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Abstract

In the present paper we consider the regularizing propedidinear multistep methods for the
stable solution of perturbed Volterra integral equatiohthe first kind with smooth kernels. Numer-
ical results are also given.

1 Introduction

In this paper we consider linear Volterra integral equatiofithe following form,
(Au)(@) = [ Kapuly)dy = flz) for 0<a <L W
0

with L > 0, and with a sufficiently smooth kernel functién { (z,y) e R? | 0<y<x <L} —R.
Moreover, the functiory : [0,L] — R is supposed to be approximately given, and a function
[0, L] — R satisfying equation (1) is to be determined.

In the sequel we suppose that the kernel function does ndglvan the diagondl < z = y < L,
and without loss of generality we may assume that

k(z,z)=1 for 0<z <L

holds.

Composite quadrature methods for the approximate solofiequation (1) are well-investigated if
the right-hand sid¢ is exactly given, see e.g., Brunner/van der Houwen [3], Bautj2], Lamm [12],
Linz [13] or Hoog/Weiss [4] and the reference therein. A sgleztass of composite quadrature methods
for the approximate solution of (1) is obtained by using inagpropriate manner multistep methods
that usually are used to solve initial value problems fot firsler ordinary differential equations. That
class of methods is considered thoroughly in Wolkenfe®k[120]), and see also Holyhead / McKee /
Taylor [10], Holyhead/McKee [9] and Taylor [18] for relategkults. In the present paper, the results and
techniques presented in the two papers by Wolkenfelt aenderd in order to analyze the regularizing
properties of those multistep methods for Volterra integgaiations (1) when perturbed right-hand sides
are available only. Finally, some numerical illustrati@ms presented.

2 Numerical integration based on multistep methods

Throughout this section, as a preparation for the numesighition of Volterra integral equations of
the first kind (1) with smooth kernels, we introduce lineardtistep methods for solving the associated
direct problem. For this purpose we consider equidistadeso

Tn = nh, n=1,2,...,N, with h:%, (2
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whereN is a positive integer. In a first step we consider — for fixed n < N — the simple integration

/mw(y) dy = p(x) for 0 <z <z, 3)
0

wheret : [0,z,] — R is a given continuous function, and the functign: [0, z, | needs to be
determined. This in fact is a direct problem for the assedaquation (1) in the special situation
k = 1. Problem (3) is obviously equivalent to solving the eleraenbrdinary differential equation

O'(z) =) for 0 <<y, ©(0) = 0. 4)

2.1 Introduction of multistep methods for the direct problem

Next we briefly introduce some basic facts about linear rst@li methods to solve initial value problems
for ordinary differential equations, with a notation thaitaidapted to the simple situation considered in
(4), or equivalently (3). For a thorough presentation oftmtép methods (to solve initial value problems
for ordinary differential equations in its general formgese.g., [15], Hairer / Ngrsett/Wanner [7] or
Henrici [8].

Alinearm-step method with an integér< m < n is determined by coefficients € R andb; € R
forj =0,1,...,m, with a,, # 0 andb; # 0 for some0 < j < m, all of them being independent of
the step sizé introduced in (2). When applied to problem (4), or equiviieB), this scheme is of the
form

Zaﬂ'(p"ﬂ' :thﬂ/}rﬂ- forr = 0,1,...,n—m. (5)
j=0 Jj=0

Here,ys = ¢¥(xs),s = 0,1,...,n are given. In addition we haye, = 0, and the other starting values

ws = p(zs) fors = 1,2,...,m — 1 are determined by some procedure not further specified hare;

example is considered below (see Example 2.7). The schérsau&ed then to compute approximations
Ortm = @(Tppm) forr =0,1,...,n —m. The casé,, = 0 is not excluded. In that situation the

considered multistep method defines an explicit scheme.

Example 2.1. (a) A class of multistep methods, depending on three pasrsyet,, andm, is obtained
by integrating (4) frome,.,,,—- t0 x,1,, and using an interpolatory numerical integration scheme fo
the resulting integral afterwards, i. e.,

Tyr4+m
SOT-Q—m_(pr-f-m—T:/ ,Pr(x) dzx, r=0,1,...,n—m. (6)

Tr4+m—r

HereP, € II,,_,, satisfiesP,(zs) = ¢ fors =r,r +1,...,r +m — p. In addition,1 < 7 < m and

0 < u < m denote some integers, witth being the length of the interval used for the local integnati
andm — p + 1 is the number of nodes used for the interpolation. Promiegamples are obtained for
0 <u <landl <7 < 2. Some special cases are considered next.

The Adams—Bashfort methods are obtainedrfee 1, 1 = 1 andm > 1; for the special caser = 1
this in fact gives the composite forward rectangular rulae Rdams—Moulton methods are obtained
for7 =1, p = 0 andm > 1, with the composite trapezoidal rule obtained for the splex@sen = 1.
The Nystrom methods are given by= 2, y = 1 andm > 2. Form = 2 this gives the repeated
midpoint rule. Finally, the Milne—Simpson methods are ot#d by = 2, 4 = 0 andm > 2, with the
repeated Simpson’s rule obtained in the case- 2. Each of these methods is in fact of the form (5)
and leads to a repeated quadrature method, with adjacerpahation polynomial®,. that form > 7
have overlapping node intervls,, <, —,].

Note that form > 2, the classical usage of composite quadrature methods ffriing6) is to determine
approximate integral®,.,, for k = 1,2,..., with km < n only. This is in contrast to the quadrature
scheme (6) used here, with, being computed for each=m,m + 1,...,n.



(b) Another class of linear multistep methods are BDF methiéickward differentiation formulas).
Here the left-hand side in (4) is replaced by a finite diffeeescheme. More precisely, fot fixed,
approximationsp, +m ~ @(x,4m) forr = 0,1,...,n — m are given by, ,, = P(x,+m), Where
P €11, satisfiesP(xs) = ps fors =r,r+1,...,7r+m—1andP’(z,4m) = ¥r4m. FOorm = 1 this
leads to the composite backward rectangular rule,

2.2 Null stability, order of the method

We next recall some basic notation for multistep methodaptat! to the simple situation considered in
(4):

(a) Anm-step method is called nullstable, if the first charactier{blynomial
9(5) = am§m+am71§m71 + - 4ao (7)

of the givenm-step method is a simple von Neumann polynomial, i. e.,

() o(§) =0impliesl¢| <1, (i) o(§) =0, [¢] = 1impliesg’(¢) # 0. (8)

This means that all roots of the characteristic polynomiaglong to the closed unit disk, and each root
on the unit circle is simple.

(b) A linear multistep method is by definition of (consistghg with an integerp > 1, if the local
discretization error

n(z,h) = Zajgo(x +jh) — thjz/J(x + jh), 0<z<m, O0<h< =%
J=0 J=0

satisfies, for eacy € C?[0,z,], the estimate)(z,h) = O(h?*!) ash — 0 uniformly for each
0<x<a,.

Here and in the sequel, at each considered position the y@ad) with 3 > 0 denotes an error
term having modulus that is bounded &y’, where the constamt > 0 may be chosen — with a slight
abuse of notation — independentlyoélso.

Note that each multistep method of orger> 1 is by definition of orderl < ¢ < p, with reduced
smoothness requirements on the involved functions thethdisequel, occasionally we will make use
of this fact in order to consider different smoothness aggions.

Example 2.2. (a) Each multistep method of the special form (6) is cleadystable. In addition, order
p here obviously meang, .., — ¢rim_r — f;:y;: Pr(x) de = O(hP) forr = 0,1,...,n — m.
The standard error result for polynomial interpolation i@ the estimate magx{ P, (z) — ¥ (z)] |
Trim—r <O < Xppyy } = O(K™H) for ¢ € C™ #H1[0,2,,]. The order of this multistep method is

thus at leastn — p + 1.

In some special cases the order is even larger in fact. Fongeaforr = 2, u = 0 andm = 2 (the
Simpson’s rule from the class of Milne—Simpson method®,dider isp = 4 for ¢ € C*[0, z,,] (for
those values of andy, them-step methods coincide fern = 2 andm = 3 in fact).

(b) The BDF methods are nullstable fox m < 6, with respective ordes = m.

The basic convergence result in multistep method theorlyeap the simple situation (4) is as follows:
each nullstable linear multistep method of ordé convergent of order. The latter means that for each
¥ € CP[0, z,] and starting valuegy = 0 andy1, 2, . . ., pm—1 Of Orderp, i. e.,|¢, — o(z,)| = O(hP)
forr=1,2,...,m —1,0ne has

max o, — p(z,)] = O(RP) as h — 0. 9)

T=mM,...,n



Below multistep methods of orderwill be applied in an appropriate manner to solve Voltertagnal
equations of the first kind with smooth kernels (see (1)).uth$ out thatO(h?)-error estimates for
the associated approximations hold — which is of the samer@slifor the associated direct problem —
but more smoothness on the involved functions must be askthea. For deriving those estimates, a
global error expansion for the associated direct problemeéxied. This expansion is considered next.

Lemma 2.3(Wolkenfelt ([19], [20])). Consider a nullstable linear multistep method (5) of order 1
for solving the initial value problem (4), with € CP*1[0, z,,], n > m. Let the starting values satisfy
max.—i _.m—1 |¢r — ¢(z,)| = O(hPT1). Then we have the global error expansion

on = lan) = 17 [ 0P )y + O ) (10)
0

Here,C € R denotes the error constant of the considered multistep adeth

For a definition of the error constant of a multistep metheé, s.g., p. 201 in [15], or p. 373 in Hairer

/ Ngrsett/Wanner [7], or p. 223 in Henrici [8]. The proof oktlemma follows easily, e.g., from the
procedure described in Henrici [8], pp. 249-255. See als@téimments in Wolkenfelt ([19] and [20]).

Remark 2.4. (a) Note that for the starting values considered in LemmatBerequired order ig +

1, while in the assumption for (9) the considered ordep isnly. In addition, more smoothness of
the functiony (and thus ofy) is required in Lemma 2.3. The required orgies- 1 accuracy of the
starting values, however, will be satisfied anyway by theisig@procedure used for the inverse problem
considered below.

(b) Global error expansions similar to (10) hold also at ttteeonodest,,,, ¢, 1, ..., 2n,—1. FOr our
purposes it is sufficient to consider that expansion at tidpeint of the considered interval only.

2.3 Reflected coefficients / polynomials

In the next section we present the considered multistepadatha different form which in fact will
be useful for the numerical analysis. As a preparation wedhtce some more notation. Consider the
reflected coefficients of the multistep method under comatam:

o =am—j, Bj=bm—;, j=0,1,....,m, aj=0;=0, j=m,m+1,.... (11)
In addition we introduce the second characteristic polyiabm
(&) == b€™ + by 1™ - by € I, (12)
The reflected polynomials associated with the two charistiepolynomialse ando are given by
3(E) = €™ + a1 €™ - ag = EMo(1/€) € 1L, (13)
F(&) 1= Bn€™ + Pr1&" T o+ o = EM0(1/€) € T (14)

In addition, it is convenient to ignore in the sequel the pgags/anishing leading coefficients of the
second characteristic polynomial For this purpose lei < y < m such that

bm—u-ﬁ-l = =bp1=0b,=0, bm—u 7& 0. (15)

For the reflected coefficients this in fact medlgs= 61 = --- = 8,1 =0, B, # 0. Inthe casg, > 1
this means that the second reflected polynom{g) has a root of ordes at§ = 0.

In addition we introduce the sequengg 1, . . . given by the following discrete convolution equa-
tion:

ZQT,S% =0pqyp forr=0,1,.... (16)
s=0



Notice thaty, # 0. It follows from (16) and standard results for differenceatipns (see e.g., Lemma
5.5 on p. 242 in Henrici [8]) that a nullstable multistep nattsatisfies

v =0O(1) asn— . (17)

We finally note that the coefficients of the power series

_0©)/8" s
V(€)= G —-S;)vsf (18)

coincide with the coefficientsy, 71, . . . defined by the recurrence equation (16). This follows edwsily
considering products of power series.

2.4 Explicit representation of the valuesp,

For the numerical analysis to be considered later on we reegpress the values,., pm+t1,-- -, ¢n
generated by the multistep method (5) in terms of the valyesd the starting values;, vo, ..., ©m_1.

In Lemma 2.5 below we present some details, and we proceeudttmgiicing weights needed in that
lemma.

(a) Consider
Wns = Yn—s—p TOr0<s<n—pu, n>m. (29)

This in particular means that the weights, considered in (19) are of convolution form and uniformly
O(1) (see (17)).

(b) In addition, consider starting weighis,,. for 1 < » < m — 1 andn > m, which forr fixed are
recursively determined as follows,

v

Za,,,t@prmm = —Qpy4+m—r for v = O, 1, cee (20)
t=0

As for (17), it follows from standard results for differenequations that for a nullstable multistep
method we have

Onr=0(1) for 1<r<m-1, n>m. (21)

We are now in a position to represent the multistep methodn(%) different form. Note that the
numbersyo, Y1, . . ., ¥n—, considered in that lemma does not necessarily coincide thvttvalues of
the previously considered functian: [0, x,,] — R at the considered nodes.

Lemma 2.5. Consider a multistep method (5), and let the paramgtbe chosen as in (15). Consider
the weightsv,; andw,, given by (19) and (20). L&t , o, . . ., ¢, andyy, Y1, . . ., ¥,—, be arbitrary
two sequences of real numbers satisfying the multistepadediturrence (5), withh > m andyg = 0.
Then the following identity holds:

n—pu m—1
on=n"h Z Wnsts + Z WnrPr- (22)
s=0 r=1

ProOF It follows by induction that a representation of the forn2®vith some weights),.; andw,.,
exists in general. The special representations of the weighen in (19) and (20) are then obtained by
considering canonical bases for, @2, . . ., om andyg, ¥n, . . ., ¥, —,. Details are omitted. O

We summarize the results of Lemma 2.3 and Lemma 2.5:



Corollary 2.6. Consider a nullstable linear multistep method (5) of orger 1 for solving the initial
value problem (4) withy € CP*1[0, z,,], wheren > m holds. Letp, = 0, and let the starting values
©1,$2, .., pm—1 be of orderp + 1, i.e., we havenax._1 -1 |or — o(z,)| = O(RPT). Let the

approximationse,,,, ¥m+1, - - - » P, b€ determined by the multistep method (5). Then we have
n—pu m—1 Tn
hY wntlen) + 3 Gurer = plea) O [Py + 00, (23
s=0 r=1 0

Here,C € R denotes the error constant of the considered multistep adeth

2.5 A starting procedure

For multistep methods (5) to solve the initial value probléth we next consider, fom > 2, the

determination of starting values,, o, ..., p,—1 Of orderp + 1. Note that this order is needed in
view of Lemma 2.3 and Corollary 2.6. One option for genemstarting values of that order is to
approximate for eaclt = z,., r = 1,2,...,m — 1, the integral in (3) by using quadrature methods

on finer grids. However, this requires evaluations of thecfiom ¢/ at additional abscissae. Another
scheme is considered next, and for this we restrict the dereions to multistep methods of order
p < m. As a matter of fact (see Remark 3.2 below for details), tesimption is no serious restriction
when multistep methods are applied to Volterra integrabgigus of the first kind (1). This scheme is
of the form

m—1
wr:hzwrsd}& r=1,2,...,m—1, (24)
5=0

wherey, = ¢(zs) fors = 0,1,...,m — 1. Here,w,s € Rforr = 1,2,...,m — 1 ands = 0,
1,...,m — 1, are appropriately chosen starting weights. It is obvitias in (24), each starting value
or (1 <r < m —1)depends on valueg(z,) fors = 1,2,...,m — 1, in general, i. e, it is affected
also by future times.

A standard procedure that results in a scheme of the formigtesented in the following example.

Example 2.7. Consider for fixed- € {1,2,...,m} (the case = m is not considered in (24) but
will be needed below) an interpolatory quadrature methodtfe integrako(z,) = fO” W (x)dx using
interpolation nodesg, z1, ..., z,_1. Thisin fact means that the resulting quadrature scheme-

h Z;”:_Ol wrst(xs) = ¢(z,) is exact for all polynomialg’ of degree< m — 1, with quadrature weights
that are given by the following linear system of equations:

1

11 1
01 2 m—1 wro )

01 4 (m — 1) wr1 r/2

01 9 (m—1)3 we | = | T3] (25)
0 12m1 . (1t ) \Wrme v m

= M

It follows from standard interpolation theory that for edthk p < m and each) € C?|0, z,,], the
interpolation error is of ordep, i.e., we have ma|P(z) — ¢(z)| | 0 < z < z,,, } = O(hP) for
P € II,, with P(zs) = ¢(zs) fors = 0,1,...,m— 1. From that we immediately obtaip. — p(z,) =
O(hP*1) forr = 1,2,...,m which in fact is the order required in Lemma 2.3 and Corol§. Note
that the matrix

M = (SU)VZO,...,m—l € R



(with the notatior® = 1) is a Vandermonde matrix which does not depend:oifhe right-hand side
also does not depend an and so we finally obtain the estimate

wrs =01) for r=1,2,....m, s=0,1,...,m—1. (26)

Remark 2.8. If the starting procedure is of the form (24), then the repnéstion (22) can be replaced
by a quadrature representation, i. e.,

n—u

on=nh Z WnsVPs- (27)
s=0

Here, the quadrature weights ; for s > m are given by (19), and the starting weiglats, for s < m—1
are also easy to determine, details are omitted here. A guadrmethod (27) generated by a multistep
method (5) is calledo, o)-reducible (see Taylor [18] and Wolkenfelt ([19], [20])).

3 Linear multistep methods for perturbed first kind Volterra inte-
gral equations

3.1 Some preparations

We now return to the first kind Volterra integral equation. (Bor the numerical approximation we
consider this equation at equidistant nodgs= nh, n = 1,2,..., N with h = L/N, cf. (2). The
resulting integralsp(x) = joz k(zn,y)u(y)dy for 0 < x < z,, are approximated by the multistep
method under consideration, respectively, see (5) with = k(z,,, y)u(y) for0 <y < z,,.

In the sequel we suppose that the right-hand side of equét)as only approximately given, with

|fg_f(xn)|§5 forn:1527"'5N7 (28)

whered > 0 is a known noise level.
For the main convergence results we impose the followinglitimms.

Assumption 3.1. For the Volterra integral equation (1) of the first kind andvaeg m-step method with
m > 1 (see (5)) we assume the following:

(8) The considereth-step method withn > 1 is nullstable and has ordér< p < m.
(b) The second characteristic polynomiasatisfies a strong root condition:

o(§)=0=[¢| <1 (£€C), (29)

i. e., all roots of the polynomiat belong to the open unit disk.
(c) There exists a solutiom: [0, L] — R to the integral equation (1) with € CP1[0, L].

(d) For some integeN, > 1 andhy = L /Ny, the kernel function satisfigsc CP*!(E), whereE C
R? is some open setwith O { (z,y) |0 <y <z < L}andE D {(z,y) | 0 < z,y <mhg }.

(e) There hold%(z,z) =1 foreach0 <z < L.

(f) For a given step sizé = L/N with some integetN < Ny, let z1,z2,...,zx be uniformly
distributed nodes given by (2).

(g) The values of the right-hand side of equation (1) are @dprately given by (28).

We next present some comments on the strong root conditiosidered in item (b) of Assumption 3.1.



Remark 3.2. (a) In the stability analysis to be considered, the coefiisief the inverse power series
1N (Dgn
TGP PRI (30)

of the generating function(¢) = >°°° 7, £, with ,, as in (16) (see also (18)) play a significant role.
The strong root condition (29) implies that the power sefiésanalytic in an open set of the complex
plane that contains adigk¢ € C | |£] < R} for someR > 1, and Cauchy’s theorem then implies that
the coefﬁcientsy,(fl) in (30) decay exponentially, i. e.,

A = O asn — oo forsomed < 7 < 1, (31)

with - = 1/Rin fact.

(b) It is elementary calculus to show that the strong rootdtiom (29) is satisfied, e.g., by the-step
Adams-Bashfort methods with< m < 3, and by thenm-step Nystrom method with < m < 3 as
well. In addition, (29) is obviously satisfied by the BDF mexdis.

(c) The strong root condition (29) is violated for each matép method of class (6) with = 0 and
with orderp > m. More generally, it is an essential observation mady by @iadleltsch [6] that the
second characteristic polynomials even not a simple von Neumann polynomial in that situatiath

the casen = 7 = 1 (the repeated trapezoidal rule) as an exception. In additiee associated scheme
for solving Volterra integral equations of the first kindrimduced below is necessarily divergent then,
in general. For the mentioned exceptian= 7 = 1, the associated second characteristic polynomial is
obviously a simple von Neumann polynomial but does not fyetiee strong root condition.

As a consequence of the former observations, it therefolemsense to reduce the considerations to
m-step methods of order < p < m in the sequel (see (a) of Assumption 3.1). Note that the case
p < m — 1 becomes relevant for solutions and kernels of the Volteregral equation of the first kind

(1) that have a lower degree of smoothnesa

3.2 The numerical scheme

We consider now, under the conditions given in AssumptidntBe following scheme for the numerical
solution of a Volterra integral equation (1) with a smoothries:

Algorithm 3.3. (a) Determinen initial approximations: ~ u(z,) fors = 0,1,...,m — 1 by solving
the following linear system af: equations,
m—1
h Z wnsk(xn, xs)ud = f2, n=12,...,m, (32)
s=0

where the starting weights, ; are given by (25), with: replaced by: there.

(b) Determine then recursively approximatioxf;,u ~u(rp—y) forn=m+p, ..., N by the follow-
ing scheme:

o Setyd = k(xp,xs)ulfors =0,1,...,n—p—1,

- sety) = 0, and compute (fom > 2) @0 = h "7 M w, 0 forr =1,2,...,m — 1, cf. (24),

e compute recursivel§a§+m forr =0,1,...,n—m—1by using on the intervdD, x,,] the perturbed
version of the multistep scheme (5):

m m—
Zaj<pf+j:h2bjwf+j forr =0,1,...,.n—m—1, (33)
§=0 §=0

)

n?

« setypd =



« computey? _ by using the identity (33) for = n — m,

n—pu

. computeus, , =V, /k(xn, Tnop). A

Remark 3.4. (a) Note that due to (e) in Assumption 3.1, fosufficiently small we havé(z,,, z,—,) #

0 for eachn. Thus the numerical procedure considered above can inéagsdd for the computation of

s
Up e

(b) It immediately follows from Lemma 2.5 that the approxiioas obtained by Algorithm 3.3 satisfy

n—p m—1
ansk(xmxs)ug—i— Z FnrS = 2, n=m-+p,...,N. (34)
s=0 r=1

Here, the weights,,; and,,,- are given by (19) and (20), respectively. Note that theisgialuesy?,

..,% _, considered in (34) depend also enThe representation (34) will be used in the proof of the
main result, cf. Theorem 3.7.
(c) The scheme considered in Algorithm 3.3 is quite uniMeBar the backward rectangular rule (which

is the 1-step BDF method) considered in part (b) of Example @n implementation of Algorithm
3.3 without the starting procedure considered in (a) thengoissible. This means, however, that no

approximation:$ will be available then. A

3.3 Uniqueness, existence and approximation properties de initial approxi-

mations
We now consider uniqueness, existence as well as the appaitigh properties of the initial approxi-
mationsul, us, . .., ud, ;. In afirst step we consider in more detail the linear systesqoftions (32).
This system of equations can be written in the form
= Sy
wiok(z1,x0) wnk(zi,z1) - wim—1k(@1, Tm-1)
ug ?
wzok(@, 1170) wzlk(I2, 171) ce W2,m71k(5€27xm71) 5 s
uy 2
h N N )
up,_y fa
Wm0k (Tm, ©0) W1 k(Tm, 1)~ Wim—1k (T, Tm—1)

Note that the matrixs, € R™*™ introduced in (35) depends on the stepdize

Proposition 3.5. The system matri§;, in (35) is regular for sufficiently small valuesiofand||S; ! || =
O(1) ash — 0.

PROOF. We first consider the situation= 1. In a first step we observe that (25) implies the following:

wio wWi1 - Wim-1
W20 W21 - W2m-—1
M = DB (36)
Wmo Wml " Wmom—1
=T



with the matrixM € R™*" from (25), and

D= dlag(% :¢=1,2,...,m) e R™*"™, B = (n%)g=1,..,
The matricesD, B and M are regular, and hence the matiixe R™*™ introduced in (36) is regular.
The latter matrix coincides in the situatié@n= 1 with the matrixs;,.

We now consider the general case for We havek(z,z) = 1 andz, = O(h) forn = 1,2,
...,m — 1, and thusk(z,,zs) = 1+ O(h) forn = 1,...,m ands = 0,...,m — 1. This shows
Sk = T+ O(h) for h — 0 so that the matrix§;, is regular for sufficiently small valugs with S} ! ||
being bounded as — 0. This completes the proof of the proposition. O

We next consider the approximation properties of the inggproximations.

Theorem 3.6. Let the conditions of Assumptions 3.1 be satisfied. Themttial iapproximationsug,
ug,...,ud ,, determined by (32) fak sufficiently small, satisfy

» Ym—11

max  |ud —u(z,)| = Oh? +8/h) as (h,d) — 0.

n=0,1,...m—1" "

PROOF. Itis clear from (35) and Proposition 3.5 that the initiapapximationsud, uJ, . . . ,uS, _, exists
and are unique fok sufficiently small. We have
m—1
h Z Wnsk(zn, z5)ed = OWPHL +5) for n=1,2,...,m, (37)
s=0

where

e‘gzug—u(xs), s=0,1,...,m—1,
denote the approximation errors. This follows from the édestions in Example 2.7, with the notation
r = n and fory(y) = k(z,,y)u(y) for 0 < y < z,,. A matrix-vector formulation of (37) yields
hSpAY = O(hPt1 4 §) ash — 0, with A? = (ed,ed,...,el,_1)T € R™, and with the matrixS},
from (35). According to Proposition 3.5, this mat$ is regular for sufficiently small values &f and
1S, lso = O(1) ash — 0. From this the statement of the theorem follows. O

3.4 The main result

We next present the main result of this paper which exteralsgults by Wolkenfelt ([19], [20]) to the
case of perturbed right-hand sides.

Theorem 3.7. Let the conditions of Assumption 3.1 be satisfied, and leapmoximationsug, ug,
. ,u‘}vﬂt be determined by Algorithm 3.3, farsufficiently small. Then the following error estimate
holds,

max  |u® —u(z,)| = OhP+6/h) as (h,d) — 0. (38)
n=0,1,....N—pu

PROOF. The initial approximation errors are already covered bgdrem 3.6, so it remains to estimate
the erroru) — u(x,) forn =m,m+1,...,N — .
(2) In afirst step we observe that the following system ofreequations holds:
n—p

WS nsmph(@n, w)el = Ba(wn) + O +6) for n=m+p,....N, (39

sS=m
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where

et =ul —u(x,), s=m,...,N—p,
Eh(.rn) = th / ) w[n’p] (y)dy7 n = m + M, M) N7 (40)
0
with the notation
8t
1/J[n’t](y)* a—ytw[n](y), t=0,1,...,p, 0<y<uzy,, (42)
with
P (y) = k(zn, y)u(y), 0<y <, (42)

The error representation (39) follows by considering thfedince of the representations (34) and (23),
where the latter representation is applied with= 1" on the interval0, z,,]. In addition, the repre-
sentation (19) of the weights,; for n > m as well as the boundedness (21) of the starting weights is
used here. Note that (37) implig§ — o, = O(h?T! + ) for s = 0,1,...,m — 1, whereyp, is given
by (24) withy) = ("] there, considered on the interéak y < z,,.

(2) We next consider a matrix-vector formulation of (39).a\greparation we introduce the notation

Ny:=N-m—pu+1 (43)
and consider the system matriy, € RV *M given by

Yokm-tp.m 0 0

Vikmtpt+1,m YoRmtpt1,m+1 - 0

Ah = '71km+u+2,m+l '

0

YN—m—pkNm - kN N—pu—1 YokNN—p

with the notation
kns = k(zn,zs) form<s<n—pu, m+p<n<N.
In addition we consider the vectors
Ay = () s=m..N—ps  Bi = (En(@n))n=mp....N- (44)
Using these notations, the linear system of equations (3@pasly takes the form
hARAY = Ry, + F, with some FY € RV, ||FY||oo = O(RPT! 4 0), (45)

where|| - || denotes the maximum norm @&z,
(3) For a further treatment of the identity (45) we next privet

IDhllsc = O(1),  [(DrAR) oo =O(1), |4, o =0O(1) ash—0,  (46)
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where the matrixD;, € RM*M s given by

w0 .
n ot o 0

Dy = 7éfl) | o
0
NCRNINN UL

and|| - || denotes the matrix norm induced by the maximum vector nori®n In fact, the estimate
IDrllc = O(1) ash — 0 follows immediately from the exponential decay of the caifits of the
inverse of the generating function cf. estimate (31). For the proof of the second statemert6h e
next show that the matri®,, A;, can be written in the form

DyA, = I, + Kp, (48)

wherel;, € RNV1xN1 denotes the identity matrix, an;, = (kn;(h)) € RYV1*N1 denotes some lower
triangular matrix which satisfies mgXj<,<n—m—u |£nj(h)| = O(h) ash — 0. This representation
shows that the matri®;, A, is nonsingular foih small enough, and the discrete version of Gronwall's
inequality yields| (D, An) ™|l = O(1) ash — 0then. The third estimate in (46) follows immediately
from the other two estimates considered in (46).

In the sequel it will be shown that the representation (48aissfied, and for this we consider the lower
triangular matrix

DhAh = (bnj) S RN]XNI
in more detail. In fact, we have for< j <n < N —-m —pu

n n—j
—1 —1
bnj = ZVi—e)Vé—jk(ffmﬂwéa Tjpm) = Z %(z—j)—ﬂfk(ffmﬂw“ja Tjym)
=) £=0

=0

n—j n—j
—1 —1
= k(merquna Ijer) Z 'Yy(l_j)_[yf + Z [Vi_j)_gw (k(Ier,qulJrjv ijrm) - k(merquna Ijer)) ]
=0 =0

and thus

[bus| = O (hzm dleln=j=0)) =0@) for 0<j<n<N-m-pu (49)

2 oq)
uniformly with respect tg andn. Here,(x) follows immediately from (17) and (31). Moreover we have
bon = Wé_l)k(xmrm_m, Tntm)Yo =14+ O(h) for n=0,1,...,.N —m — p, (50)

which in fact follows from the identities;éfl) = 1/~9 andk(z,z) = 1, cf. (e) in Assumption 3.1. The
statements (49) and (50) show that the lower triangulariraty, A; in fact can be written as in (48).
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(4) The statement of the theorem now follows easily from thheraepresentation (39) and its matrix
version (44), (45), and from the stability estimates in (48Je only need to take a closer look at the
global error representation (40) of the quadrature ermritis purpose we observe that by Assumption
3.1 we havep!™?l € €10, z,,] (for the definition of this function see (41)). Since eactstep method
of orderp > 1isin particular of order 1, the integral in the global errapansion (40) can be written as

Tn n—pup n—up
/ VPl ) dy = b Z Wnst) =h Z wnsth™ P (z4) + O(h) (51)
0

forn = m+pu,...,N. Thefirstidentity in (51) follows from Lemma 2.5, appliedtivip, = ™7l (z,)
fors =0,1,...,n — pand withy; = --- = ¢,,—1 = 0, and from (9) withp = 1. In the second
identity of (51), the boundedness of the starting weighds (26)) is taken into account. From (51) and
the Leibniz rule for derivatives, we obtain the following 8}, (z,,) defined by (40):

P n—p
Eu(@a) = CH* 13 (1) Sy omg 9 (u® (a) + O(h7*)

uniformly forn =m + p, ..., N, where
g[nyt](y)i aa_k('rnvy) for t:O,l,...,p.

From that it follows that?;, € R"* considered in (44) can be written as follows,
ChP+! z P Q)U (2) + &, (52)

where&;, € RN denotes some vector witf€, | .. = O(hP+1), and

Yogm Tt (z,,) 0 o - 0
gt () yoglm L (2 ) T 0
B}(zt) = yglm et ) " )
0
N —m—pg ™ (2 10) o g™ @) g™ an-y)
u® (2,,)
vl = u()(x.’”ﬂ) for t =0,1,...,p.
u®(zn_p)
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The representations (45) and (52) give

p
hARNY = ChP Y () BP YUY + &, +
q=0

and thus
p
Dy AnA), = Ch? 3" (P) Dy B~ VUL + LDyé) + Dy F. (53)
q=0
Fort =0,1,...,p, the lower triangular matrice@hB,(f) can be written as foIIowthB,(f) = M,gt) +
" with the diagonal matrin/;, = diag(g™*+#+"t(z,,) : n = 0,1,..., N —m — 1) and some lower

triangular matrixC\"” = (cﬁf} (h)) € RN N1 with maxy<j<n<N—m—p |c§fj(h)| = O(h)ash — 0
(see the third part of this proof for similar results for thatnx Dj, A;,; details are omitted here). This
in particular means

IDWB |l =0O(1) ash—0 (t=0,1,...,p). (54)
This completes the proof of the theorem.

Remark 3.8. The stability analysis presented in the third part of theopad Theorem 3.7 uses tech-
niques similar to those used in Eggermont [5]; see also ltulié] as well as [16] and [17].

In the sequel, for step sizés= h(5) = L/N, with a slight abuse of notation we write~ §° ass — 0,
if there exist real constants > ¢; > 0 such thai;h < 62 < ¢yh holds for§ — 0. As an immediate
consequence of Theorem 3.7 we obtain the following mainltresthis paper.

Corollary 3.9. Let Assumption 3.1 be satisfied. Foe= h(5) ~ §'/(P*+1) we have

max  |ul —u(z,)| = O PTV) as §— 0.

Eachm-step method of order > 1 is also of orded < ¢ < p, with accordingly reduced smoothness
assumptions on the involved functions in the consideretk¥al integral equation of the first kind (1)
then. This fact allows to consider lower degrees of smoahtigere.

Corollary 3.10. Let Assumption 3.1 be satisfied, with the smoothness assaspt items (c) and (d)
there replaced by: € C9*10, L] andk € C9"1(E), respectively, with some < ¢ < p. Let the

approximationsuf, u, ..., uj_, be determined by the scheme considered in Algorithm 3.3 fiee
following holds:

(a) We have

max  |u) —u(z,)| = O(h?+5/h) as (h,5) — 0.
n=0,1,....N—pup

(b) For h = h(§) ~ /(a1 we have

max  |ul —u(z,)| = OV )Y as § — 0.
n=0,1,....N—u

We conclude this section with some remarks.
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Remark 3.11. (a) The result of part (a) of the latter corollary follows hetcasd < ¢ < p — 1 more
easily than foy = p. In the former casé < ¢ < p — 1, in the proof of Theorem 3.7 it would be in fact
sufficient to make use of the global error estimate (9) (witeplaced by there), instead of using the
global error expansion considered in Lemma 2.3 (witkeplaced by, there).

(b) Part (b) of Corollary 3.10 is of limited use only. In thatse it is useful to apply an explicit-step
method form = ¢ in order to keep computational complexity as small as ptessib

Remark 3.12. For results on the regularization properties of the compasiidpoint rule, see e.g.
Apartsin [1] or Kaltenbacher [11]. For other special regutaion methods for the approximate solution
of Volterra integral equations of the first kind with smoo#rikels and perturbed right-hand sides, see
e.g., Lamm[12].

4 Numerical experiments

As anillustration of the main result considered in Corgfllar9, we next present the results of numerical
experiments for three examples of Volterra integral equtdf the first kind with smooth kernels of the
form (1), treated by different multistep methods, respetyi Here are some remarks on the numerical
tests:

« Numerical experiments with step sizes= 1/2" for v = 5,6, ..., 12 are employed, respectively,
with the exception of the order 4 BDF method. In the lattertrods the influence of rounding errors
becomes clearly visible far > 10.

« For each considered step sizeand each considergdorder multistep method, the noise levek
rt/(P+1) is considered.

« In the numerical experiments, the perturbations are ofth@ ff0 = f(x,) + A, with uniformly
distributed random values,, with |A,, | < 6.

First we consider the repeated midpoint rule which in faéhcides with the 2-step Nystrém method
(see Example 2.1). In the formulation (5), this method resd®llows o, 12 — @, = 2hi), 41 forr = 0,
1,...,n — 2. This method is applied to the following linear Volterradgtal equation of the first kind,

/I cos(z — y)u(y)dy = sinx =: f(z) for 0 <z <1, (55)
0

with exact solutionu(y) = 1 for 0 < y < 1. The conditions of Assumption 3.1 are satisfied with
m = 2 andp = 2. The numerical results of are shown in Table 1. Thiyd|., denotes the maximum
norm of the functionf. All numerical experiments are employed using the prograstesn QGCTAVE
(http://www.octave.org).

I NT 6 ] 100-0/[fllec | MaX, [uf —u(wn)| | max, [u} —u(z,)[ /6* ]

32| 31-10°° 3.70- 1073 1.05-1073 1.07

64 | 3.8-10°6 4581074 3.09-10¢ 1.27

128 | 4.8-1077 5.70 - 1075 6.56 - 107° 1.08
256 | 6.0-1078 7.10-1076 1.69-107° 1.11
512 | 7.5-1079 8.87-1077 7.25-1076 1.90
1024 | 9.3-10710 1.11-1077 1.09 .10~ 1.14
2048 | 1.2-10710 1.38-1078 2.71-1077 1.14
4096 | 1.5-10~11 1.73-107° 6.71-10"8 1.13

Table 1: Numerical results of the repeated midpoint ruldiagpgo equation (55)

Next we present some numerical results of the order 4 BDF adetthich in the formulation (5) reads
as follows, -5 (25¢, 14 — 48¢, 43 + 36¢, 12 — 160,41 + 3¢,) = hipppg forr =0,1,...,n — 4. This
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method is applied to the same operator as for the first nualexxperiment but with another right-hand
side:
Sz — dy=1—cosz f <z<l1 56
/0 cos(x — y)u(y) dy cosz for 0 <z <1, (56)
=: f(z)

with exact solution:(y) = y for 0 < y < 1. The conditions of Assumption 3.1 are satisfied with= 4
andp = 4. Step sizes, noise levels, initial approximations andistawvalues are chosen similar to the
example considered above. The results are shown in Table 2.

|| N | 1) | 100 6/||f oo | maxn|ufl—u(arn)| | ma)gl|ufl—u(arn)|/54/5 ||
32| 3.0-10°8 6.48 - 1076 7.14-10°6 7.48
64 | 9.3-10°10 2.03-1077 4.85-1077 8.14
128 | 2.9-10~1 6.33-107° 2.85-1078 7.65
256 | 9.1-10713 1.98.10710 2.11-107° 9.07
512 | 2.8-10714 6.18- 10712 1.28.10710 8.83
1024 | 8.9-10716 1.93-10°13 2.32.10~ 1 25.50

Table 2: Numerical results of the 4th order BDF method aptieequation (56)

Finally we present the results of numerical experimenth e second order Adams—Bashfort method
Ori2 — Pry1 = %(3%“ —,)forr=0,1,...,n — 2, applied to the following test problem:

1 - dy=x—1 T o for0<z<1 57
/0( +z—yluly)dy=x—-1+e <z<1, (57)

—: f(a)

with exact solutioru(y) = ye™¥ for 0 < y < 1. The conditions of Assumption 3.1 are satisfied with
m = 2 andp = 2. Step sizes, noise levels, initial approximations andistaralues are chosen similar
to the example considered above. The results are shown la 3ab

|| N | 1) | 100 6/|| f o | maxn|ufl—u(arn)| | ma)gl|ufl—u(arn)|/52/3 ||

32| 3.1-10°° 8.76-1073 1.93-1073 1.98

64 | 3.8-10°9 1.07-1073 5.21-107% 2.13

128 | 4.8-10°7 1.31-107* 1.29-107* 2.11
256 | 6.0-1078 1.63-107° 3.84-107° 2.52
512 | 7.5-1079 2.03-1076 8.99.10°° 2.36
1024 | 9.3-1010 2.54-1077 2.36-1076 2.47
2048 | 1.2-10710 3.17-1078 5.95-10~7 2.50
4096 | 1.5-10" 1! 3.96-107° 1.60-107 2.68

Table 3: Numerical results of the 2nd order Adams—Bashfethad applied to equation (57)

Note that the relative errors in the right-hand side presgkirt the third column (of all three tables in
fact) are rather small, respectively.

5 Conclusions

In the present paper we present a comprehensive analysisultistep methods for the regularization
of \olterra integral equations of the first kind with smoo#rikels and perturbed given right-hand sides.
The applied techniques are closely related to those usedikewfelt ([19], [20]). The results presented
here (which include some numerical experiments) have usgfplications for the stable solution of
inverse problems.
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