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Preface

It is my purpose to introduce a variety of iterative as well as parameter methods for solving linear
ill-posed (symmetric and nonsymmetric) equations Au = f in Hilbert and Banach spaces.

In Chapter 1, operators fulfilling resolvent condtions over certain sectors are considered and classified
as weakly sectorial and strictly sectorial operators. Moreover, we define fractional powers of weakly
sectorial operators and derive their basic properties in order to show that Abel integral operators in Lp-
spaces and spaces of continuous functions are strictly sectorial, see Section 1.3 on that. The corresponding
Abel integral equations are weakly singular (nonsymmetric) Volterra integral equations of the first kind
that arise in applications like spectroscopy and seismic imaging.

In Chapter 2 iterative as well as parameter methods are presented which are designed for solving
those equations considered in the first chapter, and any kind of normalization of the underlying equation
is avoided in order to keep computational efforts at the lowest possible level. For any described method
we provide a convergence analysis for precisely given data.

In Chapter 3 noise-level-dependent as well noise-level-free parameter choices and stopping rules are
discussed, and here always disturbed right-hand sides for the underlying ill-posed equation are admitted.
Computational experiments are provided, and in Chapter 4 we shall see that the convergence rates cannot
be improved, in general.

The most efficient algorithms for solving symmetric ill-posed problems in Hilbert spaces are conjugate
gradient type methods, and thus the last chapter is devoted to of conjugate residuals (for semidefinite
problems).

Berlin, January 1995 Robert Plato
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Kapitel 1

Weakly sectorial and strictly
sectorial operators

We consider equations
Au = f∗ (1.1)

for A ∈ L(X) and (maybe only approximately known) right-hand side f∗ ∈ R(A), where L(X) denote
the space of bounded linear operators in the underlying real or complex Banach space X , and R(A)
denote the range of A. Our main subject are equations (1.1) which are ill-posed in sense that arbitrary
small perturbations of the right-hand side in (1.1) can lead to arbitrary large deviations in the solution
of the problem (a precise definition is given in Definition 1.1.14), and therefore the numerical solution of
those equations is crucial. In this chapter we introduce the class of weakly sectorial operators where the
(iterated) method of Lavrentiev (to be introduced in Section 2.1) can be used as a stable solver for (1.1),
and moreover the (smaller) class of strictly sectorial operators A is introduced where the corresponding
equations Au = f∗ can be solved by certain iterative methods (see Chapters 2 and 3 for more on these
algorithms). Section 1.3 is devoted to (strictly sectorial) Abel integral operators, and two applications
are given.

1.1 Weakly sectorial operator

Throughout this Section 1.1 let X be a Banach space over the field IK = IR or IK = CI , if not further
specified.

1.1.1 Some basic properties

We first introduce weakly sectorial operators. For technical reasons in the following definition unbounded
operators are admitted, although our main subject are bounded operators (with unbounded inverse).

Definition 1.1.1 We call a (possibly unbounded) linear operator B : X ⊃ D(B) → X weakly sectorial,
if (0,∞) ⊂ ρ(−B) and

‖(tI +B)−1‖ ≤ M0/t, t > 0, (1.2)

(with some M0 ≥ 1). Here, ρ(−B) is the resolvent set of −B,

ρ(−B) =
{

λ ∈ IK : λI +B is one-to-one and onto, (λI +B)−1 ∈ L(X)
}

,

and ‖ ·‖ denotes the corresponding operator norm. Frequently we use the notation M0(B) instead of M0.

Example 1.1.2 Let X be a real or complex Hilbert space and A ∈ L(X). If A = A∗ ≥ 0, i.e., if A is
selfadjoint and positive semidefinite, then A is weakly sectorial (with M0 = 1 in (1.2)).

Weakly sectorial operators A fulfill a resolvent condition over a (small) sector, see in Proposition 1.1.5
(this justifies the terminology ‘sectorial’). First we introduce the sector Σθ ⊂ CI ,

Σθ :=
{

λ = reiϕ : r > 0, |ϕ| ≤ θ
}

, 0 ≤ θ ≤ π,

and moreover we introduce the notation ‘sectorial of angle θ’.

4
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Abbildung 1.1: Sketch of the situation in the proof of Theorem 1.1.5

Definition 1.1.3 We say that a linear operator B : X ⊃ D(B) → X is sectorial of angle θ0 ∈ [0, π], if
the resolvent set ρ(−B) of −B contains for any 0 ≤ θ < θ0 the sector Σθ,

ρ(−B) ⊃ Σθ, (1.3)

and the following estimate for the resolvent operator of −B is satisfied,

‖(λI +B)−1‖ ≤ Mθ

|λ| , λ ∈ Σθ, (1.4)

with some Mθ ≥ 1. Frequently we use the notation Mθ(B) instead of Mθ.

Remark 1.1.4 Let A ∈ L(X) (with X being a complex Banach space) be sectorial of angle θ0 ∈ [0, π],
and moreover let A be similar to B ∈ L(X), i.e., there is an S ∈ L(X) which is ono-to-one and onto,
such that S−1AS = B. Then B is sectorial of angle θ0.

As mentioned above, weakly sectorial operators are sectorial of some angle:

Theorem 1.1.5 Let X be a complex Banach space, let A ∈ L(X) be weakly sectorial, and θ0 :=
arcsin(1/M0). Then A is sectorial of angle θ0, and more specifically, for any 0 < θ < θ0, (1.4) holds
with Mθ = 1/ sin(θ0 − θ), where M0 is as in (1.2).

Proof. Take any λ ∈ Σθ and let r ≥ 0 such that for λ̃ := reiθ0 we have the situation as described in
Figure 1.1. Here, t := r/ cos θ0. Obviously

|λ− t| < |λ̃− t| = t sin θ0 = t/M0 ≤ ‖(tI +A)−1‖−1,

hence λ ∈ ρ(−A), and due to
|t− λ| + |λ− λ̃| = t/M0,

we get

‖(λI +A)−1‖ ≤ 1

‖(tI +A)−1‖−1 − |λ− t| ≤ 1

t/M0 − |λ− t|

≤ 1

|λ− λ̃|
=

|λ|
|λ− λ̃|

· 1

|λ|

=
1

sin(θ0 − θ)
· 1

|λ| . 2

The following lemma shall be used to derive resolvent conditions for fractional powers of weakly sectorial
operators.

Lemma 1.1.6 If X is a complex Banach space and if A ∈ L(X) is sectorial of angle θ0, then cA is
weakly sectorial for any c ∈ CI with |θ| < θ0, θ := arg(c) (with M0(cA) = Mθ(A)).

This lemma can be derived directly from the definition, and its proof thus is omitted. The following

result can be used to show that the integration operator V u(ξ) =
∫ ξ

0
u(η) dη, ξ ∈ [0, a], (with respect

to X = C[0, a] or X = Lp[0, a], p ∈ [1,∞]) and modifications of V are weakly sectorial, see Theorems
1.3.1 and 1.3.2.
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Proposition 1.1.7 Let A ∈ L(X) have a trivial nullspace N (A). A is weakly sectorial if and only if the
(possibly unbounded) inverse A−1 is weakly sectorial, and then (1.2) holds with M0(A) = M0(A

−1)+1.

Proof. Let t > 0. It is easy to show that t ∈ ρ(−A) if and only if t ∈ ρ(−A−1), and then

(tI +A)−1 =
1

t
I − 1

t2
(A−1 +

1

t
I)−1. (1.5)

The desired estimate for ‖(tI +A)−1‖ then is an immediate consequence of (1.5). 2

The next lemma is a preparation for Theorem 1.1.9 and will be used also at other places. We use the
notation A0 := I.

Lemma 1.1.8 For weakly sectorial A ∈ L(X) and integers α, m with 0 ≤ α ≤ m one has

‖(I + tA)−mAα‖ ≤ γmt
−α, t > 0, (1.6)

where, e.g., γm = (M0 + 1)m, with M0 as in (1.2).

Proof. From (1.2) we easily obtain for any n ≥ 0

‖(tI + A)−nAn‖ ≤ (M0 + 1)n for t > 0,

and this leads to

‖(I + tA)−mAα‖ ≤ ‖(I + tA)−αAα‖ · ‖(I + tA)−(m−α)‖ ≤ (M0 + 1)αMm−α
0 t−α. 2

Remark. Positive semidefinite operators in Hilbert spaces fulfill (1.6) with γ0 = γ1 = 1.

For weakly sectorial operators we have the following interpolation inequality, which provides an alter-
native way to prove convergence of the discrepancy principle (that is introduced in Chapter 3).

Theorem 1.1.9 (First interpolation inequality) For weakly sectorial A ∈ L(X) and integer α ≥ 0 we
have

‖Aαu‖ ≤ C‖Aα+1u‖α/(α+1)‖u‖1/(α+1), u ∈ X,

with C = C(M0, α) := (α+ 1)(Mα
0 γ1)

α/(α+1), where M0 is as in (1.2) and γ1 is as in (1.6).

Proof. We first observe that

I − (I + tA)−α = t
(

α
∑

j=1

(I + tA)−j
)

A,

hence

Aα = (I + tA)−αAα + t
(

α
∑

j=1

(I + tA)−j
)

Aα+1,

and (see Lemma 1.1.8)

‖Aαu‖ ≤ γα
1 t

−α‖u‖ + αMα
0 t‖Aα+1u‖, (1.7)

and take

t =
( γα

1

Mα
0

· ‖u‖
‖Aα+1u‖

)1/(α+1)

(if Aα+1u 6= 0; in the case Aα+1u = 0 consider t→ ∞ in (1.7)) to obtain the desired result. 2
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1.1.2 Generalized inverses of weakly sectorial operators

The following geometrical observations are helpful to introduce generalized inverses of weakly sectorial
operators A. Let R(B), N (B) and R(B) denote the range, the nullspace, and the closure of the range,
respectively, of a linear operator B : X ⊃ D(B) → X .

Theorem 1.1.10 Let A ∈ L(X) be weakly sectorial, and let M0 as in (1.2).

(a) ‖ψ‖ ≤M0‖u+ ψ‖ for any u ∈ R(A), ψ ∈ N (A).

(b) (i) R(A) ∩ N (A) = {0}.
(ii) The linear subspace

X0 := R(A) ⊕N (A)

is closed in X.

(c) The linear projection P : X0 → X0 onto R(A) with nullspace N (A) is continuous,

‖I − P‖ ≤ M0.

(d) N (A) = N (A2).

(e) R(A) = R(A2).

(f) X0 = X if and only if A(R(A)) = R(A).

(g) If X is a reflexive Banach space then X0 = X.

Proof. We introduce the operator
Ht = (I + tA)−1 (1.8)

and first observe that from Lemma 1.1.8 with m = 1 and α = 0, α = 1 and the Banach-Steinhaus
theorem imply

‖Htu‖ → 0 (t→ ∞) for any u ∈ R(A).

(a) For arbitrary u ∈ R(A) and ψ ∈ N (A) we have, due to Htψ = ψ,

‖ψ‖ = lim
t→∞

‖Ht(u+ ψ)‖ ≤ lim sup
t→∞

‖Ht‖ · ‖u+ ψ‖ ≤ M0‖u+ ψ‖.

(b) (i) Let ψ ∈ R(A) ∩N (A). −ψ ∈ R(A) and (a) implies ‖ψ‖ ≤M0‖ − ψ + ψ‖ = 0.
(b) (ii) Let {un} ⊂ R(A), {ψn} ⊂ N (A) and z ∈ X with un + ψn → z as n→ ∞. (a) implies

‖ψn − ψm‖ ≤ M0‖un − um + ψn − ψm‖ → 0 as n, m→ ∞,

hence ψn → ψ as n → ∞ for some ψ ∈ N (A), and then necessarily un → u as n → ∞ for some
u ∈ R(A). Hence z = u+ ψ ∈ X0, and this shows that X0 is closed.
(c) Let again and u ∈ R(A) and ψ ∈ N (A). Then ‖(I − P )(u + ψ)‖ = ‖ψ‖ ≤ M0‖u+ ψ‖ which shows
‖I − P‖ ≤M0.
(d) We only have to show N (A2) ⊂ N (A). ψ ∈ N (A2) then (b) (i) implies Aψ ∈ R(A) ∩ N (A) = {0},
and this means ψ ∈ N (A).
(e) We only have to show R(A) ⊂ R(A2). For that we observe that A−t(I+tA)−1A2 = (I+tA)−1A→ 0
as t→ ∞ (in L(X)), thus R(A) ⊂ R(A2), and we obtain the assertion.
(f) If X0 = X , then R(A) = A(X0) = A(R(A)), and ‘⇐’ remains to show. For that let z ∈ X . Then
Az ∈ R(A) = A(R(A)), hence Az = Au for some u ∈ R(A). From z − u ∈ N (A) it follows z ∈ X0.
(g) Let z ∈ X . Since {Htz}t≥0 (see (1.8) for the definition of Ht) is bounded in X , we have weak
convergence,

Hnz ⇀ ψ as n→ ∞, n ∈ N,

for some ψ ∈ X and some infinite set of integers N . Lemma 1.1.8 implies that AHtz → 0 as t → ∞,
hence ψ ∈ N (A). The equality I −Ht = HtA yields z −Htz ∈ R(A), t ≥ 0, and then z −Hnz ⇀ z −ψ
as n→ ∞, n ∈ N, finally shows z − ψ ∈ R(A), and this yields z ∈ X0. 2

Remarks. 1. Part (a) of Theorem 1.1.10 shows that if A is weakly sectorial with M0 = 1 in (1.2), then
R(A) and N (A) are orthogonal subspaces in a generalized sense.
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2. From (d) it is obvious that N (A) = N (Ak) for any integer k ≥ 1, and from (e) it follows that

R(A) = R(Ak) for any integer k ≥ 1.

We now present an example where all the mentioned subspaces are explicitly given.

Example 1.1.11 On the real space X = C[−1, 1] of real-valued continuous functions on [-1,1], supplied
with the max-norm ‖ · ‖∞, we consider the multiplication operator,

Au(s) = a(s)u(s), s ∈ [−1, 1],

with

a(s) =

{

0, if s ≤ 0,
s, if s > 0.

Then A is weakly sectorial (see also Example 1.4.3), and

R(A) =
{

v ∈ X : v(s) = 0 for s ∈ [−1, 0], lim
sց0

v(s)/s exists ,

u(s) = v(s)/s, s ≥ 0, is continuous in 0
}

,

R(A) =
{

v ∈ X : v(s) = 0 for s ∈ [−1, 0]
}

,

N (A) =
{

v ∈ X : v(s) = 0 for s ∈ [0, 1]
}

,

X0 =
{

v ∈ X : v(0) = 0
}

.

Definition 1.1.12 Let A ∈ L(X) be weakly sectorial. The generalized inverse

A† : X ⊃ D(A†) → X

of A then is defined by

D(A†) := A(R(A)) ⊕N (A),

A†(Au+ ψ) := u, u ∈ R(A), ψ ∈ N (A).

A† then obviously is well-defined and linear. Note that in the case X0 = X one has D(A†) = R(A) ⊕
N (A). We present some elementary properties.

Proposition 1.1.13 For weakly sectorial A ∈ L(X) we have

R(A†) = R(A), (1.9)

N (A†) = N (A), (1.10)

AA† = P on D(A†), (1.11)

A†A = P on X0, (1.12)

and A† is a closed operator. P in (1.11) and (1.12) again is the projection onto R(A) with nullspace
N (A).

Proof. (1.9) is obvious, and also ‘⊃’ in (1.10). Now let u ∈ R(A), ψ ∈ N (A). Then z := Au+ψ ∈ N (A†)
means that 0 = A†(Au+ψ) = u, hence z = ψ, and this is ‘⊂’ in (1.10). (1.11) and (1.12) are immediate
consequences from the definition of A†.

We now give the proof that A† is a closed operator. To this end, let {fn} ⊂ A(R(A)), {ψn} ⊂ N (A)
and z, u ∈ X with

fn + ψn → z as n→ ∞,

un := A†(fn + ψn) → u as n→ ∞,

whence
{un} ⊂ R(A) and Aun = fn, n = 0, 1, ... .
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The continuity of the projection P implies that {fn} converges (in R(A)), and hence {ψn} converges in
N (A), i.e., there are f ∈ R(A) and ψ ∈ N (A) with

z = f + ψ,

‖fn − f‖ → 0, ‖ψn − ψ‖ → 0 as n→ ∞.

A is a bounded operator, hence Au = f , which shows

z ∈ D(A†), A†z = u,

this completes the proof. 2

Note that the closedness of A† follows already from the topological properties of X0 and its decompo-
sition, therefore it is not necessary to assume at this point that A is weakly sectorial.

We now can define what ill-posedness means in terms of the generalized inverse of A.

Definition 1.1.14 Let A ∈ L(X) be weakly sectorial. If the generalized inverse A† of A is bounded,
then the equation is called Au = f∗ well-posed. If on the other side A† is unbounded, then Au = f∗ is
called ill-posed.

For example, if A is a compact operator with infinite-dimensional range, then Au = f∗ is ill-posed in
the sense of Definition 1.1.14. To be more general, let AX0 : X0 → X0 be the restriction of A to X0.
The closed graph theorem implies that Au = f∗ is ill-posed if and only if R(AX0 ) is non-closed, and this
again is equivalent to the case that 0 ∈ σap(AX0 ), that is, the set of approximate eigenvalues of AX0 .
(

For an operator B ∈ L(X), λ ∈ IK is called an approximate eigenvalue of B, if there is a sequence

{un} ⊂ X with ‖un‖ = 1, n = 1, 2, ..., and (λI −B)un → 0 as n→ ∞.
)

1.1.3 Fractional powers of weakly sectorial operators

We introduce fractional powers Aα, α ≥ 0, of weakly sectorial operators A for the following two reasons:
for the approximation methods introduced in the next chapter we can consider then a fractional degree
of smoothness for the initial error u0−u∗. More importantly, however, in applications (e.g., Abel integral
equations, see Chapter 1.3), equations Aαu = f∗ arise (for some 0 < α < 1); and we shall see in Chapter
2 and 3 that iterative methods can be used to solve those equations for certain 0 < α, consult Theorem
1.2.5 and Corollary 1.2.6 for the details.

First properties of fractional powers

Definition 1.1.15 Let A ∈ L(X) be weakly sectorial.

(a) For 0 < α < 1 we introduce fractional powers Aα by

Aαu :=
sinπα

π

∫ ∞

0

sα−1(sI +A)−1Au ds, u ∈ X. (1.13)

(b) For arbitrary α > 0 we define Aα by

Aα := Aα−⌊α⌋A⌊α⌋,

where ⌊α⌋ denotes the greatest integer ≤ α.

Note that (1.2) implies the existence of the integral in (1.13) as well as Aα ∈ L(X).

Example 1.1.16 Let X be a real or complex Hilbert space, let A ∈ L(X) be selfadjoint, positive semi-
definite and ‖A‖ ≤ a, and let {Eλ}λ be the resolution of the identity corresponding to A. Then

Aαu =

∫ a

0−0

λα dEλu, u ∈ X.

If A is not selfadjoint (on a Hilbert space X), however, then Aα 6= (A∗A)α/2, in general.

Lemma 1.1.17 If c ∈ IK, and if A, cA ∈ L(X) are weakly sectorial, then

(cA)α = cαAα.

This can be derived directly from the definition and the proof thus is omitted.
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Interpolation inequalities for fractional powers of operators

The interpolation inequality for fractional powers of operators as it is stated in Corollary 1.1.19 can be
used to prove convergence (with speed) for stopping rules and parameter choices (as stated in Chapter
3), if the initial approximation error has some fractional degree of smoothness. We first state a more
general result.

Theorem 1.1.18 For weakly sectorial A, B ∈ L(X) with AB = BA we have, for any 0 < α < 1,

‖Aαu−Bαu‖ ≤ C‖(A−B)u‖α‖u‖1−α, u ∈ X,

with some C > 0.

Proof. We first consider the case 0 < α < 1. Obviously,

Aαu−Bαu =
sinπα

π

∫ ∞

0

sα−1
(

(sI +A)−1Au − (sI +B)−1Bu
)

ds

= J1 + J2,

with

J1 :=
sinπα

π

∫ η

0

sα−1
(

(sI +A)−1Au − (sI +B)−1Bu
)

ds, (1.14)

J2 :=
sinπα

π

∫ ∞

η

sα−1
(

(sI +A)−1Au − (sI +B)−1Bu
)

ds,

where

η :=
‖(A− B)u‖

‖u‖
(if u 6= 0; in the case u = 0 the assertion is trivially true). We first estimate J1:

‖(sI +A)−1Au − (sI +B)−1Bu‖ ≤
(

‖(sI +A)−1A‖ + ‖(sI +B)−1Bu‖
)

· ‖u‖
≤

(

γ1(A) + γ1(B)
)

‖u‖,

where the constants γ1(A) and γ1(B) are taken from (1.6) for A and B, respectively. Then,

‖J1‖ ≤
(

γ1(A) + γ1(B)
) sinπα

π

∫ η

0

sα−1 ds ‖u‖

≤
(

γ1(A) + γ1(B)
)

ηα‖u‖
≤

(

γ1(A) + γ1(B)
)

‖(A−B)u‖α‖u‖1−α.

We now estimate J2. To this end, we observe that

(sI +A)−1Au − (sI +B)−1Bu = s(sI +A)−1(sI +B)−1(Au−Bu),

and thus

‖J2‖ ≤ M0(A)M0(B)
sinπ(1 − α)

π

∫ ∞

η

sα−2 ds ‖Au−Bu‖

≤ M0(A)M0(B)ηα−1‖Au−Bu‖
≤ M0(A)M0(B)‖(A−B)u‖α‖u‖1−α,

which yields the desired result. 2

Taking B = 0 in Theorem 1.1.18 yields

Corollary 1.1.19 (Second interpolation inequality) For weakly sectorial A ∈ L(X) and 0 < α < 1 we
have

‖Aαu‖ ≤ C‖Au‖α‖u‖1−α, u ∈ X, (1.15)

with C = C(M0) := 2(M0 + 1).
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Remarks. 1. The constants in the proof of Theorem 1.1.21 are carefully checked out and ‘γ1(B) = 0’
is taken there in order to get the constant C = 2(M0 + 1) in Corollary 1.1.19.
2. One more remark concerning the minimization of the constants: C in (1.15) can be reduced to
C = 2M0, if A is inverse to an (unbounded) operator L, which is weakly sectorial with M0(L) ≤M0(A),
since then we can write J1 in (1.14) as J1 = sin πα

π

∫ η

0
sα−1(sL + I)−1u ds. Moreover, for positive

semidefinite operators in Hilbert spaces, the constant in (1.15) can be reduced to C = 1.
3. An immediate consequence of Corollary 1.1.19 is ‖A‖α ≤ ‖A‖α for any α > 0.

Taking B = λI for λ > 0 in Theorem 1.1.18 gives the following result.

Corollary 1.1.20 For weakly sectorial A ∈ L(X), any 0 < α and 0 < λ with λ ∈ σap(A) one has
λα ∈ σap(A

α). More specifically, if zk ∈ X, ‖zk‖ ≤ ̺, k = 0, 1, ..., and Azk − λzk → 0 as k → ∞, then
Aαzk − λαzk → 0 as k → ∞.

Proof. For integer α = m this follows immediately from the equality

Am −Bm =
(

m−1
∑

k=0

AkBm−1−k
)

(A−B), (1.16)

(with B = λI), and the general case for α follows with m := ⌊α⌋ and β := α−m from the relation

Aα −Bα = Aβ(Am −Bm) + Bm(Aβ −Bβ). (1.17)

2

We now extend the first interpolation inequality (see Theorem 1.1.9) to fractional powers of weakly
sectorial operators.

Theorem 1.1.21 (First interpolation inequality, revisited) For weakly sectorial A ∈ L(X) and any
(fractional) α ≥ 0 we have

‖Aαu‖ ≤ C‖Aα+1u‖α/(α+1)‖u‖1/(α+1), u ∈ X,

with
C = C(M,α) := γ

m/(α+1)
1 M

αm/(α+1)
0 ·

(

( α

m

)−α
+ (αmα)1/(α+1)

)

,

where m = ⌈α⌉.
Proof. As in the proof for Theorem 1.1.9 we get for m = ⌈α⌉, the smallest integer bigger than or equal
to α,

Aα = (I + tA)−mAα + t
(

m
∑

j=1

(I + tA)−j
)

Aα+1,

with Lemma 1.1.8 and Corollary 1.1.23 we find

‖Aαu‖ ≤ ‖(I + tA)−1Aα/m‖m · ‖u‖ + mMm
0 t‖Aα+1u‖

≤ γm
1 t

−α‖u‖ + mMm
0 t‖Aα+1u‖,

and take, e.g.,

t =
( α

m

( γ1

M0

)m · ‖u‖
‖Aα+1u‖

)1/(α+1)

(if Au 6= 0; in the case Au = 0 the assertion is trivially true) to get the desired result. 2

Resolvent conditons for fractional powers

The next lemma is a preparation for the proof of Theorem 1.1.24.

Lemma 1.1.22 If X is a complex Banach space, if A ∈ L(X) is weakly sectorial, and if 0 ∈ ρ(A), then
for 0 < α ≤ 1,

Aα =
1

2πi

∫

Γ

zα(zI −A)−1 dz, (1.18)

where Γ is a smooth simple closed curve which surrounds counterclockwise the spectrum σ(A) of A and
not does intersect the negative real axis (−∞, 0].
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Abbildung 1.2: Path Γε

Proof. We denote with Iα the right-hand side in (1.18), which is well-defined for any α ∈ IR. The
operational calculus implies that for α1, α2 ∈ IR,

Iα1+α1 = Iα1Iα2 , (1.19)

and moreover I1 = A. The integrand in 1.18 is analytical in CI \(−∞, 0], hence we can deform the contour
Γ into Γε (for small ε > 0, see Figure 1.2) without changing the value of the integral. In a second step
we deform Γε into the negative real axis by letting ε→ 0 and obtain

I−α =
sinπα

π

∫ ∞

0

s−α(sI +A)−1 ds,

hence

I1−α = I−αA =
sinπα

π

∫ ∞

0

s−α(sI +A)−1A ds, (1.20)

and exchanging the roles of α and 1 − α in (1.20) yields the assertion. 2

Corollary 1.1.23 If A ∈ L(X) is weakly sectorial, and if α1, α2 ≥ 0, then

Aα1+α2 = Aα1Aα2 , (1.21)

R(Aα2 ) ⊂ R(Aα1), if α1 ≤ α2. (1.22)

Proof. To show (1.21), let us assume first that X is complex and 0 ∈ ρ(A). Then Lemma 1.1.23 and
(1.19) in its proof imply immediately the assertion. Let us now assume that X is complex but let us drop
the assumption 0 ∈ ρ(A). Then Aδ := A + δI, δ > 0, is weakly sectorial, and it follows from Theorem
1.1.18 and relations (1.16) and (1.17) that Aα

δ → Aα as δ → 0 (in L(X)), hence one finally has (1.21)
for arbitrary weakly sectorial A in complex spaces.
If X is a real space, then (1.21) holds for the complexification XCI and ACI of X and A, respectively and
restricting again both sides in (1.21) to X shows that (1.21) holds in the general case. (1.22) then is an
immediate consequence. 2

Remark. Corollary 1.1.23 implies that N (Aα) = N (A), α > 0.

The next theorem states that fractional powers of weakly sectorial operators (for 0 < α ≤ 1) are again
weakly sectorial, and a formula for the resolvent operator is given. (As was mentioned, this result can
be improved, if α is small enough, see Theorem 1.2.5 and Corollary 1.2.6.)

Theorem 1.1.24 If A ∈ L(X) is weakly sectorial, then Aα is weakly sectorial for any 0 < α ≤ 1 (with
M0(A

α) = M0(A)), and one has the representation

(tI +Aα)−1 =
sinπα

π

∫ ∞

0

sα(sI +A)−1

s2α + 2tsα cosπα+ t2
ds, t > 0. (1.23)
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Proof. The right-hand side in (1.23), we shall denote it with Jα(t), exists, since A is weakly sectorial,
and moreover Jα(t) ∈ L(X), with

‖Jα(t)‖ ≤ M0
sinπα

π

∫ ∞

0

sα−1

s2α + 2tsα cosπα+ t2
ds

= M0/t.

We now sketch the proof that Jα(t) in fact inverts tI + Aα. To this end we first assume that X is
complex and 0 ∈ ρ(A). Then the operational calculus and Lemma 1.1.22 imply that t ∈ ρ(−A) for t > 0,
and one has the representation

(tI +Aα)−1 =
1

2πi

∫

Γε

1

zα + t
(zI −A)−1 dz.

where the path Γε is the same as in Figure 1.2, with ε > 0 small. Similar to the proof of Lemma 1.1.22
we contract Γε to the negative real axis and obtain (1.23), for invertible A.
We now proceed as in the proof for Corollary 1.1.23 and consider the general case for A, in complex
spaces. Aδ := A + δI, δ > 0, is weakly sectorial, hence one has (1.23) with Aδ instead of A, and it
is easy to see that the corresponding integral in (1.23) converges to Jα(t) (in L(X)) as δ → 0. Since
tI +Aα

δ → tI +Aα as δ → 0 (in L(X)), one finally has (1.23) for arbitrary weakly sectorial A.
If X is a real space, then (1.23) holds for the complexification XCI and ACI of X and A, respectively
(with M0 not changing), and restricting again both sides in (1.23) to X shows that (1.23) is valid in
real spaces X . 2

1.2 Strictly sectorial operators

In Subsection 1.2.1 we introduce the class of strictly sectorial operators (which in fact is smaller than the
class of weakly sectorial operators) and provide sufficient conditions for fractional powers of operators
to be strictly sectorial (these results shall be used for Abel integral operators, see Section 1.3 for more
about these operators and their applications).

In Subsection 1.2.2 a specific integral equation of the first kind is introduced which we shall use then
in our numerical experiments; here it is computed directly that the corresponding integral operator is
strictly sectorial. In Subsection 1.2.3 we state results that are stronger than those for weakly sectorial
operators and that are basical for the iterative methods to be considered in Chapter 2. Throughout this
Section 1.2 let X be a complex Banach space, if not further specified.

1.2.1 Introductory remarks

Definition 1.2.1 A linear operator B : X ⊃ D(B) → X is called strictly sectorial, if there is an
0 < ε ≤ π/2 such that B is sectorial of angle π/2 + ε.

In Hilbert spaces one has the following obvious result.

Example 1.2.2 Let X be a complex Hilbert space and A ∈ L(X). If A = A∗ ≥ 0, i.e., if A is selfadjoint
and positive semidefinite, then A is strictly sectorial. More specifically, A is sectorial of angle π, and
for any 0 < ε < π/2, A is sectorial of angle π/2 + ε, and (1.4) holds with Mπ/2+ε = 1/ cos ε.

Proposition 1.2.3 Let A ∈ L(X) have a trivial nullspace N (A), and let 0 ≤ θ0 ≤ π. A is sectorial of
angle θ0 if and only if A−1 is sectorial of angle θ0, and then Mθ(A) = Mθ(A

−1) + 1, 0 ≤ θ < θ0.

Proof. The proof is similar to the proof of Proposition in Subsection 1.1.2; for λ ∈ θ, λI + A is
one-to-one and onto, and

(λI +A)−1 =
1

λ
I − 1

λ2
(A−1 +

1

λ
I)−1, (1.24)

and then the estimate for ‖(λI +A)−1‖ is an immediate consequence of (1.24). 2

Corollary 1.2.4 Let A ∈ L(X) have a trivial nullspace N (A). Then A is strictly sectorial if and only
if A−1 is strictly sectorial.

The following theorem provides sufficient conditions for operators to be strictly sectorial, see Corollary
1.2.6; this has (already mentioned) applications to Abel integral equations.
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Theorem 1.2.5 Let A be sectorial of angle θ0 ∈ [0, π]. Then for any 0 < α < 1, Aα is sectorial of angle
(1 − α)π + αθ0. On a smaller sector one has a representation for (λI +Aα)−1,

(λI +Aα)−1 =
sinπα

π

∫ ∞

0

sα(sI +A)−1

s2α + 2λsα cosπα+ λ2
ds, λ ∈ int Σ(1−α)π. (1.25)

Here int Σ(1−α)π denote the interior of Σ(1−α)π. Note, that the opening angle (1 − α)π + αθ0 for the
sector Σ(1−α)π+αθ0

corresponding to Aα is a convex combination of π and the opening angle θ0 for the
sector Σθ0 corresponding to A. Before giving the proof we state the following important and nice result
which is an immediate consequence of Theorem 1.2.5. (Part (a) follows with Theorem 1.1.5.)

Corollary 1.2.6 (a) If A ∈ L(X) is weakly sectorial and 0 < α ≤ 1/2, then Aα is strictly sectorial.

(b) If A ∈ L(X) is sectorial of angle π/2, then Aα is strictly sectorial for any 0 < α < 1.

Proof of Theorem 1.2.5. The proof consists of two parts.

(a) We show first that for any weakly sectorial A, Aα is sectorial of angle (1−α)π, and that moreover
one has (1.25); to this end, we take any

λ = reiϕ, |ϕ| < (1 − α)π, r > 0,

and denote the right-hand side in (1.25) with Jα(λ). We find then

sα−1

s2α + 2λsα cosπα+ λ2
=

sα−1

(sα + λeiπα) · (sα + λe−iπα)

=
sα−1

|sα/r + ei(ϕ+πα)| · |sα/r + ei(ϕ−πα)| ·
1

r2
, (1.26)

hence Jα(λ) exists (in L(X)), and one shows as in Theorem 1.1.24 that Jα(λ) in fact inverts
λI +Aα. Moreover, substituting τ = sα/r in (1.26) yields

‖Jα(λ)‖ ≤ M0
sinπα

π

∫ ∞

0

r/α dτ

|τ + ei(ϕ+πα)| · |τ + ei(ϕ−πα)| ·
1

r2

≤
(

M0
sinπα

πα

∫ ∞

0

dτ

|τ + ei(ϕ+πα)| · |τ + ei(ϕ−πα)|
)

· 1

|λ| ,

which shows that Aα is sectorial of angle (1 − α)π.

(b) Assume now that A is sectorial of angle θ0 ∈ [0, π]. Then for any 0 ≤ θ < θ0, e
∓iθA is weakly

sectorial (with M0(e
∓iθA) = Mθ(A)), and we can apply part (a) then with e∓iθA instead of A and

obtain for ε > 0 arbitrary small

‖(λe±iθαI +Aα)−1‖ ≤ M(1−α)π−ε(e
∓iθαAα)

|λ| , λ ∈ Σ(1−α)π−ε,

which yields the desired result. 2

1.2.2 An integral equation of the first kind

In the previous subsection we have seen that (small) fractional powers provide one class of strictly
sectorial operators, and we shall see in Section 1.3 some applications for that. In this subsection we
introduce an integral operator A where one can directly compute that A is strictly sectorial, and we
shall use this example in our numerical experiments, see Subsection 3.1.3. We start with a lemma on
the differential operator Lf = −f ′′.

Lemma 1.2.7 Let X be the space of continuous complex-valued functions which are periodic,

X = Cp[0, 1] :=
{

u ∈ C[0, 1] : u(0) = u(1)
}

,

supplied with the maximum norm ‖ · ‖∞. We consider the differential operator

L : X ⊃ D(L) → X,
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defined by

Lf := −f ′′, f ∈ D(L),

D(L) :=
{

f ∈ C2[0, 1] : f, f ′, f ′′ ∈ Cp[0, 1]
}

.

Then L is strictly sectorial. More specifically, L is sectorial of angle π, and for any 0 < ε < π/2 one
has Mπ/2+ε(L) ≤ 1/ cos(π/4 + ε/2), i.e.,

‖(λI + L)−1‖∞ ≤ 1

cos(π/4 + ε/2)
· 1

|λ| , λ ∈ Σπ/2+ε.

Proof. Let u ∈ X and µ = ̺eiθ with ̺ > 0 and −π/2 < θ < π/2. Then

(µ2I + L)f = u (1.27)

has a unique solution f ∈ D(L) which is given by

f(ξ) :=

∫ 1

0

kµ(ξ, η)u(η) dη, ξ ∈ [0, 1],

with kernel

kµ(ξ, η) :=

{

a · cosh(µ(ξ − η − 0.5)), if η ≤ ξ,
a · cosh(µ(ξ − η + 0.5)), if η > ξ,

(1.28)

where

a =
1

2µ sinh µ
2

.

Denoting
x := Re µ = r cos θ > 0,

and using the inequalities

| sinh(µ/2)| ≥ sinh(x/2),

| cosh(µ(ξ − η ± 0.5))| ≤ cosh(x(ξ − η ± 0.5)),

we find, for arbitrary ξ ∈ [0, 1],

|f(ξ)| ≤ 1

2|µ| sinh x
2

·
[

∫ ξ

0

cosh(x(ξ − η − 0.5)) dη +

∫ 1

ξ

cosh(x(ξ − η + 0.5)) dη
]

· ‖u‖∞

=
1

|µ|2 cos θ
‖u‖∞,

thus (see (1.27))

‖f‖∞ ≤ 1

|µ|2 cos θ
‖(µ2I + L)f‖∞.

For µ2 = λ = reiϕ, |ϕ| ≤ π/2 + ε, we find

‖(λI + L)−1‖∞ ≤ 1

cos(ϕ/2)
· 1

|λ| ≤ 1

cos(π/4 + ε/2)
· 1

|λ| ,

and that completes the proof. 2

The following integral operator is taken in our numerical calculations.

Corollary 1.2.8 Let X = Cp[0, 1] and L as in the Lemma 1.2.7, and let ω > 0. Then

A := (L+ ω2I)−1 ∈ L(X) (1.29)

is a compact Fredholm integral operator,

Au(ξ) =

∫ 1

0

kω(ξ, η)u(η) dη, ξ ∈ [0, 1],
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with non-degenerated continuous kernel kω as in (1.28), and A is strictly sectorial. More specifically, A
is sectorial of angle π, and for any 0 < ε < π/2 one has

‖(λI +A)−1‖∞ ≤
(

1 +
1

cos(π/4 + ε/2) cos ε

)

· 1

|λ| , λ ∈ Σπ/2+ε, (1.30)

i.e., Mπ/2+ε(A) ≤ 1 + 1/
(

cos(π/4 + ε/2) cos ε
)

.

Note that the underlying equation Au = f then is an (ill-posed) Fredholm integral equation of the first
kind.

Proof. It remains to show that (1.30) is fulfilled (for any 0 < ε < π/2). To this end we observe that
Lemma 1.2.7 implies

ρ(−A−1) ⊃ Σπ/2+ε,

‖(λI +A−1)−1‖∞ ≤ 1

cos(π/4 + ε/2)
· 1

|λ+ ω2|

≤ 1

cos(π/4 + ε/2) cos ε
· 1

|λ| , λ ∈ Σπ/2+ε,

and then Proposition 1.2.3 implies that for any 0 < ε < π/2, the desired resolvent condition for A is
fulfilled. 2

1.2.3 Asymptotic behaviour of uniformly bounded semigroups, and discrete
versions

The results of this subsection provide basic results for the Richardson iteration, the implicit methods as
well as Cauchy’s method that are introduced in the next chapter.

Definition 1.2.9 Let A ∈ L(X) and

T (t) := e−tA =

∞
∑

k=0

(−tA)k

k!
, t ≥ 0.

Then −A is called infinitesimal generator of the semigroup {T (t)}t≥0.

The spectral theorem implies that
‖T (t)‖ ≥ 1, t ≥ 0,

if 0 ∈ σ(A), the spectrum of A. A well-known decay behavior holds, however, if the additional ‘weight’
Aα is introduced.

Theorem 1.2.10 Let A ∈ L(X) be strictly sectorial, and let {T (t)}t≥0 be the semigroup with infinite-
simal generator −A. Then we have for α ≥ 0,

‖T (t)Aα‖ ≤ cαt
−α for t > 0, (1.31)

with postive constants cα > 0. More specifically, if A is sectorial of angle π + ε0, then (1.31) holds with

c0 := Mπ/2+ε(A)
(

2

∫ ∞

sin ε

e−s/s ds +

∫ π/2+ε

−π/2−ε

ecos ϕdϕ
)

/(2π), (1.32)

and for integer α ≥ 1 we may take cα =
(

Mπ/2+ε(A) · α/(π sin ε)
)α

, with any 0 < ε < ε0.

Proof. We first prove the assertion for integer α. (1.31) for uniformly bounded analytical semigroups is
well-known, hence we give only the sketch of the proof. For α = 0, (1.32) can be proved with the Cauchy
integral,

T (t) =
1

2πi

3
∑

j=1

∫

Γ
(t)
j

eλt(λI +A)−1 dλ,



KAPITEL 1. WEAKLY SECTORIAL AND STRICTLY SECTORIAL OPERATORS 17

with paths of integration taken to be

Γ
(t)
1/3 =

{

re∓i(π/2+ε) : 1/t ≤ r <∞
}

,

Γ
(t)
2 =

{

t−1eiϕ : |ϕ| ≤ π/2 + ε
}

,

and orientation is chosen so that Im λ increases along the integration path.

For α = 1, (1.31) follows from an estimation of the Cauchy integral

−AT (t) =
d

dt
T (t) =

1

2πi

∫

Γ

λeλt(λI +A)−1 dλ,

with contour
Γ = Γ1 ∪ Γ2, Γ1/2 =

{

re∓i(π/2+ε) : 0 ≤ r <∞
}

,

and where the orientation is chosen as above. (1.31) for integer α ≥ 1 follows easily,

‖AαT (t)‖ = ‖(AT (t/α))α‖ ≤ ‖AT (t/α)‖α ≤
(

c1α/t
)α

= cαt
−α.

Finally, (1.31) for fractional α follows with the second interpolation inequality. 2

For strictly sectorial operators we can improve Lemma 1.1.8 such that the arising constants does not
depend on n. This is stated in the following theorem which also provide a first discrete analogue for
Theorem 1.2.10.

Theorem 1.2.11 If A ∈ L(X) is strictly sectorial, then for arbitrary µ > 0,

‖(I + µA)−n‖ ≤ γ0 for n = 0, 1, 2, ..., (1.33)

with γ0 = c0 (c0 as in (1.32)). Moreover, for α > 0 there is a γα > 0 such that

‖(I + µA)−nAα‖ ≤ γαn
−α for n = 1, 2, .... (1.34)

Proof. The function t 7→ T (t) is differentiable in norm, and one can show as in the proof of the
Hille-Yosida theorem that for λ > 0,

(λI +A)−(n+1) =
1

n!

∫ ∞

0

tne−λtT (t) dt.

Then

(λI +A)−(n+1)Aα =
1

n!

∫ ∞

0

tne−λtT (t)Aα dt,

and (1.31) yield for n ≥ α, with cα as above,

‖(λI +A)−(n+1)Aα‖ ≤ cα
n!

∫ ∞

0

tn−αe−λt dt

= cα
(n− α)!

n!
· 1

λn+1−α
,

in other terms,

‖(I + µA)−nAα‖ ≤ cα
µα

1

(n− α)...(n − 1)

≤ cα
µα

(α+ 1)αn−α, n > α. (1.35)

For α = 0 this is (1.33), and (1.35) also implies (1.34) for integer α. Finally, (1.34) for fractional α
follows with the second interpolation inequality. 2

Remark. 1. A further estimation of (1.32) shows that we can take

γ0 = M
(

(π/2 + ε)e+ e−1 − log(sin ε)
)

/π (1.36)
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in (1.33) which of course is not as sharp as (1.32) but more easy to calculate.
2. If A is a selfadjoint, positive semidefinite operator in a real or complex Hilbert space X , then (1.33)
holds with γ0 = 1.

The following theorem provides a second discrete analogue for Theorem 1.2.10 and enables us to state
some results for the Richardson iteration, see the next chapter. Conditions (1.38), (1.39) say that the
spectrum σ(L) of L approximates 1 within a Stolz angle, and the resolvent operator does not increase
too fast as it approximates 1 inside the prescribed sector.

Theorem 1.2.12 We assume that for T ∈ L(X) and some 0 < ε < π/2 and C > 0,

σ(T ) ⊂
{

λ ∈ CI : |λ| < 1
}

∪
{

1
}

, (1.37)

ρ(T ) ⊃ 1 + Σπ/2+ε, (1.38)

‖(λI − T )−1‖ ≤ C

|λ− 1| , λ ∈ 1 + Σπ/2+ε, (1.39)

hold. Then T is power bounded,

‖T n‖ ≤ a0 for n = 0, 1, 2, ...,

and for α > 0 there exist some constant aα such that

‖T n(I − T )α‖ ≤ aαn
−α for n = 1, 2, ... . (1.40)

Proof. For reader’s convenience we give the line of the proof. The power boundedness of T can be
obtained with the Cauchy integral

T n =
1

2πi

3
∑

j=1

∫

Γ
(n)
j

λn(λI − T )−1 dλ, (1.41)

with contours

Γ
(n)
1/3 =

{

1 +
1

n
+ te±i(π/2+ε) : 0 ≤ t ≤ tn

}

,

Γ
(n)
2 =

{

reiϕ : π/2 + εn ≤ ϕ ≤ 3π/2 − εn

}

,

with n large enough and r, tn and εn taken such that cos ε < r < 1 and

Γ2 =
{

reiϕ : π/2 + ε ≤ ϕ ≤ 3π/2 − ε
}

⊂ ρ(T ),

and such that the composition of these contours yields a closed curve. To obtain (1.40) for integer α
first we may consider the corresponding Cauchy integral and take the integration path Γ1/3 = { 1 +

te±i(π/2+ε) : 0 ≤ t ≤ t∗ } (with an appropriate t∗) and Γ2 (with r < 1 sufficiently large). The assertion
for fractional α > 0 then follows with the second interpolation inequality (1.15). 2

Remarks 1. Since in Theorem 1.2.12 requirements on the behaviour of ‖(λI − L)−1‖ are made near 1
only, one cannot give any concrete estimate for supn≥0 ‖T n‖. It is, however, necessary to have one, if it
comes to the implementation of the stopping rules and parameter choices for our methods.
2. One can treat the case in Theorem 1.2.11 as a special case of Theorem 1.2.12. Theorem 1.2.11 provides,
however, an estimate for supn≥0 ‖(I + µA)−n‖.
3. The estimates obtained in this subsection cannot be improved, in general; this is discussed in Section
1.4.

1.3 Fractional integration, Abel integral equations

1.3.1 (Fractional) integration

For 0 < a < ∞ let X = C[0, a] be the space of IK-valued continuous functions on [0,a], supplied with
the maximum norm ‖ · ‖∞. In the first proposition we introduce the Volterra integral operators V1 and
V2 (which we consider throughout the whole section) and state elementary properties of them.
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Theorem 1.3.1 Let β > 0 be real and X = C[0, a]. The Volterra integral operators V1, V2 ∈ L(X),
defined by

(V1u)(ξ) :=

∫ ξ

0

ηβ−1u(η) dη, ξ ∈ [0, a], (1.42)

(V2u)(ξ) :=

∫ a

ξ

ηβ−1u(η) dη, ξ ∈ [0, a], (1.43)

are weakly sectorial (with M0(Vj) = 2, j = 1, 2), and in fact

lim
t→∞

‖(I + tVj)
−1‖∞ = 2, j = 1, 2. (1.44)

Moreover, for j = 1, 2, ρ(Vj) = IK\{0}. If IK = CI , then Vj is sectorial of angle π/2, and this angle π/2
is best possible, i.e., Vj is not strictly sectorial.

Proof. We present the proof for V1 only, since the same technique applies to prove the assertion for V2.
V1 obviously is well-defined and in L(X), with ‖V1‖∞ = aβ/β. Moreover V1 is inverse to the (unbounded)
operator L : X ⊃ D(L) → X defined by

(Lf)(ξ) = ξ−(β−1)f ′(ξ), f ∈ D(L), ξ ∈ [0, a],

D(L) :=
{

f ∈ X : f ∈ C1(0, a], ξ 7→ ξ−(β−1)f ′(ξ) ∈ X, f(0) = 0
}

. (1.45)

We observe first that ρ(−L) = IK, since for λ ∈ IK and u ∈ X , the equation

(λI + L)f = u (1.46)

has the unique solution

f(ξ) =

∫ ξ

0

ηβ−1e−λ(ξβ−ηβ)/βu(η) dη, ξ ∈ [0, a], (1.47)

and thus ρ(V1) = IK\{0}. We shall show that L is weakly sectorial with M0(L) = 1, i.e.,

‖(tI + L)−1‖∞ ≤ 1/t, t > 0, (1.48)

(which in fact means that L is dissipative). We find then from (1.48) and Proposition 1.1.7 that V1 is
weakly sectorial (with M0(V1) = 2). For IK = CI , (1.48) and Theorem 1.1.5 imply that L is sectorial of
angle π/2, and then also V1 = L−1 is sectorial of angle π/2, see Proposition 1.2.3.

To show (1.48), let t = λ > 0 in (1.47) and ξ ∈ [0, a]. Then

t|f(ξ)| ≤
(

t

∫ ξ

0

ηβ−1e−t(ξβ−ηβ)/β dη
)

· ‖u‖∞

=
(

1 − e−tξβ/β
)

· ‖u‖∞ ≤ ‖u‖∞ = ‖(tI + L)f‖∞,

and taking the supremum over ξ ∈ [0, a] yields (1.48).

We show that M0(V1) = 2 cannot be reduced. To this end, we observe that (I + tV1)u = f if and only
if (see (1.5) with t−1 for t, (1.46) and (1.47))

u(ξ) = f(ξ) − t

∫ ξ

0

ηβ−1e−t(ξβ−ηβ)/βf(η) dη.

Now take for small ε > 0 some f ∈ C[0, a], ‖f‖∞ = 1, such that f(a) = 1 and f(η) = −1, η ∈ [0, a−ε],
and then

|u(a)| ≥ 1 + t

∫ a−ε

0

ηβ−1e−t(aβ−ηβ)/β dη − t

∫ a

a−ε

ηβ−1e−t(aβ−ηβ)/β dη

= 1 + e−t
(

aβ − (a−ε)β
)

/β − e−taβ/β −
[

1 − e−t
(

aβ−(a−ε)β
)

/β
]

= 2e−t
(

aβ − (a−ε)β
)

/β − e−taβ/β,
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and we find (1.44) by taking ε = ε(t) sufficiently small.

We finally show that L (and then also V1) is not strictly sectorial. To this end, let t > 0 and u(η) =

e−itηβ/β, η ∈ [0, a]. Then the equation
(itI + L)f = u

has the unique solution

f(ξ) =

∫ ξ

0

ηβ−1e−it(ξβ−ηβ)/βu(η) dη

= e−itξβ/β

∫ ξ

0

ηβ−1 dη = e−itξβ/β · ξ
β

β
,

hence |f(ξ)| = ξβ/β, and thus

‖f‖∞ =
aβ

β
, ‖u‖∞ = 1,

and this shows that L (and then also V1) is not strictly sectorial. 2

For real β > 0 let Lp
(

[0, a], ξβ−1dξ
)

be the space of IK-valued, measurable functions u on [0,a], such
that |u|p is integrable with respect to the measure ξβ−1dξ, and this space is supplied with the norm

‖u‖
Lp =

(

∫ a

0

|u(ξ)|p ξβ−1dξ
)1/p

, u ∈ Lp
(

[0, a], ξβ−1dξ
)

.

By L∞
(

[0, a], ξβ−1dξ
)

we denote the space of IK-valued, measurable functions u on [0,a] which are
essentially bounded with respect to the measure ξβ−1dξ, and this space is supplied with the norm

‖u‖
L∞

= ess sup
ξ∈[0,a]

|u(ξ)|ξβ−1, u ∈ L∞
(

[0, a], ξβ−1dξ
)

.

Theorem 1.3.2 (Integration in Lp
(

[0, a], ξβ−1dξ
)

) On X = Lp
(

[0, a], ξβ−1dξ
)

(for some 1 ≤ p ≤ ∞)
the operators V1, V2, defined by (1.42), (1.43), respectively, are weakly sectorial with M0(Vj) = 2, j =
1, 2. For IK = CI , V1 and V2 are sectorial of angle π/2.

Proof. We again give the proof for V1 only and shall show that V1 is well-defined and in L(X), and
that it is sectorial of angle π/2. To this end we consider

Lf(ξ) = ξ−(β−1)f ′(ξ), f ∈ D(L), ξ ∈ [0, a],

D(L) := { f ∈ X : f is absolutely continuous, ξ 7→ ξ−(β−1)f ′(ξ) ∈ X, f(0) = 0 }. (1.49)

Similar to the proof of Theorem 1.3.1, for t ≥ 0,

(tI + L)f = u

has the unique solution

f(ξ) =

∫ ξ

0

ηβ−1e−t(ξβ−ηβ)/βu(η) dη, ξ ∈ [0, a].

To show that L is weakly sectorial with M0(L) = 1, we substitute η̃ = ηβ/β, ξ̃ = ξβ/β, and define

f̃(ξ̃) := f
(

(βξ̃)1/β
)

,

ũ(η̃) := u
(

(βη̃)1/β
)

,

and ã := aβ/β. Note that

‖f̃‖Lp([0,ã],dξ) = ‖f‖Lp([0,a], ξβ−1dξ), ‖ũ‖Lp([0,ã],dξ) = ‖u‖Lp([0,a], ξβ−1dξ). (1.50)
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We then obtain

f̃(ξ̃) =

∫ ξ

0

ηβ−1e−t(ξβ−ηβ)/βu(η) dη

=

∫ ξ̃

0

e−t(ξ̃−η̃)ũ(η̃) dη̃,

and applying Young’s inequality for convolutions,

‖k ∗ ψ‖Lp(IR,dξ) ≤ ‖k‖L1(IR,dξ) · ‖ψ‖Lp(IR,dξ), k ∈ L1(IR, dξ), ψ ∈ Lp(IR, dξ),

with

k(s) =

{

e−ts, if s ∈ [0, ã],
0, if s /∈ [0, ã],

and

ψ(η̃) =

{

ũ(η̃), if η̃ ∈ [0, ã],
0, if η̃ /∈ [0, ã],

yields for t = 0
‖f̃‖Lp([0,ã],dξ) ≤ ã‖ũ‖Lp([0,ã],dξ),

and this implies that V1 is well-defined and in L(X), and (1.50) implies

‖V1‖Lp([0,a],ξβ−1 dξ) ≤ ã,

and obviously L inverts V1. For t > 0 we find

t‖f̃‖Lp([0,ã],dξ) ≤ ‖ũ‖Lp([0,ã],dξ),

which in conjunction with (1.50) shows that that L is weakly sectorial with M0(L) = 1. The rest of the
proof is similar to that of Theorem 1.3.1. 2

It follows immediately from Theorems 1.3.1 and 1.3.2 together with Corollary 1.2.6 that V α
1 and V α

2 are
strictly sectorial for any 0 < α < 1 (with respect to X = C[0, a] or X = Lp

(

[0, a], ξβ−1dξ
)

, 1 ≤ p ≤ ∞).
In the following theorem these fractional powers are explicitly given, and in fact they are (generalized)
Abel integral operators, with the classical case obtained for α = 1/2, β = 1.

Theorem 1.3.3 Let β > 0. In X = C[0, a] or X = Lp
(

[0, a], ξβ−1dξ
)

, 1 ≤ p ≤ ∞, for the operators
V1, V2, defined by (1.42), (1.43), respectively, one has for 0 < α < 1,

(V α
1 u)(ξ) =

β1−α

Γ(α)

∫ ξ

0

ηβ−1u(η)

(ξβ − ηβ)1−α
dη, u ∈ X, ξ ∈ [0, a],

(V α
2 u)(ξ) =

β1−α

Γ(α)

∫ a

ξ

ηβ−1u(η)

(ξβ − ηβ)1−α
dη, u ∈ X, ξ ∈ [0, a],

where Γ denotes the Gamma function. V α
1 and V α

2 are strictly sectorial (for IK = CI ).

Proof. The inverse operator of V1 is (Lf)(ξ) = ξ−(β−1)f ′(ξ), f ∈ D(L) (for the domain of definition of
L see (1.45) and (1.49), respectively), hence one has

V α
1 u =

sinπα

π

∫ ∞

0

tα−1(I + tL)−1u dt

=
sinπα

π

∫ ∞

0

s−α(L + sI)−1u ds,

therefore (see (1.48))

(V α
1 u)(ξ) =

sinπα

π

∫ ∞

0

s−α

∫ ξ

0

e−s(ξβ−ηβ)/β · ηβ−1u(η) dη ds



KAPITEL 1. WEAKLY SECTORIAL AND STRICTLY SECTORIAL OPERATORS 22

-1 0 1

x

-1

0

1

y �
�
�
�� r

sx(θ)

θ
0

HHHHHHHHHHHHHHH

HHHHHHHHHHHH

Lθ,s

............................
.......

.......

.......
.......
........
..........

...

......

.......

.......

.......

.......

.......

.......
.......
.......
.......
.......
.......
.......
.......
........
........
........
........
.........
.........

.........
.........

..........
...........

...........
............

..............
................

....................
..................................


.....................

................
..............

............
............
...........
..........
.........
.........
.........
.........
........
........
........
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.

Abbildung 1.3: Illustration for the Radon transform

=
sinπα

π

∫ ξ

0

(

∫ ∞

0

s−αe−s(ξβ−ηβ)/β ds
)

· ηβ−1u(η) dη

=
sinπα

π

∫ ξ

0

( β

ξβ − ηβ

)1−α(

∫ ∞

0

t−αe−t dt
)

· ηβ−1u(η) dη

= β1−α
( sinπα

π

∫ ∞

0

t−αe−t dt
)

·
∫ ξ

0

ηβ−1u(η)

(ξβ − ηβ)1−α
dη

= β1−α
( sinπα

π
Γ(1 − α)

)

∫ ξ

0

ηβ−1u(η)

(ξβ − ηβ)1−α
dη

=
β1−α

Γ(α)

∫ ξ

0

ηβ−1u(η)

(ξβ − ηβ)1−α
dη,

and exchanging the order of integration is justified by the integrability conditions on u. Finally, it follows
from Theorems 1.3.1 and 1.3.2 as well as Corollary 1.2.6 that V α

1 and V α
2 are strictly sectorial. 2

1.3.2 Two applications

The Radon transform for radial functions

The two-dimensional Radon transform R maps a function ψ : IR2 → IR into the set of integrals of ψ
over the lines Lθ,s, θ ∈ [0, 2π], s ≥ 0. Here

Lθ,s :=
{

sx(θ) + tx(θ)⊥ : t ∈ IR
}

,

x(θ) := (cos θ, sin θ)T , x(θ)⊥ := (− sin θ, cos θ)T ,

and we have the situation as described in Figure 1.3. Rf thus can be written in the form

(Rψ)(θ, s) =

∫

Lϕ,s

ψ(x) S(dx), θ ∈ [0, 2π], s ≥ 0,

and the task is to recover ψ from g = Rψ. If ψ has support in the closed unit disk D :=
{

x ∈ IR2 :

|x|2 ≤ 1
}

and it is moreover a radial function, i.e., for some function u : [0, 1] → IR one has (with | · |2
denoting the Euklidian norm in IR2)

ψ(x) = u(|x|2), x ∈ IR2,
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Abbildung 1.4: Situation for seismic travel times

(this is a realistic assumption for the spectroscopy of cylindrical gas discharges) then

(Rψ)(θ, s) =

∫

Lθ,s

ψ(x) S(dx) =

∫

Lθ,s

u(|x|) S(dx)

=

∫ ∞

−∞

u
(

(s2 + t2)1/2
)

dt = 2

∫ ∞

0

u
(

(s2 + t2)1/2
)

dt

= 2

∫ ∞

s

ru(r)

(r2 − s2)1/2
dr = 2

∫ 1

s

ru(r)

(r2 − s2)1/2
dr,

and this implies that g = Rψ is also radial and has support in D, and if

f(s) := g(θ, s), s ∈ [0, 1],

then the resulting equation Au = f is an Abel integral equation of the first kind (up to some constant
factor).

Seismic imaging

We present a model for recovering characteristics of the sub-surface medium from seismic travel times:
Here artificial seismic waves are sent with fixed initial veloscity v0, and it is assumed that its scalar
veloscity does not depend on the incident angle θ0, i.e., it depends on the depth z only. If we denote the
trajectory of the seismic wave by γ(t) =

(

x(t), z(t)
)

, then this assumption on v can be written as

v(z(t)) = |γ̇(t)|2 =
(

ẋ(t)2 + ż(t)2
)1/2

,

and the incident angle then is

θ0 = ∡

(

(0,−1)T , γ̇(0)
)

,

see Figure 1.4 for an illustration of the situation. We introduce the ray parameter

p =
sin θ0
v0

,

and denote with X = X(p) and T = T (p) location and time where and when the seismic ray reaches the
surface again, respectively. In fact, this case happens only for p ∈ [p∗, 1/v0] with an appropriate p∗ > 0.
If w is reciprocal to v,

w(z) = 1/v(z),

if u is inverse to w, and if
f(p) := T (p) − pX(p), p ∈ [p∗, w0],

then one can show that f and u are related via an Abel integral equation of the first kind,
∫ w0

p

wu(w)

(w2 − p2)1/2
dw =

1

2
f(p), p ∈ [p∗, w0],

where
w0 = 1/v0.

The formulation is slightly different from that in Section 1.3 since p∗ 6= 0, but all assertions in that
section remain valid if the origin 0 ∈ IR is substituted by some c > 0.
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1.4 Appendix: Some converse results

1.4.1 Lower bounds for the speed, and saturation

If the origin 0 is accumulation point of the spectrum of A, then Lemma 1.1.8, Theorem 1.2.10 and
Theorem 1.2.11 cannot be improved. We state this in the following proposition. Estimate (1.51) provides
a saturation effect, i.e., speed cannot increase, if α exceed m; this holds also if 0 is not an accumulation
point of the origin 0.

Proposition 1.4.1 Assume that A ∈ L(X) is weakly sectorial and that there exist 0 6= λj ∈ σ(A), j =
0, 1, ..., with λj → 0 as j → ∞.

(a) (Cf. Lemma 1.1.8) For integer α we have

lim sup
t→∞

‖(I + tA)−mAα‖ · tα ≥ αα (m− α)m−α

mm
, if 1 ≤ α ≤ m− 1,

lim sup
t→∞

‖(I + tA)−mAα‖ · tm ≥ rσ(A)α−m, if α ≥ m. (1.51)

Here,
rσ(A) := sup

{

|λ| : λ ∈ σ(A)
}

is the spectral radius of A.

(b) (Cf. Theorem 1.2.10) We additionally assume that ρ(−A) ⊃ Σπ/2+ε for some 0 < ε < π/2. For
integers α ≥ 1,

lim sup
t→∞

‖T (t)Aα‖ · tα ≥
( α

e sin ε

)α

holds, where {T (t)}t≥0 is the semigroup with infinitesimal generator −A.

(c) (Cf. Theorem 1.2.11) For fixed µ > 0 and α ≥ 1,

lim sup
n→∞

‖(I + µA)−nAα‖ · nα ≥
( α

µe

)α

.

Proof. (a) The spectral theorem implies

‖(I + tA)−mAα‖ · tα ≥ sup
λ∈σ(A)

∣

∣

∣

(λt)α

(1 + tλ)m

∣

∣

∣
≥ sup

λ∈σ(A)

(|λ|t)α

(1 + t|λ|)m
.

Take
tj =

α

(m− α)|λj |
, j = 0, 1, ...,

to obtain

‖(I + tjA)−mAα‖ · tαj ≥ αα (m− α)m−α

mm
.

Similarly we obtain the second part of (a):

‖(I + tA)−mAα‖ · tm ≥ sup
λ∈σ(A)

∣

∣

∣

λαtm

(1 + tλ)m

∣

∣

∣
≥ sup

λ∈σ(A)

|λ|α
(t−1 + |λ|)m

=
rσ(A)α

(t−1 + rσ(A))m
→ rσ(A)α−m as t → ∞.

(b) We have σ(A) ⊂ Σπ/2−ε ∪ {0}, and the spectral theorem again implies

‖T (t)Aα‖ · tα ≥ sup
λ∈σ(A)

e−tReλ(|λ|t)α,

≥ sup
λ∈σ(A)

e−t|λ| sin ε(|λ|t)α,

and for
tj =

α

|λj | sin ε
, j = 0, 1, ...,
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we get

‖T (tj)A
α‖ · tαj ≥

( α

e sin ε

)α

.

(c) Here,

‖(I + µA)−nAα‖ · nα ≥ sup
λ∈σ(A)

µ−α (nµ|λ|)α

(1 + µ|λ|)n
,

and for large j we choose nj such that

α

nj − α+ 1
≤ µ|λj | ≤ α

nj − α
.

Then

µ−α (njµ|λj |)α

(1 + µ|λj |)nj

∣

∣

∣
≥ µ−α

(

nj

nj−α+1

)α

αα

(

1 + α
nj−α

)nj
→

( α

µe

)α

as j → ∞. 2

The situation in Proposition 1.4.1 does not apply to the Abel integral operators, since their spectrum
consists of the the origin 0 only. For that case we state without proof the following result which provide
(with T = I − µA and T = (I + µA)−1) converse results for the iterative methods, in the case α = 1.

Theorem 1.4.2 Let T ∈ L(X), T 6= I, with σ(T ) = {1}. Then

lim inf
n→∞

n‖T n − T n+1‖ ≥ 1/96.

1.4.2 Converse results for the angle conditions

For operators A being not strictly sectorial we cannot expect the speed as stated in Theorems 1.2.10
and 1.2.11. This and more can be derived from the following example.

Example 1.4.3 On X = C[0, 1], the space of complex-valued continuous functions on [0,1], supplied
with the max-norm ‖ · ‖∞, we consider the multiplication operator,

Au(s) = a(s)u(s), s ∈ [0, 1],

where a is assumed to be a complex-valued continuous function. In the first part of this example we
derive necessary and sufficient conditions for A to be weakly sectorial or strictly sectorial. For that we
note that for 0 < ε ≤ π/2,

dist(0, 1 + Σπ/2+ε) = cos ε, (1.52)

dist(0, 1 + Σπ/2−ε) = 1.

It is easy to see that the following properties are valid.

(a) A is weakly sectorial if and only if there is an 0 < ε ≤ π/2 with

a(s) ∈ Σπ/2+ε ∪ {0} for s ∈ [0, 1]. (1.53)

To this end, take any M0 ≥ 1, and define ε = arccos(1/M0). A is weakly sectorial with bound M0

in (1.2), if and only if

|1 + ta(s)| ≥ cos ε = 1/M0 for s ∈ [0, 1], t > 0.

and it follows from (1.52) that this is equivalent to (1.53).

(b) Let 0 < ε0 < π/2 be fixed. Then: A is strictly sectorial if and only if

a(s) ∈ σπ/2−ε0
∪ {0} for s ∈ [0, 1],

and then (1.3)-(1.4) holds for any 0 < ε1 < ε0 (with M0 = 1/ sin(ε0 − ε1)).

In the second part of this example we consider several concrete choices for the function a.
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(a) Take e.g. a(s) = s to see that the constants in Proposition 1.4.1 cannot be improved.

(b) Here is an example showing that (for fixed α) of an operator being not strictly sectorial and where
we do not have the rates O(n−α) as in Theorem 1.2.11. For that we consider an operator A

ρ(−A) ⊃ Σπ/2,

but which is not strictly sectorial since for any 0 < ε ≤ π/2,

ρ(−A) 6⊃ Σπ/2+ε.

Take e.g. for arbitrary 1/2 ≤ τ < 1,

a(s) = sτeiβ(s), s ∈ [0, 1],

where β is continuous with 0 ≤ β(s) ≤ π/2. β(s) is uniquely determined if we moreover require
that

|1 + µsτeiβ(s)| = 1 + µs, s ∈ [0, 1],

(here we need that 1/2 ≤ τ). Note that here

ρ(−A) ⊃ Σπ/2,

but for any 0 < ε ≤ π/2,
ρ(−A) 6⊃ Σπ/2+ε,

hence A cannot be strictly sectorial. For n large we have,

‖(I + µA)−nAα‖ = sup
0≤s≤1

sτα|1 + µa(s)|−n ∼
(τα

µe

)τα

· n−τα as n→ ∞.

(c) Note, however, that the exponent for n−1 cannot be smaller then α/2 for this example. This
observation on the speed of convergence is no accident, however; to demonstrate this we consider
the multiplication operator A with

a(s) = is, s ∈ [0, 1],

and then even
ρ(−A) 6⊃ Σπ/2.

We observe that for large n,

‖(I + µA)−nAα‖ = sup
0≤s≤1

sα(1 + µ2s2)−n/2 ∼
( α

µ2e

)α/2

· n−α/2 as n→ ∞,

so that the speed of convergence again is not arbitrarily slow (for fixed α). The reason for that
is the following: T = (I + µA)−1 can be written as nontrivial convex combination of the identity
operator I and the power bounded operator (I + µA)−1(I − µA), such that lower speed then is
not possible.
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KAPITEL 1. WEAKLY SECTORIAL AND STRICTLY SECTORIAL OPERATORS 27

Chapter 1.2 Balakrishnan ([4],[5]) and Kato ([33]), were one of the first who studied fractional powers
of (unbounded) operators, and Theorems 1.1.24 and 1.2.5 in fact can be found in [33]. Monographs
containing these two theorems are, e.g., Krein [36] and Tanabe [69].

Lemma 1.2.7 is Pazy [53], Lemma 8.2.1 and its proof. Theorem 1.2.10 and its proof also can be
found in [53]: The case α = 0 is [53], Theorem 1.7.7 and its proof, and the case α = 1 is [53], Theorem
2.5.2 and its proof. For the Hille-Yosida theorem and its proof see e.g. [53], Theorem 1.5.3. (1.33) in
Theorem 1.2.11 can be derived from the proof of [53], Theorem 1.7.7 (the assumption 0 ∈ ρ(A) there is
not needed in our case), and (1.33) (1.34) in Theorem 1.2.11 generalizes (for bounded operators) [53],
Theorem 2.5.5, where one has the restriction α = 1. For possible generalizations of Theorem 1.2.11 to
rational functions see Lubich and Nevanlinna [44].

Theorem 1.2.12 is due to Nevanlinna [52], Theorems 4.5.4 and 4.9.3. Related results are the Kreiss
Matrix theorem, see, e.g., J.L. van Dorsselaer, J.F. Kraaijevanger and M.N. Spijker [74] for a recent
survey on that and other topics, as well as the Katznelson-Tzafriri theorem [34] which provide under
weaker resolvent assumptions weaker results.

Theorem 1.4.2 is due to Esterle [14], Corollary 9.5, and Zemánek [75] mentions that 1/96 in fact can
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Kapitel 2

Linear approximation methods for
ill-posed problems

2.1 A class of parameter dependent methods

Let X be a real or complex Banach space, and let A ∈ B(X) and f∗ ∈ R(A). We again consider the
equation (1.1),

Au = f∗

which may be ill-posed or ill-conditioned in general so that small perturbations of the right-hand side can
lead to large deviations in the searched-for solution of the problem. We now look at some of parameter
dependent methods, which for some approximation f ∈ X for the right-hand side f∗ in (1.1),

f ≈ f∗,

generates
ut := u0 −Gt(Au0 − f), t ≥ 0, (2.1)

with some initial guess u0 ∈ X , and with Gt ∈ L(X) to be specified. Those methods are called linear,
since ut − u∗ depends linear on Au0 − f (which is not the case for conjugate gradient type methods in
Hilbert spaces; one of these methods is considered in Chapter 5).

Any of these methods is designed to approximate a solution f∗ ∈ X of (1.1) as t → ∞, if the exact
right-hand side is available, i.e., u∗t → f∗ as t→ ∞, where u∗t denote the family generated by (2.1) with
f = f∗. With the notation

Ht := I −GtA

this means that we expect u∗ − u∗t = Ht(f∗ − u0) → 0 as t → ∞ to hold. For all the methods to be
considered we shall see that, under appropriate assumptions on A, for a typical smoothness assumption
like ‘u0 − u∗ ∈ R(Aα)’ we can expect some speed for the decay of u∗ − u∗t as t → ∞, since for some
0 < α0 ≤ ∞,

‖HtA
α‖ ≤ γαt

−α for t > 0, 0 < α ≤ α0 (2.2)

(0 < α <∞, if α0 = ∞) does hold.

Definition 2.1.1 For any method of type (2.1), 0 < α0 ≤ ∞ is called the qualification of the method,
if it is the largest number such that (2.2) does hold.

Any method to be considered has qualification α0 ≥ 1, and then (2.2) and the principle of uniform
boundedness implies that for u ∈ R(A),

‖Htu‖ → 0 as t→ ∞.

This means in particular that

lim
t→∞

Gtψ = A−1ψ for all ψ ∈ A(R(A)),

28
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if N (A) = {0}. If (1.1) is ill-posed, then ‖Gt‖ → ∞ as t→ ∞, and then

{ ψ ∈ X : ‖Gtψ‖ → ∞ as t→ ∞ }

is a set of second category in X .

We return to the case where perturbed right-hand side is permitted, i.e., assume that f ≈ f∗. Observe
that if u∗ solves (1.1), then

ut − u∗ = Ht(u0 − u∗) −Gt(Au∗ − f).

Since we assume the underlying problem to be ill-posed we can expect ‖Gt(Au∗−f)‖ → ∞ as t→ ∞ and
then we have have only semiconvergence in general, this is, the error ‖ut−u∗‖ decreases as t increases up
to some point, and then the error begins to to increase after t exceed this point. This typical situation
is described in Figure ??.
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‖ut − u∗‖
‖Ht(u0 − u∗)‖ ‖Gt(Au∗ − f)‖

We will see that for any method to be considered, ‖Gt‖ does not grow too fast,

‖Gt‖ ≤ γ∗t, t > 0, (2.3)

with some constant γ∗ > 0.

For the discrepancy principle to be defined in the following section, it is shown by means of (2.2) and
(2.3) that the chosen parameter is not too large. On the other hand, the parameter tδ found by the
parameter choice strategies to be defined can be very small. In that case we use the following condition,

‖Htu‖ ≤ κ
(

‖Ht∗u‖ + t∗‖AHtu‖
)

for 0 ≤ t ≤ t∗, and for u ∈ X, (2.4)

with some constant κ > 0, and which is fulfilled by all examples to be considered. Actually, we can show
the stronger estimate

‖Htu−Ht∗u‖ ≤ κ(t∗ − t)‖AHtu‖ for 0 ≤ t ≤ t∗, and for u ∈ X,

but (2.4) is sufficiently strong to prove convergence results.

These three conditions (2.2)-(2.4) are the ingredients for the main Theorem 3.2.3. We will also see that

GtA = AGt, t ≥ 0, (2.5)

is also fulfilled for any method to be considered.

2.1.1 The iterated method of Lavrentiev

For weakly sectorial operators A (see (1.2) for the definition) we first consider the (iterated) method of
Lavrentiev,

(I + tA)vn+1 = vn + tf, n = 0, 1, 2, ...,m− 1, (2.6)

ut := vm, (2.7)

with v0 = u0 and fixed integer m ≥ 1.
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Theorem 2.1.2 Let A ∈ L(X) be weakly sectorial. ut, defined by (2.6), (2.7), is of the form (2.1), with

Gt = t

m
∑

j=1

(I + tA)−j ,

and fulfill (2.2)-(2.5)with Ht = (I + tA)−m, and with finite qualification α0 = m.

Proof. Elementary calculations show that ut in (2.7) is of the form (2.1) with Gt and Ht as claimed.
We then obviously have (2.3) with

γ∗ :=

{

(Mm
0 − 1)/(1 −M−1

0 ), if M0 > 1,
m, if M0 = 1,

and it follows with (1.6) that (2.2) holds with α0 = m, and we obviously can choose

γ0 = Mm
0

there. We show finally (2.8) and (2.9) what implies (2.4) for the (iterated) method of Lavrentiev. For t
and t∗ with 0 < t ≤ t∗ we have

Ht −Ht∗ = (I + tA)−m − (I + t∗A)−m

= Ht

(

(I + t∗A)m − (I + tA)m
)

(I + t∗A)−m

= (t∗ − t)HtA
(

m−1
∑

j=0

(I + t∗A)m−1−j(I + tA)j
)

(I + t∗A)−m

= (t∗ − t)HtA
(

m−1
∑

j=0

(I + t∗A)−j−1(I + tA)j
)

= (t∗ − t)HtA(I + t∗A)−1
m−1
∑

j=0

(

(I + t∗A)−1(I + tA)
)j

. (2.8)

Moreover, (I + t∗A)−1(I + tA) is uniformly bounded for t and t∗ with 0 < t ≤ t∗, since for ω := t/t∗,

(I + t∗A)−1(I + tA) = ωI + (1 − ω)(I + t∗A)−1

and thus
‖(I + t∗A)−1(I + tA)‖ ≤ M0. (2.9)

As already mentioned, (2.8), (2.9) imply that (2.4) holds. 2

We can see from the relations (2.6), (2.7) that for the iterated method of Lavrentiev, instead of (2.4) we
have a stronger estimate. Since this observation and (2.7) will be used to prove results for a parameter
choice strategy, we state the following corollary.

Corollary 2.1.3 If A is weakly sectorial (with M0 in (1.2)), then with Ht = (I + tA)−m, and for
0 ≤ t ≤ t∗, we have

‖Ht∗H
−1
t ‖ ≤ Mm

0 ,

‖Htu−Ht∗u‖ ≤ C(t∗ − t)‖(I + tA)−1AHtu‖, u ∈ X,

where

C :=

{

(Mm
0 − 1)/(1 −M−1

0 ), if M0 > 1,
m, if M0 = 1.

We conclude this subsection with the observation that here we may consider also real spaces X . If X is
a complex space and A is strictly sectorial, however, then we can use Theorem 1.2.11 to find a γ0 which
may be significantly smaller than Mm

0 .
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2.1.2 Cauchy’s method

For an operator fulfilling (1.3) and (1.4), and for initial approximation u0 ∈ X let us consider the
abstract Cauchy problem,

u′(t) +Au(t) = f, t > 0, (2.10)

u(0) = u0. (2.11)

Its solution u(t), t ≥ 0, exists for all times t ≥ 0, and can be written as (2.1) if we use the notation

ut = u(t), (2.12)

see the following theorem.

Theorem 2.1.4 Let A ∈ L(X) be weakly sectorial. ut, defined by (2.10)-(2.12), is of the form (2.1),
with

Gtψ =

∫ t

0

e−sAψ ds, ψ ∈ X, (2.13)

and fulfill (2.2)-(2.5)with Ht = e−tA, the uniformly continuous semigroup with infinitesimal generator
−A, and with qualification α0 = ∞.

Proof. Elementary calculations show that ut is of the form (2.1) with Gt and Ht as above. The decay
property (2.2) is a consequence of Theorem 1.2.10. The semigroup e−sA is uniformly bounded by γ0, in
particular, and then ‖Gt‖ ≤ γ0t, i.e., (2.3) holds with γ∗ = γ0, which follows immediately from (2.13).
To see that the third condition (2.4) is fulfilled, we observe that for 0 < t < t∗, u ∈ X ,

(Ht −Ht∗)u = −
∫ t∗

t

(
d

ds
Hs)u ds =

∫ t∗

t

AHsu ds =

∫ t∗

t

Hs−tAHtu ds,

hence
‖(Ht −Ht∗)u‖ ≤ γ0(t∗ − t)‖AHtu‖,

which is the desired result. 2

We call this method Cauchy’s method. It is of interest since the iterated method of Lavrentiev can
be understood as the backward Euler scheme, with fixed number of timesteps m and varying stepsize;
moreover, also the iteration methods considered in the following Section 2.2 can be understood as
discretized variant of Cauchy’ method.

Finally we give an equivalent formulation for this method. To this end, let N > 0 be a fixed real number,
consider for (large) parameter t > 0 and ǫ := 1/t the solution of the problem

ǫu′(s) + Au(s) = f, s > 0,

u(0) = u0,

and take ut = u(N) as approximation for the solution of (1.1). It is easy to see that

ut := u0 − G̃t(Au0 − f),

with

G̃tψ := t

∫ N

0

e−stAψ ds =

∫ Nt

0

e−sAψ ds

= GNtψ,

with Gt as for Cauchy’s method.
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2.2 A class of iterative methods

Let again X be a real or complex Banach space. In order to solve equation (1.1) with only approximately
given right-hand side f ∈ X , we consider methods which for inital guess u0 ∈ X generate sequences

un := u0 −Gn(Au0 − f) for n = 0, 1, 2, ..., (2.14)

(with Gn ∈ L(X)). Our main subject of methods of type (2.14) are of iterative type. When it comes to the
implementation of Lavrentiev’s (iterated) method, however, then the corresponding family {ut} will be
evaluated for discrete values of t only, and we shall see in Section 2.6 how this does fit into our framework
(2.14). For that it is convenient to state most general assumptions on {Gn}; let F (n), n = 0, 1, ... be a
real-valued function with the following properties:

F (0) = 0,

F (n) ≥ F (n− 1), n ≥ 1,

F (n) ≤ κF (n− 1), n ≥ 2,

F (n) → ∞ as n→ ∞,

for some κ > 0. Analogously to the previous subsection we define

Hn := I −GnA

and assume that for some fixed α0 > 0

‖HnA
α‖ ≤ γαF (n)−α for n = 1, 2, ..., 0 ≤ α ≤ α0, (2.15)

‖Gn‖ ≤ γ∗F (n) for n = 0, 1, 2, ..., (2.16)

‖Hnu‖ ≤ κ
(

‖Hn∗
u‖ + F (n∗)‖AHnu‖

)

for n, n∗ = 0, 1, 2, ..., n ≤ n∗, and for u ∈ X. (2.17)

GnA = AGn for n = 0, 1, 2, ..., (2.18)

(with 0 < α in (2.15), if α0 = ∞). The function F is responsible for the speed of the method (in the case
of exact data); for the stationary methods to be considered in this section one always has F (n) = n,
and then (2.15)-(2.18) are identical with the four conditions (2.2)-(2.5) for the parameter methods (with
t = n).

In order to look at some concrete methods belonging to the class above (with F (n) = n, n = 0, 1, ...),
in the following three subsections we assume that A ∈ B(X) is strictly sectorial. The terminolgy ‘quali-
fication of a method’ is used like for parameter methods.

2.2.1 The Richardson iteration

We now consider the Richardson iteration,

un+1 = un − µ(Aun − f), n = 0, 1, 2, ..., (2.19)

which is also called Landweber iteration if X is a Hilbert space and the equation Au = f results from
a normalization.

Theorem 1.2.12 enables us to show that the Richardson iteration (2.19), for µ > 0 small enough, belongs
to the general class of methods (with F (n) = n, n = 0, 1, ..., and α0 = ∞).

Theorem 2.2.1 For strictly sectorial A ∈ L(X), take any

0 < µ ≤ (2 sin ǫ)/‖A‖, (2.20)

and let L := I − µA. Then un, defined by (2.19), is of the form (2.14), with

Gn = µ

n−1
∑

j=0

Lj,

and fulfill (2.15)-(2.18)with Hn = (I − µL)n, with F (n) = n, n = 0, 1, ..., and qualification α0 = ∞.
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Proof. A is sectorial of angle π/2 + ǫ for some 0 < ǫ, and then one can see that (1.39) is fulfilled by
I −µA. The condition 0 < µ ≤ (2 sin ǫ)/‖A‖, guarantees σ(I −µA) ⊂ {λ ∈ CI : |λ| < 1 }∪{1}, since we
have rσ(T ) ≤ ‖T ‖ for any T ∈ L(X); thus (1.38) in Theorem 1.2.12 is fullfilled by T = I−µA, and then
(2.15) holds with γ∗ = µa0, and (2.16) holds for F (n) = n, n = 0, 1, ..., and qualification α0 = ∞ (with
γα = aαµ

−α for integer α). The general case for fractional α > 0 follows with the second interpolation
inequality (1.15). Finally, one has for n ≤ n∗

Hn = µ

n∗−1
∑

j=n

LjA+Hn∗

which implies
‖Hnu−Hn∗

u‖ ≤ κ(n∗ − n)‖HnAu‖
with κ = µa0, i.e., (2.17) holds with F (n) = n, n = 0, 1, ... . 2

Remark. For Abel integral operators V α
j , j ∈ {0, 1}, 0 < α < 1, we do not need the restriction (2.20)

on µ: σ(V α
j ) = {0} and thus, somewhat surprising, I − µV α

j is power bounded for any µ > 0 (and any
j ∈ {0, 1}, 0 < α < 1).

2.2.2 An implicit iteration method

For strictly sectorial operators A we now consider the implicit method (2.21) which for u0 ∈ X generates
iteratively a sequence un ∈ X, n = 0, 1, 2, ..., by

(I + µA)un+1 = un + µf, n = 0, 1, 2, ... . (2.21)

Theorem 2.2.2 Let A ∈ L(X) be strictly sectorial and define L := (I + µA)−1. Then un, defined by
(2.21), is of the form (2.14), with

Gn = µ
n

∑

j=1

Lj ,

and fulfill (2.15)-(2.18)with Hn = L−n, with F (n) = n, n = 0, 1, ..., and qualification α0 = ∞.

Proof. It is possible to obtain (2.15) and (2.16) for the implicit method by applying again Theo-
rem 1.2.12. More natural, however, is to use Theorem 1.2.11. It enables us also to give a reasonable
estimate for supn≥0 ‖Ln‖. Finally, properties (2.15) and (2.16) for the implicit method are immediate
consequences of Theorem 1.2.11, and condition (2.17) is verified as for the Richardson iteration. 2

We conclude this subsection with the following observation: ‘Stability’ of the Richardson iteration with
respect to some µ0 > 0 implies stability of the implicit method.

Proposition 2.2.3 If A ∈ L(X) and for given µ0 > 0 the operator I − µ0A is nonexpansive,

‖I − µ0A‖ ≤ 1,

then for any 0 ≤ µ ≤ µ0 the operator I−µA is nonexpansive and furthermore A is weakly sectorial with
bound M = 1,

‖(I + tA)−1‖ ≤ 1 for all t ≥ 0.

Proof. Let
Tω := I − ωµ0A.

Then Tω = (1 − ω)I + T1 and hence ‖Tω‖ ≤ 1 for 0 ≤ ω ≤ 1. Furthermore, for any t > 0 and u ∈ X
with s = t

µ0
the inequality

‖(I + tA)u‖ = ‖(1 + s)u− s(I − µ0A)u‖ ≥ (1 + s)‖u‖ − s‖(I − µ0A)u‖
≥ (1 + s)‖u‖ − s‖u‖ = ‖u‖ (2.22)

holds. Hence, for arbitrary λ > ‖A‖
(

then λ ∈ ρ(−A)
)

one has ‖(λI + A)−1‖ ≤ 1/λ. Then, however,
one has for any µ ∈ IK with

|µ− λ| < λ ≤ ‖(λI +A)−1‖−1

that µ ∈ ρ(−A), and thus in particular for any 0 < µ ≤ λ one has µ ∈ ρ(−A), and (2.22) yields the
assertion. 2
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Corollary 2.2.4 If A ∈ L(X) and for given µ0 > 0 the operator I − µ0A is power bounded,

sup
n≥0

‖(I − µ0A)n‖ ≤ M <∞,

then for any 0 ≤ µ ≤ µ0 the operator I−µA is power bounded. Moreover, (0,∞) ⊂ ρ(−A) and (I+tA)−1

is power bounded for any t > 0.

Proof. We define
‖u‖′ := sup

n≥0
‖(I − µ0A)nu‖, u ∈ X,

and this norm is equivalent to the original one,

‖u‖ ≤ ‖u‖′ ≤ M‖u‖, u ∈ X,

and I − µ0A is nonexpansive with respect to ‖ · ‖′. The rest follows with Proposition 2.2.3. 2

Remark. The converse direction in Corollary 2.2.4 does not hold; consider e.g., multiplication operators
with purely imaginary spectrum.

2.2.3 An iteration method with alternating directions (ADI)

This method is defined by

un+1/2 = un − µ

2
(Aun − f), (2.23)

(I +
µ

2
A)un+1 = un+1/2 +

µ

2
f, n = 0, 1, 2, ... (2.24)

Theorem 2.2.5 Let A ∈ L(X) be strictly sectorial. Then, un, defined by (2.23), (2.24), is of the form
(2.14), with

Gn = µ

n−1
∑

j=0

Lj(I +
µ

2
A)−1,

and fulfill (2.15)-(2.18)with Hn = Ln, with

L := (I +
µ

2
A)−1(I − µ

2
A),

and with F (n) = n, n = 0, 1, ..., and qualification α0 = ∞.

Proof. We again apply Theorem 1.2.12 to obtain (2.15), (2.16). For λ ∈ CI , λ 6= −1, we have

λI − L = (λ + 1)
µ

2
(I +

µ

2
A)−1

( 2

µ

λ− 1

λ+ 1
I +A

)

. (2.25)

Elementary calculations show that λ ∈ 1 + Σǫ implies 2(λ− 1)/(µ(λ + 1)) ∈ Σǫ, with (2.25) we obtain
(1.38), (1.39) with C = ‖I + (µ/2)A‖M . Since the transformation λ 7→ (λ − 1)/(λ + 1) = ω maps
the exterior of the open unit disk in the λ-plane into Re ω ≥ 0, also (1.37) holds and L fulfils the
conditions of Theorem 1.2.12. We obtain (2.15) with γ∗ = µa0M , and moreover (2.16) hold (with
γα = aαµ

−α‖(I + (µ/2)A)α‖ for integer α. Condition (2.17) is verified as for the Richardson iteration.
2

Note that the Richardson iteration and the implicit method as well as the alternating direction method
considered in this section can be conceived as forward and backward Euler schemes as well as the
Crank-Nicolson scheme for Cauchy’s method, the stepsize µ being fixed for each iteration method.

2.2.4 On faster linear methods

There exist linear semiiterative methods which are faster in the sense that they fulfill (2.15)-(2.18) with
F (n) = nτ , n = 0, 1, ..., with some τ > 1. In Hilbert spaces, (selfadjoint) ν-methods fulfill these four
conditions with τ = 2 and finite qualification α0 = ν.
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2.2.5 Practical implementations of Lavrentiev’s (iterated) method.

When it comes to computational implementations of Lavrentiev’s (iterated) method, then the family of
type (2.1), i.e.,

ut = u0 −Gt(Au0 − f), t ≥ 0,
(

with Gt = t
∑m

j=1(I + tA)−j
)

will be certainly evaluated only for a finite numbers of parameters t,
e.g.,

tn = nτh, n ≥ 1, or

tn = hθ−n, n ≥ 1,

respectively (with certain h, τ > 0 and 0 < θ < 1), and utn
then can be written in the form

utn
= u0 − G̃n(Au0 − f)

=: ũn,

with
G̃n := Gtn

,

and it is obvious then that ũn is of the form (2.14), and that the main conditions (2.15)-(2.18)are fulfilled
with G̃n in place of Gn, with α0 = m, and with

F (n) = n,τ n ≥ 1, or

F (n) = θ−n, n ≥ 1,

respectively
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Chapter 2.1 The terminology ‘qualification of a method’ is due to Vainikko and Veretennikov [73]. The
semiconvergence effect is described in Natterer [49].

Chapter 2.2 Proposition 2.2.3 is similar to Browder [10]. The implicit method (2.21) is considered e.g.
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Kapitel 3

Parameter choices and stopping
rules for linear methods

3.1 Introduction

Throughout this chapter let X be a real or complex Banach space, and let A ∈ L(X). We assume that
some approximation f δ ∈ X for the exact right-hand side f∗ in (1.1) is given, with some known level of
noise δ ≥ 0,

‖f∗ − f δ‖ ≤ δ, δ > 0. (3.1)

Let u0 ∈ X be some initial guess for a solution of equation (1.1). In this section parameter choices for
parameter methods

uδ
t := u0 −Gt(Au0 − f δ), t ≥ 0, (3.2)

as well as stopping rules for iteration methods

uδ
n := u0 −Gn(Au0 − f δ), n = 0, 1, ..., (3.3)

are introduced and discussed. These parameter methods and stopping rules are designed to yield some

t = t(f δ, δ) and n = n(f δ, δ), (3.4)

respectively, in order to provide good approximations uδ
t(δ,fδ) and uδ

n(δ,fδ), respectively, for a solution

u∗ of Au = f∗. We will classify them:

(a) a priori choices of the parameter or the stopping index are of type

t = t(δ) and n = n(δ),

i.e, here one has dependence on the noise level and not on the data. However, no natural choices of
this type exist, and additional knowledge of the solution is necessary in order to obtain convergence
rates. Therefore, they are not discussed further here.

(b) a posteriori choices of the parameter or the stopping index are of the general form (3.4), i.e,
they depend explicitly on the data f δ and the noise-level δ. The discrepancy principle and a
modification for the iterated method of Lavrentiev are of this type; they are introduced in this
chapter, and convergence is proved for them.

(c) We discuss also noise-level-free choices; they also of type (3.4) but here we drop the assumption
(3.1), and instead assume that ‖f∗−f δ‖ → 0 as δ → 0. Then δ becomes an additional independent
parameter. Popular noise-level-free choices of the parameter or the stopping index, however, are
independent of δ, i.e., they are of type

t = t(f δ) and n = n(f δ),

respectively.

36
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We first discuss noise-level-dependent choicesi, and the crucial question is whether the rules are conver-
gent in the sense of the following definition. At this point we also introduce the classical notation of a
regularization method.

Definition 3.1.1 (a) A family Pδ : X → X, δ > 0, is called regularization method, if for any u∗ ∈ R(A)

and f δ ∈ X with ‖Au∗ − f δ‖ ≤ δ one has

‖Pδf
δ − u∗‖ → 0 as δ → 0.

(b) Let u0 = 0.

• Either a parameter choice for (3.2), supplying some t = t(f δ, δ) ≥ 0,

• or a stopping rule for iterates (3.3), supplying some n = n(f δ, δ) ≥ 0,

is called convergent, if

Pδf
δ := uδ

t(δ,fδ)

(

Pδf
δ := uδ

n(δ,fδ)

)

,

respectively, defines a regularization method. Otherwise the parameter choice or stopping rule is called
divergent.

In the following two sections, the discrepancy principle as a specific parameter choice and stopping rule is
introduced and its convergence is proven, and under additional assumptions we obtain convergence rates
(that cannot be improved, in general, see Chapter 4). Finally, Section 3.4 is devoted to noiselevel-free
choices of the parameter and the stopping index since they seem to be quite popular.

3.2 The discrepancy principle

3.2.1 The discrepancy principle for parameter methods

We first consider approximations of type (3.2),

uδ
t := u0 −Gt(Au0 − f δ), t ≥ 0.

As was mentioned in the preceding chapter, the parameter t has to be chosen appropriately. We shall
do this by values of the norm of the defect

rδ
t := Auδ

t − f δ

and the error level δ. To this end, let again Ht = I −GtA and let the main conditions (2.2)-(2.5) are
fulfilled. Then we have

rδ
t = Ht(Au0 − f δ) = HtA(u0 − u∗) + Ht(Au∗ − f δ)

and (2.2) (with α = 0) and implies

∣

∣ ‖rδ
t ‖ − ‖HtA(u0 − u∗)‖

∣

∣ ≤ γ0δ. (3.5)

This together with (2.2) for α = 1 yields

lim sup
t→∞

‖rδ
t ‖ ≤ γ0δ,

such that the following parameter choice is applicable. For that we require additionally that t 7→ Htu is
a continuous function on { 0 ≤ t <∞ } for any u ∈ X (that is the case for Lavrentiev’s iterated method
as well as for Cauchy’ method) in order to ensure that the set of tδ ≥ 0 fulfilling this assumption is
non-void.
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Parameter Choice 3.2.1 (Discrepancy principle)
Assume uδ

t is given by (3.2) and that the main conditions (2.2)-(2.5) are fulfilled by {Gt}. Fix positive
constants b0, b1 with b1 ≥ b0 > γ0 (with γ0 as in (2.2)).
(a) If ‖rδ

0‖ ≤ b1δ then choose tδ = 0.
(b) If ‖rδ

0‖ > b1δ then choose tδ such that

b0δ ≤ ‖rδ
tδ
‖ ≤ b1δ.

tδ also depend on f δ and hence is an a posteriori parameter choice; for notational reasons this dependence
is not further indicated, however. Before we state the main result of this section, we introduce α-norms
on R(Aα).

Definition 3.2.2 1. We define α-norms on R(Aα) by

‖u‖α := inf
{

‖z‖ : z ∈ X, Aαz = u
}

, u ∈ R(Aα). (3.6)

(3.7) in the following theorem shows that Parameter Choice 3.2.1 for the parameter methods fulfil-
ling (2.2)-(2.5) are convergent in the sense of Definition 3.1.1. In (3.9), under additional smoothness
assumptions we obtain convergence rates which are optimal in a sense to be precised in Chapter 4.

Theorem 3.2.3 Assume that A ∈ L(X) is weakly sectorial. Let uδ
t , t ≥ 0, be defined by (3.2), and

assume that (3.1) and (2.2)-(2.5) hold, with qualification α0 > 1. Let tδ be chosen by Parameter Choice
3.2.1.
1. If u∗ solves (1.1) with u0 − u∗ ∈ R(A) then

‖uδ
tδ
− u∗‖ → 0 as δ → 0, (3.7)

tδδ → 0 as δ → 0. (3.8)

2. If moreover for 0 < α ≤ α0 − 1 and ̺ ≥ 0,

u0 − u∗ ∈ R(Aα), ρ := ‖u0 − u∗‖α,

then with some constants cα, eα > 0 we have the estimates

‖uδ
tδ
− u∗‖ ≤ cα(̺δα)1/(α+1), (3.9)

tδ ≤ eα(̺δ−1)1/(α+1). (3.10)

cα and eα depend also on b0 and b1 which is not further indicated.

Proof of Theorem 3.2.3. We first prove the assertions for the parameter tδ. First we observe that (3.5)
implies

(b − γ0)δ ≤ ‖Htδ
A(u0 − u∗)‖, if tδ 6= 0. (3.11)

To prove (3.8), let δk > 0, k = 0, 1, 2, ..., such that δk → 0 as k → ∞. If {tδk
}k is bounded then

tδk
δk → 0 as k → ∞ holds trivially. If tδk

→ ∞ as k → ∞, then (3.11), with δk instead of δ, and

t‖HtA(u0 − u∗)‖ → 0 as t→ ∞

(this follows from (2.2) and the principle of uniform boundedness) imply again tδk
δk → 0 as k → ∞.

We obtain (3.8) by arguing for subsequences. From (3.11) and (2.2) we find

(b0 − γ0)δ ≤ γα+1̺t
−(α+1)
δ ,

which gives (3.10).

2. To prove the assertions for ‖uδ
tδ
− u∗‖ we observe that for any t we have the basic estimate

‖uδ
t − u∗‖ ≤ ‖Ht(u0 − u∗)‖ + γ∗tδ. (3.12)
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Having in mind (3.8) and (3.10) we have to deal with the first term in the right-hand side of (3.12) only.
(3.5) yields ‖Htδ

A(u0 − u∗)‖ ≤ (γ0 + b1)δ, and hence, by assumption (2.4),

‖Htδ
(u0 − u∗)‖ ≤ κ

(

‖Ht∗(u0 − u∗)‖ + (γ0 + b1)t∗δ
)

for all t∗ ≥ tδ, (3.13)

which we shall need if the algorithm breaks up early. In order to show

Htδ
(u0 − u∗) → 0 as δ → 0, (3.14)

let again δk > 0, k = 1, 2, 3, ..., with δk → 0 as k → ∞. If tδk
→ ∞ as k → ∞ then again with the

Banach-Steinhaus theorem we obtain

Htδk
(u0 − u∗) → 0 as k → ∞, (3.15)

and if {tδk
}k is bounded then we obtain (3.15) by applying (3.13) with δ = δk and t∗ = δ

−1/2
k . We get

(3.14) by arguing for subsequences. Finally we prove (3.9). We have

‖Ht(u0 − u∗)‖ ≤ γα̺t
−α, t > 0,

hence for tδ ≥ (̺δ−1)1/(α+1) we already obtain

‖Htδ
(u0 − u∗)‖ ≤ γα̺t

−α
δ ≤ γα(̺δα)1/(α+1).

If on the other side tδ ≤ (̺δ−1)1/(α+1) =: t∗ then we apply (3.13) and obtain

‖Htδ
(u0 − u∗)‖ ≤ κ

(

‖Ht∗(u0 − u∗)‖ + (γ0 + b1)t∗δ
)

≤ κ
(

γα̺t
−α
∗ + (γ0 + b1)t∗δ

)

≤ κ
(

γα + (γ0 + b1)
)

(̺δα)1/(α+1),

which completes the proof. 2

Remarks. 1. A different technique can be used to prove Theorem 3.2.3. It uses the first interpolation
inequality (see Theorem 1.1.21), and we then do not need the third assumption (2.4) on our methods.
(2.4) is fulfilled by any of our presented examples, however, and it gives additional insight on the
behaviour of these methods.

2. Let us assume that u0 = 0.The condition ‘u∗ ∈ R(A)’ in the first part of Theorem 3.2.3 can
be fulfilled for a solution u∗ of (1.1) if and only if f∗ ∈ A(R(A)) (which can be more restrictive than
‘f∗ ∈ R(A)’), and then u∗ = A†f∗.

3. The constraint α0 > 1 in Theorem 3.2.3 is necessary, since for the iterated method of Lavrentiev,
the discrepancy principle works only if m ≥ 2: see Proposition 3.2.4 for the case m = 1. If α0 = 1, then
we obtain (3.11) with α = 0 only, i.e.,

tδδ ≤ γ1‖u0 − u∗‖/(b0 − γ0),

and by means of (3.12),

‖uδ
tδ
− u∗‖ ≤

(

γ0 + γ∗γ1/(b0 − γ0)
)

‖u0 − u∗‖.

Hence, if X is a reflexive Banach space and if N (A) = {0}, then we have weak convergence,

uδ
tδ
⇀ u∗ as δ → 0,

since ‖Auδ
tδ
− f∗‖ → 0 as δ → 0.

4. A simple strategy for choosing the parameter t is to calculate the defect rδ
t = Auδ

t − f δ for a finite
numbers of t, say

‖rδ
tn
‖, tn = nh, n = 0, 1, 2..., or (3.16)

‖rδ
tn
‖, tn = θ−nh, n = 1, 2..., (3.17)
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(with some fixed 0 < θ < 1, h > 0) until it falls under the level bδ for the first time, with b chosen such
that b > γ0, where γ0 as in (2.2). We then can apply Theorem 3.2.6 on the discrepancy principle for
iteration methods to obtain convergence results for parameter methods (although these methods have
a non-iterative character).

5. For Lavrentiev’s iterated method with m > 1 one has the qualification α0 = m, and the best
rate we can expect to obtain with the discrepancy principle is ‖uδ

tδ
− u∗‖ = O(δ(m−1)/m) as δ → 0 (for

u0 − u∗ ∈ R(Am−1).

As mentioned in the preceding remark, the discrepancy principle for Lavrentiev’s classical method, this
is the case m = 1, is divergent:

Proposition 3.2.4 Let A ∈ L(X) be weakly sectorial and assume that 0 ∈ σap(A). Then Parameter
Choice 3.2.1 for Lavrentiev’s method, this is (2.6), (2.7) with m = 1, is divergent.

Proof. Assume that 0 6= u∗ ∈ R(A), and define f∗ = Au∗. Take for δ > 0 a ψδ ∈ X such that

‖ψδ‖ = δ,

‖Aψδ‖ ≤ δ3.

(This is possible since by the assumption 0 ∈ σap(A), there are vδ ∈ X with ‖vδ‖ = 1, ‖Avδ‖ ≤ δ2, and
take then ψδ = δvδ). We consider

f δ := f∗ + ψδ, δ > 0.

To start our analysis, observe that (for u0 = 0)

uδ
t = t(I + tA)−1f δ = −trδ

t ,

hence, for δ > 0 not too large (then tδ 6= 0, with tδ obtained by the discrepancy principle),

b0tδδ ≤ ‖uδ
tδ
‖ ≤ b1tδδ. (3.18)

We will show that ‖uδ
tδ
− u∗‖ 6→ 0 as δ → 0, or even stronger,

lim inf
δ→0

‖uδ
tδ
− u∗‖ > 0. (3.19)

To this end we assume contradictory that there is a set countable H ⊂ (0,∞) with accumulation point
0 ∈ IR and

‖uδ
tδ
− u∗‖ → 0 as H ∋ δ → 0,

and then (3.18) implies

lim inf
H∋δ→0

tδδ ≥ lim
H∋δ→0

‖uδ
tδ
‖/b1 = ‖u∗‖/b1 > 0, (3.20)

lim sup
H∋δ→0

tδδ ≤ lim
H∋δ→0

‖uδ
tδ
‖/b0 = ‖u∗‖/b0 < ∞, (3.21)

and (3.20) yields
tδ → ∞ as H ∋ δ → 0. (3.22)

We have

uδ
tδ
− u∗ = −(I + tδA)−1u∗ + tδ(I + tδA)−1ψδ

= −(I + tδA)−1u∗ + tδψ
δ − t2δ(I + tδA)−1Aψδ,

hence

‖uδ
tδ
− u∗‖ ≥ tδ‖ψδ‖ − ‖(I + tδA)−1u∗‖ − M0t

2
δδ

3

= tδδ − ‖(I + tδA)−1u∗‖ − M0t
2
δδ

3,

and this estimate together with (3.19)-(3.22) yields the contradiction

0 = lim
H∋δ→0

‖uδ
tδ
− u∗‖ ≥ ‖u∗‖/b1 > 0. 2

Remark. Proposition 3.2.4 shows that in the case N (A) 6= {0}, the discrepancy principle for Lavren-
tiev’s method (with m = 1) fails even in the well-posed case.
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3.2.2 The discrepancy principle for iterative methods

We again assume that there is given some noise level for the approximations of the exact right-hand
side: let f δ ∈ X and δ > 0 with known error level (3.1), and solve equation (1.1) approximately with
iterates of type (3.3),

uδ
n := u0 −Gn(Au0 − f δ) for n = 0, 1, 2, ...,

where we again the four main conditions (2.15)-(2.18) are supposed to hold for {Gn}. As was mentioned
in the preceding chapter, iteration has to be stopped at appropriate time, it is the purpose of this paper
to do this by values of the norm of the defect

rδ
n := Auδ

n − f δ

and the error level δ. Similar to the parameter methods one has

∣

∣ ‖rδ
n‖ − ‖HnA(u0 − u∗)‖

∣

∣ ≤ γ0δ. (3.23)

This together with (2.15) implies
lim sup

n→∞
‖rδ

n‖ ≤ γ0δ,

such that the computation of uδ
n terminates after a finite number of iteration steps n, if the following

stopping rule is applied:

Stopping Rule 3.2.5 (Discrepancy principle) Fix a real b > γ0. Stop process of calculating uδ
n, n =

0, 1, 2, ... if for the first time
‖rδ

n‖ ≤ bδ,

and let nδ := n.

nδ depends also on f δ which is not further indicated. We state the following main result for iterative
methods, which in fact is the analogue to Theorem 3.2.3 for parameter methods. (3.24) shows that the
iteration methods fulfilling (2.15)-(2.18) are defining regularization methods in the sense of Definition
3.1.1, if stopped according to Stopping Rule 3.2.5. (3.26) provides, under additional smoothness assump-
tions, convergence rates which are optimal in a sense to be precised in Chapter 4. Estimates (3.25) and
(3.27) give some information about the efficiency of the underlying algorithm.

Theorem 3.2.6 Assume that A ∈ L(X) is weakly sectorial. Let uδ
n, n = 0, 1, 2, ..., be defined by (3.3),

and assume that (3.1) and (2.15)-(2.18) hold, with qualification α0 > 1. Let the stopping index nδ be
obtained by Stopping Rule 3.2.5.
1. If u∗ is a solution of (1.1) with u0 − u∗ ∈ R(A) then

‖uδ
nδ

− u∗‖ → 0 as δ → 0, (3.24)

F (nδ)δ → 0 as δ → 0. (3.25)

2. If moreover for 0 < α ≤ α0 − 1 (0 < α <∞, if α0 = ∞) and ̺ ≥ 0,

u0 − u∗ ∈ R(Aα), ρ := ‖u0 − u∗‖α,

then we have, with certain positive constants cα,b and eα,b, the estimates

‖uδ
nδ

− u∗‖ ≤ cα,b(̺δ
α)1/(α+1), (3.26)

F (nδ) ≤ eα,b(̺δ
−1)1/(α+1). (3.27)

The proof of this theorem is similar to the proof of Theorem 3.2.3 and will be given for convenience of
the reader. We have to consider the case nδ−1 instead of tδ which complicates the proof to some extent.

Proof of Theorem 3.2.6. We first prove the assertions for the stopping index nδ. We first observe that

(b − γ0)δ ≤ ‖Hnδ−1A(u0 − u∗)‖, if nδ ≥ 1. (3.28)
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This follows from (3.23) and ‖rnδ−1‖ > bδ. To prove (3.25), let δk > 0, k = 0, 1, 2, ..., such that δk → 0
as k → ∞. If {nδk

}k is bounded then F (nδk
)δk → 0 as k → ∞ holds trivially. If nδk

→ ∞ as k → ∞,
then (3.28), with δ = δk, and

F (n)‖HnA(u0 − u∗)‖ → 0 as n→ ∞

(this follows from (2.15) and the principle of uniform boundedness) together with (3.28) imply again
F (nδk

)δk → 0 as k → ∞. We obtain (3.25) by arguing for subsequences. For proving (3.27) we first
observe that ̺δ−1 ≤ (b − 1)/‖A‖α+1 implies nδ = 0, and in the case ̺δ−1 ≥ (b − 1)/‖A‖α+1 we may
assume nδ ≥ 2 (take e.g.

eα ≥ F (1)‖A‖/(b− 1)1/(α+1) (3.29)

and then for nδ = 1, (3.27) is fulfilled automatically). An application of (2.15) and (3.28) implies

(b− γ0)δ ≤ γα+1̺F (nδ − 1)−(α+1)

≤ γα+1̺κ
α+1F (nδ)

−(α+1), (3.30)

this gives (3.27).

2. To prove the assertions for ‖uδ
nδ

− u∗‖ we observe again that for any n,

uδ
n − u∗ = Hn(u0 − u∗) −Gn(Au∗ − f δ)

holds, and then by (2.16)
‖uδ

n − u∗‖ ≤ ‖Hn(u0 − u∗)‖ + γ∗F (n)δ. (3.31)

Having in mind (3.25) and (3.27) we have to deal with the first term in the right-hand side of (3.31) only.
By definition ‖rnδ

‖ ≤ bδ, and (3.23) implies ‖Hnδ
A(u0 − u∗)‖ ≤ (γ0 + b)δ, and hence, by assumption

(2.17),

‖Hnδ
(u0 − u∗)‖ ≤ κ

(

‖Hn∗
(u0 − u∗)‖ + (γ0 + b)F (n∗)δ

)

for all n∗ ≥ nδ, (3.32)

which we shall need for the case that iteration stops early. In order to show

Hnδ
(u0 − u∗) → 0 as δ → 0, (3.33)

let again δk > 0, k = 1, 2, 3, ..., with δk → 0 as k → ∞. If nδk
→ ∞ as k → ∞ then (2.15) and the

Banach-Steinhaus theorem implies

Hnδk
(u0 − u∗) → 0 as k → ∞. (3.34)

If {nδk
}k is bounded then choose n∗ = n∗(δk) such that n∗ → ∞ as k → ∞, and F (n∗) ≤ δ

−1/2
k , k =

1, 2, .... We then obtain (3.34) by applying (3.32) with δ = δk and those n∗. We get (3.33) by arguing
for subsequences. Finally, to prove (3.26) we first observe again that in the case

̺δ−1 ≤ (b − 1)/‖A‖α+1

we have nδ = 0, and then ‖u0 − u∗‖ ≤ ‖A‖α̺ ≤ (b − 1)α/(α+1)(̺δα)1/(α+1). We now assume that

(̺δ−1)1/(α+1) ≥ (b− 1)1/(α+1)/‖A‖ =: c.

We have
‖Hn(u0 − u∗)‖ ≤ γα̺F (n)−α for all n ≥ 1,

hence for the case F (nδ) ≥ c−1(̺δ−1)1/(α+1) we already obtain

‖Hnδ
(u0 − u∗)‖ ≤ γα̺F (nδ)

−α ≤ γαc
α(̺δα)1/(α+1).

If on the other side F (nδ) ≤ c−1(̺δ−1)1/(α+1), then let n∗ ≥ 2 with

F (n∗ − 1) ≤ c−1(̺δ−1)1/(α+1) < F (n∗),
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and applying (3.32) with this n∗ yields

‖Hnδ
(u0 − u∗)‖ ≤ κ

(

‖Hn∗
(u0 − u∗)‖ + (γ0 + b)F (n∗)δ

)

≤ κ
(

γα̺F (n∗)
−α + κ(γ0 + b)F (n∗ − 1)δ

)

≤ κ
(

γαc
α + κc−1(γ0 + b)

)

(̺δα)1/(α+1).

This completes the proof. 2

Remark. 1. The convergence rates cannot be improved, in general, see Chapter 4 for more on that.
2. Consideration of (3.29) and (3.30) in the proof of Theorem 3.2.6 shows that estimate (3.27) for nδ

holds with
eα = max

{

κγ
1/(α+1)
α+1 , F (1)‖A‖

}

· (b− γ0)
−1/(α+1),

(and thus eα depends also on κ and F (1)).

3.2.3 Computational experiments

Our model equation is

Au(t) :=

∫ 1

0

kω(t, s)u(s) ds = f(t), 0 ≤ t ≤ 1

with kernel

kω(t, s) =

{

a · cosh(ω(t− s − 0.5)), if s ≤ t
a · cosh(ω(t− s+ 0.5)), if s > t

.

as in Subsection 1.2.2. Here, ω > 0 is some constant and a = 1/(2ω sinh(ω/2)). As underlying space X
we consider the space of periodic continuous complex-valued functions X = Cp[0, 1] with the sup-norm.

A can be characterized by (1.29): for u, f ∈ Cp[0, 1] we have

Au = f ⇐⇒ f ∈ C2[0, 1], f ′, f ′′ ∈ Cp[0, 1],

ω2f − f ′′ = u,

see again Subsection 1.2.2 for the details. In our numerical experiments we consider the test equation

Au = f∗

with

f∗(t) =
(

− 6

ω2
+ (

12

ω2
+ 1)t− 3t2 + 2t3

)

/ω2 + ceωt + de−ωt, 0 ≤ t ≤ 1,

c = 6eω/N, d = −6e2ω/N,

N = (eω − e2ω)ω4,

therefore
u∗(s) = s(2s2 − 3s+ 1), 0 ≤ s ≤ 1,

and thus u∗ ∈ R(A) but u∗ 6∈ R(A2). (In fact, the symbolic programming language Maple V did the
inconvenient part of the work and computed f∗ from our prescribed u∗.) We choose perturbed right-hand
side f δ = f∗ + δ · v, where the values of v(t) are randomly chosen such that ‖v‖∞ ≤ 1, and where

δ = ‖f∗‖∞ · %/100,

with % = 0.33, 1, 3.

We choose
ω = 1

in the definition of the kernel kω , and it follows from Lemma 1.2.7 that ‖A‖∞ ≤ 1, hence we can again
take µ = 0.2 for the Richardson iteration (and, of course, for the other iteration methods).
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We now compute bounds γ0 for the implicit iterative method and the iterated version of Lavrentiev’s
method; this is necessary to determine a set of admissible b, which appears in the definitions of the
discrepancy principles (3.2.5) and (3.2.1). From Corollary 1.2.8 and numerical estimates of (1.32) in
Theorem 1.2.11 we obtain

γ0 ≈ 4.02

(obtained for ǫ ≈ 0.30), and it follows that we can take

b = 4.1

in our implementations. That b is chosen for the Richardson iteration as well as the ADI method where
we do not get estimates for γ0 (since we are not able to estimate properly the integral (1.41) near the
negative real axis).

A rectangular rule and collocation (with collocation points sj = jh, j = 1, ..., N, h = 1/N , with
N = 128) is used to discretize the problem. The same tests as for the first example are repeated. The
last column always include the number of flops for computing the entries of the underlying matrix (which
in fact is 0.5e+06).

Here are the results for the Richardson iteration, the implicit method and the iteration method with
alternating directions. All computations where performed in MATLAB on an IBM RISC/6000. Note
that the approximation errors and stopping indeces are very similar for all methods, for each noise level.

Richardson iteration

% noise ‖uδ
nδ

− u∗‖∞ nδ ♯ flops
0.33 0.0069 1203 4.1e+07
1.00 0.0112 757 2.6e+07
3.00 0.0194 492 1.7e+07

Implicit iteration method

% noise ‖uδ
nδ

− u∗‖∞ nδ ♯ flops
0.33 0.0061 1272 8.6e+07
1.00 0.0112 744 5.1e+07
3.00 0.0195 494 3.4e+07

ADI method

% noise ‖uδ
nδ

− u∗‖∞ nδ ♯ flops
0.33 0.0068 1216 8.3e+07
1.00 0.0112 750 5.1e+07
3.00 0.0211 468 3.3e+07

The following table contains the results for the iterated method of Lavrentiev which are surprisingly
good. Note that for any parameter tn = nh, n = 1, 2, ..., h = 1.0, a cholesky decomposition has to be
calculated so that slightly more computational effort is necessary to obtain the approximations.

Lavrentiev’s (iterated) method

% noise ‖uδ
tnδ

− u∗‖∞ nδ ♯ flops

0.33 0.0064 166 1.5e+08
1.00 0.0129 91 8.0e+07
3.00 0.0221 49 4.3e+07

We conclude with two remarks concerning the constant γ0. A further possibility to obtain such a bound
for the implicit method as well as Lavrentiev’s iterated method is to use (1.36). Numerical experiments
show that the best estimate which we can obtain in this case is γ0 ≈ 5.581 (obtained for ǫ ≈ 0.189) but
further experiments show that iteration breaks up too early for this choice of γ0. Finally, computation of
the powers of the iteration matrices T and their norms indicate that we have supn ‖T n‖ ≈ 2.0 (for any
of the considered iterative methods), and the same bound holds for the iterated version of Lavrentiev’s
method.
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3.3 Quasioptimal methods

3.3.1 A class of regularization methods, quasioptimality

Let again X be a Banach space and A ∈ L(X). In order to solve the ill-posed equation Au = f∗ with
only approximately given right-hand side f δ ∈ X and noise level δ > 0, we again consider parameter
methods uδ

t = u0 −Gt(Au0 − f δ) for t ≥ 0, where u0 ∈ X is some initial guess, and Gt ∈ L(X). We
use again the notation Ht := I −GtA, and assume that (2.3) is fulfilled. If u∗ solves Au = f∗, then we
have the basic estimate (3.12), i.e.,

‖uδ
t − u∗‖ ≤ max{1, γ∗}

(

‖Ht(u0 − u∗)‖ + tδ
)

,

and this gives rise to the following definition.

Definition 3.3.1 Let δ > 0, u∗, f
δ ∈ X with ‖Au∗ − f δ‖ ≤ δ, and let {uδ

t}t be defined by (3.2), and
let (2.3) hold. A parameter choice supplying some tδ ≥ 0, is called quasioptimal, if there exist some

constant K, independently of δ > 0, u∗, f
δ ∈ X and the initial guess u0 ∈ X, such that

‖Htδ
(u0 − u∗)‖ + tδδ ≤ K inf

t≥0

(

‖Ht(u0 − u∗)‖ + tδ
)

. (3.35)

Quasioptimality of stopping rules for iteration methods of type (3.3) that fulfill (2.16) with F (n) = n,
is defined similar, i.e., under the same assumptions on K , δ > 0, u∗, u0 and f δ ∈ X we require

‖Hnδ
(u0 − u∗)‖ + nδδ ≤ K inf

n≥0

(

‖Hn(u0 − u∗)‖ + nδ
)

. (3.36)

We first observe that quasioptimal parameter choices and stopping rules are as least as good as the
discrepancy principle. Note that here we replace the restriction ‘0 < α ≤ α0−1’ by the weaker condition
‘0 < α ≤ α0’.

Theorem 3.3.2 (a) Let A ∈ L(X) be weakly sectorial, and let {uδ
t}t be of type (3.2), such that the

conditions (2.2) and (2.3) are fulfilled, and let tδ be a quasioptimal parameter choice.
1. If u∗ solves (1.1) with u0 − u∗ ∈ R(A) then

‖uδ
tδ
− u∗‖ → 0 as δ → 0, (3.37)

tδδ → 0 as δ → 0. (3.38)

2. If moreover for 0 < α ≤ α0,

u0 − u∗ ∈ R(Aα), ̺ := ‖u0 − u∗‖α,

then with some constants dα,b, eα,b > 0 we have the estimates

‖uδ
tδ
− u∗‖ ≤ dα,b(̺δ

α)1/(α+1), (3.39)

tδ ≤ eα,b(̺δ
−1)1/(α+1). (3.40)

(b) (1) and (2) in (a), with tδ replaced by nδ, are also valid for iterative methods {uδ
n} of type (3.3) that

fulfill (2.15) and (2.16) (with F (n) = n).

Proof. For the parameter methods take e.g. t = δ−1/2 and t = (̺δ−1)1/(α+1), respectively, in (3.35) to get
(3.37), (3.38) and (3.39), (3.40), respectively. We now consider iterative methods. Take e.g. n = ⌈δ−1/2⌉
in (3.36) to get (3.37), (3.38) with nδ instead of tδ. In order to get (3.39), (3.40) we distinguish two
cases. First, if δ is large,

̺δ−1 < C, C :=
γ∗

K‖A‖α
,

then we take n = 0 in (3.36) and obtain nδ = 0, and moreover

‖u0 − u∗‖ ≤ ‖A‖α̺ ≤ ‖A‖αC1/(α+1)(̺δα)1/(α+1);

and in the second case
̺δ−1 ≥ 1/C
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take n = ⌈(̺δ−1)1/(α+1)⌉ in (3.36), since nδ ≤ (1 + C1/(α+1)) · (̺δα)1/(α+1), and since (2.15) implies

‖Hn(u0 − u∗)‖ ≤ γα̺n
−α ≤ γα(̺δα)1/(α+1). 2

It is shown in the following two sections that the discrepancy principle for a class of iteration methods
as well as a modified discrepancy principle for the iterated method of Lavrentiev are quasioptimal.

3.3.2 The quasioptimality of the discrepancy principle for iteration methods

Let X be a real or complex Banach space and A ∈ L(X). We consider iterative methods of type (3.3)
where the main conditions (2.15)-(2.18) are fulfilled (for α0 = ∞, and for integer α only this time) with
F (n) = n, n = 0, 1, ... . Now, however, we assume additionally that the semigroup property

Hn1+n2 = Hn1Hn2 for n1, n2 = 0, 1, 2, ..., (3.41)

is fulfilled
(

and in fact for all examples with (3.41) one has F (n) = n
)

.

Note that if for α = 1, 2,
‖HnA

α‖ ≤ γαn
−α for n = 1, 2, ..., (3.42)

(with a certain constant γα), then (2.15), (2.18) and (3.41) guarantee that (3.42) holds for all α ≥ 0; to
see this, consider first those n for which n/α is an integer, and then consider the general case for n.

We now state the first main result of this section.

Theorem 3.3.3 Let uδ
n, n = 0, 1, 2, ..., be defined by (3.3), and assume that (2.15)-(2.18) and (3.41)

hold. Then Stopping Rule 3.2.6 is quasioptimal.

Proof. We take any n ≥ 0, and due to (3.36) it is sufficient to prove

‖Hnδ
(u0 − u∗)‖ + nδδ ≤ K

(

‖Hn(u0 − u∗)‖ + nδ
)

, (3.43)

with some constant K not depending on n, u∗, u0 and δ. (We indicate in the course of the proof how
to choose K).

(i) We first prove (3.43) for n ≥ nδ. If we take K ≥ 1, then the first term in the left-hand side of
(3.43) remains to be estimated. By definition we have ‖rδ

nδ
‖ ≤ bδ, together with (3.23) we obtain

‖Hnδ
A(u0 − u∗)‖ ≤ (γ0 + b)δ, with property (2.17) we get

‖Hnδ
(u0 − u∗)‖ ≤ κ

(

‖Hn(u0 − u∗)‖ + (γ0 + b)nδ
)

,

which yields (3.43), if K ≥ κ(γ0 + b).

(ii) We now consider the case 0 ≤ n ≤ nδ − 1. Then from the semigroup property (3.41) and the
boundedness condition (2.15) we obtain

‖Hnδ
(u0 − u∗)‖ ≤ γ0‖Hn(u0 − u∗)‖,

and if we choose K ≥ γ0, then the second term in the left-hand side of (3.43) remains to be estimated.
From bδ ≤ ‖rδ

nδ−1‖ and (3.23) we obtain

(b− γ0)δ ≤ ‖Hnδ−1A(u0 − u∗)‖. (3.44)

We first assume nδ ≥ 2, and then obviously nδ − 2n ≤ 2(nδ − n − 1). From the semigroup property
(3.41), the decay property (2.15) and from (3.44) we obtain the estimate

nδδ = 2nδ + (nδ − 2n)δ

≤ 2nδ + 2(nδ − n− 1)(b− γ0)
−1‖Hnδ−n−1AHn(u0 − u∗)‖ (3.45)

≤ 2nδ + 2(b− γ0)
−1γ1‖Hn(u0 − u∗)‖,

which yield (3.43) for 0 ≤ n ≤ nδ − 1, nδ ≥ 2, if we choose K ≥ 2 max{1, γ1/(b− γ0)}.
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The case n = 0, nδ = 1 remains to be considered. Here (3.44) yields

(b − γ0)nδδ = (b− γ0)δ ≤ ‖A‖ · ‖Hnδ−1(u0 − u∗)‖ = ‖A‖ · ‖H0(u0 − u∗)‖.

Therefore take also K ≥ ‖A‖/(b− γ0) in (3.43), and the proof is completed. 2

For positive semidefinite operators in Hilbert spaces we have the stronger estimate

‖uδ
nδ

− u∗‖ ≤ K sup
fδ∈X: ‖f∗−fδ‖≤δ

inf
n≥0

‖uδ
n − u∗‖. (3.46)

(with K not depending on u∗, u0 and δ). It seems that one has not such a result without the inner
product structure of a Hilbert space.

3.3.3 The quasioptimality of two modified discrepancy principles for the
iterated method of Lavrentiev

General considerations

In order to get results on the quasioptimality of parameter choices for general non-iterative methods of
type (3.2), i.e.,

uδ
t = u0 −Gt(Au0 − f δ), t ≥ 0,

with some Gt ∈ L(X) we assume that (2.3) holds, and for Ht = I −GtA and

Bt ∈ L(X), t ≥ 0,

we require:

‖Bt‖ ≤ κ0 for t ≥ 0, (3.47)

‖BtA‖ ≤ κ1t
−1 for t > 0, (3.48)

‖Htu‖ ≤ κ
(

‖Ht∗u‖ + t∗‖BtHtAu‖
)

for 0 ≤ t ≤ t∗, and for u ∈ X, (3.49)

‖Ht∗u‖ ≤ γ0‖Htu‖ for 0 ≤ t ≤ t∗, and for u ∈ X. (3.50)

with constants κ0, κ1, κ and γ0. Note that (3.47) and (3.50) imply the existence of a τ0 > 0 such that

‖BtHt‖ ≤ τ0 for t ≥ 0. (3.51)

We also again assume that the operators Gt ∈ B(X) commute with A. An example of a method of
type (2.1) fulfilling all these conditions (with suitables Bt) is the (iterated) method of Lavrentiev’s;
details are given after the general considerations. Note, that the operators Bt shall have implications
for the parameter choices, while {uδ

t}t itself does not depend on Bt. We state two parameter choices
(a motivation for these choices is given at the end of this subsection) and the main result. In order to
ensure applicability of the following rule, we require also that t 7→ BtHtu is continuous on [0,∞) for
any u ∈ X .

Parameter Choice 3.3.4 Fix real numbers b1 ≥ b0 > τ0. If ‖B0r
δ
0‖ ≤ b1δ, then take tδ = 0. Otherwise

choose tδ such that
b0δ ≤ ‖Btδ

rδ
tδ
‖ ≤ b1δ.

The following parameter choice is designed for those strategies which are of type tj = hθ−j , j = 1, 2, ...,
or tj = hj, j = 0, 1, ..., where 0 < θ < 1 is independent of that used in the following parameter choice.

Parameter Choice 3.3.5 Fix θ ∈ (0, 1] and b > τ0. If ‖B0r
δ
0‖ ≤ bδ, then take tδ = 0. Otherwise choose

tδ such that
‖Btδ

rδ
tδ
‖ ≤ bδ,

and such that for some sδ ∈ [θtδ, tδ], we have

bδ ≤ ‖Bsδ
rδ
sδ
‖.
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These choices of tδ are possible, since we have an analogue to (3.5),

∣

∣ ‖Btr
δ
t ‖ − ‖BtHtA(u0 − u∗)‖

∣

∣ ≤ τ0δ (3.52)

(this follows from (3.51)), and since the second term in the left-hand side of (3.52) tends to 0 as t tends
to ∞,

‖BtHtA(u0 − u∗)‖ ≤ γ0κ1t
−1‖u0 − u∗‖ → 0 as t→ ∞.

We now state the second main theorem of this section.

Theorem 3.3.6 Let uδ
t , t ≥ 0, be defined by (3.2), and assume that (2.3), and (3.47)-(3.50) hold.

Then, parameter choices 3.3.4 and 3.3.5 are quasioptimal.

Proof. We first observe that it follows from (3.52) that for tδ chosen by parameter choices 3.3.4 or 3.3.5,
we have for some sδ ∈ [θtδ, tδ]

‖Btδ
Htδ

A(u0 − u∗)‖ ≤ (b1 + τ0)δ, (3.53)

‖Bsδ
Hsδ

A(u0 − u∗)‖ ≥ (b0 − τ0)δ, if tδ 6= 0, (3.54)

where θ = 1 for Choice 3.3.4, and b0 = b1 = b for Choice 3.3.5.

We take any t ≥ 0, and it is sufficient to prove that for some K independent of t, u∗, u0 and δ,

‖Htδ
(u0 − u∗)‖ + tδδ ≤ K

(

‖Ht(u0 − u∗)‖ + tδ
)

. (3.55)

(i) We first prove (3.55) for the case t ≥ tδ. Then tδδ ≤ tδ, and we shall estimate the first term in the
left-hand side of (3.55): (3.49) and (3.53) imply

‖Htδ
(u0 − u∗)‖ ≤ κ

(

‖Ht(u0 − u∗)‖ + t‖Btδ
Htδ

A(u0 − u∗)‖
)

≤ κ
(

‖Ht(u0 − u∗)‖ + (b1 + τ0)tδ
)

,

which yields (3.55) for an appropriate K.

(ii) We prove (3.55) for the case t ≤ tδ. Then (3.50) implies

‖Htδ
(u0 − u∗)‖ ≤ γ0‖Ht(u0 − u∗)‖

and in the sequel we estimate the second term in the left-hand side of (3.55). If t ≥ θtδ, then tδδ ≤ θ−1tδ,
and if on the other side 0 ≤ t < θtδ, then (3.48), (3.50) and (3.54) imply

(b0 − τ0)δ ≤ ‖Bsδ
Hsδ

A(u0 − u∗)‖ ≤ κ1s
−1
δ ‖Hsδ

(u0 − u∗)‖
≤ κ1γ0s

−1
δ ‖Ht(u0 − u∗)‖ ≤ κ1γ0θ

−1t−1
δ ‖Ht(u0 − u∗)‖,

which supplies an estimate for tδδ being sufficiently good, and this completes the proof. 2

The iterated method of Lavrentiev

We recall that Lavrentiev’s (iterated) method for weakly sectorial A is defined by

(I + tA)vn+1 = vn + tf, n = 0, 1, 2, ...,m− 1,

ut := vm,

with v0 = u0 and fixed integer m ≥ 1 (see (2.6), (2.7)).

Theorem 3.3.7 Let A ∈ L(X) be weakly sectorial (with M0 ≥ 1 in (1.2)) Then Parameter choices
3.3.4 and 3.3.5 for Lavrentiev’s (iterated) method are quasioptimal if we take Bt := (I + tA)−1.

Proof. It is already shown show that uδ
t is of the form (3.2) with Gt as in Theorem 2.1.2, and the

growth estimate (2.3) for ‖Gt‖ holds. We obviously have (3.47) and (3.48) with κ0 = M0, κ1 = M0 + 1,
and (3.49) and (3.50) are immediate consequences of Corollary 2.1.3, and then the assertion follows with
Theorem 3.3.6. 2
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Remarks

We shall motivate the parameter choice for the iterated method of Lavrentiev. Since here instead of the
semigroup property (3.41) we have only the weaker property (3.50), we cannot apply the same techniques
as in the preceding section in order to prove the quasioptimality for the common discrepancy principle,
namely, estimate (3.45) does not apply to Lavrentiev’s iterated method. In fact, the parameter can be
too large if it is chosen according to common discrepancy principles. We therefore introduce the operator
Bt, and due to (3.48) we can expect a faster decay for ‖Btδ

rδ
t ‖ than for ‖rδ

tδ
‖; hence if tδ is chosen such

that ‖Btδ
rδ
tδ
‖ ≈ δ, then we can hope that the corresponding parameter tδ is small enough. The proof of

the quasioptimality for this choice, however, uses the fact, that instead of (2.17) for iterative methods
we have the stronger result (3.49) where again Bt arises. This enables us to show that ‖Htδ

(u0 − u∗)‖
in fact is small enough even for the modified parameter choices.

3.4 On noise-level-free parameter choices and stopping rules

3.4.1 General results

Again we assume that A ∈ L(X) is weakly sectorial. A natural question is whether parameter choices
t = tδ(f

δ) like
‖Auδ

t − f δ‖ ≈ δ,

yield good results if the condition ‘‖f δ − f∗‖ ≤ δ’ is replaced by the weaker assumption ‘‖f δ − f∗‖ → 0
as δ → 0’. Note that δ then becomes a free parameter. Let us for convenience assume that R(A) = X .
The answer then is affirmative in the well-posed case: Then A is one-to-one and onto, and obviously

‖uδ
tδ
− u∗‖ = O(δ + ‖f δ − f∗‖) as δ → 0.

In the ill-posed case, however, the answer to our question is negative. We put this into a more general
frame-work.

Theorem 3.4.1 Let A ∈ L(X) be weakly sectorial and let Pδ : X → X, δ > 0, be a stable approximation
method for A†, i.e., for any u∗ ∈ R(A) and f δ ∈ X with ‖Au∗ − f δ‖ → 0 as δ → 0 one has

‖Pδf
δ − u∗‖ → 0 as δ → 0.

Then A† is bounded.

Proof. Note first that the assumption on Pδ implies that

Pδf → u = A†f as δ → 0.

if u ∈ R(A), f = Au (just take fδ = f, δ > 0, fixed). If A† is unbounded then take any f∗ ∈ A(R(A)),
and then there are {fk} ⊂ A(R(A)) with

‖A†f∗ −A†fk‖ → ∞ as k → ∞
‖f∗ − fk‖ → 0 as k → ∞.

For k then choose δk so small that

‖Pδk
fk −A†fk‖ → 0 as k → ∞.

Then we necessarily have
‖Pδk

fk −A†f∗‖ → ∞ as k → ∞,

which contradicts the assumption that {Pδ} is a stable approximation of A†. 2

As an immediate consequence we observe that δ-free stable approximations P ≡ Pδ, δ > 0, for A† only
exists in the well-posed case, and then it equals A†.

Corollary 3.4.2 Let A ∈ L(X) be weakly sectorial and let P : X → X be a δ-free stable approximation
of A†. Then A† is bounded, and on A(R(A)) it equals P,

Pf = A†f for all f ∈ A(R(A)).
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Hence, if A† is bounded but ill-conditioned, then there is no regularization effect by this δ-free stable
approximation P of A†.

There exist nevertheless several interesting suggestions for δ-free parameter choices and stopping rules
for solving ill-posed problems, and we will present some of them.

3.4.2 Examples for δ-free methods

A first δ-free method

We again consider any method of type (3.2) supplying {uδ
t}t and fulfilling (2.2)-(2.5). The first δ-free

parameter choice strategy is based on the following observation. Assume that u0−u∗ ∈ R(Aα) for some
0 < α ≤ α0 − 1 (0 < α < ∞, if the qualification α0 is infinite), and let ̺ := ‖u0 − u∗‖α. Then for the
error uδ

t − u∗ and the defect rδ
t = Auδ

t − f δ we have the following elementary estimates, for fixed δ,

e(t) := ‖uδ
t − u∗‖ ≤ γα̺t

−α + γ∗tδ =: e1(t), (3.56)

φ(t) := t‖Auδ
t − f δ‖ ≤ γα+1̺t

−α + γ0tδ =: φ1(t). (3.57)

Our aim is to minimize the unknown function e(t), and the typical assumption in ill-posed problems is
that e(t) behaves like its estimator e1(t). We observe that e1(t) is similar to φ1(t), if γα ≈ γα+1 and
γ∗ ≈ γ0, and both functionals e1 and φ1 are minimized for a unique and finite t∗ ≥ 0. If we make the
heuristic assumption that the test functional φ(t) behaves like its estimator φ1, then the only thing we
have to do is to find a minimizer t∗ for φ, and this then should be close to the minimizer for e.

We take notice of the following facts, however.

• e(t) does not behave like φ(t) near t = 0; we have φ(t) = 0 and e(0) = ‖u0 − u∗‖ which is > 0, in
general. Hence, the minimization process for the test functional φ should be done for t ≥ η only,
with some η > 0 to be specified.

• If f δ ∈ R(A) and if the qualification α0 of the underlying method is > 1, then (2.15) and the
Banach-Steinhaus theorem implies

t‖Auδ
t − f δ‖ → 0 as t→ ∞,

hence φ is minimized at ‘t∗ = ∞’ and thus does not behave like φ1, and moreover Pf δ = A†f δ.
Hence, as above mentioned, if A† is bounded but ill-conditioned, then there is no regularization
effect by this method.

• Nothing can be said, in general, about the behaviour of φ(t) as t → ∞, if f δ ∈ R(A)\R(A). Let
us now assume that f δ is not in closure of the range of A,

f δ 6∈ R(A).

Then
t‖Auδ

t − f δ‖ → ∞ as t→ ∞.

Hence, if there is a (possibly nonunique) minimizer t∗ ≥ η, then it must be finite, and then

t∗‖Auδ
t∗ − f δ‖ = inf

t≥η
t‖Auδ

t − f δ‖,

and we define
Pf δ = uδ

t∗ ,

and do hope that this will be an approximation for a solution u∗ of Au = f∗.

The same approach can be used, of course, for iteration methods. Here we have the iteration index n
instead of the parameter t, and it is natural to start the minimization process with n = 1, i.e., to require

n∗‖Auδ
n∗

− f δ‖ = inf
n≥1

n‖Auδ
n − f δ‖.
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The quasioptimality criterion

Here the basic method is Lavrentiev’s classical method, this is (2.6), (2.7) with m = 1, and the test
functional to be minimized is

φ̃(t) := t‖(I + tA)−1rδ
t ‖

(replacing φ(t) = t‖rδ
t ‖). The same motivation as above applies, since we have the estimate

φ̃(t) ≤ γ̃α̺t
−α + γ̃0tδ.

with γ̃α, γ̃0 as for Lavrentiev’s iterated method with m = 2. It is proposed to take the largest local
minimizer t∗ and define Pf δ = uδ

t∗ .

The L-curve criterion

It is observed by several authors that that the curve t 7→ (‖Auδ
t − f δ‖q, ‖uδ

t‖q) has the form of an L (for
certain q > 0), and it is proposed to take the t∗ that is connected to the ‘corner’, and define Pf δ = uδ

t∗ .
Note, however, that in general we do not have Pf δ 6= A†f δ, as it should be in view of Corollary 3.4.2.

Bibliographical notes and remarks

Section 3.2 The results are taken from Plato [57], and the main theorems Theorems 3.2.6 and 3.2.3
are generalizations of Vainikko [71]. Proposition 3.2.4 on the divergence of the discrepancy principle for
Lavrentiev’s classical method generalizes earlier results in Hilbert spaces, see e.g., Leonov [40] for a late
result on that.

Section 3.3 These results can be found in Plato and Hämarik [58]. Theorem 3.3.3 in fact generalizes
an approach of Raus [62] (see also Raus [63], Gfrerer [17] and Engl, Gfrerer [12] for the non-selfadjoint
case) to Banach spaces. In fact they have shown that estimates like (3.46) are valid in Hilbert spaces.

Section 3.4 The terminology ‘regularization method’ is due to Tikhonov, see [70]. Corollary 3.4.2 is due
to Bakushinskĭı [3]. In Subsection 3.4.1, the motivation for δ-free methods is borrowed from Hanke and
Raus [25], and the quasioptimality criterion is due to Tikhonov, see e.g., [70]. Leonov [39] proposes to
take the largest local minimizer of φ̃(t), and he in fact regularizes with this approach positive semidefinite
problems Au = f with N (A) = {0} in finite-dimensional Hilbert spaces. For the L-curve criterion consult
Hansen [26].



Kapitel 4

On the accuracy of algorithms in the
presence of noise

4.1 General results

We show that the convergence rates obtained in the previous chapter cannot be improved, in general.
To this end we give a short introduction into the theory of the accuracy of algorithms in the presence of
noise. Throughout this section we assume that X is a real or complex Banach space and that A ∈ L(X).

Definition 4.1.1 1. Let M ⊂ X and δ > 0 be fixed.
(a) The maximal error of an algorithm Pδ : X → X with respect to the error level δ and the set M is
defined by

EPδ
(M, δ) := sup

{

‖u∗ − Pδf
δ‖ : u∗ ∈M, f δ ∈ X, ‖Au∗ − f δ‖ ≤ δ

}

.

(b) We define the best possible maximal error with respect to δ > 0 and M by

E(M, δ) := inf
Pδ:X→X

EPδ
(M, δ).

2. A method Pδ : X → X, 0 < δ ≤ δ0, is called order optimal with respect to M ⊂ X, if for some c > 0
one has

EPδ
(M, δ) ≤ cE(M, δ), 0 < δ ≤ δ0.

Note that in our applications Pδf
δ = uδ

t(δ,fδ) or Pδf
δ = uδ

n(δ,fδ). The following definitions are useful to

obtain upper and lower bounds for E(M, δ).

Definition 4.1.2 For M ⊂ X and δ > 0 we introduce ω and e,

ω(M, δ) := sup
{

‖u1 − u2‖ : u1, u2 ∈M, ‖Au1 −Au2‖ ≤ δ
}

,

e(M, δ) := sup
{

‖u‖ : u ∈M, ‖Au‖ ≤ δ
}

.

If N (A) = {0} then ω(M, δ) is the modulus of continuity of A−1 on A(M). The connection between
e(M, δ) and ω(M, δ) for sets M with additional properties is described in the following lemma.

Proposition 4.1.3 Let M ⊂ X be convex and assume further that M = −M . Let δ > 0. Then

2e(M, δ) = ω(M, 2δ).

Proof. To obtain 2e ≤ ω, take any u ∈M with ‖Au‖ ≤ δ. Then −u ∈M and

‖Au−A(−u)‖ = 2‖Au‖ ≤ 2δ,

i.e.,
2‖u‖ = ‖u− (−u)‖ ≤ ω(M, 2δ).

52
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To obtain ω ≤ 2e, let u1, u2 ∈M with ‖Au1 −Au2‖ ≤ 2δ. Then u := (u1 − u2)/2 ∈M and ‖Au‖ ≤ δ,
hence ‖u1 − u2‖ = 2‖u‖ ≤ 2e(M, δ). 2

Due to the following estimate we can hope to get sharp estimates for E(M, δ). In the following, B
denotes the closed unit ball in X ,

B :=
{

u ∈ X : ‖u‖ ≤ 1
}

.

Theorem 4.1.4 For M ⊂ X and δ > 0 one has

1

2
ω(M, 2δ) ≤ E(M, δ) ≤ ω(M, 2δ). (4.1)

Proof. We first give a proof of the first estimate. To this end, let Pδ : X → X be an arbitrary algorithm
and u1, u2 ∈ X with ‖Au1 − Au2‖ ≤ 2δ. For f = (Au1 + Au2)/2 we have ‖Au1 − f‖ ≤ δ and
‖Au2 − f‖ ≤ δ, hence

EPδ
(M, δ) ≥ max

{

‖u1 − Pδf‖, ‖u2 − Pδf‖
}

≥ 1

2

(

‖u1 − Pδf‖ + ‖u2 − Pδf‖
)

≥ 1

2
‖u1 − u2‖,

and that implies
1

2
ω(M, 2δ) ≤ EPδ

(M, δ).

In order to prove the second estimate in (4.1) we consider the sets

A(M) + δ · B =
{

f ∈ X : there is an u ∈M with ‖Au− f‖ ≤ δ
}

,

Hδ(f) :=
{

u ∈M : ‖Au− f‖ ≤ δ
}

, for f ∈ A(M) + δ · B.
Hδ(f) is a nonempty set and thus there exists an algorithm Pδ : X → X with

Pδf ∈ Hδ(f) for all f ∈ A(M) + δ ·B.
Then

EPδ
(M, δ) = sup

{

‖u− Pδf‖ : f ∈ A(M) + δ · B, u ∈ Hδ(f)
}

≤ sup
{

‖u− Pδf‖ : f ∈ A(M) + δ · B, u ∈ Hδ(f), ‖Au−APδf‖ ≤ 2δ
}

≤ ω(M, 2δ),

and this completes the proof. 2

As an immediate consequence we have the following result.

Corollary 4.1.5 Let M ⊂ X be convex with M = −M , and let δ > 0. Then

e(M, δ) ≤ E(M, δ) ≤ 2e(M, δ). (4.2)

In the following proposition it is shown under some general assumptions on Pδ : X → X, δ > 0, that
it is order optimal with respect to M und δ. Note, however, that this result cannot be applied to the
algorithms defined through various discrepancy principles and to M = Mα,̺ (to be defined in Definition
4.2.1) since (4.3) cannot be guaranteed for them.

Proposition 4.1.6 Let ∅ 6= M ⊂ X be convex and let M = −M . Assume that for

Pδ : X → X, δ > 0,

there are constants c1, c2 with

Pδf ∈ c1M for all f ∈ A(M) + δ ·B, (4.3)

‖APδf − f‖ ≤ c2δ for all f ∈ A(M) + δ · B.
Then {Pδ}δ>0 is order optimal with respect to M , more specifically,

EPδ
(M, δ) ≤

(

1 + max{c1, c2}
)

· e(M, δ), δ > 0.
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Proof. For u ∈ M, f ∈ X with ‖Au − f‖ ≤ δ we have Pδf ∈ c1M , therefore Pδf − u ∈ c1M −M =
(1 + c1)M , and

‖A(Pδf − u)‖ ≤ ‖APδf − f‖ + ‖f −Au‖ ≤ (c2 + 1)δ.

Thus, with
m := max{c1, c2}

we have
1

1 +m
(Pδf − u) ∈ M, ‖A

( 1

1 +m
(Pδf − u)

)

‖ ≤ δ,

that implies

‖ 1

1 +m
(Pδf − u)‖ ≤ e(M, δ),

i.e.,
‖Pδf − u‖ ≤ (1 +m)e(M, δ). 2

4.2 Source sets M = Mα,̺

4.2.1 General results

We again assume in this subsection that X is a Banach space. Now we take a closer look at those sets
M = Mα,̺ which arise in our context.

Definition 4.2.1 Let A ∈ L(X) be weakly sectorial. For α > 0, ̺ ≥ 0, the source-set Mα,̺ is defined
by

Mα,̺ :=
{

u ∈ R(Aα) : ‖u‖α ≤ ̺
}

.

The first interpolation inequality enables us to prove part 1 of the following result. For conclusions from
part 2 of the next theorem we refer to the remarks following the proof of it.

Theorem 4.2.2 Let A ∈ L(X) be weakly sectorial (with M0 as in (1.2)), and let δ > 0, ̺ > 0.
1.

e(Mα,̺, δ) ≤ C(̺δα)1/(α+1),

with some constant C = C(M0, α).

2. If (δ/̺)1/(α+1) ∈ σap(A), then e(Mα,̺, δ) ≥ (̺δα)1/(α+1).

Proof. We have for ǫ > 0 arbitrary small,

e(Mα,̺, δ) = sup
{

‖u‖ : u ∈ R(Aα), ‖u‖α ≤ ̺, ‖Au‖ ≤ δ
}

≤ sup
{

‖Aαz‖ : z ∈ X, ‖z‖ ≤ ̺+ ǫ, ‖Aα+1z‖ ≤ δ
}

≤ C
(

(̺+ ǫ)δα
)1/(α+1)

,

where the first interpolation inequality has been used. The assertion follows by letting ǫ→ 0.
We prove the second part. To this end, let λ = (δ/̺)1/(α+1) be an approximate eigenvalue of A, i.e.,
there exist zn ∈ X, n = 0, 1, ..., with

‖zn‖ = ̺, Azn − λzn → 0 as n→ ∞.

Corollary 1.1.20 implies that Aα+1zn − λα+1zn → 0 as n→ ∞, and then

‖Aα+1zn‖ → λα+1̺ = δ as n→ ∞.

Also Aαzn − λαzn → 0 as n→ ∞, i.e.,

‖Aαzn‖ → λα̺ = (̺δα)1/(α+1) as n→ ∞.

Let
an := min

{

1, δ/‖Aα+1zn‖
}

.
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We have Aαzn 6= 0 for n sufficiently large, and then an is well-defined. Moreover an ր 1 as n→ ∞, and
with

wn = anzn, n = 0, 1, ...,

we have

‖wn‖ ր ̺ as n→ ∞,

‖Aα+1wn‖ ր δ as n→ ∞,

‖Aαwn‖ → (̺δα)1/(α+1) as n→ ∞,

and that completes the proof. 2

We can therefore conclude that the estimates in Chapter 3 (and the next chapter) cannot be improved,
if there is a sequence of positive approximate eigenvalues of A converging to 0, since then

lim sup
δ→0

e(Mα,̺, δ)/(̺δ
α)1/(α+1) ≥ 1.

For a related observation we refer to the end of this chapter.

4.2.2 On positive semidefinite operators

For symmetric positive semidefinite A ∈ L(X) in Hilbert spaces X , much more can be stated; we will
present some of these results without proofs. For example, one has

e(Mα,̺, δ) = E(Mα,̺, δ), (4.4)

which improves (4.2). Moreover, one can compute e(Mα,̺, δ) explicitly, and to state this for compact
operators, the following lemma is helpful.

Lemma 4.2.3 Let the continuous function g : [0,∞) → IR be twice differentiable on (0,∞) and suppose
that g(0) = 0 and g′(s) > 0, g′′(s) < 0, s > 0. Let

a1 > a2 > ... > 0 with ak → 0 as k → ∞.

Furthermore let

ζ(δ) := sup
{

∞
∑

l=1

g(al)µl : µl ≥ 0,

∞
∑

l=1

µl ≤ 1,

∞
∑

l=1

alµl ≤ δ
}

.

Then, for 0 < δ ≤ a1 the function ζ is the interpolating linear spline for g with (an infinite numbers of)
nodes a1, a2, ... . For δ ≥ a1 one has ζ(δ) = g(a1). In particular, ζ(δ) ≤ g(δ) holds for any δ > 0.

Proof. We denote by s the interpolating linear spline for g with (an infinite numbers of) nodes a1, a2, ...,
and for δ ≥ a1 we define s(δ) = g(a1). We shall show that ζ = s. To this end, we first show that
ζ(δ) ≥ s(δ). If δ ∈ [0, a], then there is a unique k with

ak+1 ≤ δ ≤ ak,

and then take t ∈ [0, 1] such that δ = (1 − t)ak+1 + tak, and define µk+1 := 1 − t, µk := t, and µl := 0
otherwise. Then

∞
∑

l=1

µl = 1,
∞
∑

l=1

alµl = δ,

hence
ζ(δ) ≥ (1 − t)g(ak+1) + tg(ak) = s(δ).

Finally, if δ ≥ a1, then take µ1 = 1 and µl = 0 otherwise and proceed in the same way.

We now show that ζ(δ) ≤ s(δ). For that we assume first that δ = ak for some k and take then
µl ≥ 0, l ≥ 0, with

∑∞
l=0 µl ≤ 1 and

∑∞
l=0 µlal ≤ δ. g is an increasing, continuous and concave function,

hence with a0 := 0 and µ0 := 1 − ∑∞
l=1 µl we get

∞
∑

l=0

µlg(al) ≤ g
(

∞
∑

l=0

µlal

)

≤ g(δ) = s(δ),
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hence
ζ(ak) ≤ s(ak) for all k ≥ 1.

s is also a monotonically increasing, concave and continuous function, hence from
∑∞

l=0 µlal ≤ δ one
gets

∞
∑

l=0

µlg(al) =

∞
∑

l=0

µls(al) ≤ s
(

∞
∑

l=0

µlal

)

≤ s(δ). 2

We thus have:

Corollary 4.2.4 Let X be a Hilbert space and A ∈ L(X) be self-adjoint, positive semidefinite and
compact with non-closed range, and let λ1 > λ2 > ... > 0 be the nonvanishing eigenvalues of A. For
fixed α > 0 and ̺ > 0 one has

e(Mα,̺, δ)
2 = ̺2ζ

(

(δ/̺)2
)

, if δ/̺ ≤ λα+1
1 , (4.5)

where ζ is the interpolating linear spline for g(s) = sα/(α+1) with knots λ2α+2
1 , λ2α+2

2 , ... . For δ/̺ ≥ λα+1
1

one has e(Mα,̺, δ) = ̺λα
1 .

Proof. If Pl is the orthogonal projection onto N (A− λlI), then

Au =
∞
∑

l=1

λlPlu, u ∈ X,

and thus

e(Mα,̺, δ)
2 = sup

{

∞
∑

l=1

λ2α
l ‖Plz‖2 : z ∈ X,

∞
∑

l=1

‖Plz‖2 ≤ ̺2,

∞
∑

l=1

λ2α+2
l ‖Plz‖2 ≤ δ2

}

= ̺2 sup
{

∞
∑

l=1

λ2α
l ‖Plz‖2 : z ∈ X,

∞
∑

l=1

‖Plz‖2 ≤ 1,
∞
∑

l=1

λ2α+2
l ‖Plz‖2 ≤ (δ/̺)2

}

,

and then a reformulation of Lemma 4.2.3 yields the assertion. 2

This corollary can be applied to show, under the conditions of Corollary 4.2.4, that

lim inf
δ→0

e(Mα,̺, δ)/(̺δ
α)1/(α+1) = 0, if lim

k→∞
λk+1/λk → 0 as k → ∞. (4.6)

Bibliographical notes and remarks
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for Proposition 4.1.6 which is taken from Vainikko [72].

Section 4.2 (4.4) is Melkman and Micchelli [46] and Grigorieff and Plato [20]. Lemma 4.2.3 and
Corollary 4.2.4 are due to Ivanov and Korolyuk [29] and can be found also in the textbooks by Morozov,
e.g., [1], Section 2.11.3. For an extension of Corollary 4.2.4 for non-compact operators see Ivanov [28],
and for (4.6) see Hegland [27].



Kapitel 5

The method of conjugate residuals

5.1 Introductory remarks

The most efficient iterative methods for solving symmetric problems in Hilbert spaces are conjugate
gradient type methods, and one of them will be introduced in this chapter. Througout this chapter we
assume that X is a real Hilbert space with inner product 〈·, ·〉 : X ×X → IR and corresponding norm
‖·‖, and we moreover assume that A ∈ B(X) is symmetric and positive semidefinite. Then for f∗ ∈ R(A)
we consider equations Au = f∗ which are assumed to be ill-posed, in general. A prominent example is
Symm’s integral equation.

Example 5.1.1 Consider Symm’s operator

Au(t) := −
∫

Γ

log |s− t|2 u(s) ds = f(t), t ∈ Γ,

where G ⊂ IR2 is assumed to have a smooth boundary Γ = ∂G. If diam(G) < 1, then A : L2(Γ) → L2(Γ)
is bounded, symmetric and positive semidefinite, i.e., A = A∗ ≥ 0. Moreover, for α ≥ 0, Aα can be
conceived as a mapping L2(Γ) → Hα(Γ), and it is one-to-one and onto then. Here, Hα(Γ) denote the
Sobolev space of order α of functions f : Γ → IR.

In the next section we introduce the the method of conjugate residuals (cr-method), and as a preparation
we define Krylov subspaces.

Definition 5.1.2 Let r0 ∈ X. We denote by

Kn(A, r0) = span
{

r0, Ar0, ..., A
n−1r0

}

the n-th Krylov subspace with respect to A and r0.

Let f ∈ X be an approximation (not excluding f∗ itself) for the right-hand side of Au = f∗. Our aim is
to generate (with some initial guess u0 ∈ X) iteratively a possibly terminating sequence u1, u2, ... with

un ∈ u0 −Kn(A, r0), (5.1)

‖Aun − f‖ = min
u∈u0−Kn(A,r0)

‖Au− f‖, (5.2)

where r0 = Au0 − f . Note, that un minimize the norm of the defect over u0 − Kn(A, r0) while for
the classical method of conjugate gradients by Hestenes and Stiefel, un minimizes the energy J(u) =
1
2 〈Au, u〉 − 〈u, f〉 over the same subspace.

With the notation
rn := Aun − f,

(5.2) is equivalent to
Arn ∈ Kn(A, r0)

⊥, (5.3)

(and the process terminates after the n-th step ifArn = 0). ByM⊥ we denote the orthogonal complement
of a subset M ⊂ X , i.e., M⊥ =

{

u ∈ X : 〈u, v〉 = 0 for all v ∈M
}

.
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Note that here for n fixed, rn does not depend linear on r0, in contrast to the methods in the previous
chapters. (5.1)-(5.3) are the main ingredients to prove the main results on the discrepancy principle, but
a few more properties of the generating polynomials are needed for the proofs, and they are provided
in Section 5.3. The reader being interested in the main results can go forward directly to Section 5.4.

For computational implementions we need an algorithm which supply un having the properties (5.1)-
(5.2); in the following Section 5.2, the cr-method for computing these iterates un is presented and
explained.

5.2 Introducing the method of conjugate residuals

The basic algorithm for computing un is:

Algorithm 5.2.1 Step 0: Choose u0 ∈ X.
For n = 0, 1, ... :
1) If Arn = 0, then terminate after step n.
2) If otherwise Arn 6= 0, then proceed with step n+1 and compute from un, dn−1:

dn = −rn + βn−1dn−1, βn−1 =
〈Arn, rn〉

〈Arn−1, rn−1〉
, (5.4)

un+1 = un + αndn, αn =
〈Arn, rn〉
‖Adn‖2

. (5.5)

Here we assume d−1 = 0, β−1 = 0. It follows from (5.4) and (5.5) that

Adn = −Arn + βn−1Adn−1, (5.6)

rn+1 = rn + αnAdn, (5.7)

and in fact in any step for computational reasons Adn and rn+1 are computet by (5.6) and (5.7) and
stored until the next step, so that only one operator-vector multiplication has to be performed in every
step (to obtain Arn).

It is shown in the course of Section 5.2 that the iterates un defined by Algorithm 5.2.1 in fact have the
two characteristic properties as described in (5.1) and (5.2).

5.2.1 Krylov subspaces and the termination case

The cr-method uses Krylov subspaces Kn(A, r0) as sequence of subspaces in order to create A2-conjugate
search directions dn and approximations un, and the following lemma does apply when iteration termi-
nates after a finite number of steps.

Lemma 5.2.2 For arbitrary r0 ∈ X and n ≥ 0 the following assertions are equivalent:

(a) r0, Ar0, ..., A
nr0 are linearly dependent.

(b) Kn(A, r0) = Kn+1(A, r0).

(c) A(Kn(A, r0)) ⊂ Kn(A, r0).

(d) There is a linear subspace M ⊂ X with dim M ≤ n, r0 ∈ M , which is invariant under A, i.e.,
A(M) ⊂M .

Proof.
(a) ⇒ (b) : The condition implies first that there are an m ≤ n and constants γ0, ..., γm−1, such that

Amr0 =
m−1
∑

j=0

γjA
jr0.
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Then, however,

Anr0 =

n−1
∑

j=n−m

γj−(n−m)A
jr0,

and this gives Anr0 ∈ Kn(A, r0).

(b) ⇒ (c) : A(Kn(A, r0)) ⊂ Kn+1(A, r0) = Kn(A, r0).
(c) ⇒ (d) : Take M = Kn(A, r0).
(d) ⇒ (a) : The assumption implies Ajr0 ∈ M, j = 0, 1, ..., and therefore dim span(r0, ..., A

nr0) ≤ n,
and this implies (a). 2

The next proposition is helpful to study the situations under which the algorithm breaks down.

Proposition 5.2.3 Assume that for n ≥ 1,

Kn−1(A, r0) 6= Kn(A, r0), N (A) ∩ Kn(A, r0) = {0}. (5.8)

Then there is a unique un with (5.1), (5.2), and then

rn = Aun − f ∈ Kn+1(A, r0). (5.9)

Moreover:

(a) If Arn 6= 0 then rn 6∈ Kn(A, r0) and the method of conjugate residuals can continue,

Kn+1(A, r0) = Kn(A, r0) ⊕ span(rn), N (A) ∩ Kn+1(A, r0) = {0}.

(b) Consider now the case Arn = 0. Then the cr-method stops, and un = u0−A†(Au0−f) (that is the
best one can expect). Moreover, for that break-down case we distinguish two different situations:

• If rn = 0 then Aun = f , and

Kn(A, r0) = Kn+1(A, r0).

• If rn 6= 0 (and Arn = 0) then

N (A) ∩ Kn+1(A, r0) 6= {0}, Kn(A, r0) = Kn+1(A, r0).

Proof. First, uniqueness of un follows from the second equality in (5.8), and (5.9) follows from

rn = Aun − f ∈ r0 −A(Kn(A, r0)) (5.10)

⊂ r0 −Kn+1(A, r0) = Kn+1(A, r0).

In order to show that the assertion in (a) is satisfied we observe first that (5.3) implies

A1/2rn ∈
(

A1/2
(

Kn(A, r0)
)

)⊥

. (5.11)

(5.11) yields A1/2rn 6∈ A1/2
(

Kn(A, r0)
)

, and then rn 6∈ Kn(A, r0). Again (5.11) implies N (A1/2) ∩
Kn+1(A, r0) = {0} and thus N (A)∩Kn+1(A, r0) = {0}. The assertion for the first case in (b) follows with
Lemma 5.2.2, since (5.10) implies r0 ∈ A(Kn(A, r0)) and hence r0, Ar0, ..., A

nr0 are linearly dependent.
Finally, the second case in (b) follows again with (5.9): 0 6= rn ∈ Kn+1(A, r0), Arn = 0. 2

We can put Lemma 5.1.2 and Proposition 5.2.3 together and look at it from a different point of view:

Corollary 5.2.4 Termination occurs if and only if r0 is a linear combination of (a finite number of)
eigenvectors of A. If that case happens, then r0 can be written uniquely as a sum

r0 =

m
∑

k=1

vm

of eigenvectors corresponding to distinct eigenvalues. If none of the v′ks belong to the (possible) eigenvalue
0 of A, then the method breaks down after m steps; if otherwise Avk = 0 for some k, then it breaks down
after m− 1 steps.
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5.2.2 Minimizing J(u) = ‖Au − f‖ over subspaces with conjugate directions

Let n∗ be any integer, and let d0, d1, ...dn∗
be non-degenerated A2-conjugate vectors, i.e.,

〈Adj , Adk〉 = 0, j 6= k, (5.12)

Adk 6= 0, k = 0, ..., n∗,

and let
Dn := span(d0, ...dn−1), n = 0, 1, ..., n∗ + 1,

and let u0 ∈ X . Then there are unique un, n = 1, ..., n∗ + 1, with

un ∈ u0 + Dn,

‖Aun − f‖ = min
u∈u0+Dn

‖Au− f‖,

and due to (5.12) and Aun+1 − f ∈ A(Dn)⊥, the computation of those un is very easy: we have for
n = 0, 1, ..., n∗,

un+1 = u0 +
n

∑

j=0

αjdj , (5.13)

αj := −〈Ar0, dj〉
‖Adj‖2

, j = 0, 1, ..., n. (5.14)

(5.13) and (5.14) imply that

un+1 = un + αndn, n = 0, 1, ..., n∗, (5.15)

i.e., the minimization of the defect over a sequence of subspaces u0 + Dj , j = 0, 1, ..., can be conceived
as iteration process. Note that the directions dn+1, ..., dn∗

are not needed to compute un+1, and this
allows to construct the search directions in the course of iteration.

We show that the coefficents in (5.14) are optimal with respect to the minimization of the functional

t 7→ ‖A(un + tdn) − f‖. To this end, we observe that (5.13) yields rn = r0 +
∑n−1

j=0 αjAdj , and then
(5.12) implies

〈Arn, dn〉 = 〈Ar0, dn〉,
therefore the coefficients in (5.14) take the form

αn = −〈Arn, dn〉
‖Adn‖2

, n = 0, 1, ..., n∗, (5.16)

i.e., the coefficients are optimal as claimed.

5.2.3 How to create conjugate directions in Krylov subspaces

Assume that the method of conjugate residuals does not terminate before step n, and that it has created
nontrivial A2-conjugate directions d0 = −r0, d1, ..., dn−1 and approximations u1, u2, ..., un as described
in Subsection 5.2.2, and that

span(d0, ..., dj−1) = span(r0, ..., rj−1) = Kj(A, r0), j = 1, ..., n,

If Arn 6= 0, then Schmidt orthogonalization of d0, d1, ..., dn−1, −rn, with respect to 〈·, ·〉A2 , yield
(d0, d1, ..., dn−1 and) dn. Note that (5.3) and A(Kn−2(A, r0)) ⊂ Kn−1(A, r0) gives

〈Arn, Adj〉 = 0, j ≤ n− 2,

hence

dn = −rn +

n−1
∑

j=0

〈Arn, Adj〉
‖Adj‖2

dj

= −rn + βn−1dn−1, (5.17)
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with

βn−1 :=
〈Arn, Adn−1〉
‖Adn−1‖2

, (5.18)

and we then have
span(d0, ..., dn) = span(r0, ..., rn) = Kn+1(A, r0). (5.19)

The first equality in (5.19) follows immediately from the construction, and (5.9) gives span(r0, ..., rn) ⊂
Kn+1(A, r0).

Application of A to (5.17) leads to

−〈Arn, dn〉 = 〈Arn, rn〉, (5.20)

and this yields the desired form (see (5.4)) αn = 〈Arn,rn〉
‖Adn‖2 .

Finally, (5.7) gives
(

with formulas (5.16) and (5.18) for αn−1 and βn−1, respectively, and with (5.20)
)

,

〈Arn, rn〉 = 〈Arn, rn−1〉 + αn−1〈Arn, Adn−1〉 = 0 + βn−1〈Arn−1, rn−1〉,

hence

βn−1 =
〈Arn, rn〉

〈Arn−1, rn−1〉
,

and we obtain the version described by Algorithms 5.2.1.

5.3 Fundamental properties of the method of conjugate residu-

als

Let us assume that the iteration process, described by Algorithm 5.2.1, does not terminate before step
n∗ ≥ 1, i.e., Arn∗−1 6= 0 and produce iterates u1, u2, ..., un∗

. Then, for any 0 ≤ n ≤ n∗ there is a
(unique) polynomial (depending on A, u0 and f)

qn ∈ Πn−1 (5.21)

such that
un = u0 − qn(A)r0. (5.22)

Here, Π−1 := {0}, and

Πn−1 =
{

q : q is a polynomial of degree ≤ n− 1
}

.

Furthermore, for the defect rn = Aun − f we have

rn = pn(A)r0, (5.23)

with residual polynomials
pn(t) = 1 − tqn(t). (5.24)

We now state one of the most important properties of the cr-method.

Minimum property. For 0 ≤ n ≤ n∗,

‖rn‖ = ‖
(

I −Aqn(A)
)

r0‖ ≤ ‖
(

I −Aq(A)
)

r0‖ for all q ∈ Πn−1,

or equivalently,
‖rn‖ ≤ ‖s(A)r0‖ for any s ∈ Πn, s(0) = 1. (5.25)

In the following two subsections we recall some well-kown properties of the polynomials qn and pn.
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5.3.1 Some properties of the residual polynomials p
n

We denote by {Et}t∈IR the resolution of the identity (with respect to A).

Residual polynomials are conjugate. For 0 ≤ n, m ≤ n∗, n 6= m, we have

0 = 〈Arn, rm〉 = 〈Apn(A)r0, pm(A)r0〉

=

∫ a

0

tpn(t)pm(t) d‖Etr0‖2, (5.26)

i.e., p0, ..., pn∗
is a Sturm sequence and hence for n = 1, ..., n∗, the zeros (tj,n)j=1,...,n of pn, also called

Ritz-values of A with respect to Kn(A, r0), are simple and have an intertwining property, more explicitly,
if the zeros are ordered,

0 < t1,n < t2,n < ... < tn,n ≤ ‖A‖, n = 1, ..., n∗, (5.27)

then
tk,n < tk,n−1 < tk+1,n, k = 1, ..., n− 1, n = 2, ..., n∗, (5.28)

is satisfied. Furthermore, due to pn(0) = 1,

pn(t) =

n
∏

k=1

(

1 − t

tk,n

)

, (5.29)

which implies
pn(t) ∈ [0, 1] for all 0 ≤ t ≤ t1,n. (5.30)

5.3.2 Some properties of the polynomials q
n
(t)

(5.24) yields

qn(t) =
1 − pn(t)

t
, t > 0, (5.31)

and other properties of qn are listed in the following lemma.

Lemma 5.3.1 For 1 ≤ n ≤ n∗,

qn(0) = −p′n(0) =

n
∑

k=1

t−1
k,n, (5.32)

qn(0) ≤ qn+1(0), (5.33)

qn(0) ≤ t−1
1,n + qn−1(0), (5.34)

qn(0) = sup
t∈[0,t1,n]

qn(t). (5.35)

Proof. (5.32) follows from (5.29), and the intertwining property (5.28) yield

qn(0) =

n
∑

k=1

t−1
k,n ≤

n
∑

k=1

t−1
k,n+1

≤
n+1
∑

k=1

t−1
k,n+1 = qn+1(0),

this is (5.33). (5.28) yield also (for n ≥ 2; the case n = 1 in (5.34) is trivial)

qn(0) = t−1
1,n +

n
∑

k=2

t−1
k,n ≤ t−1

1,n +
n−1
∑

k=1

t−1
k,n−1 = t−1

1,n + qn−1(0),

this is (5.34). Finally, in order to show (5.35) we observe that pn is convex on [0, t1,n], since

p′n(t) = −
n

∑

k=1

1

tk,n

n
∏

k=1

(

1 − t

tk,n

)

,

p′′n(t) =
∑

k

1

tk,n

∑

l 6=k

1

tl,n

∏

j 6=k,l

(

1 − t

tj,n

)

.

Now, (5.35) follows from (5.31). 2
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Lemma 5.3.2 Let α > 0, and let n be some integer. Let qn and pn be as in (5.21), (5.24), and let pn

have (increasingly ordered) positive roots {tk,n}1≤k≤n. Then

Φ(t) := tαpn(t) ≤ (αqn(0)−1)α, 0 ≤ t ≤ t1,n. (5.36)

Proof. From the definition of Φ we get immediately Φ(0) = Φ(t1,n) = 0 and Φ(t) > 0. Moreover,

p′n(t) = −pn(t)

n
∑

k=1

1

tk,n − t
.

Now let 0 < t < t1,n with
Φ(t) = sup

0≤t≤t1,n

Φ(t).

Hence 0 = Φ′(t) and then

αt
α−1

pn(t) = t
α
pn(t)

n
∑

k=1

1

tk,n − t

≥ t
α
pn(t)qn(0),

therefore t ≤ αqn(0)−1, and thus

sup
0≤t≤t1,n

Φ(t) = Φ(t) = t
α
pn(t) ≤ t

α ≤ (αqn(0)−1)α,

and we have shown the assertion (5.36). 2

5.4 The discrepancy principle for the method of conjugate re-
siduals, and the main results

We now assume that some noise level for the approximations of the exact right-hand side Au = f∗ is
given: let f δ = f ∈ X and δ > 0 with

‖f∗ − f δ‖ ≤ δ, δ > 0.

This requires a further change of notation, e.g., iterates are denoted by uδ
n instead of un, and the defects

are denoted by rδ
n instead of rn. For convenience of the reader the dependence of other quantities like

steplengths and polynomials on δ will not be indicated explicitly. We assume that the initial guess
u0 ∈ X is independent of δ, i.e.,

u0 = uδ
0.

For the cr-method we use the discrepancy principle as stopping criterium:

Stopping Rule 5.4.1 Let b > 1. Stop the cr-method if for the first time

‖rδ
n‖ ≤ bδ.

nδ denotes the stopping index.

Note that this in fact leads to a finite breakdown, since

inf
n≥0

‖Auδ
n − f δ‖ ≤ δ.

This follows from (5.25), take there e.g. the polynomials that appear in the Richardson iteration. Note
that the ‘termination case’ Arδ

n = 0 implies Auδ
n = Pf δ, and thus ‖Auδ

n−f δ‖ ≤ δ and therefore nδ ≤ n.

In main Theorem 5.4.3 a measure for the efficiency of Stopping Rule 5.4.1 is given in terms of the

function F
σ(A)
α (n). This function is introduced in the following definition, and bounds for it are stated

in Theorem 5.4.4.
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Definition 5.4.2 For any bounded set M ⊂ [0,∞) let

ΠM
n :=

{

sn ∈ Πn : sn(0) = 1, sup
λ∈M

|sn(λ)| ≤ 1
}

, (5.37)

FM
α (n) :=

(

inf
sn∈ΠM

n

sup
λ∈M

|sn(λ)|λα
)1/α

. (5.38)

For reasons of notational convenience we set FM
α (−1) = ∞. Obviously, FM

α (n + 1) ≤ FM
α (n) for any

n ≥ 0, and FM
α (0) = supλ∈M λ.

Theorem 5.4.3 1. If the solution u∗ of Au = f∗ with minimal distance to u0 is smooth, i.e., if

u0 − u∗ ∈ R(Aα), ̺ := ‖u0 − u∗‖α,

holds for some α > 0, then

‖uδ
nδ

− u∗‖ ≤ cα,b(̺δ
α)1/(α+1), (5.39)

(

F
σ(A)
α+1 (nδ − 1)

)−1

≤ eα,b

(

̺δ−1
)1/(α+1)

, (5.40)

where cα,b denotes some constant, and eα,b := (b− 1)−1/(α+1).

2. In the general case u0 − u∗ ∈ N (A)⊥ we have convergence,

‖uδ
nδ

− u∗‖ → 0 as δ → 0, (5.41)

F
σ(A)
2 (nδ − 1)−1δ → 0 as δ → 0, (5.42)

The proof of Theorem 5.4.3 is given in the next section. In the next theorem, bounds for F σ
α (A)(n) (that

depend explicitly on σ(A)) are given, and these bounds provide us informations about the efficiency of
the method of conjugate residuals. The first estimate is for the general case; note that σ(A) ⊂ [0, ‖A‖].
If A ∈ L(X) is a compact operator with eigensystem {λk, vk}, where λ1 ≥ λ2 ≥ ... > 0, with λk → 0
as k → ∞, then the estimates for the stopping index can be improved as can be seen in (5.44) and
(5.45). In other terms, the efficiency of the method of conjugate residuals reacts to particular properties

of the underlying operator: The faster the decay of the λj ’s are, the faster is the decay of F
{λj}
α (n) as

n increases. Note, however, that the faster the eigenvalues λk decay, the smaller becomes R(Aα) (for
fixed α.)

Theorem 5.4.4 (1) For intervals M = [0, a] one has

F [0,a]
α (n) ≤ dαn

−2, n ≥ 1, (5.43)

with dα = a⌈2α⌉2.

(2) Now assume that λ1 ≥ λ2 ≥ ... > 0, with λk → 0 as k → ∞.

(a) Assume that for some τ > 0,

λj = O(j−τ ) as j → ∞.

Then,
F {λj}

α (n) ≤ dαn
−(2+τ), n ≥ 1, (5.44)

with dα = ⌈2α⌉222+τ supj{λjj
τ}.

(b) Assume now that for some 0 < θ < 1,

λj = O(θj) as j → ∞.

Then
F {λj}

α (n) ≤ dακ
−n. (5.45)

with κα = θα, dα = θ supj{λjθ
−j}α.
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Section 5.6 is devoted to the proof of Theorem 5.4.4

Any reasonable method is expected to supply approximations that fulfill order optimal estimates (5.39)
and (5.41). However, e.g. for stationary iterative methods like the Richardson iteration, an estimate
similar to (5.40) and (5.42) can be obtained for nδ only, see Section 3. Since the cr-method as well as
the stationary methods require one matrix-vector multiplication in each iteration step (in the finite-
dimensional case), the results (5.40) and (5.42) for the stopping index in conjunction with Theorem
5.4.4 describe the advantage of the cr-method.

From the results for noisy data one can recover convergence results in the exact data case.

Theorem 5.4.5 Denote by u∗n the iterates corresponding to the exact data case (where r0 = Au0 − f∗),
and let u∗ be the solution of Au = f∗ which has minimal distance to u0.

(a) Assume that
u0 − u∗ ∈ R(Aα), ̺ := ‖u0 − u∗‖α,

for some α > 0. Then

‖u∗n − u∗‖ ≤ γα̺F
σ(A)
α+1 (n), (5.46)

with some constant γα > 0.

(b) In the general case u0 − u∗ ∈ N (A)⊥,

‖u∗n − u∗‖ → 0 as n→ ∞.

The proof of Thoerem 5.4.5 is given, in a more general frame, in Section 5.7. We now have stated the
main results for the method of conjugate residuals and the discrepancy principle, and the next sections
are devoted to the proofs of these results.

5.5 The proof of the rates (5.38) and (5.39) for the approxima-

tions and the stopping indices, respectively

5.5.1 The proof of the rates (5.38) for the approximations

We first show that (5.39) holds. For convenience of the reader, in the following diagramm the connections
between the different lemmas and corollaries are shown.

Lemma 5.5.1 =⇒ Corollary 5.5.2
Lemma 5.5.3
Lemma 5.5.4

}

=⇒ Corollary 5.5.5







=⇒ (5.39).

Corollary 5.5.2 contains an estimate for the error ‖uδ
n − u∗‖, and Corollary 5.5.5 provides an estimate

for ‖rδ
n−1‖. These estimates enable us to prove rates for the approximations (5.39).

The first lemma is formulated in a general form.

Lemma 5.5.1 Assume that ‖Au− f‖ ≤ δ for u, f ∈ X, and assume that u ∈ R(Aα), ‖u‖α =: ̺. Let
q : [0, a] → IR be a continuous function (with a := ‖A‖), and let ∆ = ‖

(

I − Aq(A)
)

f‖. Then for all
0 < τ ≤ a,

‖u− q(A)f‖ ≤ ̺ sup
0≤t≤τ

|1 − tq(t)|tα + τ−1(∆ + δ) + δ sup
0≤t≤τ

|q(t)|.

Proof. We have

‖u− q(A)f‖ ≤ ‖(I − Eτ )
(

u− q(A)f
)

‖ + ‖Eτ

(

u− q(A)f
)

‖, (5.47)
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and we shall estimate both terms of the right-hand side. First,

‖(I − Eτ )
(

u− q(A)f
)

‖2 =

∫ a

τ

d‖Et

(

(I − Eτ )(u− q(A)f
)

)

‖2

≤ τ−2

∫ a

τ

t2 d‖Et

(

(I − Eτ )(u − q(A)f
)

)

‖2

= τ−2

∫ a

0

t2 d‖Et

(

(I − Eτ )(u − q(A)f
)

)

‖2

= τ−2‖(I − Eτ )A
(

u− q(A)f
)

‖2

≤ τ−2‖A
(

u− q(A)f
)

‖2

≤ τ−2
(

‖Au− f‖ + ∆
)2

≤ τ−2(δ + ∆)2.

We shall estimate the second term in the right-hand side of (5.47). Since u = Aαz, ‖z‖ = ̺, for some
z ∈ X , it follows

u− q(A)f =
(

I − q(A)A
)

Aαz + q(A)(Au − f)

and
‖Eτ

(

u− q(A)f
)

‖ ≤ ‖
(

I − q(A)A
)

AαEτz‖ + ‖q(A)Eτ (Au − f)‖. (5.48)

We estimate the first term of the right-hand side in (5.48):

‖
(

I − q(A)A
)

AαEτz‖2 =

∫ a

0

|1 − tq(t)|2t2α d‖Et(Eτz)‖2

=

∫ τ

0

|1 − tq(t)|2t2α d‖Etz‖2

≤ ̺2 sup
0≤t≤τ

|1 − tq(t)|2t2α.

The second term in the right-hand side (5.48) can be estimated similarly, and we obtain

‖Eτ

(

u− q(A)f
)

‖ ≤ ̺ sup
0≤t≤τ

|1 − tq(t)|tα + δ sup
0≤t≤τ

|q(t)|. 2

We return to the method of conjugate residuals. Lemma 5.5.1 implies the following corollary.

Corollary 5.5.2 For the cr-method with perturbed data we have for all 0 ≤ n ≤ n∗ and for all τ ∈
(0, t1,n] (if n ≥ 1; if n = 0 then τ > 0 can be taken arbitrarily)

‖uδ
n − u∗‖ ≤ ̺τα + τ−1(δ + ‖rδ

n‖) + qn(0)δ for all τ ∈ (0, t1,n]. (5.49)

(if n ≥ 1; if n = 0 then τ > 0 can be taken arbitrarily in (5.49)).

Proof. We have uδ
n = u0− qn(A)(Au0 − f δ) and therefore uδ

n −u∗ = pn(A)(u0 −u∗)− qn(A)(Au0 − f δ),
hence we apply Lemma 5.5.1 with u = u0 − u∗ and f = Au0 − f δ. The assertion then follows from the
fact that for 0 ≤ t ≤ τ we have 0 ≤ pn(t) ≤ 1 (see (5.30)) and 0 ≤ qn(t) ≤ qn(0) (see (5.35)). 2

(5.49) provides a first estimate for the approximation error ‖uδ
n − u∗‖. Note that due to the stopping

rule, ‖rδ
nδ
‖ ≤ bδ, and (5.39) is shown if we can prove

qnδ
(0) = O((̺δ−1)1/(α+1)) (uniformly in δ > 0, ̺ > 0).

In order to prove this result, we need the following two lemmata which provide estimates for ‖rδ
n‖. These

two estimates are then combined in Corollary 5.8.

Lemma 5.5.3 For the cr-method with perturbed data we have for 1 ≤ n ≤ n∗

‖rδ
n‖ ≤ ̺(2α+ 2)α+1qn(0)−(α+1) + δ.
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Proof. We have to estimate

‖rδ
n‖2 =

∫ a

0−0

p2
n(t) d‖Etr

δ
0‖2. (5.50)

For that we define

s(t) := pn(t)(1 − t

t1,n
)−1.

Then s ∈ Πn−1, the orthogonality property (5.26) leads to

∫ a

t1,n

tp2
n(t)(

t

t1,n
− 1)−1 d‖Etr

δ
0‖2 =

∫ t1,n

0

tpn(t)s(t) d‖Etr
δ
0‖2.

From this and t( t
t1,n

− 1)−1 ≥ t1,n for t1,n < t we obtain

∫ a

t1,n

p2
n(t) d‖Etr

δ
0‖2 ≤ t−1

1,n

∫ a

t1,n

tp2
n(t)(

t

t1,n
− 1)−1 d‖Etr

δ
0‖2

=

∫ t1,n

0

t

t1,n − t
p2

n(t) d‖Etr
δ
0‖2. (5.51)

(5.50), (5.51) and (5.30) yield

‖rδ
n‖2 ≤

∫ t1,n

0−0

p2
n(t)(1 +

t

t1,n − t
) d‖Etr

δ
0‖2

=

∫ t1,n

0−0

p2
n(t)(1 − t

t1,n
)−1 d‖Etr

δ
0‖2

≤
∫ t1,n

0−0

pn(t) d‖Etr
δ
0‖2

= ‖
(

χ
[0,t1,n]

pn

)1/2
(A)Et1,n

rδ
0‖2,

where χ
[0,t1,n ]

denotes the characteristic function corresponding to [0, t1,n]. With u0−u∗ = Aαz, ‖z‖ = ̺,

one has
rδ
0 = Au0 − f δ = Aα+1z + Au∗ − f δ, (5.52)

and then

‖rδ
n‖ ≤ ̺ sup

0≤t≤t1,n

pn(t)1/2tα+1 + δ sup
≤t≤t1,n

pn(t)1/2 (5.53)

≤ ̺
(

(2α+ 2)qn(0)−1
)α+1

+ δ, (5.54)

where the same technique as in the proof of Lemma 5.14 applies to get (5.53), and estimate (5.54) follows
with Lemma 5.3.2 and the fact that 0 ≤ pn(t) ≤ 1 for all 0 ≤ t ≤ t1,n. 2

Lemma 5.5.4 We again consider the cr-method with perturbed data. Let 1 ≤ n ≤ n∗, β > 2 and
2 < µ ≤ 2(β − 1). If βqn−1(0) ≤ qn(0), then with γ := (1 − β−1)/µ,

µ− 2

µ− 1
‖rδ

n−1‖ ≤ ̺
(

γqn(0)
)−(α+1)

+ δ.

Proof. Let

s(t) := pn(t)(1 − t

t1,n
)−1.

Then s ∈ Πn−1 und s(0) = 1, the minimum property (5.25) leads to
(

using ‖rδ
n‖ ≤ ‖rδ

n−1‖ and the fact

that for t ≥ µt1,n we have (1 − t
t1,n

)−2 ≤ (µ− 1)−2
)

‖rδ
n−1‖2 ≤ ‖s(A)rδ

0‖2
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=

∫ µt1,n

0−0

s2(t) d‖Etr
δ
0‖2 +

∫ a

µt1,n

s2(t) d‖Etr
δ
0‖2

≤
∫ µt1,n

0−0

s2(t) d‖Etr
δ
0‖2 + (µ− 1)−2

∫ a

µt1,n

p2
n(t) d‖Etr

δ
0‖2

≤ ‖s(A)Eµt1,n
rδ
0‖2 + (µ− 1)−2‖rδ

n‖2,

≤ ‖s(A)Eµt1,n
rδ
0‖2 + (µ− 1)−2‖rδ

n−1‖2,

hence
µ− 2

µ− 1
‖rδ

n−1‖ ≤ ‖s(A)Eµt1,n
rδ
0‖. (5.55)

In order to estimate the right-hand side in (5.55) we now prove the estimates

µt1,n ≤ 2t2,n, if n ≥ 2, (5.56)

t1,n ≤ (1 − β−1)−1qn(0)−1, if n ≥ 1. (5.57)

To this end we recall that qn(0) ≤ t−1
1,n + qn−1(0) (this is (5.34)), and the assumption βqn−1(0) ≤ qn(0)

already implies (5.57) as well as

(β − 1)t−1
1,n−1 ≤ (β − 1)qn−1(0) ≤ t−1

1,n.

The last estimate then yields µt1,n ≤ µ
β−1t1,n−1 ≤ 2t2,n because of t1,n−1 ≤ t2,n (see (5.28)), hence also

(5.56) holds.

As a final preparation for estimating the right-hand side of (5.55) we observe that s(t) =
∏n

k=2

(

1− t
tk,n

)

implies |s(t)| ≤ 1 for all t ≤ 2t2,n (this makes sense only in the case n ≥ 2; if n = 1, then, however,
s(t) = 1 for all t ∈ IR).

We now can estimate the right-hand side of (5.55) and obtain

µ− 2

µ− 1
‖rδ

n−1‖ ≤ sup
0≤t≤µt1,n

|s(t)|tα+1̺ + sup
0≤t≤µt1,n

|s(t)|δ

≤ ̺(µt1,n)α+1 + δ

≤ ̺
(

µ(1 − β−1)−1qn(0)−1
)α+1

+ δ, (5.58)

and this is the assertion. 2

Lemma 5.5.3 and Lemma 5.5.4 imply the following result.

Corollary 5.5.5 (a) For all 0 < θ < 1 there is a dθ,α > 0, such that for all 1 ≤ n ≤ n∗

θ‖rδ
n−1‖ ≤ dθ,α̺qn(0)−(α+1) + δ.

(b) If nδ 6= 0, then for all 0 < θ < 1/b,

qnδ
(0) ≤ eα,b(̺δ

−1)1/(α+1), (5.59)

with eα,b =
(

2dθ,α

b−1

)1/(α+1)

, where θ := (b + 1)/(2b).

Proof. (a) Take µ > 2 such that θ = µ−2
µ−1 is satisfied. Moreover let β > 2 such that µ = 2(β − 1).

Applying Lemma 5.5.3 for the case ‘βqn−1(0) > qn(0)’ and Lemma 5.5.4 for the case ‘βqn−1(0) ≤ qn(0)’
yields the assertion (a). (5.59) then follows from (a). 2

Corollaries 5.5.2 and 5.56 immediately yield the first part of our main Theorem 5.4.3.

Proof of (5.39), this is, the convergence rates for the approximations. Corollary 5.5.2 yields

‖uδ
nδ

− u∗‖ ≤ ̺τα + (b+ 1)τ−1δ + qnδ
(0)δ for all 0 < τ ≤ t1,nδ

(5.60)
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(in the case nδ 6= 0; if nδ = 0 then τ > 0 can be taken arbitrary in (5.60)). (5.59) then shows that
qnδ

(0) is small enough, and we now indicate how to choose τ . If nδ = 0, then we may take the optimal

τ =
(

(b + 1)δ/(̺α)
)1/(α+1)

. If nδ ≥ 1 then take

τ = c−1
α,b

(

δ/̺)1/(α+1);

this is possible since (5.59) then yields

τ ≤ qnδ
(0)−1 ≤ t1,nδ

. 2

5.5.2 The proof of the rates (5.39) for the stopping indices

We conclude this subsection with the proof of (5.40): For any 0 ≤ n ≤ n∗ and any sn ∈ Π
σ(A)
n we obtain

from the minimum property,

‖rδ
n‖ ≤ ‖sn(A)rδ

0‖
≤ ‖sn(A)Aα+1‖̺ + ‖sn(A)‖δ
≤ sup

λ∈σ(A)

|sn(λ)|λα+1̺ + δ,

and then also

‖rδ
n‖ ≤ ̺

(

F
σ(A)
α+1 (n)

)α+1

+ δ,

this leads immediately to the assertion (5.40). 2

5.6 Proof of Theorem 5.4.4, i.e, the bounds for F σ(A)
α (n).

We use the Tschebyscheff polynomials of the first kind,

Tn(t) = cos(n arccos t), t ∈ [−1, 1], n ≥ 0,

to introduce the following polynomials

Definition 5.6.1 For n ≥ 0 let

Pn(t) :=
(−1)n

2n+ 1

T2n+1(
√
t)√

t
, 0 < t ≤ 1.

Within the class of polynomials p ∈ Πn with p(0) = 1, these polynomials Pn have nice properties like
modulus less then 1 and a decay behavior with respect to the weight

√
t.

Proposition 5.6.2 For any n ≥ 0, Pn defines a polynomial, and

Pn ∈ Πn, Pn(0) = 1, (5.61)

sup
0≤t≤1

|Pn(t)| = 1, (5.62)

sup
0≤t≤1

|Pn(t)|
√
t =

1

2n+ 1
. (5.63)

Proof. If

T2n+1(t) =
n

∑

k=0

akt
2k+1 for t ∈ [−1, 1],

then for 0 ≤ t ≤ 1,

T2n+1(
√
t)/

√
t =

n
∑

k=0

akt
k ∈ Πn,
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which gives the first part of (5.61). Moreover

lim
t→0

T2n+1(t)/t = lim
t→0

T ′
2n+1(t) = (−1)n(2n+ 1),

and this completes the proof of (5.61).

We show that (5.62) holds. To this end, let 0 ≤ t ≤ 1 and 0 ≤ θ ≤ π/2 with

√
t = sin θ = cos(θ − π/2).

Then

T2n+1(
√
t) = cos

(

(2n+ 1)(θ − π/2)
)

= (−1)n cos
(

(2n+ 1)θ − π/2
)

= (−1)n sin
(

(2n+ 1)θ
)

.

Since
| sin kω| ≤ k sinω for 0 ≤ ω ≤ π/2 and integer k ≥ 0,

(follows by induction over k), we get

|T2n+1(
√
t)| ≤ (2n+ 1) sin θ = (2n+ 1)

√
t,

and this yields (5.62).

We finally get (5.63), since

Pn(t)
√
t =

(−1)n

2n+ 1
T2n+1(

√
t). 2

Proposition 5.6.2 implies that Pn ∈ Π
[0,1]
n and F

[0,1]
α (n) ≤ 1/(2n+1) (with an equality here, in fact, which

can be shown with an alternation type theorem). These polynomials Pn enable us to define polynomials
having modulus less than 1 and fast decay with respect to different weight functions (on intervals [0, a]):

Proposition 5.6.3 For any α > 0, a > 0 and n ≥ 0 let l the biggest integer less or equal to n/⌈2α⌉,

l := ⌊n/⌈2α⌉⌋.

Then for

sn,a(t) := P⌈2α⌉
l (t/a), t ∈ [0, a],

(with Pn as in Definition 5.6.1) one has

sn,a ∈ Π[0,a]
n ,

sup
0≤t≤a

|sn,a(t)|tα ≤ aα⌈2α⌉2α · n−2α. (5.64)

Note that (5.43) in Theorem 5.4.4, this is F
[0,a]
α (n) = O(n−2) as n → ∞, is an immediate consequence

of Proposition 5.6.3.

Proof of Proposition 5.6.3. We consider first the case a = 1 and use the notation

sn := sn,1. (5.65)

Then sn ∈ Πn, since l · ⌈2α⌉ ≤ n, and obviously sn(0) = 1 and |sn(t)| ≤ 1 for 0 ≤ t ≤ 1. To prove the
result on the speed of convergence, consider first the case n ≤ ⌈2α⌉. Here for 0 ≤ t ≤ 1 we have

|sn(t)|tα ≤ 1 ≤ ⌈2α⌉2α · n−2α.
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Now let n > ⌈2α⌉. Then for 0 ≤ t ≤ 1

|sn(t)|tα =
(

|P⌈2α⌉/2α
l (t)|

√
t
)2α

≤
(

|Pl(t)|
√
t
)2α

≤ (2l + 1)−2α

≤
(

2(
n

⌈2α⌉ − 1) + 1
)−2α (

since l ≥ n

⌈2α⌉ − 1
)

=
( 2

⌈2α⌉ − n−1
)−2α

· n−2α

≤
( 2

⌈2α⌉ − 1

⌈2α⌉
)−2α

· n−2α
(

since n > ⌈2α⌉
)

= ⌈2α⌉2αn−2α,

and this completes the proof for a = 1. We now consider the general case for a in (5.38). Obviously,

sn,a(t) = sn(t/a), with sn as in (5.65), and thus sn,a ∈ Π
[0,a]
n , and

|sn,a(t)|tα = aα|sn(t/a)|(t/a)α ≤ aα⌈2α⌉2αn−2α for t ∈ [0, a],

and this completes the proof of Proposition 5.6.3. 2

As mentioned in the introduction to this section, the estimates for the stopping index can be improved
for compact operators, where one has a discrete spectrum σ(A) = {λj}, or in other terms, we have

better estimates for F
σ(A)
α then. The proof of these improved estimates is based on the following lemma.

Lemma 5.6.4 Let {λj} be a sequence of reals with λ1 ≥ λ2 ≥ ... > 0 and λj → 0 as j → ∞. Then for
any α > 0, n ≥ 1, and 1 ≤ k ≤ n,

F {λj}
α (n) ≤

{

⌈2α⌉2λk+1 · (n− k)−2, if k < n,
λn+1 , if k = n,

(and one then is free to choose k in order to estimate F
{λj}
α (n) best possible).

Proof. For n and k fixed let

vk(t) =

k
∏

j=1

(

1 − λ

λj

)

.

Obviously v ∈ Πk, v(0) = 1 and v(λj) = 0, j ≤ k, and consider then

s(t) := sn−k,λk+1
(t) · vk(t),

where sn−k,λk+1
is taken from Proposition 5.6.3. Then obviously s ∈ Π

{λj}
n , and moreover

sup
j

|s(λj)|λα
j = sup

j≥k+1
|sn−k,λk+1

(λj)|λα
j

≤ sup
0≤t≤λk+1

|sn−k,λk+1
(t)|tα (5.66)

≤ ⌈2α⌉2αλα
k+1 · (n− k)−2α, (5.67)

where the last estimate follows with (5.64), for a = λk+1, and it is valid for the case k < n; the assertion
for k = n follows trivially from (5.66). 2

Proof of (5.44) (5.45) in Theorem 5.4.4, this are the bounds for F
{λj}
α (n).

(a) Let k := ⌊n/2⌋. Then n− k ≥ n/2, hence

(n− k)−2 ≤ 22n−2.

Secondly, k + 1 ≥ n/2 and therefore
(k + 1)−τ ≤ 2τn−τ ,
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and this and Lemma 5.6.4 yields

F {λj}
α (n) ≤ ⌈2α⌉2λk+1 · (n− k)−2

≤ sup
j
{λjj

τ}⌈2α⌉2(k + 1)−τ · (n− k)−2

≤ sup
j
{λjj

τ}⌈2α⌉22(2+τ) · n−(2+τ).

(b) follows from Lemma 5.6.4, with k = n. 2

5.7 The convergence of the discrepancy principle for the me-
thod of conjugate residuals

It is the purpose of this section to show that the cr-method for ill-posed problems is a regularization
method in the sense of Definition 3.1.1, if iteration is terminated according to the discrepancy principle,
and to prove an asymptotic behavior for the stopping index (in dependence of the noise level). Moreover,
convergence results for exact data are provided.

These results are presented in a more general form For that, let X be a real or complex Banach space,
and let A ∈ L(X) be weakly sectorial and f∗ ∈ R(A). To solve Au = f∗ approximately, we consider
some iterative method which for (fixed underlying space X and operator A) and arbitrary start vector
u0 = X and any f ∈ X generates a sequence un, n = 1, 2, ..., thus un can be written in the form

un = Tn(u0, f), n = 1, 2, ...,

for some (non-linear) operator Tn which is not further specified. Note that the method of conjugate
residuals fit into this framework, if we set for formal reasons um = un for all m ≥ n, if Aun−f ∈ N (A).

We now again assume that some approximation f δ ∈ X to the right-hand side of Au = f∗ is given, and
some noise level δ > 0 is available,

‖f∗ − f δ‖ ≤ δ, δ > 0,

and denote by
uδ

n = Tn(u0, f
δ) (5.68)

the corresponding iterates. Note that uδ
n does not depend on the noise level δ; our notation is chosen in

order to simplify notations. We introduce the defects

rδ
n := Auδ

n − f δ, n = 0, 1, 2, ... ,

and the first assumption on the method is that there is a constant γ0 > 0 such that for any

b > γ0

the iteration terminates after a finite number of steps if the following stopping rule is applied (and if
Au0 − f∗ ∈ A(R(A)).

Stopping Rule 5.7.1 (Discrepancy principle) Stop iteration (5.68), if for the first time

‖rδ
n‖ ≤ bδ.

nδ := n denotes the stopping index.

This defines a method generating an uδ
nδ

(which is supposed to be an approximation to a solution u∗ of

Au = f∗) and a stopping index nδ (depending also on f δ which is not further indicated).

The further assumptions on that method are those stated in Theorem 5.7.2. First it is supposed that
for some fixed smoothness degree α = α0 > 0, this method, incorporated by (5.68) and Stopping Rule
5.7.1, allows estimates (5.71) and (5.72) of ‖uδ

nδ
− u∗‖ and nδ for all those u∗, f

δ, u0 ∈ X which fulfill
(5.69) and (5.70). Assumption (5.72) is motivated by (5.40) for the cr-method.
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The first statement of the theorem then is that similar estimates for the the approximation and the
stopping index also hold for other degrees of smoothness for the initial error, and the statement of
(1), (b) is that this procedure defines a regularization method in the sense of Definition 3.1.1, and
that moreover some asymptotic behavior for the stopping index holds. In (2), the exact data case is
considered.

Theorem 5.7.2 Assume that A ∈ L(X) is weakly sectorial, and let

φ : [−1,∞) → [0,∞]

be some given function. We assume that for some

0 < α = α0

the following hold: For all u∗, f
δ, u0 ∈ X such that

‖Au∗ − f δ‖ ≤ δ, (5.69)

u0 − u∗ ∈ R(Aα), ̺ := ‖u0 − u∗‖α, (5.70)

iteration (5.68) and Stopping Rule 5.7.1 supplies (for arbitrary b > γ0) an approximation uδ
nδ

and a
stopping index nδ with

‖uδ
nδ

− u∗‖ ≤ cα,b(̺δ
α)1/(α+1), (5.71)

φ(nδ − 1)−1 ≤ eα,b

(

̺δ−1
)1/(α+1)

, (5.72)

where cα,b and eα,b denote some constants.

Then the following assertions (1) and (2) are valid:
(1) Then we have moreover for iteration (5.68) and its termination rule:
(a) For any b > γ0 and for any

0 < α ≤ α0,

and for all u∗, f
δ, u0 ∈ X with (5.69), (5.70), we have the estimates (5.71) and (5.72).

(b) (No smoothness assumption) For any b > γ0, and for all u∗, f
δ, u0 ∈ X with (5.69) and u0 − u∗ ∈

R(A), we have for the approximations and stopping indices

‖uδ
nδ

− u∗‖ → 0 as δ → 0, (5.73)

φ(nδ − 1)−1δ → 0 as δ → 0. (5.74)

(2) (Convergence in case of exact data:) Let Au0 − f∗ ∈ A(R(A)), and set u∗n := Tn(u0, f∗) and
r∗n := Au∗n − f∗, n = 0, 1, ..., and let u∗ := u0 − A†(A0 − f∗). We additionally assume for any n: if
Ar∗n = 0 then u∗m = u∗n for m ≥ n, and if otherwise Ar∗n 6= 0 then ‖r∗n+1‖ < ‖r∗n‖. Then:

(a) If
u0 − u∗ ∈ R(Aα), ̺ := ‖u0 − u∗‖α,

for some 0 < α ≤ α0, then

‖u∗n − u∗‖ ≤ aα̺φ(n)α, n = 1, 2, ...,

with some constant aα > 0.

(b) In the general case u0 − u∗ ∈ R(A),

‖u∗n − u∗‖ → 0 as n→ ∞.

Remark. For the linear methods considered in Chapters 2 and 3, first convergence results for precisely
data are derived, and they are applied to obtain results in the case of noisy data. Therefore here part
(2) of Theorem 5.7.2 does not have a reasonable application. For the proof of Theorem 5.4.3 on the
discrepancy principle for the method of conjugate residuals, however, no convergence result for precise
data are used, and here it is convenient to derive these convergence results from Theorem 5.4.3.
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Proof of Theorem 5.7.2. We start with part (1) of the theorem and assume that for any b > γ0,
estimates (5.71) and (5.72) are available for some

0 < α = α1, (5.75)

and for all u∗, f
δ, u0 ∈ X with (5.69), (5.70). We show the following:

(i) For any b > γ0, and for any α > 0 with α1 − 1 ≤ α ≤ α1, and for all u∗, f
δ, u0 ∈ X with (5.69),

(5.70) we have (5.71), (5.72).
(ii) if moreover α1 < 1 in (5.75) then assertion (b) in part (1) holds.
(From this we can deduce that (1) in Theorem 5.7.2 holds in its general form.)

We prove (i) and (ii) simultaneously, and for that we now fix b, u∗, u0, f
δ such that the conditions

in (i) or (ii) are fulfilled, respectively. This means in particular, that u0 − u∗ ∈ R(Aα) in case (i), and
u0 − u∗ ∈ R(A) in case (ii), respectively.

In order to involve the assumption we generate an uδ with

u0 − uδ ∈ R(Aα1 ), (5.76)

with several further requirements on it, such as proximity to u∗ in the A-norm ‖ · ‖A = ‖A(·)‖ as well
as in the underlying norm itself, and ‖u0 − uδ‖α1 has to be small enough. Let

b1 =
( b

γ0
− 1

)

/2.

(Then b1 = b1(b) > 0.) The first specific requirement on uδ is

‖A(uδ − u∗)‖ ≤ b1δ. (5.77)

(5.69) then implies
‖Auδ − f δ‖ ≤ (b1 + 1)δ =: δ1.

The choice
b2 := b/(b1 + 1)

then ensures b2δ1 = bδ so that iteration terminates with nδ, either the stopping rule is applied with b, δ,
or with b2, δ1, respectively. Our choice of b1 yields b2 > γ0, with the notation

̺δ := ‖u0 − uδ‖α1

we obtain (from (5.71), (5.72) for α = α1, and with u∗ replaced by uδ),

‖uδ
nδ

− uδ‖ ≤ cα1,b2(̺δδ
α1
1 )1/(α1+1)

≤
(

cα1,b2(b1 + 1)α1/(α1+1)
)

(

̺δδ
α1

)1/(α1+1)
, (5.78)

φ(nδ − 1)−1 ≤ eα1,b2

(

̺δδ
−1
1

)1/(α1+1)

=
(

eα1,b2(b1 + 1)−1/(α1+1)
)

(

̺δδ
−1

)1/(α1+1)
. (5.79)

From (5.78) we easily obtain

‖uδ
nδ

− u∗‖ ≤ ‖uδ − u∗‖ + ‖uδ
nδ

− uδ‖
≤ ‖uδ − u∗‖ +

(

cα1,b2(b1 + 1)α1/(α1+1)
)

(̺δδ
α1)1/(α1+1), (5.80)

and now further estimates of the right-hand sides in (5.79), (5.80) are necessary. For that we impose
requirements on ‖uδ − u∗‖ and ̺δ. In case (i) we require that

‖uδ − u∗‖ ≤ C1

(

̺δα
)1/(α+1)

, (5.81)

̺
1/(α1+1)
δ ≤ C2̺

1/(α+1)δ
α

α+1−
α1

α1+1 , (5.82)
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with constants C1 and C2 depending on α and b. This together with (5.79), (5.80) yields

‖uδ
nδ

− u∗‖ ≤
(

C1 + C2cα1,b2(b1 + 1)α1/(α1+1)
)

(̺δα)1/(α+1),

φ(nδ − 1)−1 ≤
(

eα1,b2(b1 + 1)−1/(α1+1)C2

)

(

̺δ−1
)1/(α+1)

,

that is the assertion for case (i). In case (ii) the requirements are

‖uδ − u∗‖ → 0 as δ → 0, (5.83)

̺δδ
α1 → 0 as δ → 0. (5.84)

Then, again the estimates (5.79) and (5.80) imply (5.73) and (5.74) which completes the assertion stated
at the beginning if this proof.

What remains is to generate uδ that fulfills (5.77) and moreover (5.81), (5.82) in case (i), and (5.83),
(5.84) in case (ii), respectively. To this end we use the (iterated) method of Lavrentiev which for fixed
integer m ≥ α0 + 1 and u0 = 0 generates for any parameter t ≥ 0 and y ∈ X an

Gty ∈ X,

with Gt = t
∑m

j=1(I + tA)−j , see (2.6), (2.7). Now take any k > Mm
0 (with M0 as in (1.2)), and let

u ∈ R(A), and yǫ ∈ X with ‖Au−yǫ‖ ≤ ǫ. Theorem 3.2.3 on the discrepancy principle for the parameter
dependent methods implies that there is a parameter

tǫ ≥ 0

such the following conditions are satisfied:

‖(AGtǫ
− I)yǫ‖ ≤ kǫ, (5.85)

‖u−Gtǫ
yǫ‖ → 0 as ǫ→ 0, (5.86)

tǫǫ → 0 as ǫ→ 0. (5.87)

If furthermore
u ∈ R(Aα), ρ := ‖u‖α,

for some α ≤ m− 1, then we can replace (5.86) and (5.87) by the estimates

‖u−Gtǫ
yǫ‖ ≤ C3(ρǫ

α)1/(α+1), (5.88)

tǫ ≤ C4

(

ρǫ−1
)1/(α+1)

, (5.89)

respectively. Here C3 and C4 denote constants which depend on α and k.

We apply this result to u = u0 − u∗, ǫ = (b1/k)δ and yǫ = A(u0 − u∗). (Note that ǫ = ǫ(δ), and that
yǫ = Au so that yǫ in fact does not depend on ǫ.) Let

uδ := u0 −Gtǫ
A(u0 − u∗).

Thus, (5.85) implies (5.77), and moreover (5.88) implies (5.81) in case (i), and (5.86) implies (5.83) in
case (ii). Therefore (5.82) in case (i) and (5.84) in case (ii) remain to prove. We first consider case (i)
and hence assume that (5.70) holds. Then

u0 − uδ = Gtǫ
A(u0 − u∗) = Aα1zδ,

where
zδ = Aα+1−α1Gtǫ

z,

with z ∈ X such that u0 − u∗ = Aαz. The interpolation inequality (1.15) yields with some C5 > 0

‖zδ‖ ≤ ‖Aα+1−α1Gtǫ
‖ · ‖z‖ ≤ C5‖z‖tα1−α

ǫ . (5.90)
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and here it is used that ‖AGt‖ and ‖Gt‖t−1 are uniformly bounded for t > 0, see (2.2), (2.3) for that.
Going over to the infimum in (5.90) yields

̺δ = ‖u0 − uδ‖α1 ≤ C5̺t
α1−α
ǫ . (5.91)

From this and (5.89) we obtain (with another constant C6 depending on α and k)

̺δ ≤ ̺C6(̺δ
−1)

α1−α

α+1 = C6̺
1+

α1−α

α+1 δ
α−α1
α+1

= C6̺
α1+1

α+1 δ
α−α1
α+1 ,

which yield the desired estimate (5.82). Finally, in case (ii) we have α1 < 1, and then (5.91) with α = 0
and (5.87) imply (5.84), and this completes the proof of part (1) of the theorem.

(2) In order to prove the results for exact data, we shall use the results of part (1) of this theorem: take
any b > γ0, and fix n. If Ar∗n = 0, then by assumption on the method u∗m = u∗ for m ≥ n, and in the
sequel we consider the case ‖r∗m+1‖ < ‖r∗m‖ for 0 ≤ m ≤ n, and thus δ := ‖Aun − f∗‖/b > 0. Stopping
Rule 5.7.1 with f δ = f∗ then yields nδ = n.

We consider the case (2), (a) first, and then for any ǫ > 0 with ‖r∗n+1‖ ≤ b(δ− ǫ) < ‖r∗n‖ we obtain from
(1), (a), with δ replaced by δ − ǫ, and with f δ = f∗,

φ(n)−1 ≤ eα,b

(

̺(δ − ǫ)−1
)1/(α+1)

,

and letting ǫ→ 0 yields φ(n)−1 ≤ eα,b(̺δ
−1)1/(α+1). Again with (1), (a) we get

‖u∗n − u∗‖ ≤ cα,b(̺δ
α)1/(α+1)

≤ cα,be
α
α,b̺φ(n)α.

Finally, case (b) in (2) follows immediately from (1), (b), with the same approach as in the proof of (2),
(a). 2

Remark. 1. Theorem 5.4.5 is an immediate consequence of Theorem 5.7.2.
2. Let us assume for simplicity that u0 = 0. We can then write the method, composed by iteration (5.68)
and its termination rule, in the form

P : X × IR+ → X × IR+ ∪ {0}, (f δ, δ) 7→ (uδ
nδ
, nδ),

where IR+ = { δ > 0 }, and this formulation can be the set-up for modifications of Theorem 5.7.2 for
other than iterative methods and/or stopping rules. In order to be most instructive, however, we restrict
the considerations to iterations.

5.8 Numerical Illustrations

To illustrate the method of conjugate residuals and the discrepancy principle as its stopping criterium
we consider the problem of harmonic continuation. To this end, let

D =
{

x ∈ IR2 : x2
1 + x2

2 < 1
}

be the unit disk in the plane, and let v : D → IR be continuous on D and harmonic on D, i.e.,

∆v(x) = 0, x ∈ D.

We assume that v is known on the boundary of a concentric disk of radius 0 < r < 1, i.e.,

f(ϕ) = v(r, ϕ), 0 ≤ ϕ ≤ 2π,

is assumed to be known. From these informations we want to determine v on the boundary of D, i.e,

u(ϕ) = v(1, ϕ), 0 ≤ ϕ ≤ 2π,
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is the function we are looking for. The relation between u and f can be stated in terms of the following
operator A,

Au(t) :=

∫ 2π

0

k(t, s)u(s) ds = f(t), 0 ≤ t ≤ 2π, (5.92)

k(t, s) :=
1

2π

1 − r2

1 + r2 − 2r cos(t− s)
.

and (5.92) is an integral equation of the first kind. We now consider the equation Au = f in the
L2-setting; as underlying space we take the real space

X = L2[0, 2π]

with corresponding inner product

〈u, v〉 =

∫ 2π

0

u(t)v(t) dt.

A : X → X then is compact, selfadjoint and positive semidefinite, i.e., A = A∗ ≥ 0. Moreover, dim
R(A) = ∞. One can use the residue theorem to show that the eigenvalues of A are

λj = rj , j = 0, 1, ...,

with eigenfunction 1 corresponding to λ0, and eigenfunctions

sin(js), cos(js), 0 ≤ s ≤ 2π,

corresponding to λj , j = 1, 2, .... In our numerical example we consider the following functions.

Example 5.8.1 Let
f∗(t) = er cos t cos(r sin t), 0 ≤ t ≤ 2π.

Then
u∗(s) = ecos s cos(sin s), 0 ≤ s ≤ 2π

solves Au = f∗, where A is as in (5.92). Note, that for any α > 0 and

z(t) := er−α cos t cos(r−α sin t) = Re
(

∞
∑

k=0

(r−αeit)k

k!

)

, 0 ≤ t ≤ 2π,

one has Aαz = u∗, thus in particular

u∗ ∈ R(Aα), ‖u∗‖α ≤
√

2π exp(r−α).

We test the method of conjugate residuals and the stopping rule for

r = 0.5.

In our numerical experiments, equation (5.92) is discretized with Ritz’s method, and as ansatz space we
take

Xh =
{

ψ ∈ C([0, 2π]) : ψ|[ih, (i+1)h] linear, 0 ≤ i ≤ N − 1
}

,

with N = 128, h = 2π/N. We always start with u0 = 0, and the results of two experiments are
illustrated in Figures 5.1 and 5.2.
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Abbildung 5.1: Grey: solution u∗; Black: approximation uδ
nδ

1 2 3 4 5 6

noise: 10 %,  #iterations: 2
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Abbildung 5.2: Grey: solution u∗; Black: approximation uδ
nδ

Bibliographical notes and remarks

We start with a short history about conjugate gradient type methods for linear ill-posed problems. The
first convergence rates for the classical conjugate gradient method (of Hestenes and Stiefel) for solving
normal equations A∗Au = A∗f were provided by Kammerer and Nashed [32]. A survey on general con-
vergence results for conjugate gradient type methods can be found in Nemirovskĭı and Polyak [51]. Speed
of convergence for the conjugate gradient method for normal equations can be found in Brakhage [9]
and Louis [42].

We now consider perturbed data and the discrepancy principle, and here best possible convergence
rates for the classical conjugate gradient method for solving normal equations A∗Au = A∗f and the
cr-method for symmetric, positive semidefinite equations Au = f were obtained by Nemirovskĭı [50],
and it is proven in Plato [54] that these methods are regularization methods in the sense of Theorem
3.1.1.

In Hanke [24] it can be found that the classical conjugate gradient method (of Hestenes and Stiefel)
for solving symmetric positive semidefinite equations Au = f defines a regularization method if stopped
appropriately (not by the discrepancy principle, however).

Section 5.4 Here the main results are listed, and in the sequel sources are designated.

Section 5.5 The complete section is due to Nemirovskĭı [50].

Section 5.6 Propositions 5.6.2 and 5.6.3 and Lemma 5.6.4 are (in a slightly different form) due to
Nemirovskĭı and Polyak [51]. The bounds (5.43) (in conjunction with (5.40)) and (5.46)) has been
proved by Nemirovskĭı [50], and for (5.44), (5.45) (in conjunction with (5.40) and (5.46)) see Hanke [24].

Section 5.7 The general ideas of this section are developed in [54] and are extended in [56].
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Section 5.8 The problem of harmonic continuation is considered in Kress [37], Problem 15.3, and our
functions u∗ and f∗ are considered at the same source, see e.g., Example 11.6 there. For interior and
exterior Dirichlet and Neumann problems for the Laplace equation see also Mikhlin [47], Chapter 13.
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{Et}t∈IR, resolution of the identity, 62
e(M, δ) , 52
n∗ (cr-method), 61
pn(t), 61
qn, 61
rσ(A), spectral radius of A, 24
rδ
t , defect, 37
sn,k(t), 71
tk,n, 1 ≤ k ≤ n, roots of pn, 62
x(θ), x(θ)⊥ , 22

B, closed unit ball in X , 53

A posteriori choices, 36
A priori choices, 36

Abel integral operators, 21
Approximate eigenvalue, 9

Convergent parameter choice or stopping rule, 37

Discrepancy principle for parameter methods, 38
Divergent parameter choice or stopping rule, 37

Fractional integration, 19
Fractional powers of operators, 9

Gamma function Γ, 21
Generalized inverse, 8

Hille-Yosida theorem, 17

Ill-posed problem, 9
Infinitesimal generator of semigroup {T (t)}t≥0 , 16
int, interior of a set, 14
Interpolation inequality, first, 6
Interpolation inequality, first, revisited, 11
Interpolation inequality, second, 10
Intertwining property of roots, 62

Krylov subspaces, 57

L-curve criterion, 51

Noise-level-free choices, 36
Nonexpansive operators, 33

Order optimal methods, 52

Power bounded operator, 18

Qualification of a method, 28
Quasioptimal methods, 45
Quasioptimality criterion, 51

Radon transform, 22
Regularization method, 37

Sectorial of angle θ, 5
Seismic imaging, 23
Spectroscopy of cylindrical gas discharges, 23
Stable approximation for A†, 49
Stolz angle, 18
Strictly sectorial operator, 13
Sturm sequence of polynomials, 62
Symm’s integral equation, 57

Weakly sectorial operator, 4
Well-posed problem, 9

Young’s inequality for convolutions, 21
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