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Fra
tional multistep methods for weakly singular Volterraintegral equations of the �rst kind with perturbed dataR. Plato ⋆Institute of Mathemati
s, Te
hni
al University Berlin,Straÿe des 17. Juni 135, 10623 Berlin, Germany,Email: plato�math.tu-berlin.deRe
eived: date / Revised version: dateSummary In this paper we 
onsider the regularizing properties of fra
tional multistep methodsfor the stable solution of linear weakly singular Volterra integral equations of the �rst kind withperturbed right�hand sides.1 Introdu
tionIn this paper we 
onsider linear weakly singular Volterra integral equations whi
h are of thefollowing form,

(Au)(x) =
1

Γ (α)

∫ x

0
(x− y)−(1−α)k(x, y)u(y) dy = f(x) for 0 ≤ x ≤ L, (1.1)with 0 < α < 1 and some real number L > 0, and with a su�
iently smooth kernel fun
tion

k : [0, L ]×[0, L ] → R, and Γ denotes Euler's gamma fun
tion. For appli
ations see e.g. Durbin [5℄and Ler
he/Zeitler [13℄, where 
rossing probabilities for Brownian motions and the inversion ofthe two-dimensional Radon transform are 
onsidered, respe
tively. In the sequel we will supposethat the kernel fun
tion does not vanish on the diagonal 0 ≤ x = y ≤ L, and without loss ofgenerality we then may assume that
k(x, x) = 1 for 0 ≤ x ≤ L (1.2)holds. Moreover, the fun
tion f : [0, L ] → R is supposed to be known approximately, and afun
tion u : [0, L ] → R satisfying equation (1.1) has to be determined.There exists many 
lasses of methods for the approximate solution of equation (1.1) if the right�hand side f is exa
tly given, see e.g., Brunner/van der Houwen [2℄ and Ha
kbus
h [8℄. One ofthese 
lasses are fra
tional multistep methods whi
h are introdu
ed by C. Lubi
h ([14℄, [15℄).In the present paper we review these methods (
f. Se
tions 2 and 3) and then 
onsider theirregularizing properties when the right�hand side in equation (1.1) is only approximately given(
f. Se
tion 4). Finally fra
tional BDF methods are 
onsidered in more detail and numeri
alillustrations are presented (
f. Se
tion 5).

⋆ Supported by the DFG Resear
h Center "Mathemati
s for key te
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2 R. Plato2 Review of a 
lass of 
onvolution quadrature methods and the basi
 notationsIn this se
tion we re
all (with slight modi�
ations o

asionally) the basi
 notations and resultsfrom the paper [14℄.2.1 Quadrature methods of 
onvolution formAs a �rst step we 
onsider in (1.1) the spe
ial situation k ≡ 1, with the 
orresponding integraloperator being the 
lassi
al Abel integral operator
(Vαu)(x) =

1

Γ (α)

∫ x

0
(x− y)−(1−α)u(y) dy for 0 ≤ x ≤ L, (2.1)where u : [0, L ] → R is supposed to be a 
ontinuous fun
tion. For the numeri
al approximationof the integral (Vαu)(x) with 0 ≤ x ≤ L we 
onsider 
onvolution quadrature methods of the form

(Ωhu)(x) = hα
n

X

j=0

ωn−j u(jh) for h = x/n, n = 1, 2, . . . . (2.2)Here ω0, ω1, . . . denotes an in�nite sequen
e of real 
oe�
ients whi
h is assumed to be indepen-dent of the 
onsidered point x and the stepsize h. More 
onditions on these weights as well asexamples will be 
onsidered later in this subse
tion.The error of the 
onvolution quadrature method (2.2) at a point 0 ≤ x ≤ L is then given by
(Ehu)(x) = (Ωhu)(x) − (Vαu)(x) for h = x/n, n = 1, 2, . . . . (2.3)The 
onvergen
e order of a quadrature method (2.2) is determined by the error of the method withrespe
t to monomials, see the following de�nition. As a preparation we note that the 
onsideredquadrature method of 
ourse may be applied to fun
tions u whi
h are de�ned on other intervalsthan [0, L ]. In addition, the approximation (Ωhu)(x) is independent of the right�hand endpoint

L so that it is not ne
essary to refer to the parti
ular 
hoi
e of L, 
f. De�nition 1 below.De�nition 1 The 
onvolution quadrature method (2.2) for the numeri
al integration of (2.1) is
alled 
onvergent of p ≥ 1, if
(Ehy

q)(1) = O(hq+1) as h = 1/n → 0 (q = 0, 1, . . . , p− 1). (2.4)Note that in (2.4) the error is 
onsidered only at the point x = 1. For a given su�
iently smoothfun
tion u : [0, L ] → R we next 
onsider the error (Ehu)(x) of the 
onvolution quadraturemethod (2.2). This error 
an be written as follows,
(Ehu)(x) =

p−1
X

r=0

u(r)(0)

r!
(Ehy

r)(x) + (EhRp)(x) for h = x/n, (2.5)for n = 1, 2, . . ., with the remainder Rp(y) =
1

(p − 1)!

∫ y
0 (y − z)p−1u(p)(z) dz. For a 
onvolutionquadrature method (2.2) of 
onvergen
e order p, subsequently for ea
h point x = nh the weightsfor the starting values u(jh) for j = 0, 1, . . . , p − 1 will be modi�ed to eliminate the errors

(Ehy
r)(x) for r = 0, 1, . . . , p − 1, 
f. Se
tion 2.3 for more details. It then basi
ally remains to
onsider the quadrature error of the remainder, whi
h will be done �rst (
f. Se
tion 2.2).



Fra
tional multistep methods for weakly singular Volterra equations of the �rst kind with noisy data 3We 
on
lude this subse
tion with some preparatory 
onsiderations. First, it turns out to be usefulto extent the de�nition of the 
onvolution quadrature method (2.2) to arbitrary step sizes h andpoints x as follows,
(Ωhu)(x) = hα

⌊x/h⌋
X

j=0

ωj u(x− jh) for h > 0, 0 ≤ x ≤ L, (2.6)where ⌊z ⌋ denotes the largest integer ≤ z. The error (Ehu)(x) 
onsidered in (2.3) then 
an easilybe extended to arbitrary step sizes h by using the extended de�nition (2.6) of the 
onsideredquadrature method. For this extended de�nition of the 
onsidered quadrature method there holds
(Eh (u ∗ v ))(x) = ((Ehu) ∗ v )(x) for h > 0, 0 ≤ x ≤ L (2.7)for 
ontinuous fun
tions u, v : [0, L ] → R. We re
all that the 
onvolution ϕ ∗ ψ : [0, L ] → R oftwo arbitrary 
ontinuous fun
tions ϕ, ψ : [0, L ] → R is given by (ϕ ∗ψ )(x) =

∫ x
0 ϕ(x−y)ψ(y) dyfor 0 ≤ x ≤ L. Additionally for integers q = 0, 1, . . . we have

(Ehy
q)(x) = xα+q(Eh/xy

q)(1) for h > 0, x > 0. (2.8)Both representations (2.7) and (2.8) follow from similar properties of the Abel integral operatorand the quadrature method, respe
tively.We need some properties of the weights ω0, ω1, . . . 
onsidered in the 
onvolution quadraturemethod (2.2), and for this purpose these weights are 
onsidered as the 
oe�
ients of a powerseries,
ω(ξ) =

∞
X

n=0

ωn ξ
n, (2.9)whi
h is 
alled the generating fun
tion of the quadrature method (2.2). We suppose that thispower series 
onverges for |ξ | < 1, and in addition in this paper we restri
t the 
onsiderations tothose generating fun
tions ω(ξ) whi
h 
an be represented as follows,

ω(ξ) = (1 − ξ)−α ω̃(ξ), ω̃(ξ) holomorphi
 on B1+ε = { ξ ∈ C : |ξ | < 1 + ε }, (2.10)
ω̃(ξ) 6= 0 for ξ ∈ B1+ε, (2.11)with some real number ε > 0. The representation (2.10)�(2.11) has impli
ations on the de
ay ofthe 
oe�
ients ωn,

ωn = an−(1−α) + O(n−(2−α)) as n→ ∞ (2.12)with some real 
onstant a 6= 0. In fa
t, (2.12) is a stability property. Examples of generatingfun
tions satisfying (2.10)�(2.11) are given in Se
tion 5.2.2 Appli
ation of the 
onsidered quadrature method to the Taylor expansion remainder: anerror analysisWe next present an error representation of the 
onvolution quadrature method (2.2) applied tothe Taylor expansion remainder 
onsidered in (2.5). This representation di�ers from the errorexpansion 
onsidered in [15℄ and requires in the subsequent proofs slightly less smoothness ofthe involved fun
tions. For an integer r ≥ 1, in the following Cr[0, L ] denotes the set of r�times
ontinuously di�erentiable fun
tions f : [0, L ] → R.



4 R. PlatoProposition 1 Let the 
onvolution quadrature method (2.2) be 
onvergent of order p ≥ 1 and berepresentable as in (2.10)�(2.11). Then for ea
h fun
tion u ∈ Cp+1[0, L ], the quadrature errorof the remainder 
onsidered in (2.5) 
an be written as
(EhRp)(x) = cph

p+α
n

X

j=0

ωn−j u
(p)(jh) + O(hp+α) for x = nh,

n = 0, 1, . . . , N (2.13)for h→ 0 uniformly with respe
t to x, with some real 
onstant cp.Proof As a �rst step one derives the following error representation for general step sizes,
(Ehy

p−1)(1) = c(h)hp + O(hp+1) for 0 < h ≤ 1, h→ 0, (2.14)where the fun
tion c : [0, 1] → R is de�ned on subintervals as follows,
c(h) =

p
X

s=0

as(h
−1 − n)s for 1

n + 1
< h ≤

1
n
, n = 1, 2, . . . .Here a0, a1, . . . , ap denote some 
oe�
ients whi
h are independent of h. The veri�
ation of therepresentation (2.14) requires several simple te
hni
al 
omputations whi
h are omitted here.We now 
onsider the error of the 
onvolution quadrature method (2.2) applied to the Taylorexpansion remainder 
onsidered in (2.5),

(EhRp)(x) =
1

(p− 1)!

∫ x

0
(Ehy

p−1)(z)u(p)(x− z) dz =: 1
(p−1)!(I1 + I2),with the integrals (with x = nh)

I1 =

∫ h

0
zα+p−1(Eh/z y

p−1)(1)u(p)(x− z) dz

I2 =

∫ nh

h
� dz,where the identities (2.7) and (2.8) have been applied. It follows easily that I1 = O(hp+α) holdsas h → 0, and we now 
onsider the se
ond integral I2. Here we use the asymptoti
 behavior ofthe quadrature error (Ehy

p−1)(1) 
onsidered in (2.14). The term O(hp+1) appearing there is ofsu�
iently good a

ura
y, and the �rst term on the right�hand side of the identity (2.14) 
anbe treated as follows,
∫ nh

h
zα+p−1c

(
h
z

)
(h

z )pu(p)(x− z) dz = eph
p+α

n−1
X

j=1

(n− j)−(1−α)u(p)(jh) + O(hp+α)

= cph
p+α

n
X

j=0

ωn−ju
(p)(jh) + O(hp+α)with the 
onstants ep =

∑p
s=0 as/(s + 1) and cp = ep/a, where the number a 
orresponds tothe asymptoti
 expansion (2.12). The 
onstants in the two appearing Landau symbols dependon max0≤x≤L |u(p+1)(x)| and max0≤x≤L |u(p)(x)|, respe
tively, and they do not depend on the
onsidered grid point x = nh. This 
ompletes the proof.Remark 1 For the produ
t-trapezoidal rule, in Eggermont [6℄ an error representation is givenwhi
h is similar to the representation 
onsidered in Proposition 1. Some 
orresponding results
onsidered in a more general 
ontext 
an be found in Cameron/M
Kee [4℄.



Fra
tional multistep methods for weakly singular Volterra equations of the �rst kind with noisy data 52.3 Starting weightsIn the sequel the 
onvolution quadrature method (Ωhu)(x) given by (2.2) is 
onsidered at uni-formly distributed grid points x = nh for n = 1, 2, . . . , N , where the integer N and the step size
h are related as follows,

h = L/N.In addition we suppose that the 
onvolution quadrature method (Ωhu)(x) has 
onvergen
e order
p and 
onsider then the modi�
ation

(Ω̃hu)(x) :=

= (Ωhu)(x)︷ ︸︸ ︷
hα

n
X

j=0

ωn−j u(jh) + hα
p−1
X

j=0

wn,j u(jh) for x = nh (2.15)as approximations to the fra
tional integral (Vαu)(x) for x = nh with n = 1, 2, . . . , N , respe
-tively. Here, wn,j for j = 0, 1, . . . , p− 1 are 
ertain 
orre
tion weights for the starting values tobe spe
i�ed. Due to the form of the se
ond sum in (2.15) it is ne
essary to impose the te
hni
al
ondition h(p − 1) ≤ L.In the modi�ed quadrature method (2.15), for ea
h n = 1, 2, . . . , N a reasonable approa
h is to
hoose starting weights su
h that (2.15) is exa
t at x = nh for all polynomials of degree ≤ p− 1,i.e.,
(Ω̃hy

q)(x) = (Vαy
q)(x) for q = 0, 1, . . . , p− 1. (2.16)This means

p−1
X

j=0

wn,j j
q =

Γ (q + 1)

Γ (α + q + 1)
nα+q −

n
X

j=0

ωn−j j
q for q = 0, 1, . . . , p− 1, (2.17)whi
h in fa
t is a linear system of p equations for the unknowns wn,j, j = 0, 1, . . . , p− 1 with aVandermonde matrix whi
h does not depend on n. Sin
e the right�hand side of the identity in(2.17) is O(n−(1−α)), there holds the estimate

wn,j = O(n−(1−α)) as n→ ∞ for j = 0, 1, . . . , p− 1. (2.18)Note that the 
onsidered approa
h for determining the starting weights 
annot be applied in the
ase x = 0. In that 
ase one obtains (Ω̃hy
q)(0) = 0 for q = 0, 1, . . . , p− 1 whi
h 
annot be usedin the subsequent 
onsiderations on the numeri
al solution of integral equations of the �rst kind.We now 
onsider the error of the modi�ed quadrature method,

(Ẽhu)(x) = (Ω̃hu)(x) − (Vαu)(x) for h = x/n, n = 1, 2, . . . .For �xed step size h this error 
an be written as
(Ẽhu)(x) = (EhRp)(x) + hα

p−1
X

j=0

wn,jRp(jh). (2.19)With the same assumptions as in Proposition 1, the �rst term on the right�hand side of (2.19)
an be written in the form cph
p+α

∑n
j=0 ωn−j u

(p)(jh) +O(hp+α). In addition, the sum in (2.19)



6 R. Platois of the form O(hp+1) whi
h follows from (2.18). As an immediate result we obtain the followingrepresentation of the error of the modi�ed quadrature method:
(Ẽhu)(x) = cph

p+α
n

X

j=0

ωn−j u
(p)(jh) + O(hp+α) for x = nh,

n = 0, 1, . . . , N, (2.20)for h→ 0 uniformly with respe
t to x, with some real 
onstant cp.3 Numeri
al solution of weakly Volterra integral equations of the �rst kind by themodi�ed quadrature method3.1 Introdu
tory remarks and the basi
 algorithmIn this se
tion we re
all the basi
 result of the paper [15℄. For this purpose we again 
onsider theweakly singular Volterra integral equation of the �rst kind (1.1) and suppose that it has a uniquesolution u : [0, L ] → R (su�
ient 
onditions are given at the end of Se
tion 4). Additionally wesuppose that the values of the right�hand side of equation (1.1) are exa
tly given at uniformlydistributed grid points
xn = nh for n = 1, 2, . . . , N, (3.1)respe
tively. In the sequel we 
onsider a 
onvolution quadrature method of the form (2.2) whi
hhas 
onvergen
e order p. In addition modi�ed starting weights as in (2.15) are used to determineapproximations un ≈ u(xn) for n = 1, 2, . . . , N . This means that for a given starting value

u0 ≈ u(0), approximations u1, u2, . . . , uN have to be determined su
h that the identities
hα

n
X

j=0

ωn−j k(xn, xj)uj + hα
p−1
X

j=0

wn,j k(xn, xj)uj = f(xn) (3.2)are satis�ed for n = 1, 2, . . . , N . Note that the assumption k ≡ 1 is now omitted, and thegeneral situation for the kernel k is 
onsidered in the sequel. The pro
edure for determiningthese approximations is as follows:(a) First determine a starting value u0 ≈ u(0). One of the reasonable algorithms is 
onsideredat the end of Se
tion 4.(b) Then solve (3.2) for n = 1, 2, . . . , p− 1. This leads to a linear system of p− 1 equations forthe p− 1 unknowns u1, u2, . . . , up−1.(
) The identities (3.2) then are used su

essively for n = p, p + 1, . . . , N to determine theapproximations up, up+1, . . . , uN , respe
tively.We next present the approximation properties of the s
heme (3.2). As a preparation we formulatethe basi
 assumptions.Assumption 1 (a) The 
onvolution quadrature method (2.2) is 
onvergent of order p ≥ 1,(b) the 
orresponding generating fun
tion ω(ξ) 
onsidered in (2.9) 
an be represented as in(2.10)�(2.11),(
) the starting weights are determined a

ording to the 
onditions in (2.16),(d) the kernel fun
tion k in the integral operator (1.1) has 
ontinuous partial derivatives up to theorder p+1 on [0, L ]× [0, L ], and the solution u of the integral equation (1.1) is (p+1)-times
ontinuously di�erentiable on the interval [0, L ],
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tional multistep methods for weakly singular Volterra equations of the �rst kind with noisy data 7(e) and k(x, x) = 1 holds for ea
h 0 ≤ x ≤ L.At the end of Se
tion 4, 
onditions on the right�hand side of the 
onsidered weakly singularVolterra integral equation of the �rst kind are given whi
h guarantee the existen
e of a solution
u satisfying (d) in Assumption 1.As another preparation we present a useful result on the quadrature error for general kernels k.For this we introdu
e notations for the error of the s
heme (3.2),

en := u(xn) − un for n = 0, 1, . . . , N. (3.3)If the 
onditions in Assumption 1 are satis�ed, then there holds
hα

n
X

j=0

ωn−j k(xn, xj)ej + hα
p−1
X

j=0

wn,j k(xn, xj)ej

= cph
p+α

n
X

j=0

ωn−jϕ(xj) + O(hp+α) for n = 1, 2, . . . , N (3.4)uniformly with respe
t to n, with the fun
tion ϕ(x) = dp

dyp

{
k(x, y)u(y)

}
|y=x

for 0 ≤ x ≤ L.For ea
h n the representation (3.4) follows from the representation (2.20), with the fun
tion urepla
ed by the fun
tion y 7→ k(xn, y)u(y) 
onsidered on the interval [0, xn ] there.3.2 Uniqueness, existen
e and approximation properties of the starting valuesWe now 
onsider uniqueness, existen
e and approximation properties of the starting values u1,

u2, . . . , up−1. As a �rst step we 
onsider in more detail the linear system of equations
hα

p−1
X

j=0

(ωn−j +wn,j
︸ ︷︷ ︸

=: ωn,j

)k(xn, xj)uj = f(xn) for n = 1, 2, . . . , p− 1, (3.5)with the notation ωn = 0 for n < 0. The linear system of equations (3.5) 
an be written in theform
=: S︷ ︸︸ ︷

hα




ω1,1k1,1 ω1,2k1,2 · · · ω1,p−1k1,p−1

ω2,1k2,1 ω2,2k2,2 · · · ω2,p−1k2,p−1... ... ...
ωp−1,1kp−1,1 ωp−1,2kp−1,2 · · · ωp−1,p−1kp−1,p−1







u1

u2...
up−1




(3.6)
=




f(x1)

f(x2)...
f(xp−1)




− hα




ω1,0k0,0

ω2,0k1,0...
ωp−1,0kp−1,0



u0



8 R. Platowith the notation
kn,j = k(xn, xj) for 0 ≤ j, n ≤ p− 1.It turns out that the matrix S = S(h) ∈ R

(p−1)×(p−1) in (3.6) is non�singular for su�
ientlysmall values h, and ‖S−1‖∞ = O(h−α) holds for h → 0 where ‖ · ‖∞ denotes the matrix normindu
ed by the maximum norm for ve
tors. This estimate for the matrix S−1 is obtained by
onsidering �rst the 
ase k ≡ 1 and applying the representation (2.17), and the general 
ase isthen obtained by using a perturbation argument.We now present the approximation properties of the 
onsidered starting values u1, u2, . . . , up−1.Proposition 2 Let Assumption 1 be satis�ed, let u0 be a starting value with u0 −u(x0) = O(hp)as h → 0, and let the other starting values u1, u2, . . . , up−1 be determined by (3.2) for n = 1, 2,

. . . , p− 1. Then there holds
max

n=1,2,...,p−1
|un − u(xn)| = O(hp) as h→ 0. (3.7)Proof We repeat from [15℄ the basi
 steps of the proof sin
e some of these steps are also neededin the proof of the main result in the present paper (
f. Se
tion 4). The error representation (3.4)and the assumptions on the approximation properties of the starting value u0 yield

hα
p−1
X

j=1

ωn,j k(xn, xj)ej = O(hp+α) for n = 1, 2, . . . , p− 1. (3.8)A matrix�ve
tor formulation of (3.8) gives
‖SEh‖∞ = O(hp+α) as h→ 0, with Eh := (e1, e2, . . . , ep−1)

⊤with the matrix S from (3.6) whi
h is non�singular for su�
iently small values h, with ‖S−1‖∞ =

O(h−α) as h→ 0, see the statements above. Here and in the sequel, ‖ ·‖∞ denotes the maximumnorm for ve
tors as well as the indu
ed matrix norm, respe
tively. From this the estimate (3.7)follows.3.3 The approximation properties of the values up, up+1, . . . , uNWe now present the main result on the 
onvergen
e order of the approximations obtained by thes
heme (3.2). As a preparation 
onsider the re
ipro
al
1

ω(ξ)
=

∞
X

n=0

ω(−1)
n ξnof the generating fun
tion ω(ξ) =

∑∞
n=0 ωn ξ

n. It is an immediate 
onsequen
e of the represen-tation (2.10)�(2.11) that the 
oe�
ients of the re
ipro
al fun
tion 1/ω(ξ) satisfy
ω(−1)

n = O(n−α−1) as n→ ∞. (3.9)We now present a spe
ial version of the main result of the paper by Lubi
h [15℄:
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tional multistep methods for weakly singular Volterra equations of the �rst kind with noisy data 9Theorem 2 Let the 
onditions of Proposition 2 be satis�ed. Then the approximations up, up+1,

. . . , uN (determined by (3.2) for n = p, p+ 1, . . . , N , respe
tively) 
an be estimated as follows,
max

n=p,p+1,...,N
|un − u(xn)| = O(hp) as h→ 0.Proof Again some of the steps in this proof are needed also in Se
tion 4, therefore we repeatfrom [15℄ the basi
 steps of the proof. Moving the se
ond sum on the left�hand side of the errorrepresentation (3.4) to the right�hand side gives the following error representation,

hα
n

X

j=0

ωn−j k(xn, xj)ej = cph
p+α

n
X

j=0

ωn−jϕ(xj) + O(hp+α) for n = 0, 1, . . . , N (3.10)for h → 0 uniformly with respe
t to n. We next 
onsider a matrix�ve
tor formulation of (3.10).As a preparation we 
onsider the matrix Aα
h ∈ R

(N+1)×(N+1) with
Aα

h = hα




ω0k0,0 0 · · · · · · · · · 0

ω1k1,0 ω0k1,1 0 0... ω1k2,1 ω0k2,2
. . . ...... . . . . . . . . . ...... . . . . . . 0

ωN kN,0 · · · · · · · · · ω1kN,N−1 ω0kN,N


with the notation

kn,j = k(xn, xj) for 0 ≤ j ≤ n ≤ N.Additionally we 
onsider the matrix Bα
h ∈ R

(N+1)×(N+1) given by
Bα

h = hα




ω0 0 · · · · · · · · · 0

ω1 ω0 0 0

ω2 ω1
. . . . . . ...... . . . . . . . . . . . . ...... . . . . . . . . . 0

ωN · · · · · · ω2 ω1 ω0




,

and the ve
tors
Eh = (e0, e1, . . . , eN )⊤, G = cph

p(ϕ(x0), ϕ(x1), . . . , ϕ(xN ))⊤.Using all these notations, the linear system (3.10) be
omes
Aα

hEh = Bα
hG + Fα

h , with some Fα
h ∈ R

N+1, ‖Fα
h ‖∞ = O(hp+α) as h→ 0. (3.11)



10 R. PlatoFor a further treatment of the identity (3.11) we now 
onsider the inverse matrix of Bα
h , this is

Dα
h ∈ R

(N+1)×(N+1) with
Dα

h = h−α




ω
(−1)
0 0 · · · · · · · · · 0

ω
(−1)
1 ω

(−1)
0 0 0

ω
(−1)
2 ω

(−1)
1

. . . . . . ...... . . . . . . . . . . . . ...... . . . . . . . . . 0

ω
(−1)
N · · · · · · ω

(−1)
2 ω

(−1)
1 ω

(−1)
0




. (3.12)
We now apply the matrix Dα

h to both sides of (3.11) and obtain
‖Dα

hA
α
hEh‖∞ = O(hp) as h→ 0, (3.13)where the estimates

‖Dα
h‖∞ = O(h−α), ‖G‖∞ = O(hp) as h→ 0 (3.14)have been used, and the �rst estimate in (3.14) follows from the de
ay (3.9) of the 
oe�
ients ofthe re
ipro
al of the generating fun
tion ω. It then turns out (
f. Eggermont [6℄ for more details)that the lower triangular matrix Dα

hA
α
h 
an be written as follows

Dα
hA

α
h = I + hKh with Kh = (kh,ℓ,j) ∈ R

(N+1)×(N+1) stri
tly lower triangular,
max

1≤j<ℓ≤N+1
|kh,ℓ,j | = O(1) as h→ 0.This representation and the dis
rete version of Gronwall's inequality now yields

‖(Dα
hA

α
h)−1‖∞ = O(1) as h→ 0. (3.15)The statement of the theorem now follows from the estimates (3.13) and (3.15).Remark 2 (a) For the produ
t-trapezoidal rule, a similar approa
h as in the proof of Theorem2 is 
onsidered in Eggermont [6℄.(b) It follows from the proof of Theorem 2 that in the situation of Assumption 1 the s
heme(3.2) 
an be applied for n = p, p+1, . . . , N with starting values u1, u2, . . . , up−1 that are obtainedby other approa
hes. The only requirement is that estimate (3.7) is satis�ed.4 Perturbed dataWe now start with the main purpose of the present paper, this is, the 
onsideration of theregularizing properties of the s
heme (3.2). Here we 
onsider the situation that only perturbeddata f δ

n are available at the grid points xn, respe
tively, with
|f δ

n − f(xn)| ≤ δ for n = 1, 2, . . . , N, (4.1)
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tional multistep methods for weakly singular Volterra equations of the �rst kind with noisy data 11where δ > 0 is a known noise level. In that situation the dis
rete equations (3.2) are modi�edas follows: For some given starting value uδ
0 ≈ u(0) determine approximations uδ

n ≈ u(xn) for
n = 1, 2, . . . , N su
h that the identities

hα
n

X

j=0

ωn−j k(xn, xj)u
δ
j + hα

p−1
X

j=0

wn,j k(xn, xj)u
δ
j = f δ

n (4.2)are satis�ed for n = 1, 2, . . . , N . The pro
edure for determining these approximations is similarto the pro
edure for exa
tly given right�hand sides, 
f. Se
tion 3.1.We are now in a position to formulate the main results of this paper. As a preparation we 
onsiderthe following assumptions:Assumption 3 (a) The 
onditions in Assumption 1 are satis�ed,(b) the 
onditions (4.1) on the noise are satis�ed,(
) and uδ
0 is a starting value with uδ

0 − u(x0) = O(hp + δ/hα) as (h, δ) → 0.The following proposition provides an error estimate for the starting values.Proposition 3 Let the 
onditions of Assumption 3 be satis�ed, and let starting values uδ
1, u

δ
2,

. . . , uδ
p−1 be given by (4.2) for n = 1, 2, . . . , p− 1, respe
tively. Then there holds

max
n=1,2,...,p−1

|uδ
n − u(xn)| = O

(
hp +

δ
hα

) as (h, δ) → 0.Proof Due to the results in [15℄ whi
h are re
alled in the present paper it is su�
ient to estimatethe di�eren
es between the perturbed and the unperturbed approximations,
∆δ

n := uδ
n − un for n = 1, 2, . . . , p− 1.Here the approximations u1, u2, . . . , up−1 satisfy the unperturbed dis
rete equations (3.2), and

u0 denotes an arbitrary starting value with u0 − u(x0) = O(hp) as h → 0. A 
omparison of theidentities (4.2) and (3.2) gives
hα

p−1
X

j=1

ωn,j k(xn, xj)∆
δ
j = O(hp+α + δ) for n = 1, 2, . . . , p− 1, (4.3)where the weights ωn,j are introdu
ed in (3.5). Note that the summation in (4.3) begins with

j = 1. A matrix�ve
tor formulation of (4.3) yields
‖SEδ

h‖∞ = O(hp+α + δ) as (h, δ) → 0, with Eδ
h = (∆δ

1, ∆
δ
2, . . . ,∆

δ
p−1)

⊤,with the matrix S from (3.6) whi
h is non�singular for su�
iently small values h and satis�es
‖S−1‖∞ = O(h−α) as h→ 0, 
f. Se
tion 3. From this the statement of the proposition follows.The following theorem provides an error estimate for the approximations uδ

p, u
δ
p+1, . . . , u

δ
N .Theorem 4 Let the 
onditions of Poposition 3 be satis�ed. Then the error for the approximationsgiven by (4.2) for n = p, p+ 1, . . . , N 
an be estimated as follows:

max
n=p,p+1,...,N

|uδ
n − u(xn)| = O

(
hp +

δ
hα

) as (h, δ) → 0. (4.4)



12 R. PlatoProof Again it is su�
ient to estimate the di�eren
es
∆δ

n := uδ
n − un for n = 0, 1, . . . , N,where the approximations u1, u2, . . . , uN satisfy the unperturbed dis
rete equations (3.2) for

n = 1, 2, . . . , N , and u0 denotes an arbitrary starting value with u0 − u(x0) = O(hp) as h → 0.From that we obtain
hα

n
X

j=0

ωn−j k(xn, xj)∆
δ
j = O(hp+α + δ) as (h, δ) → 0 for n = 0, 1, . . . , N (4.5)uniformly with respe
t to n. Here the assumptions on the approximation properties of the start-ing values and the boundedness of the starting weights are used, 
f. (2.18). A matrix�ve
torformulation of (4.5) is as follows,

‖Aα
hE

δ
h‖∞ = O(hp+α + δ) as (h, δ) → 0, with Eδ

h = (∆δ
0, ∆

δ
1, . . . ,∆

δ
N )⊤, (4.6)with the same notations for the matrix Aα

h ∈ R
(N+1)×(N+1) as in the proof of Theorem 2 on theerror of the 
onsidered s
heme (3.2) with unperturbed data. From the estimate ‖(Aα

h)−1‖∞ =

O(h−α) as h → 0 (
f. estimates (3.14) and (3.15) in the proof of Theorem 2) we �nally obtainthe estimate (4.4).As an immediate 
onsequen
e of Proposition 3 and Theorem 4 we obtain the following mainresult of this paper.Corollary 1 Let Assumption 3 be satis�ed, and let h = h(δ) be step sizes with h ∼ δ1/(p+α) as
δ → 0. Then the error for the approximations (given by (4.2) for n = 1, 2, . . . , N , respe
tively)
an be estimated as follows:

max
n=0,1,...,N

|uδ
n − u(xn)| = O(δp/(p+α)) as δ → 0.Here h ∼ δ1/(p+α) means that there exist real 
onstants c2 ≥ c1 > 0 su
h that c1h ≤ δ1/(p+α) ≤

c2h as δ → 0.We 
on
lude this se
tion with some important remarks.Remark 3 (a) It follows from the 
onsidered proofs that also starting values uδ
1, u

δ
2, . . . , u

δ
p−1obtained by other s
hemes than (4.2) 
an be used. In the situation of Corollary 1 the onlyrequirement is uδ

n − u(xn) = O(δp/(p+α)) as δ → 0 for n = 1, 2, . . . , p− 1.(b) The smoothness 
onditions on the solution u 
onsidered in Assumption 1 are satis�ed (andadditionally, the existen
e of the solution u 
an be guaranteed then), if the exa
t right�hand side
f 
an be written in the form f(x) = xαg(x) with a fun
tion g ∈ Cp+2[0, L ] and if in additionthe kernel k(x, y) has for 0 ≤ y ≤ x ≤ L 
ontinuous partial derivatives up to the order p+ 3, 
f.Atkinson [1℄ for the details.(
) In the situation of part (b) of this remark there holds αg(0) = u(0) whi
h follows by simple
al
ulations. Thus, for general values of h a possible strategy for the determination of a startingvalue uδ

0 is to 
onsider the interpolating polynomial P δ of degree not larger than p − 1 whi
hsatis�es P δ(xr) = f δ(xr)/x
α
r for r = 1, 2, . . . , p. The 
hoi
e uδ

0 = αP δ(0) = u(0) +O(hp + δ/hα)then gives a starting value of su�
iently good a

ura
y.
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ial regularization methods for the approximate solution of Volterra integralequations of the �rst kind with perturbed right�hand sides and with possibly weakly singularkernels, see e.g., Bughgeim [3℄, Goren�o/Vessella [7℄, Lamm [12℄ and the referen
es therein.(e) The presented propositions and theorems 
an be extended to Volterra integral equations ofthe �rst kind without weak singularities, this is the 
ase α = 1 in the Volterra integral equationof the �rst kind (1.1). The 
orresponding proofs have to be modi�ed at some pla
es. For example,for the proof of estimate (3.15) we need (in the 
ase α = 1) that the 
oe�
ients of the generatingfun
tion ω(ξ) and its re
ipro
al 1/ω(ξ) 
an be written as follows,
ωn = a + O(qn), ω(−1)

n = O(qn) as n→ ∞ (4.7)for some real number 0 < q < 1 and a ∈ R. The representations in (4.7) in fa
t follow fromthe representation (2.10)�(2.11). For the appli
ation of multistep methods to Volterra integralequations of the �rst kind without weak singularities and with exa
tly given right�hand sides seeWolkenfelt [17℄.5 Examples of fra
tional multistep methods for weakly singular Volterra operators,and numeri
al experiments5.1 Multistep methods for initial value problemsIn this se
tion we will 
onsider spe
ial 
onvolution quadrature methods of the form (2.2) forthe numeri
al approximation of the Abel integral operator (2.1). As a preparation 
onsider thesimple initial value problem
f ′(x) = u(x) for 0 ≤ x ≤ L, f(0) = 0, (5.1)where the fun
tion u : [0, L ] → R is given, and the fun
tion f : [0, L ] → R has to be determined.For the numeri
al solution of the initial value problem (5.1) we 
onsider linear multistep methodswhi
h are of the following form,

m
X

j=0

αjfn+j = h
m

X

j=0

βjun+j for n = 0, 1, . . . , N −m, (5.2)with given real 
oe�
ients α0, α1, . . . , αm and β0, β1, . . . , βm, with m ∈ N and αm 6= 0, βm 6= 0.For given starting values f0, f1, . . . , fm−1, the identities (5.2) are used to determine su

essivelyfor n = m, m+ 1, . . . , N approximations fn to the numbers f(xn), respe
tively.An important 
lass of examples are BDF methods:Example 1 For m = 1, 2, . . . , 6, the m�step BDF method for solving the initial value problem(5.1) is as follows, respe
tively:
m∑

k=1

1
k
∇kfn+m = hun+m for n = 0, 1, . . . , N −m, (5.3)with the re
ursively de�ned ba
kward di�eren
es. See e.g., Hairer / Nørsett /Wanner [10℄ or [16℄for an introdu
tion to BDF methods. For m ≤ 3, the BDF methods are of the following form,respe
tively:

m = 1 : fn+1 − fn = hun+1;

m = 2 : 1
2(3fn+2 − 4fn+1 + fn) = hun+2;

m = 3 : 1
6(11fn+3 − 18fn+2 + 9fn+1 − 2fn) = hun+3.
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ular, for m = 1 the impli
it Euler s
heme is obtained.For an arbitrary multistep method, the numbers f0, f1, . . . , fN 
an be written in an expli
it form.For this purpose we 
onsider the asso
iated generating polynomials
ρ(ξ) =

m
X

j=0

αj ξ
j, σ(ξ) =

m
X

j=0

βj ξ
j (5.4)as well as the 
orresponding formal power series

τ(ξ) =
σ(1/ξ)

ρ(1/ξ)
=:

∞
X

s=0

τs ξ
s. (5.5)It turns out that the approximations fm, fm+1, . . . , fN given by (5.2) 
an be written in theexpli
it form fn = h

∑n
s=0 τn−sus for n = m, m+ 1, . . . , N provided that the starting values f0,

f1, . . . , fm−1 are of similar form. As an example 
onsider again the BDF methods. For ea
h mthere obviously holds σ(ξ) = ξm, and hen
e the 
orresponding formal power series is of the form
τ(ξ) = [ξmρ(1/ξ)]−1. (5.6)Examining the representation (5.3) in more detail shows that ξmρ(1/ξ) =

∑m
k=1(1−ξ)

k /k holds.5.2 Fra
tional multistep methodsFor a given multistep method (5.2) for solving the initial value problem (5.1) we now re
all brie�ythe basi
 properties of the 
orresponding fra
tional multistep method. For this purpose we writethe formal power series (5.5) as follows, τ(ξ) = τ0 (1 + q(ξ)) with the 
oe�
ient τ0 = βm/αmwhi
h is assumed to be positive, τ0 > 0. The binomial formula then gives for 0 < α < 1

τ(ξ)α = τα
0

∞
X

n=0

(α
n

)
q(ξ)n =:

∞
X

n=0

ωnξ
n =: ω(ξ). (5.7)The 
orresponding fra
tional multistep method (for the approximation of the Abel integral opera-tor (2.1)) is by de�nition of the form (Ωhu)(x) = hα

∑n
j=0 ωn−j u(jh), with 
oe�
ients ω0, ω1, . . .as in (5.7). These 
oe�
ients 
an be 
omputed in a stable way by Newton's method for for-mal power series, whi
h now will be des
ribed brie�y for BDF methods, 
f. Hairer / Lubi
h /S
hli
hte [9℄. In fa
t, for BDF methods the equation (5.7) 
an be written as

F (ω(ξ)) := ω(ξ)−1/α − ξmρ(1/ξ)
︸ ︷︷ ︸
=: ρ̃(ξ)

= 0. (5.8)In the 
ase α = 1/M with M ≥ 2 being some integer, the equation (5.8) easily 
an be solvedby Newton's method for formal power series. This generates a sequen
e of formal power series
ω[ 1 ](ξ), ω[ 2 ](ξ), . . . whi
h here takes the form

ω[s+1](ξ) = (1 + α)ω[s ](ξ) − α
{

[ω[s ](ξ)]1+1/α ρ̃(ξ)
}

2s+1 for s = 0, 1, . . . . (5.9)Here, the notation {a(ξ)}r =
∑r

n=0 anξ
n is used as a trun
ation of a given formal power series

a(ξ) =
∑∞

n=0 anξ
n. In addition it 
an be shown (Henri
i [11℄) that the �rst 2s 
oe�
ients ofthe formal power series ω[s ](ξ) and the solution ω(ξ) of the equation (5.8) 
oin
ide if ω[ 0 ](ξ) ≡

1/ρ̃(0)α is 
hosen in (5.9) as initial formal power series.
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e order and stability of fra
tional multistep methodsIt is well-known (
f. [10℄) that a multistep method (5.2) for solving the simple initial valueproblem (5.1) is 
onsistent of order p if and only if
hτ(e−h) = 1 + O(hp) as h → 0 (5.10)holds for the 
orresponding generating fun
tion (5.5). It is supposed here that the generatingfun
tion τ(ξ) 
onverges for |ξ | < 1. For the fra
tional power series ω(ξ) = τ(ξ)α we then have
hαω(e−h) = 1 + O(hp) as h→ 0. (5.11)It is shown in Lubi
h [14℄ that a 
onvolution quadrature method (2.2), with a generating fun
tion(2.9) that is representable as in (2.10)�(2.11) and satis�es (5.11), is 
onvergent of order p.We next 
onsider the 
ondition (2.10)�(2.11) on the representation for generating fun
tions offra
tional multistep methods, and we restri
t here the 
onsiderations to fra
tional BDF methodswith m ≤ 6. It 
an be shown that the denominator in (5.6) always has ξ = 1 as a simple root,and all other roots belong to the exterior of the 
losed unit dis
. The 
orresponding fun
tion

τ(ξ)α 
an be written as
τ(ξ)α = [ξmρ(1/ξ)]−α = (1 − ξ)−αω̃(ξ).From the binomial expansion it follows that the 
onsidered fun
tion ω̃(ξ) is holomorphi
 andhas no roots in the disk B1+ε = { ξ ∈ C : |ξ | < 1 + ε }, with some ε > 0. This �nally givesthe required representation (2.10)�(2.11) for the generating fun
tion τ(ξ)α of the 
onsideredfra
tional BDF method.5.4 Numeri
al experimentsAs an illustration of the main result 
onsidered in Corollary 1, we next present the results ofsome numeri
al experiments. We 
onsider the following linear weakly singular Volterra integralequation of the �rst kind,

∫ x

0
(x− y)−1/2 e−(x−y)u(y) dy = e−x (x5 + x7 + x9) for 0 ≤ x ≤ 1, (5.12)with exa
t solution

u(y) = e−y
( 5!

Γ (5.5)
y9/2 +

6!

Γ (6.5)
y11/2 +

7!

Γ (7.5)
y13/2

) for 0 ≤ y ≤ 1,and thus in parti
ular u ∈ C4[0, 1]. Here are some additional informations on the numeri
altests:
• the BDF method of order 3 is 
hosen;
• numeri
al experiments with the step sizes N = 2q − 1 for q = 5, 6, . . . , 11 are employed;
• for ea
h 
onsidered step size h, the noise level δ = hp+α = h3.5 is 
onsidered;
• in the numeri
al experiments, the perturbations are of the form f δ

n = f(xn) + ∆n withuniformly distributed random values ∆n with |∆n | ≤ δ;
• in ea
h experiment, the starting value uδ

0 is determined by the strategy des
ribed in part (
)of Remark 3.



16 R. PlatoTable 1. Numeri
al results
N δ 100 ∗ δ/‖f‖∞ maxn |uδ

n − u(xn) | maxn |uδ
n − u(xn) | /δ6/731 6.0 ∗ 10−6 5.46 ∗ 10−4 2.30 ∗ 10−3 68.563 5.0 ∗ 10−7 4.56 ∗ 10−5 3.00 ∗ 10−4 75.1127 4.3 ∗ 10−8 3.93 ∗ 10−6 3.89 ∗ 10−5 79.7255 3.8 ∗ 10−9 3.42 ∗ 10−7 4.85 ∗ 10−6 80.5511 3.3 ∗ 10−10 3.00 ∗ 10−8 6.17 ∗ 10−7 82.31023 2.9 ∗ 10−11 2.65 ∗ 10−9 7.69 ∗ 10−8 82.32047 2.6 ∗ 10−12 2.33 ∗ 10−10 9.69 ∗ 10−9 83.2Experiments are employed using the intera
tive program system O
tave (http://www.o
tave.org).The results are shown in Table 1, where ‖f‖∞ denotes the maximum norm of the fun
tion f .We 
on
lude this paper with some additional 
omments on the numeri
al experiments.(a) The relative errors presented in the third 
olumn of Table 1 are relatively small.(b) Almost the same results as in Table 1 are obtained if all starting values are 
hosen to be zero,

uδ
0 = uδ

1 = uδ
2 = 0. This is no surprise sin
e the exa
t solution of equation (5.12) satis�es

u(0) = u′(0) = u′′(0) = 0.(
) Similar numeri
al experiments were employed with an equation where the solution is ofthe form u(y) = e−y( 1
Γ (1.5)y

1/2 + 3!
Γ (3.5)y

5/2 + 5
Γ (5.5)y

9/2) for 0 ≤ y ≤ 1. Here the ratios
maxn |u

δ
n − u(xn)| /δ6/7 deteriorate as N in
reases. This is no surprise sin
e the solution udoes not satisfy the required smoothness 
ondition of Assumption 1.Referen
es1. K. E. Atkinson. An existen
e theorem for Abel integral equations. SIAM J. Math. Anal., 5(5):729�736, 1974.2. H. Brunner and P. J. van der Houwen. The Numeri
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