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1 Introduction

1.1 Linear Volterra Integral Equations of the First Kind

In the non-destructive testing of optical-fibre preforms, the problem of deter-
mining the axial stress components from measurements of the phase retardation
of laser lights sent through the object reduces to a generalized Abel integral
equation of the first kind, for more details we refer to Section 4. The methods
presented in this paper can be applied to solve those problems efficiently, and we
begin more generally with the consideration of a linear Volterra integral equation

of the first kind,

(Au)(t) := /Otk(t,s)u(s) ds = fo(t), t €[0,aq]. (1.1)

Later on we shall present specific equations of type (1.1) like the mentioned gen-
eralized Abel integral equations and integral equations with a completely mono-
tone convolution kernel, but for the moment we suppose that & : [0, a]x[0,a] — TF
in (1.1) denotes an arbitrary kernel, and f, : [0, a] = IF is an approximately given
function, where either IF = IR or IF = €. We moreover suppose that A € £(H)
and f. € R(A), where H is a given Hilbert space, and

LMH) = {T:H—>H| Tisbounded and linear },
and finally, ‘
R(A) = {Au| veH} C H
denotes the range of A. If the kernel k in (1.1) is non-degenerated, then R(A) is

non-closed in #, and thus equation (1.1) is ill-posed. This means that if merely
an approximation f € H for f, is available,

fe#n, [fieR(A), [=/[,

then the minimum norm solution of Au = f (if it exists) may have an arbitrarily
large distance to the minimum norm solution of (1.1). Thus some careful regu-
larization is needed, and to this end, in this paper we shall consider Lavrentiev’s
m-times iterated method, see the following subsection for its introduction.
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1.2 Lavrentiev’s m-Times Iterated Method

In Hilbert spaces, Volterra integral equations of the first kind (1.1) in general
may be regularized by methods like Tikhonov regularization, Landweber itera-
tion or the classical conjugate gradient method (the latter applied to the normal
equations A* Au = A*f,, where A* denotes the adjoint operator of A). However,
these approaches do not profit from the triangular form of (1.1), or even more
worse, the triangular structure is destroyed by any of these methods. Triangu-
larity of the Volterra integral equation (1.1) here means that a discretization of
(1.1), e.g. by a projection method, typically leads to a left triangular system or
at least to an almost triangular system of equations.

In order to introduce a regularization method that in fact benefits from the
triangular structure, we assume that the Volterra operator A in (1.1) is accretive
with respect to H, i.e.,

Re (Au,u) > 0, u€eH.

Here, Rez denotes the real part of z € €, and (-, ) : H x H — TF denotes the
inner product in #H. Then the mentioned (almost) triangular system of equa-
tions associated with the Volterra integral equation (1.1) typically has small
positive entries near the diagonal, and thus is seems to be natural and efficient
to stabilize this system of equations by adding a small positive constant term on
the diagonal. In the infinite-dimensional setting this corresponds to Lavrentiev’s
classical method, and in this paper we shall consider more generally Lavrentiev’s
m-times iterated method (With fixed integer m) It generates for a regularization
parameter ¥ > 0 an u, € H by

(A4+~yDvy = yop_1 + [, n=12..m,

Uy 1= VU

with vg = 0, and I denotes the identity operator in H. For m = 1 one gets
Lavrentiev’s classical method while for m > 1, m — 1 stabilized residual correc-
tions are employed. Note, however, that m is fixed so that Lavrentiev’s m-times
iterated method is a parametric method and not an iterative method. A good
choice of the regularization parameter v > 0 for Lavrentiev’s m-times iterated
method 1s important, and to this end in this paper some discrepancy principles
are presented.

1.3 Outline of the Paper

The outline of the paper is as follows: In Section 2 we consider generalized Abel
operators as well as integral operators with a completely monotone convolu-
tion kernel as examples for Volterra integral operators that are accretive, and in
Section 3 some discrepancy principles as specific parameter choices for Lavren-
tiev’s m-times method are considered and the associated convergence results
are stated. In Section 4 we present some details about the non-destructive test-
ing of optical-fibre preforms, and numerical illustrations are presented. Finally,
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in Section 5 we shall consider the case where the underlying space is a Banach
space X and provide some results for Lavrentiev’s m-times method for that case;
moreover, also a subsection on two stationary iteration methods is included.

2 Specific Linear Accretive Volterra Integral Operators

2.1 Introduction

In this section we present some specific Volterra operators that are accretive in
the following sense.

Definition1. Let H be a Hilbert space over the field IF = IR or IF = (, and let
(-, : H x H — TF be the associated inner product. An operator A € L(H) is

called accretive, if
Re(Au,u) > 0, ueH. (2.1)

Accretiveness usually is introduced for unbounded operators, cf. Tanabe [24],
but for the applications we have in mind it is sufficient to consider bounded
operators. Note that (2.1) is valid if and only if (a) the resolvent set p(—A)
corresponding to —A contains (0,00), and (b) the following estimate is valid,

[(A+yD)7H < 1/ v>0,

where || - || denotes the associated operator norm.

2.2 Abel Integral Operators

In the sequel we consider generalized Abel integral operators (cf. Gorenflo &
Vessella [9] for an introduction) with respect to specific Hilbert spaces. To this
end, throughout this subsection let 8 > 0 and @ > 0 be arbitrary but fixed
finite numbers, if not further specified. We then denote by L2([0, al, sﬁ_lds)
the Hilbert space over IF = IR or IF = € containing all real- or complex-valued,
measurable functions u on [0, a], such that |u|? is integrable with respect to the
measure s°~1ds, and the associated inner product is

(u,v) = / u(s)v(s) s°~1ds, u, v € L*([0,a], s°~'ds).
0
For the case 3 = 1, this space will be simplified denoted by L2[0, a].

Abel Integral Operators: Part I For 0 < a < 1, a generalized Abel integral
operator A = A, g 4 is given by

't gB=1y(s
(Au)(t) = /0 st, t€0,al. (2.2)

The operator A defined by (2.2) is accretive with respect to H = L? ([O, a), sP~1 ds);
for the details see [17].
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Note that the operator A in (2.2) is moderately ill-posed. In fact, if 3 = 1 and
a = 1, then for the singular values o, (A), n > 1, of A one has

on(A) xn™® as n — 0o,

cf. Dostanié [7]. Here, a, < b, for positive numbers a,, b,, n > 1, means that
there are constants 0 < k1, ko with k1a, < b, < ksa, for n > 1.

Abel Integral Operators: Part II For 0 < a < 1, another generalized Abel
integral operator A = A, g4 is given by

? gP-Ty(s
(Au)(t) = /t W ds, t €[0,a]. (2.3)

The lower bound in the integral in (2.3) depends on ¢, thus A defined by (2.3)
has not the form (1.1). This operator A given by (2.3) nevertheless is accretive
with respect to H = Lz([O, al, sﬁ_lds), since A is the adjoint of the operator
given by (2.2). We return to this generalized Abel integral operator in Section 4
where the non-destructive testing of optical-fibre preforms is considered.

Other Abel type integral equations with generalized kernels arise in X-ray
tomography, see e.g., Cormack [5], Natterer [12].

2.3 Volterra Integral Operators with Convolution Kernels

We next consider the Volterra integral operator

(Au)(t) = /O k(t —s)u(s) ds, ¢ €0,dl, (2.4)

with a Lebesgue-integrable convolution kernel & : [0,00) — IR. Here, A as in
(2.4) is accretive with respect to H = L?[0, a] if x is completely monotone, i.e.,

Re (Lk)(z) > 0, Rez >0,

where (Lk)(z) := fooo e **k(s) ds, Rez > 0, denotes the Laplace transform of
. For more details see Nohel & Shea [14] or Gripenberg, Londen & Staffans [10],
Theorem 16.2.4.

3 Parameter Choices for Lavrentiev’s m-Times Iterated

Method

For an arbitrary accretive A € L(H), where H denotes a given Hilbert space, we
consider the equation

Au = fy, (3.1)

with R(A) # R(A) in general, i.e., equation (3.1) is then ill-posed. Here R(A)
denotes the closure of R(A).
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As in the introduction we admit the right-hand side in (3.1) to be disturbed,
and in the sequel we additionally suppose that an estimate for the noise level is

known, i.e.,

e, feR(MA),  IL-Fl<8 (3.2)
where § > 0 is a known error bound, and || - || : ¥ — IR denotes the underlying
norm.

In the sequel we consider (for fixed integer m) Lavrentiev’s m-times iterated
method which for v > 0 generates an ufY € H by

2 — A 3§ _
(A4+~yDvy =y + f°, n= l,2,...,m} (3.3)

ufsy = U

where vg = 0, and for notational convenience we set

u‘ZOZO.

Fig. 1. Semiconvergence of Lavrentiev’s m-times iterated method.

For ill-posed equations (3.1);a @2)s'fribﬂheshape of the trajectory 1
lescribed in Figure 1. Here § > 0 small is fixed, and for notational
it is assumed that f° € R(A) and that A has a trivial nullspace,
denotes the solution of (3.1). In Figure 1, the point u®, € # on the
orresponds to the origin, and uj corresponds to A= f7.
behavior of & ug as described in Figure 1, also known as semicon-
es 1t necessary to choose the regularization parameter v appropri-
his end in the following subsections we present certain discrepancy



210 Robert Plato

3.1 Discrepancy Principles

In the sequel we present discrepancy principles as rules for choosing vs > 0 in
order to get good approximations uié € H for some solution u, € H of (3.1). To
this end, let Ai € H denote the defect, i.e.,

Af = Aud - f0 (3.4)

In fact, if A € L(H) is accretive, then for fixed § > 0 the norm of the defect
||Ai|| is continuous and nondecreasing in v, and limy_ ||Ai|| < J; see Figure 2
for the illustration of a typical situation. Thus the following two versions of the
discrepancy principle can be implemented numerically.

e [lAug = £

bhd-
bod |-

Fig. 2. Illustration for a typical behavior of the functional v ||Aui — 7.

Discrepancy Principle 1. Fix positive constants bg, by with by > by > 1.
(a) If ||A‘go|| < b18 then choose 75 = cc.
(b) Tf ||Ago|| > b1d then choose 45 > 0 such that

bod < [|A%,]] < b4

Discrepancy Principle 2. Fix a real b > 1. Moreover, fix § > 0 and 7 > 0, and
set y(k) = 0/k". Terminate computation of “i(k) €EH, k=0,1,2,..,if for the
first time

||Ai(k)|| < bd,

and let v5 := vy(ks), where ks denotes the stopping index.
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The following result can be derived from the results in [16]. (3.5) shows that each
discrepancy principle for Lavrentiev’s m-times iterated method (3.3) with m > 2
defines a regularization method, and (3.8) provides, under additional smoothness
assumptions, order-optimal convergence rates. The asymptotic behavior (3.6)
and the estimate (3.9) show that the parameter 45 > 0 cannot be arbitrarily
small, respectively.

Theorem 2. Let H be a Hilbert space, let A € L(H) be accretive, and suppose
that (3.2) is valid. Let {ul} C H be as in (3.3), with m > 2. Fiz one of the two
described Discrepancy Principles 1 or 2, and let the parameter 5 > 0 be chosen
according to it.

1. If uy € R(A) solves (3.1) then

1)
”u’Ys

—u|| =0 as § =0, (3.5)
d/v5 =0 as § — 0.

2. If moreover for some real 0 < v<m—1 and z € H,
u, = Az, o :=|lz|l, (3.7)
then with some constants d,, e, > 0 we have the estimates
fe —usll < (087D, (3.8)
Y5 > eu(oT1o) WA, (3.9)

[Ju

VoIA

d, and e,, depend also on bg, b; and on b introduced in the Discrepancy Principles
1 and 2, respectively. Moreover, for 0 < v < 1 fractional powers A” € L(H) of
accretive operators A € L(H) can be defined e.g. by formula (6.16) in Chapter
2 of Pazy [15]; for arbitrary v > 0, fractional powers AY € L(#) then are given
recursively by A” := A¥~ ] A] where |v| denotes the greatest integer < v.

The proof of Theorem 2 depends basically on the estimate

lud, = wll < N[y(A+yD 7wl + mé/y, (3.10)

and (3.10) follows immediately from the representation
u*—ui = [y(A++yD)7? 'ylz (A+~I)~ ](Au*—f‘s).
ji=1

For later notational convenience we use for ¥ = co the notation y(A+~yI)~! =T
and then estimate (3.10) is valid also for v = occ.

3

Remarks. 1. Theorem 2 generalizes similar results for symmetric, positive semi-
definite operators A € L(H), where H denotes a Hilbert space, cf. Vainikko [25].
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2. For Abel integral operators A as in (2.2) with0 < a< 1, =1 and a > 0,
and for the underlying space # = L%[0,a] we shall give an illustration of the
smoothness condition (3.7) and the corresponding convergence rates (3.8). To
this end for integer k > 1 we denote by W*:2[0,a] the Sobolev space of all
functions u : [0, a] — © such that u and its distributional derivates u/) of order

j < k all belong to L?[0, a]. If
u, € WH20,a],  u.(0) = ul(0) = ...= u"7V(0) = 0,

for some integer k with 1 < k < (m—1)a, then for v = k/a one has u, € R(A"),
and due to (3.8) we then can expect the following speed of convergence,

ud, — us|| = O(8*/k+)) as § — 0.

The statement (3.5) means by definition that for m > 2, Lavrentiev’s m-times
iterated method associated with any of the mentioned discrepancy principles
yields a regularization method, respectively. For Lavrentiev’s classical method,
however, we have the following negative result (the proof is given in [18]):

Proposition3. Let 0 # A € L(H) be accretive, and suppose that 0 € o4p(A).
Then Discrepancy Principle 1 for Lavrentiev’s classical method, this is (3.3) with
m = 1, yields not a reqularization method.

Here, 04p(A) denotes the approximate point spectrum of A.

Remark. It can be shown similarly that the Discrepancy Principle 2 for Lavren-
tiev’s method also fails. Moreover, Proposition 3 shows that in the case {0} #
N(A) # H, the Discrepancy Principle 1 for Lavrentiev’s classical method fails
even in the well-posed case R(A) = R(A).

3.2 Pseudo-Optimal Parameter Choice

It would be desirable to find parameters 45 > 0 for Lavrentiev’s m-times iterated
method (3.3) such that an estimate of the following type is fulfilled,

= uell < K inf [Jud — w)

with some constant K not depending on d, u, and f°. In the sequel we shall
consider a parameter choice that provides a similar estimate at least for the right-
hand side in the basic estimate (3.10). To this end we introduce the following
notation, which is similar to that used by Leonov, see e.g. [11].

Definition4. Let H be a Hilbert space, and let A € L(H) be accretive. A pa-
rameter choice strategy for Lavrentiev’s m-times iterated method (3.3) is called
pseudo-optimal, if it provides, for any § > 0 and for any u,, f° € H with
|Au, — f°|] < 8, a parameter v5 > 0 such that

1l (A+2D) ] wall + 0/35 < K inf (Iv(A+yD ™"l + 0/3), (3.11)

with some constant K not depending on §, u, and 7.
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We next introduce a modified discrepancy principle for Lavrentiev’s m-times
iterated method which is pseudo-optimal, cf. Theorem 5.

Discrepancy Principle 3. Fix real numbers by > by > 1, and let
Byi=y(A+4D)7 4> 0.
If ||A§Zo|| < b14, then choose 5 = co. Otherwise choose 45 > 0 such that

bod < ||By ALl < bid.

Here, Ast € H again denotes the defect associated with Lavrentiev’s m-times
iterated method, cf. (3.4). Note that B, Afsy € H is the defect associated with the

(m 4+ 1)-times iterated method of Lavrentiev, while the approximations ufsY EH
are generated by Lavrentiev’s m-times iterated method.

The following theorem is proved in [19], and it extends analog results for symmet-
ric operators in Hilbert spaces, cf. Raus [20]; similar results for normal equations

can be found in Raus [21] and Engl & Gfrerer [8].

Theorem 5. Let H be a Hilbert space, and let A € L(H) be accretive. Then
Discrepancy Principle 3 for Lavrentiev’s m-times iterated method (with m > 1)
i1s pseudo-optimal.

4 Non-Destructive Testing of Optical-Fibre Preforms and
Numerical Tests

4.1 Non-Destructive Testing of Optical-Fibre Preforms

In the sequel we consider the non-destructive testing of optical-fibre preforms,

cf. Anderssen & Calligaro [1], or Calligaro, Payne, Anderssen & Ellen [4].

The properties of optical-fibre preforms can be studied in terms of the intrinsic
stress components ¢,(r), og(r) and o,(r), r € [0, R], in the cylindrical coordi-
nate directions r, # and z, respectively. Here the independent variable r denotes
the distance to the axis, and R denotes the radius of the preform.

In order to determine those intrinsic stress components, laser lights are sent
through the optical-fibre preform in the direction normal to the axial direction,
and the phase retardation ¢(z), 2 € [0, R], of the laser beam then is measured.
The required intrinsic stress components then in fact can be recovered from
the phase retardation 3. For example, the retardation i and the axial stress
component o, are related via an Abel integral equation of type (2.3),

4rC (B ro,(r)
X ) Ve

dr = ¢(z), z € [0, R], (4.1)
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where C' denotes the photoelastic constant, and A denotes the wavelength of the
laser light. Moreover, the radial stress o, and the retardation ¢ are related vice
versa,

A1 B pab(x)
202 r2 ), 2272

Finally, the tangential stress ¢y then is easily obtained, oy = 0, — 0.

or(r) = de, 0<r<R.

4.2 Numerical Experiments

In the sequel we solve numerically the classical Abel integral equation

.t
(Au) () :=% [u=a7 ue ds = @, e @

which (up to a scalar multiple) can be obtained from (4.1) by the substitution
fo(@) = ¢(RV1 —1), u(s) = o,(RV1 —s) for t, s € [0,1]. In our numerical tests
we use the right-hand side

3ﬁt2
8 3

fe(t) = tel0,1],

and then the solution of (4.2) is given by (cf. [9], Chapter 1.1)
uy(s) = /2, s €[0,1].

We choose perturbed right-hand sides f° = f. + 4 - v, where v € H := L?[0, 1]
has uniformly distributed random values so that ||v]| < 1, and where

§ = [Ifl-%/100,

with % noise € { 0.11, 0.33, 1.00, 3.00, 10.00 } in our implementations.

We next present the results of our experiments with Lavrentiev’s m-times iter-
ated method for

m =35,
and as parameter choice strategy the Discrepancy Principle 2 is applied with

b=15, 6 =1 and 7 = 2. One can show, cf. [17] and Chapter 1.1 in Gorenflo &
Vessella [9], that

ue € R(AY), 0<v<A4, (4.3)
u, & R(AY), (4.4)

and due to (4.4) we cannot derive from Theorem 2 that the entries in the third
column stay bounded as % of noise decreases. On the other hand, however, due to
(4.3) it is no surprise that these entries in our experiments in fact stay bounded.
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Lavrentiev’s b-times iterated method
% noise| ||uf$ws — | | ||uf5m — u,l||/8475 | ¥s | t flops
10.00{ 0.0839 1.40 1.0 {0.3e406
3.00] 0.0918 4.00 0.25]0.5e+06
1.00/ 0.0292 3.07 0.25]0.5e+06
0.33] 0.0084 2.15 0.25]0.5e+06
0.11] 0.0029 1.79 0.25]0.5e+06

§
Y8

In Figure 3, the approximations u’,  are shown for two noise levels.

Fig. 3. Reconstruction for 1.0% perturbation (left) and 3.0% perturbation (right) of
the right-hand side f«; solid and dashed lines correspond to ux and uis, respectively.

In our implementations, equation (4.2) has been discretized by a Bubnov-Galerkin
method with piecewise constant trial functions of length h = 1/N, N = 128, and
Lavrentiev’s 5-times iterated method then in fact is applied to the corresponding
finite system of equations. All computations are performed in MATLAB on an

IBM RISC/6000.

5 Several Extensions

The most important and natural norm is the maximum norm, and therefore it
is desirable to provide a theory for the numerical solution of integral equations
of the first kind that allows error estimates with respect to this norm. Hence
in this subsection we shall drop the assumption that the underlying space is a
Hilbert space, and in the sequel X denotes a general complex Banach space,
if not further specified. For ill-posed problems in the Banach space X we will
present briefly some results for Lavrentiev’s m-times iterated method. Finally
we shall consider two stationary iterative schemes for ill-posed problems in X'.
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5.1 Lavrentiev’s m-Times Iterated Method in Banach Spaces

Introduction In Banach spaces X, the results about Lavrentiev’s m-times it-
erated method presented in this paper can be generalized for those operators
A € L(X) that are weakly sectorial in the following sense.

Definition6. Let X' be a complex Banach space. An operator A € L(X) is
weakly sectorial, if (0,00) C p(—A) and if

I(A++D)7 < Mo/y, v >0, (5.1)
for some My > 1.

This notation is introduced in [17], and the notation is justified by the fact that
a weakly sectorial operator A fulfils a resolvent condition over a small sector in
the complex plane. Here and in the sequel symbols like £(X) or the operator
norm in (5.1) have the same meaning as in Sections 1 and 2 (for Hilbert spaces).

Ezample 1. For 0 < a« < 1, f§ > 0 and @ > 0, the Abel integral operators
(2.2) and (2.3) are weakly sectorial with respect to the spaces X = C10,a] and
X =1 ([O, al, sﬁ_ld.s), 1 < p < o0, respectively, with My = 2 in each case. For
a reasoning we refer to [17].

Here, C[0, a] denotes the complex space of complex-valued continuous functions
on the finite interval [0, a], supplied with the maximum norm || - [|c. Moreover,
for 1 <p < oo, LP ([0, al, sﬁ_lds) denotes the complex space of complex-valued,
measurable functions u on [0, a], such that |u|? is integrable with respect to the
measure s°~'ds, and this space is supplied with the norm

a 1/
] = (/0 ()P #ds) . we 17([0.a), $P7ds).

Similarly, L> ([0, al, sﬁ_lds) denotes the space of complex-valued, measurable
functions u on [0, a] which are essentially bounded with respect to the measure
sP=1ds, and then ||u||o, denotes the essential supremum of |u| with respect to
the measure s°~1ds.

Note that the space L2([O,a], sﬁ_lds) in Example 1 is already considered in
Section 2, and there it is already observed that estimate (5.1) for the mentioned
Abel integral operators is valid with My = 1.

Discrepancy Principle Let X' be a Banach space, let A € L(X) be weakly
sectorial, and let f° € X, f. € R(A) such that ||f. — f°|| < J is satisfied.
Then the statements in Theorems 2 and 5 remain valid, if in the Discrepancy
Principles 1-3, respectively, the conditions “b; > by > 1”7 and “b > 17 are
replaced by “by > bg > M, “b > M, and “by > by > A/Ié”'*'l”, respectively.
The proofs are given in [16] and in [19], respectively.
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Some Related Results It is possible to admit also unbounded operators in
Definition 6, and in fact certain a priori parameter choices for Lavrentiev’s m-
times iterated method for linear weakly sectorial unbounded operators A in
Banach spaces are provided in Schock & Phdng [22]. The regularizing proper-
ties of Lavrentiev’s classical method and other specific regularization methods
for Volterra integral equations of the first kind with smooth kernels are e.g.
considered in Denisov [6] and in Srazhidinov [23], including error estimates with
respect to the maximum norm.

5.2 Iterative Regularization in Banach Spaces

Introduction This subsection is devoted to the iterative solution of ill-posed
problems in a Banach space X'. More specifically, we consider the discrepancy
principle as a stopping rule for the Richardson iteration and an implicit iteration
method, respectively, and we present associated order-optimal error estimates for
those ill-posed equations Au = f, where A € L(X) is strictly sectorial in the
sense of the following Definition 7. To this end we introduce the sector ¥y C C,

29::{/\:1“6“":7*>0, |go|§6}, 6 € [0, n].

Definition 7. Let X be a complex Banach space. An operator A € L(X) is
strictly sectorial, if there is an 0 < ¢ < /2 such that X /o4, C p(—A) and

IA+ADTH < M/IAL X€E Znpoye,
for some M > 1.

This notation is introduced in [17]. If A € L(X) is strictly sectorial, then —A in
fact is the infinitesimal generator of a semigroup 7T'(t) = e~ € L(X), t > 0,
that can be extended on a sector X. (for a small £ > 0) to an analytical,
uniformly bounded semigroup (cf. Tanabe [24], Theorem 3.3.1).

Ezample2. Let 0 < a < 1, f > 0 and @ > 0. In the spaces X = ([0, a] and
X = Lp([O, al, sﬁ_lds), 1 < p < o0, the Abel integral operators (2.2) and (2.3)
are strictly sectorial, respectively, see again [17] for a reasoning.

In the sequel we suppose that A € £(X) is an arbitrary but fixed strictly sectorial
operator, where X’ denotes some Banach space. Moreover, let again f° € X', f. €
R(A) such that ||f. — f°|| < § is fulfilled.

Two Stationary Iteration Methods First we consider the Richardson itera-
tion which for initial vector u§ = 0 and g > 0 small enough generates iteratively
the sequence

“fl+1 = v’ — p(Aud — f9), n=20,1,2,....

The assumption that A € £(X) is strictly sectorial implies that T — g A is power
bounded for g > 0 small enough (this follows from Nevanlinna [13], Theorem
4.5.4), and thus the stopping rule discussed below is applicable.
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For fixed p > 0 we next consider the implicit iteration method
(I+pA)ubyy = u) + uf’,  n=0,1,2,..,

for initial vector uj = 0. Since A € L£(X) is strictly sectorial, (I 4+ pA)~! is
power bounded (this can be derived by standard results in semigroup theory,

see e.g., Pazy [15], Theorem 1.7.7), and thus the stopping rule discussed below
is applicable.

Discrepancy Principle We fix one of the considered iteration methods and
denote by
§ . ) ) —
Ay = Au,, — f°, n=20,1,2,..,

the associated defect.

Discrepancy principle 4. For the Richardson iteration let b > sup,, . ||(7—pA)"|(],
and for the implicit method let b > sup,,s ||(7 + pA)~"||. If || A3|| < b5 then set
ng = 0. Otherwise stop the iteration after ng > 1 iteration steps, if

ARl < b6 < 1A%l

n

For a strictly sectorial A € L£(X') and the Discrepancy Principle 4 as a stop-
ping rule for the Richardson iteration and the implicit scheme, respectively, the
statements 1. and 2. in Theorem 2 are valid, if the condition “0 < v < m —1" is
replaced by the weaker condition “0 < v < ”, and if moreover 45 is replaced

(a) by ng in (3.5), (3.8); and (b) by 77,5_1 in (3.6), (3.9). For the proofs see [16].

Pseudo-Optimality For a strictly sectorial A € £(X'), the Discrepancy Prin-
ciple 4 as a stopping rule for the Richardson iteration and the implicit scheme,
respectively, is even pseudo-optimal in a sense similar to that of Definition 4: for
the Richardson iteration we have

1= pA) | + nsd < K inf (7 = pA)uall + n6),  (5.2)

with some constant K not depending on d > 0, u, € X, fo € X with ||Au, —
f°|] < 4&. Moreover, an estimate similar to (5.2) also holds for the implicit
method; in fact, I — pA in (5.2) has to be replaced by (I 4+ uA)~! then. The

proofs are given in [19].

Concluding Remarks If the strictly sectorial A € £(X') is a Volterra integral
operator, then Lavrentiev’s m-times iterated method is superior to the presented
iterative methods due to the reasons mentioned in Section 1. If A is a Fredholm
operator and not a Volterra operator, however, then in fact the mentioned it-
erative methods are more efficient than Lavrentiev’s m-times iterated method,
since the computation of a parameter 45 > 0 in the discrepancy principles usually
requires a large computational effort then.
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Some Related Results Early results on the iterative regularization of linear
ill-posed problems in Banach spaces can be found in papers by Bakushinskii, see

e.g.

 [21, [3).

Acknowledgements. The author thanks the referee for helpful comments on a first ver-

sion of this paper.
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