 > 0 suh that c1h ≤ δ1/(p+α) ≤

c2h as δ → 0.We onlude this setion with some important remarks.Remark 3 (a) It follows from the onsidered proofs that also starting values uδ
1, u

δ
2, . . . , u

δ
p−1obtained by other shemes than (4.2) an be used. In the situation of Corollary 1 the onlyrequirement is uδ

n − u(xn) = O(δp/(p+α)) as δ → 0 for n = 1, 2, . . . , p− 1.(b) The smoothness onditions on the solution u onsidered in Assumption 1 are satis�ed (andadditionally, the existene of the solution u an be guaranteed then), if the exat right�hand side
f an be written in the form f(x) = xαg(x) with a funtion g ∈ Cp+2[0, L ] and if in additionthe kernel k(x, y) has for 0 ≤ y ≤ x ≤ L ontinuous partial derivatives up to the order p+ 3, f.Atkinson [1℄ for the details.() In the situation of part (b) of this remark there holds αg(0) = u(0) whih follows by simplealulations. Thus, for general values of h a possible strategy for the determination of a startingvalue uδ

0 is to onsider the interpolating polynomial P δ of degree not larger than p − 1 whihsatis�es P δ(xr) = f δ(xr)/x
α
r for r = 1, 2, . . . , p. The hoie uδ

0 = αP δ(0) = u(0) +O(hp + δ/hα)then gives a starting value of su�iently good auray.



Frational multistep methods for weakly singular Volterra equations of the �rst kind with noisy data 13(d) For other speial regularization methods for the approximate solution of Volterra integralequations of the �rst kind with perturbed right�hand sides and with possibly weakly singularkernels, see e.g., Bughgeim [3℄, Goren�o/Vessella [7℄, Lamm [12℄ and the referenes therein.(e) The presented propositions and theorems an be extended to Volterra integral equations ofthe �rst kind without weak singularities, this is the ase α = 1 in the Volterra integral equationof the �rst kind (1.1). The orresponding proofs have to be modi�ed at some plaes. For example,for the proof of estimate (3.15) we need (in the ase α = 1) that the oe�ients of the generatingfuntion ω(ξ) and its reiproal 1/ω(ξ) an be written as follows,
ωn = a + O(qn), ω(−1)

n = O(qn) as n→ ∞ (4.7)for some real number 0 < q < 1 and a ∈ R. The representations in (4.7) in fat follow fromthe representation (2.10)�(2.11). For the appliation of multistep methods to Volterra integralequations of the �rst kind without weak singularities and with exatly given right�hand sides seeWolkenfelt [17℄.5 Examples of frational multistep methods for weakly singular Volterra operators,and numerial experiments5.1 Multistep methods for initial value problemsIn this setion we will onsider speial onvolution quadrature methods of the form (2.2) forthe numerial approximation of the Abel integral operator (2.1). As a preparation onsider thesimple initial value problem
f ′(x) = u(x) for 0 ≤ x ≤ L, f(0) = 0, (5.1)where the funtion u : [0, L ] → R is given, and the funtion f : [0, L ] → R has to be determined.For the numerial solution of the initial value problem (5.1) we onsider linear multistep methodswhih are of the following form,

m
X

j=0

αjfn+j = h
m

X

j=0

βjun+j for n = 0, 1, . . . , N −m, (5.2)with given real oe�ients α0, α1, . . . , αm and β0, β1, . . . , βm, with m ∈ N and αm 6= 0, βm 6= 0.For given starting values f0, f1, . . . , fm−1, the identities (5.2) are used to determine suessivelyfor n = m, m+ 1, . . . , N approximations fn to the numbers f(xn), respetively.An important lass of examples are BDF methods:Example 1 For m = 1, 2, . . . , 6, the m�step BDF method for solving the initial value problem(5.1) is as follows, respetively:
m∑

k=1

1
k
∇kfn+m = hun+m for n = 0, 1, . . . , N −m, (5.3)with the reursively de�ned bakward di�erenes. See e.g., Hairer / Nørsett /Wanner [10℄ or [16℄for an introdution to BDF methods. For m ≤ 3, the BDF methods are of the following form,respetively:

m = 1 : fn+1 − fn = hun+1;

m = 2 : 1
2(3fn+2 − 4fn+1 + fn) = hun+2;

m = 3 : 1
6(11fn+3 − 18fn+2 + 9fn+1 − 2fn) = hun+3.



14 R. PlatoIn partiular, for m = 1 the impliit Euler sheme is obtained.For an arbitrary multistep method, the numbers f0, f1, . . . , fN an be written in an expliit form.For this purpose we onsider the assoiated generating polynomials
ρ(ξ) =

m
X

j=0

αj ξ
j, σ(ξ) =

m
X

j=0

βj ξ
j (5.4)as well as the orresponding formal power series

τ(ξ) =
σ(1/ξ)

ρ(1/ξ)
=:

∞
X

s=0

τs ξ
s. (5.5)It turns out that the approximations fm, fm+1, . . . , fN given by (5.2) an be written in theexpliit form fn = h

∑n
s=0 τn−sus for n = m, m+ 1, . . . , N provided that the starting values f0,

f1, . . . , fm−1 are of similar form. As an example onsider again the BDF methods. For eah mthere obviously holds σ(ξ) = ξm, and hene the orresponding formal power series is of the form
τ(ξ) = [ξmρ(1/ξ)]−1. (5.6)Examining the representation (5.3) in more detail shows that ξmρ(1/ξ) =

∑m
k=1(1−ξ)

k /k holds.5.2 Frational multistep methodsFor a given multistep method (5.2) for solving the initial value problem (5.1) we now reall brie�ythe basi properties of the orresponding frational multistep method. For this purpose we writethe formal power series (5.5) as follows, τ(ξ) = τ0 (1 + q(ξ)) with the oe�ient τ0 = βm/αmwhih is assumed to be positive, τ0 > 0. The binomial formula then gives for 0 < α < 1

τ(ξ)α = τα
0

∞
X

n=0

(α
n

)
q(ξ)n =:

∞
X

n=0

ωnξ
n =: ω(ξ). (5.7)The orresponding frational multistep method (for the approximation of the Abel integral opera-tor (2.1)) is by de�nition of the form (Ωhu)(x) = hα

∑n
j=0 ωn−j u(jh), with oe�ients ω0, ω1, . . .as in (5.7). These oe�ients an be omputed in a stable way by Newton's method for for-mal power series, whih now will be desribed brie�y for BDF methods, f. Hairer / Lubih /Shlihte [9℄. In fat, for BDF methods the equation (5.7) an be written as

F (ω(ξ)) := ω(ξ)−1/α − ξmρ(1/ξ)
︸ ︷︷ ︸
=: ρ̃(ξ)

= 0. (5.8)In the ase α = 1/M with M ≥ 2 being some integer, the equation (5.8) easily an be solvedby Newton's method for formal power series. This generates a sequene of formal power series
ω[ 1 ](ξ), ω[ 2 ](ξ), . . . whih here takes the form

ω[s+1](ξ) = (1 + α)ω[s ](ξ) − α
{

[ω[s ](ξ)]1+1/α ρ̃(ξ)
}

2s+1 for s = 0, 1, . . . . (5.9)Here, the notation {a(ξ)}r =
∑r

n=0 anξ
n is used as a trunation of a given formal power series

a(ξ) =
∑∞

n=0 anξ
n. In addition it an be shown (Henrii [11℄) that the �rst 2s oe�ients ofthe formal power series ω[s ](ξ) and the solution ω(ξ) of the equation (5.8) oinide if ω[ 0 ](ξ) ≡

1/ρ̃(0)α is hosen in (5.9) as initial formal power series.



Frational multistep methods for weakly singular Volterra equations of the �rst kind with noisy data 155.3 Convergene order and stability of frational multistep methodsIt is well-known (f. [10℄) that a multistep method (5.2) for solving the simple initial valueproblem (5.1) is onsistent of order p if and only if
hτ(e−h) = 1 + O(hp) as h → 0 (5.10)holds for the orresponding generating funtion (5.5). It is supposed here that the generatingfuntion τ(ξ) onverges for |ξ | < 1. For the frational power series ω(ξ) = τ(ξ)α we then have
hαω(e−h) = 1 + O(hp) as h→ 0. (5.11)It is shown in Lubih [14℄ that a onvolution quadrature method (2.2), with a generating funtion(2.9) that is representable as in (2.10)�(2.11) and satis�es (5.11), is onvergent of order p.We next onsider the ondition (2.10)�(2.11) on the representation for generating funtions offrational multistep methods, and we restrit here the onsiderations to frational BDF methodswith m ≤ 6. It an be shown that the denominator in (5.6) always has ξ = 1 as a simple root,and all other roots belong to the exterior of the losed unit dis. The orresponding funtion

τ(ξ)α an be written as
τ(ξ)α = [ξmρ(1/ξ)]−α = (1 − ξ)−αω̃(ξ).From the binomial expansion it follows that the onsidered funtion ω̃(ξ) is holomorphi andhas no roots in the disk B1+ε = { ξ ∈ C : |ξ | < 1 + ε }, with some ε > 0. This �nally givesthe required representation (2.10)�(2.11) for the generating funtion τ(ξ)α of the onsideredfrational BDF method.5.4 Numerial experimentsAs an illustration of the main result onsidered in Corollary 1, we next present the results ofsome numerial experiments. We onsider the following linear weakly singular Volterra integralequation of the �rst kind,

∫ x

0
(x− y)−1/2 e−(x−y)u(y) dy = e−x (x5 + x7 + x9) for 0 ≤ x ≤ 1, (5.12)with exat solution

u(y) = e−y
( 5!

Γ (5.5)
y9/2 +

6!

Γ (6.5)
y11/2 +

7!

Γ (7.5)
y13/2

) for 0 ≤ y ≤ 1,and thus in partiular u ∈ C4[0, 1]. Here are some additional informations on the numerialtests:
• the BDF method of order 3 is hosen;
• numerial experiments with the step sizes N = 2q − 1 for q = 5, 6, . . . , 11 are employed;
• for eah onsidered step size h, the noise level δ = hp+α = h3.5 is onsidered;
• in the numerial experiments, the perturbations are of the form f δ

n = f(xn) + ∆n withuniformly distributed random values ∆n with |∆n | ≤ δ;
• in eah experiment, the starting value uδ

0 is determined by the strategy desribed in part ()of Remark 3.



16 R. PlatoTable 1. Numerial results
N δ 100 ∗ δ/‖f‖∞ maxn |uδ

n − u(xn) | maxn |uδ
n − u(xn) | /δ6/731 6.0 ∗ 10−6 5.46 ∗ 10−4 2.30 ∗ 10−3 68.563 5.0 ∗ 10−7 4.56 ∗ 10−5 3.00 ∗ 10−4 75.1127 4.3 ∗ 10−8 3.93 ∗ 10−6 3.89 ∗ 10−5 79.7255 3.8 ∗ 10−9 3.42 ∗ 10−7 4.85 ∗ 10−6 80.5511 3.3 ∗ 10−10 3.00 ∗ 10−8 6.17 ∗ 10−7 82.31023 2.9 ∗ 10−11 2.65 ∗ 10−9 7.69 ∗ 10−8 82.32047 2.6 ∗ 10−12 2.33 ∗ 10−10 9.69 ∗ 10−9 83.2Experiments are employed using the interative program system Otave (http://www.otave.org).The results are shown in Table 1, where ‖f‖∞ denotes the maximum norm of the funtion f .We onlude this paper with some additional omments on the numerial experiments.(a) The relative errors presented in the third olumn of Table 1 are relatively small.(b) Almost the same results as in Table 1 are obtained if all starting values are hosen to be zero,

uδ
0 = uδ

1 = uδ
2 = 0. This is no surprise sine the exat solution of equation (5.12) satis�es

u(0) = u′(0) = u′′(0) = 0.() Similar numerial experiments were employed with an equation where the solution is ofthe form u(y) = e−y( 1
Γ (1.5)y

1/2 + 3!
Γ (3.5)y

5/2 + 5
Γ (5.5)y

9/2) for 0 ≤ y ≤ 1. Here the ratios
maxn |u

δ
n − u(xn)| /δ6/7 deteriorate as N inreases. This is no surprise sine the solution udoes not satisfy the required smoothness ondition of Assumption 1.Referenes1. K. E. Atkinson. An existene theorem for Abel integral equations. SIAM J. Math. Anal., 5(5):729�736, 1974.2. H. Brunner and P. J. van der Houwen. The Numerial Solution of Volterra Equations. Elsevier, Amsterdam,1 edition, 1986.3. A. L. Bughgeim. Volterra Equations and Inverse Problems. VSP, Zeist, 1 edition, 1999.4. R. F. Cameron and S. MKee. The analysis of produt integration methods for Abel's equation using frationaldi�erentiation. IMA J. Numer. Anal., 5:339�353, 1985.5. J. Durbin. Boundary rossing probabilities for the Brownian motion and Poisson proesses and tehniquesfor omputing the power of the Kolmogorov-Smirnov test. J. Appl. Prob., 8:431�453, 1971.6. P.P.B. Eggermont. A new analysis of the trapeziodal-disretization method for the numerial solution ofAbel-type integral equations. J. Integral Equations, 3:317�332, 1981.7. R. Goren�o and S. Vessella. Abel Integral Equations. Springer-Verlag, New York, 1st edition, 1991.8. W. Hakbush. Integral Equations. Birkhäuser, Basel, 1 edition, 1995.9. E. Hairer, Ch. Lubih, and M. Shlihte. Fast numerial solution of weakly singular integral equations.J. Comp. Appl. Math., 23:87�98, 1988.10. E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Di�erential Equations I, Nonsti� Problems.Springer, Berlin, 2 edition, 1993.11. P. Henrii. Applied and Computational Complex Analysis Vol. 3. Wiley, New York, 1 edition, 1986.12. P. Lamm. A survey of regularization methods for �rst-kind Volterra equations. In D. Colton, H. W. Engl,A. K. Louis, J. R. MLaughlin, and W. Rundell, editors, Surveys on Solution Methods for Inverse Problems,pages 53�82, Vienna, New York, 2000. Springer.13. I. Lerhe and E. Zeitler. Projetions, reonstrutions and orthogonal funtions. J. Math. Anal. Appl., 56:634�649, 1976.14. Ch. Lubih. Disretized frational alulus. SIAM J. Math. Anal., 17(3):704�719, 1986.15. Ch. Lubih. Frational linear multistep methods for Abel-Volterra integral equations of the �rst kind. IMAJ. Numer. Anal., 7:97�106, 1987.16. R. Plato. Conise Numerial Mathematis. AMS, Providene, Rhode Island, 1 edition, 2003.
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