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Abstract

In the present paper we consider the regularizing properties of linear multistep methods for the
stable solution of perturbed Volterra integral equations of the first kind with smooth kernels. Numer-
ical results are also given.

1 Introduction

In this paper we consider linear Volterra integral equations of the following form,

(Au)(x) =

∫ x

0

k(x, y)u(y) dy = f(x) for 0 ≤ x ≤ L, (1)

with L > 0, and with a sufficiently smooth kernel functionk : { (x, y) ∈ R2 | 0 ≤ y ≤ x ≤ L } → R.
Moreover, the functionf : [0, L ] → R is supposed to be approximately given, and a functionu :
[0, L ] → R satisfying equation (1) is to be determined.

In the sequel we suppose that the kernel function does not vanish on the diagonal0 ≤ x = y ≤ L,
and without loss of generality we may assume that

k(x, x) = 1 for 0 ≤ x ≤ L

holds.
Composite quadrature methods for the approximate solutionof equation (1) are well-investigated if

the right-hand sidef is exactly given, see e.g., Brunner /van der Houwen [3], Brunner [2], Lamm [12],
Linz [13] or Hoog/Weiss [4] and the reference therein. A special class of composite quadrature methods
for the approximate solution of (1) is obtained by using in anappropriate manner multistep methods
that usually are used to solve initial value problems for first order ordinary differential equations. That
class of methods is considered thoroughly in Wolkenfelt ([19], [20]), and see also Holyhead / McKee /
Taylor [10], Holyhead/McKee [9] and Taylor [18] for relatedresults. In the present paper, the results and
techniques presented in the two papers by Wolkenfelt are extended in order to analyze the regularizing
properties of those multistep methods for Volterra integral equations (1) when perturbed right-hand sides
are available only. Finally, some numerical illustrationsare presented.

2 Numerical integration based on multistep methods

Throughout this section, as a preparation for the numericalsolution of Volterra integral equations of
the first kind (1) with smooth kernels, we introduce linear multistep methods for solving the associated
direct problem. For this purpose we consider equidistant nodes

xn = nh, n = 1, 2, . . . , N, with h = L
N , (2)
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whereN is a positive integer. In a first step we consider – for fixed1 ≤ n ≤ N – the simple integration
∫ x

0

ψ(y) dy = ϕ(x) for 0 ≤ x ≤ xn, (3)

whereψ : [0, xn ] → R is a given continuous function, and the functionϕ : [0, xn ] needs to be
determined. This in fact is a direct problem for the associated equation (1) in the special situation
k ≡ 1. Problem (3) is obviously equivalent to solving the elementary ordinary differential equation

ϕ′(x) = ψ(x) for 0 ≤ x ≤ xn, ϕ(0) = 0. (4)

2.1 Introduction of multistep methods for the direct problem

Next we briefly introduce some basic facts about linear multistep methods to solve initial value problems
for ordinary differential equations, with a notation that is adapted to the simple situation considered in
(4), or equivalently (3). For a thorough presentation of multistep methods (to solve initial value problems
for ordinary differential equations in its general form), see e.g., [15], Hairer / Nørsett /Wanner [7] or
Henrici [8].

A linearm-step method with an integer1 ≤ m ≤ n is determined by coefficientsaj ∈ R andbj ∈ R

for j = 0, 1, . . . ,m, with am 6= 0 andbj 6= 0 for some0 ≤ j ≤ m, all of them being independent of
the step sizeh introduced in (2). When applied to problem (4), or equivalently (3), this scheme is of the
form

m
X

j=0

ajϕr+j = h
m

X

j=0

bjψr+j for r = 0, 1, . . . , n−m. (5)

Here,ψs = ψ(xs), s = 0, 1, . . . , n are given. In addition we haveϕ0 = 0, and the other starting values
ϕs ≈ ϕ(xs) for s = 1, 2, . . . ,m − 1 are determined by some procedure not further specified here;an
example is considered below (see Example 2.7). The scheme (5) is used then to compute approximations
ϕr+m ≈ ϕ(xr+m) for r = 0, 1, . . . , n − m. The casebm = 0 is not excluded. In that situation the
considered multistep method defines an explicit scheme.

Example 2.1. (a) A class of multistep methods, depending on three parametersτ, µ andm, is obtained
by integrating (4) fromxr+m−τ to xr+m and using an interpolatory numerical integration scheme for
the resulting integral afterwards, i. e.,

ϕr+m − ϕr+m−τ =

∫ xr+m

xr+m−τ

Pr(x) dx, r = 0, 1, . . . , n−m. (6)

HerePr ∈ Πm−µ satisfiesPr(xs) = ψs for s = r, r + 1, . . . , r +m− µ. In addition,1 ≤ τ ≤ m and
0 ≤ µ ≤ m denote some integers, withτh being the length of the interval used for the local integration,
andm− µ+ 1 is the number of nodes used for the interpolation. Prominentexamples are obtained for
0 ≤ µ ≤ 1 and1 ≤ τ ≤ 2. Some special cases are considered next.

The Adams–Bashfort methods are obtained forτ = 1, µ = 1 andm ≥ 1; for the special casem = 1
this in fact gives the composite forward rectangular rule. The Adams–Moulton methods are obtained
for τ = 1, µ = 0 andm ≥ 1, with the composite trapezoidal rule obtained for the special casem = 1.
The Nyström methods are given byτ = 2, µ = 1 andm ≥ 2. Form = 2 this gives the repeated
midpoint rule. Finally, the Milne–Simpson methods are obtained byτ = 2, µ = 0 andm ≥ 2, with the
repeated Simpson’s rule obtained in the casem = 2. Each of these methods is in fact of the form (5)
and leads to a repeated quadrature method, with adjacent interpolation polynomialsPr that form > τ
have overlapping node intervals[xr , xr+m−µ ].

Note that form ≥ 2, the classical usage of composite quadrature methods of theform (6) is to determine
approximate integralsϕκm for κ = 1, 2, . . ., with κm ≤ n only. This is in contrast to the quadrature
scheme (6) used here, withϕs being computed for eachs = m,m+ 1, . . . , n.
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(b) Another class of linear multistep methods are BDF methods (backward differentiation formulas).
Here the left-hand side in (4) is replaced by a finite difference scheme. More precisely, form fixed,
approximationsϕr+m ≈ ϕ(xr+m) for r = 0, 1, . . . , n − m are given byϕr+m = P(xr+m), where
P ∈ Πm satisfiesP(xs) = ϕs for s = r, r+ 1, . . . , r+m− 1 andP ′(xr+m) = ψr+m. Form = 1 this
leads to the composite backward rectangular rule.△

2.2 Null stability, order of the method

We next recall some basic notation for multistep methods, adapted to the simple situation considered in
(4):

(a) Anm-step method is called nullstable, if the first characteristic polynomial

̺(ξ) = amξ
m + am−1ξ

m−1 + · · · + a0 (7)

of the givenm-step method is a simple von Neumann polynomial, i. e.,

(i) ̺(ξ) = 0 implies|ξ| ≤ 1, (ii) ̺(ξ) = 0, |ξ| = 1 implies̺′(ξ) 6= 0. (8)

This means that all roots of the characteristic polynomial̺ belong to the closed unit disk, and each root
on the unit circle is simple.

(b) A linear multistep method is by definition of (consistency) p with an integerp ≥ 1, if the local
discretization error

η(x, h) :=
m∑

j=0

ajϕ(x + jh) − h
m∑

j=0

bjψ(x + jh), 0 ≤ x < xn, 0 < h ≤
xn − x

m
,

satisfies, for eachψ ∈ Cp[0, xn], the estimateη(x, h) = O(hp+1) ash → 0 uniformly for each
0 ≤ x < xn.

Here and in the sequel, at each considered position the symbol O(hβ) with β > 0 denotes an error
term having modulus that is bounded bychβ, where the constantc ≥ 0 may be chosen – with a slight
abuse of notation – independently ofx also.

Note that each multistep method of orderp ≥ 1 is by definition of order1 ≤ q ≤ p, with reduced
smoothness requirements on the involved functions then. Inthe sequel, occasionally we will make use
of this fact in order to consider different smoothness assumptions.

Example 2.2. (a) Each multistep method of the special form (6) is clearly nullstable. In addition, order
p here obviously meansϕr+m − ϕr+m−τ −

∫ xr+m

xr+m−τ

Pr(x) dx = O(hp) for r = 0, 1, . . . , n − m.
The standard error result for polynomial interpolation implies the estimate max{ |Pr(x) − ψ(x)| |
xr+m−τ ≤ x ≤ xr+m } = O(hm−µ) for ψ ∈ Cm−µ+1[0, xn]. The order of this multistep method is
thus at leastm− µ+ 1.

In some special cases the order is even larger in fact. For example, forτ = 2, µ = 0 andm = 2 (the
Simpson’s rule from the class of Milne–Simpson methods), the order isp = 4 for ψ ∈ C4[0, xn] (for
those values ofτ andµ, them-step methods coincide form = 2 andm = 3 in fact).

(b) The BDF methods are nullstable for1 ≤ m ≤ 6, with respective orderp = m.

The basic convergence result in multistep method theory applied to the simple situation (4) is as follows:
each nullstable linear multistep method of orderp is convergent of orderp. The latter means that for each
ψ ∈ Cp[0, xn] and starting valuesϕ0 = 0 andϕ1, ϕ2, . . . , ϕm−1 of orderp, i. e.,|ϕr−ϕ(xr)| = O(hp)
for r = 1, 2, . . . ,m− 1, one has

max
r=m,...,n

|ϕr − ϕ(xr)| = O(hp) as h→ 0. (9)
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Below multistep methods of orderp will be applied in an appropriate manner to solve Volterra integral
equations of the first kind with smooth kernels (see (1)). It turns out thatO(hp)-error estimates for
the associated approximations hold – which is of the same order as for the associated direct problem –
but more smoothness on the involved functions must be assumed then. For deriving those estimates, a
global error expansion for the associated direct problem isneeded. This expansion is considered next.

Lemma 2.3(Wolkenfelt ([19], [20])). Consider a nullstable linear multistep method (5) of orderp ≥ 1
for solving the initial value problem (4), withψ ∈ Cp+1[0, xn], n ≥ m. Let the starting values satisfy
maxr=1,...,m−1 |ϕr − ϕ(xr)| = O(hp+1). Then we have the global error expansion

ϕn = ϕ(xn) − Chp

∫ xn

0

ψ(p)(y)dy + O(hp+1). (10)

Here,C ∈ R denotes the error constant of the considered multistep method.

For a definition of the error constant of a multistep method, see e.g., p. 201 in [15], or p. 373 in Hairer
/ Nørsett /Wanner [7], or p. 223 in Henrici [8]. The proof of the lemma follows easily, e.g., from the
procedure described in Henrici [8], pp. 249–255. See also the comments in Wolkenfelt ([19] and [20]).

Remark 2.4. (a) Note that for the starting values considered in Lemma 2.3, the required order isp +
1, while in the assumption for (9) the considered order isp only. In addition, more smoothness of
the functionψ (and thus ofϕ) is required in Lemma 2.3. The required orderp + 1 accuracy of the
starting values, however, will be satisfied anyway by the starting procedure used for the inverse problem
considered below.

(b) Global error expansions similar to (10) hold also at the other nodesxm, xm−1, . . . , xn−1. For our
purposes it is sufficient to consider that expansion at the endpoint of the considered interval only.

2.3 Reflected coefficients / polynomials

In the next section we present the considered multistep method in a different form which in fact will
be useful for the numerical analysis. As a preparation we introduce some more notation. Consider the
reflected coefficients of the multistep method under consideration:

αj = am−j , βj = bm−j , j = 0, 1, . . . ,m, αj = βj = 0, j = m,m+ 1, . . . . (11)

In addition we introduce the second characteristic polynomial

σ(ξ) := bmξ
m + bm−1ξ

m−1 + · · · + b0 ∈ Πm. (12)

The reflected polynomials associated with the two characteristic polynomials̺ andσ are given by

˜̺(ξ) := αmξ
m + αm−1ξ

m−1 + · · · + α0 = ξm̺(1/ξ) ∈ Πm, (13)

σ̃(ξ) := βmξ
m + βm−1ξ

m−1 + · · · + β0 = ξmσ(1/ξ) ∈ Πm. (14)

In addition, it is convenient to ignore in the sequel the possibly vanishing leading coefficients of the
second characteristic polynomialσ. For this purpose let0 ≤ µ ≤ m such that

bm−µ+1 = · · · = bm−1 = bm = 0, bm−µ 6= 0. (15)

For the reflected coefficients this in fact meansβ0 = β1 = · · · = βµ−1 = 0, βµ 6= 0. In the caseµ ≥ 1
this means that the second reflected polynomialσ̃(ξ) has a root of orderµ at ξ = 0.

In addition we introduce the sequenceγ0, γ1, . . . given by the following discrete convolution equa-
tion:

r∑

s=0

αr−sγs = βr+µ for r = 0, 1, . . . . (16)
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Notice thatγ0 6= 0. It follows from (16) and standard results for difference equations (see e.g., Lemma
5.5 on p. 242 in Henrici [8]) that a nullstable multistep method satisfies

γn = O(1) as n→ ∞. (17)

We finally note that the coefficients of the power series

γ(ξ) =
σ̃(ξ)/ξµ

˜̺(ξ) =:
∞

X

s=0

γsξ
s (18)

coincide with the coefficientsγ0, γ1, . . . defined by the recurrence equation (16). This follows easilyby
considering products of power series.

2.4 Explicit representation of the valuesϕr

For the numerical analysis to be considered later on we need to express the valuesϕm, ϕm+1, . . . , ϕn

generated by the multistep method (5) in terms of the valuesψs and the starting valuesϕ1, ϕ2, . . . , ϕm−1.
In Lemma 2.5 below we present some details, and we proceed by introducing weights needed in that
lemma.

(a) Consider

ωns = γn−s−µ for 0 ≤ s ≤ n− µ, n ≥ m. (19)

This in particular means that the weightsωns considered in (19) are of convolution form and uniformly
O(1) (see (17)).

(b) In addition, consider starting weights̃ωnr for 1 ≤ r ≤ m − 1 andn ≥ m, which for r fixed are
recursively determined as follows,

ν∑

t=0

αν−tω̃t+m,r = −αν+m−r for ν = 0, 1, . . . . (20)

As for (17), it follows from standard results for differenceequations that for a nullstable multistep
method we have

ω̃nr = O(1) for 1 ≤ r ≤ m− 1, n ≥ m. (21)

We are now in a position to represent the multistep method (5)in a different form. Note that the
numbersψ0, ψ1, . . . , ψn−µ considered in that lemma does not necessarily coincide withthe values of
the previously considered functionψ : [0, xn ] → R at the considered nodes.

Lemma 2.5. Consider a multistep method (5), and let the parameterµ be chosen as in (15). Consider
the weightsωrs andω̃rs given by (19) and (20). Letϕ1, ϕ2, . . . , ϕn andψ0, ψ1, . . . , ψn−µ be arbitrary
two sequences of real numbers satisfying the multistep method recurrence (5), withn ≥ m andϕ0 = 0.
Then the following identity holds:

ϕn = h
n−µ
X

s=0

ωnsψs +
m−1
X

r=1

ω̃nrϕr. (22)

PROOF. It follows by induction that a representation of the form (22) with some weightsωrs andω̃rs

exists in general. The special representations of the weights given in (19) and (20) are then obtained by
considering canonical bases forϕ1, ϕ2, . . . , ϕm andψ0, ψ1, . . . , ψn−µ. Details are omitted. 2

We summarize the results of Lemma 2.3 and Lemma 2.5:
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Corollary 2.6. Consider a nullstable linear multistep method (5) of orderp ≥ 1 for solving the initial
value problem (4) withψ ∈ Cp+1[0, xn], wheren ≥ m holds. Letϕ0 = 0, and let the starting values
ϕ1, ϕ2, . . . , ϕm−1 be of orderp + 1, i. e., we havemaxr=1,...,m−1 |ϕr − ϕ(xr)| = O(hp+1). Let the
approximationsϕm, ϕm+1, . . . , ϕn be determined by the multistep method (5). Then we have

h
n−µ
X

s=0

ωnsψ(xs) +
m−1
X

r=1

ω̃nrϕr = ϕ(xn) − Chp

∫ xn

0

ψ(p)(y)dy + O(hp+1). (23)

Here,C ∈ R denotes the error constant of the considered multistep method.

2.5 A starting procedure

For multistep methods (5) to solve the initial value problem(4), we next consider, form ≥ 2, the
determination of starting valuesϕ1, ϕ2, . . . , ϕm−1 of orderp + 1. Note that this order is needed in
view of Lemma 2.3 and Corollary 2.6. One option for generating starting values of that order is to
approximate for eachx = xr, r = 1, 2, . . . ,m − 1, the integral in (3) by using quadrature methods
on finer grids. However, this requires evaluations of the functionψ at additional abscissae. Another
scheme is considered next, and for this we restrict the considerations to multistep methods of order
p ≤ m. As a matter of fact (see Remark 3.2 below for details), this assumption is no serious restriction
when multistep methods are applied to Volterra integral equations of the first kind (1). This scheme is
of the form

ϕr = h
m−1
X

s=0

ωrsψs, r = 1, 2, . . . ,m− 1, (24)

whereψs = ψ(xs) for s = 0, 1, . . . ,m − 1. Here,ωrs ∈ R for r = 1, 2, . . . ,m − 1 ands = 0,
1, . . . ,m − 1, are appropriately chosen starting weights. It is obvious that in (24), each starting value
ϕr (1 ≤ r ≤ m − 1) depends on valuesψ(xs) for s = 1, 2, . . . ,m − 1, in general, i. e., it is affected
also by future times.

A standard procedure that results in a scheme of the form (24)is presented in the following example.

Example 2.7. Consider for fixedr ∈ { 1, 2, . . . ,m } (the caser = m is not considered in (24) but
will be needed below) an interpolatory quadrature method for the integralϕ(xr) =

∫ xr

0
ψ(x)dx using

interpolation nodesx0, x1, . . . , xm−1. This in fact means that the resulting quadrature schemeϕr =
h

∑m−1
s=0 ωrsψ(xs) ≈ ϕ(xr) is exact for all polynomialsψ of degree≤ m− 1, with quadrature weights

that are given by the following linear system of equations:



1 1 1 · · · 1
0 1 2 · · · m− 1
0 1 4 · · · (m− 1)2

0 1 9 · · · (m− 1)3

...
...

...
...

0 1 2m−1 · · · (m− 1)m−1




︸ ︷︷ ︸
=: M




wr0

wr1

wr2

...
wr,m−1




=




r
r2/2
r3/3

...
rm/m



. (25)

It follows from standard interpolation theory that for each0 ≤ p ≤ m and eachψ ∈ Cp[0, xm], the
interpolation error is of orderp, i. e., we have max{ |P(x) − ψ(x)| | 0 ≤ x ≤ xm } = O(hp) for
P ∈ Πm with P(xs) = ψ(xs) for s = 0, 1, . . . ,m−1. From that we immediately obtainϕr −ϕ(xr) =
O(hp+1) for r = 1, 2, . . . ,m which in fact is the order required in Lemma 2.3 and Corollary2.6. Note
that the matrix

M = (sν)ν=0,...,m−1
s=0,...,m−1

∈ R
m×m

6



(with the notation00 = 1) is a Vandermonde matrix which does not depend onn. The right-hand side
also does not depend onn, and so we finally obtain the estimate

wrs = O(1) for r = 1, 2, . . . ,m, s = 0, 1, . . . ,m− 1. (26)

Remark 2.8. If the starting procedure is of the form (24), then the representation (22) can be replaced
by a quadrature representation, i. e.,

ϕn = h
n−µ
X

s=0

ωnsψs. (27)

Here, the quadrature weightsωns for s ≥ m are given by (19), and the starting weightsωns for s ≤ m−1
are also easy to determine, details are omitted here. A quadrature method (27) generated by a multistep
method (5) is called(̺, σ)-reducible (see Taylor [18] and Wolkenfelt ([19], [20])).

3 Linear multistep methods for perturbed first kind Volterra inte-
gral equations

3.1 Some preparations

We now return to the first kind Volterra integral equation (1). For the numerical approximation we
consider this equation at equidistant nodesxn = nh, n = 1, 2, . . . , N with h = L/N , cf. (2). The
resulting integralsϕ(x) =

∫ x

0
k(xn, y)u(y) dy for 0 ≤ x ≤ xn are approximated by the multistep

method under consideration, respectively, see (5) withψ(y) = k(xn, y)u(y) for 0 ≤ y ≤ xn.
In the sequel we suppose that the right-hand side of equation(1) is only approximately given, with

|f δ
n − f(xn)| ≤ δ for n = 1, 2, . . . , N, (28)

whereδ > 0 is a known noise level.
For the main convergence results we impose the following conditions.

Assumption 3.1. For the Volterra integral equation (1) of the first kind and a givenm-step method with
m ≥ 1 (see (5)) we assume the following:

(a) The consideredm-step method withm ≥ 1 is nullstable and has order1 ≤ p ≤ m.

(b) The second characteristic polynomialσ satisfies a strong root condition:

σ(ξ) = 0 =⇒ |ξ| < 1 (ξ ∈ C), (29)

i. e., all roots of the polynomialσ belong to the open unit disk.

(c) There exists a solutionu : [0, L ] → R to the integral equation (1) withu ∈ Cp+1[0, L].

(d) For some integerN0 ≥ 1 andh0 = L/N0, the kernel function satisfiesk ∈ Cp+1(E), whereE ⊂
R2 is some open set withE ⊃ { (x, y) | 0 ≤ y ≤ x ≤ L } andE ⊃ { (x, y) | 0 ≤ x, y ≤ mh0 }.

(e) There holdsk(x, x) = 1 for each0 ≤ x ≤ L.

(f) For a given step sizeh = L/N with some integerN ≤ N0, let x1, x2, . . . , xN be uniformly
distributed nodes given by (2).

(g) The values of the right-hand side of equation (1) are approximately given by (28).

We next present some comments on the strong root condition considered in item (b) of Assumption 3.1.
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Remark 3.2. (a) In the stability analysis to be considered, the coefficients of the inverse power series

1

γ(ξ)
=

∞
X

n=0

γ(−1)
n ξn (30)

of the generating functionγ(ξ) =
∑∞

n=0 γn ξ
n, with γn as in (16) (see also (18)) play a significant role.

The strong root condition (29) implies that the power seriesγ is analytic in an open set of the complex
plane that contains a disk{ ξ ∈ C | |ξ | ≤ R } for someR > 1, and Cauchy’s theorem then implies that

the coefficientsγ(−1)
n in (30) decay exponentially, i. e.,

γ(−1)
n = O(τn) as n→ ∞ for some0 < τ < 1, (31)

with τ = 1/R in fact.

(b) It is elementary calculus to show that the strong root condition (29) is satisfied, e.g., by them-step
Adams–Bashfort methods with1 ≤ m ≤ 3, and by them-step Nyström method with2 ≤ m ≤ 3 as
well. In addition, (29) is obviously satisfied by the BDF methods.

(c) The strong root condition (29) is violated for each multistep method of class (6) withµ = 0 and
with orderp > m. More generally, it is an essential observation mady by Gladwin/Jeltsch [6] that the
second characteristic polynomialσ is even not a simple von Neumann polynomial in that situation, with
the casem = τ = 1 (the repeated trapezoidal rule) as an exception. In addition, the associated scheme
for solving Volterra integral equations of the first kind introduced below is necessarily divergent then,
in general. For the mentioned exceptionm = τ = 1, the associated second characteristic polynomial is
obviously a simple von Neumann polynomial but does not satisfy the strong root condition.

As a consequence of the former observations, it therefore makes sense to reduce the considerations to
m-step methods of order1 ≤ p ≤ m in the sequel (see (a) of Assumption 3.1). Note that the case
p ≤ m− 1 becomes relevant for solutions and kernels of the Volterra integral equation of the first kind
(1) that have a lower degree of smoothness.△

3.2 The numerical scheme

We consider now, under the conditions given in Assumption 3.1, the following scheme for the numerical
solution of a Volterra integral equation (1) with a smooth kernel:

Algorithm 3.3. (a) Determinem initial approximationsuδ
s ≈ u(xs) for s = 0, 1, . . . ,m−1 by solving

the following linear system ofm equations,

h
m−1
X

s=0

ωnsk(xn, xs)u
δ
s = f δ

n, n = 1, 2, . . . ,m, (32)

where the starting weightsωns are given by (25), withr replaced byn there.

(b) Determine then recursively approximationsuδ
n−µ ≈ u(xn−µ) for n = m+µ, . . . , N by the follow-

ing scheme:

• Setψδ
s = k(xn, xs)u

δ
s for s = 0, 1, . . . , n− µ− 1,

• setϕδ
0 = 0, and compute (form ≥ 2) ϕδ

r = h
∑m−1

s=0 ωrsψ
δ
s for r = 1, 2, . . . ,m− 1, cf. (24),

• compute recursivelyϕδ
r+m for r = 0, 1, . . . , n−m−1 by using on the interval[0, xn] the perturbed

version of the multistep scheme (5):

m
X

j=0

ajϕ
δ
r+j = h

m−µ
X

j=0

bjψ
δ
r+j for r = 0, 1, . . . , n−m− 1, (33)

• setϕδ
n = f δ

n,
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• computeψδ
n−µ by using the identity (33) forr = n−m,

• computeuδ
n−µ = ψδ

n−µ/k(xn, xn−µ). △

Remark 3.4. (a) Note that due to (e) in Assumption 3.1, forh sufficiently small we havek(xn, xn−µ) 6=
0 for eachn. Thus the numerical procedure considered above can in fact be used for the computation of
uδ

n−µ.

(b) It immediately follows from Lemma 2.5 that the approximations obtained by Algorithm 3.3 satisfy

h
n−µ
X

s=0

ωnsk(xn, xs)u
δ
s +

m−1
X

r=1

ω̃nrϕ
δ
r = f δ

n, n = m+ µ, . . . , N. (34)

Here, the weightsωns andω̃nr are given by (19) and (20), respectively. Note that the starting valuesϕδ
1,

. . . , ϕδ
m−1 considered in (34) depend also onn. The representation (34) will be used in the proof of the

main result, cf. Theorem 3.7.

(c) The scheme considered in Algorithm 3.3 is quite universal. For the backward rectangular rule (which
is the 1-step BDF method) considered in part (b) of Example 2.1, an implementation of Algorithm
3.3 without the starting procedure considered in (a) there is possible. This means, however, that no
approximationuδ

0 will be available then. △

3.3 Uniqueness, existence and approximation properties ofthe initial approxi-
mations

We now consider uniqueness, existence as well as the approximation properties of the initial approxi-
mationsuδ

0, u
δ
1, . . . , u

δ
m−1. In a first step we consider in more detail the linear system ofequations (32).

This system of equations can be written in the form

h

=: Sh︷ ︸︸ ︷


ω10k(x1, x0) ω11k(x1, x1) · · · ω1,m−1k(x1, xm−1)

ω20k(x2, x0) ω21k(x2, x1) · · · ω2,m−1k(x2, xm−1)

...
...

...

ωm0k(xm, x0) ωm1k(xm, x1) · · · ωm,m−1k(xm, xm−1)







uδ
0

uδ
1

...

uδ
m−1




=




f δ
1

f δ
2

...

f δ
m



. (35)

Note that the matrixSh ∈ Rm×m introduced in (35) depends on the stepsizeh.

Proposition 3.5. The system matrixSh in (35) is regular for sufficiently small values ofh, and‖S−1
h ‖∞ =

O(1) ash→ 0.

PROOF. We first consider the situationk ≡ 1. In a first step we observe that (25) implies the following:

M




ω10 ω11 · · · ω1,m−1

ω20 ω21 · · · ω2,m−1

...
...

...

ωm0 ωm1 · · · ωm,m−1




︸ ︷︷ ︸
=: T

= DB (36)
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with the matrixM ∈ Rm×m from (25), and

D = diag
(

1
q : q = 1, 2, . . . ,m

)
∈ R

m×m, B = (nq)q=1,...,m
n=1,...,m

∈ R
m×m.

The matricesD,B andM are regular, and hence the matrixT ∈ Rm×m introduced in (36) is regular.
The latter matrix coincides in the situationk ≡ 1 with the matrixSh.

We now consider the general case fork. We havek(x, x) = 1 andxn = O(h) for n = 1, 2,
. . . ,m − 1, and thusk(xn, xs) = 1 + O(h) for n = 1, . . . ,m ands = 0, . . . ,m − 1. This shows
Sh = T +O(h) for h→ 0 so that the matrixSh is regular for sufficiently small valuesh, with ‖S−1

h ‖∞
being bounded ash→ 0. This completes the proof of the proposition. 2

We next consider the approximation properties of the initial approximations.

Theorem 3.6. Let the conditions of Assumptions 3.1 be satisfied. Then the initial approximationsuδ
0,

uδ
1, . . . , u

δ
m−1, determined by (32) forh sufficiently small, satisfy

max
n=0,1,...,m−1

|uδ
n − u(xn)| = O(hp + δ/h) as (h, δ) → 0.

PROOF. It is clear from (35) and Proposition 3.5 that the initial approximationsuδ
0, u

δ
0, . . . , u

δ
m−1 exists

and are unique forh sufficiently small. We have

h
m−1
X

s=0

ωns k(xn, xs)e
δ
s = O(hp+1 + δ) for n = 1, 2, . . . ,m, (37)

where

eδ
s = uδ

s − u(xs), s = 0, 1, . . . ,m− 1,

denote the approximation errors. This follows from the considerations in Example 2.7, with the notation
r = n and forψ(y) = k(xn, y)u(y) for 0 ≤ y ≤ xm. A matrix-vector formulation of (37) yields
hSh∆δ

h = O(hp+1 + δ) ash → 0, with ∆δ
h := (eδ

0, e
δ
1, . . . , e

δ
m−1)

⊤ ∈ Rm, and with the matrixSh

from (35). According to Proposition 3.5, this matrixSh is regular for sufficiently small values ofh, and
‖S−1

h ‖∞ = O(1) ash→ 0. From this the statement of the theorem follows. 2

3.4 The main result

We next present the main result of this paper which extends the results by Wolkenfelt ([19], [20]) to the
case of perturbed right-hand sides.

Theorem 3.7. Let the conditions of Assumption 3.1 be satisfied, and let theapproximationsuδ
0, u

δ
1,

. . . , uδ
N−µ be determined by Algorithm 3.3, forh sufficiently small. Then the following error estimate

holds,

max
n=0,1,...,N−µ

|uδ
n − u(xn)| = O(hp + δ/h) as (h, δ) → 0. (38)

PROOF. The initial approximation errors are already covered by Theorem 3.6, so it remains to estimate
the erroruδ

n − u(xn) for n = m,m+ 1, . . . , N − µ.
(1) In a first step we observe that the following system of error equations holds:

h
n−µ
X

s=m

γn−s−µk(xn, xs)e
δ
s = Eh(xn) + O(hp+1 + δ) for n = m+ µ, . . . , N, (39)
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where

eδ
s = uδ

s − u(xs), s = m, . . . , N − µ,

Eh(xn) = Chp

∫ xn

0

ψ[n,p](y)dy, n = m+ µ, . . . , N, (40)

with the notation

ψ[n,t](y) =
∂t

∂yt
ψ[n](y), t = 0, 1, . . . , p, 0 ≤ y ≤ xn, (41)

with

ψ[n](y) = k(xn, y)u(y), 0 ≤ y ≤ xn. (42)

The error representation (39) follows by considering the difference of the representations (34) and (23),
where the latter representation is applied withψ = ψ[n] on the interval[0, xn]. In addition, the repre-
sentation (19) of the weightsωns for n ≥ m as well as the boundedness (21) of the starting weights is
used here. Note that (37) impliesϕδ

s − ϕs = O(hp+1 + δ) for s = 0, 1, . . . ,m− 1, whereϕs is given
by (24) withψ = ψ[n] there, considered on the interval0 ≤ y ≤ xn.

(2) We next consider a matrix-vector formulation of (39). Asa preparation we introduce the notation

N1 := N −m− µ+ 1 (43)

and consider the system matrixAh ∈ RN1×N1 given by

Ah =




γ0km+µ,m 0 · · · · · · 0

γ1km+µ+1,m γ0km+µ+1,m+1
. . . 0

... γ1km+µ+2,m+1
. . .

. . .
...

...
. . .

. . . 0

γN−m−µkNm · · · · · · γ1kN,N−µ−1 γ0kN,N−µ




with the notation

kns = k(xn, xs) for m ≤ s ≤ n− µ, m+ µ ≤ n ≤ N.

In addition we consider the vectors

∆δ
h = (eδ

s)s=m,...,N−µ, Rh = (Eh(xn))n=m+µ,...,N . (44)

Using these notations, the linear system of equations (39) obviously takes the form

hAh∆δ
h = Rh + F δ

h , with someF δ
h ∈ R

N1 , ‖F δ
h‖∞ = O(hp+1 + δ), (45)

where‖ · ‖∞ denotes the maximum norm onRN1 .
(3) For a further treatment of the identity (45) we next provethat

‖Dh‖∞ = O(1), ‖(DhAh)−1‖∞ = O(1), ‖A−1
h ‖∞ = O(1) as h→ 0, (46)
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where the matrixDh ∈ RN1×N1 is given by

Dh =




γ
(−1)
0 0 · · · · · · 0

γ
(−1)
1 γ

(−1)
0 0 0

γ
(−1)
2

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

γ
(−1)
N−m−µ · · · · · · γ

(−1)
1 γ

(−1)
0




, (47)

and‖ · ‖∞ denotes the matrix norm induced by the maximum vector norm onR
N1 . In fact, the estimate

‖Dh‖∞ = O(1) ash → 0 follows immediately from the exponential decay of the coefficients of the
inverse of the generating functionγ, cf. estimate (31). For the proof of the second statement in (46) we
next show that the matrixDhAh can be written in the form

DhAh = Ih +Kh, (48)

whereIh ∈ RN1×N1 denotes the identity matrix, andKh = (κnj(h)) ∈ RN1×N1 denotes some lower
triangular matrix which satisfies max0≤j≤n≤N−m−µ |κnj(h)| = O(h) ash → 0. This representation
shows that the matrixDhAh is nonsingular forh small enough, and the discrete version of Gronwall’s
inequality yields‖(DhAh)−1‖∞ = O(1) ash→ 0 then. The third estimate in (46) follows immediately
from the other two estimates considered in (46).

In the sequel it will be shown that the representation (48) issatisfied, and for this we consider the lower
triangular matrix

DhAh = (bnj) ∈ R
N1×N1

in more detail. In fact, we have for0 ≤ j < n ≤ N −m− µ

bnj =
n

X

ℓ=j

γ
(−1)
n−ℓ γℓ−jk(xm+µ+ℓ, xj+m) =

n−j
X

ℓ=0

γ
(−1)
n−j−ℓγℓk(xm+µ+ℓ+j , xj+m)

= k(xm+µ+n, xj+m)

= 0︷ ︸︸ ︷
n−j
X

ℓ=0

γ
(−1)
n−j−ℓγℓ +

n−j
X

ℓ=0

[
γ

(−1)
n−j−ℓγℓ

(
k(xm+µ+ℓ+j , xj+m) − k(xm+µ+n, xj+m)

)]

and thus

|bnj | = O
(
h

n−j
X

ℓ=0

|γ
(−1)
n−j−ℓ ||γℓ |(n− j − ℓ)

︸ ︷︷ ︸
(∗)
= O(1)

)
= O(h) for 0 ≤ j < n ≤ N −m− µ (49)

uniformly with respect toj andn. Here,(∗) follows immediately from (17) and (31). Moreover we have

bnn = γ
(−1)
0 k(xn+m+µ, xn+m)γ0 = 1 + O(h) for n = 0, 1, . . . , N −m− µ, (50)

which in fact follows from the identitiesγ(−1)
0 = 1/γ0 andk(x, x) ≡ 1, cf. (e) in Assumption 3.1. The

statements (49) and (50) show that the lower triangular matrix DhAh in fact can be written as in (48).
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(4) The statement of the theorem now follows easily from the error representation (39) and its matrix
version (44), (45), and from the stability estimates in (46). We only need to take a closer look at the
global error representation (40) of the quadrature error. For this purpose we observe that by Assumption
3.1 we haveψ[n,p] ∈ C1[0, xn] (for the definition of this function see (41)). Since eachm-step method
of orderp ≥ 1 is in particular of order 1, the integral in the global error expansion (40) can be written as

∫ xn

0

ψ[n,p](y)dy = h
n−µ
X

s=0

ωnsψ
[n,p](xs) + O(h) = h

n−µ
X

s=m

ωnsψ
[n,p](xs) + O(h) (51)

for n = m+µ, . . . , N . The first identity in (51) follows from Lemma 2.5, applied withψs = ψ[n,p](xs)
for s = 0, 1, . . . , n − µ and withϕ1 = · · · = ϕm−1 = 0, and from (9) withp = 1. In the second
identity of (51), the boundedness of the starting weights (see (26)) is taken into account. From (51) and
the Leibniz rule for derivatives, we obtain the following for Eh(xn) defined by (40):

Eh(xn) = Chp+1
p

X

q=0

(
p
q

) n−µ
X

s=m

γn−s−µg
[n,p−q](xs)u

(q)(xs) + O(hp+1)

uniformly for n = m+ µ, . . . , N , where

g[n,t](y) = ∂t

∂yt k(xn, y) for t = 0, 1, . . . , p.

From that it follows thatRh ∈ RN1 considered in (44) can be written as follows,

Rh = Chp+1
p

X

q=0

(
p
q

)
B

(p−q)
h U

(q)
h + Eh, (52)

whereEh ∈ RN1 denotes some vector with‖Eh‖∞ = O(hp+1), and

B
(t)
h =




γ0g
[m+µ,t](xm) 0 · · · · · · 0

γ1g
[m+µ+1,t](xm) γ0g

[m+µ+1,t](xm+1)
. . . 0

... γ1g
[m+µ+2,t](xm+1)

. . .
. . .

...

...
. . .

. . . 0

γN−m−µg
[N,t](xm) · · · · · · γ1g

[N,t](xN−µ−1) γ0g
[N,t](xN−µ)




,

U
(t)
h =




u(t)(xm)

u(t)(xm+1)

...

u(t)(xN−µ)




for t = 0, 1, . . . , p.
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The representations (45) and (52) give

hAh∆δ
h = Chp+1

p
X

q=0

(
p
p

)
B

(p−q)
h U

(q)
h + Eh + F δ

h ,

and thus

DhAh∆δ
h = Chp

p
X

q=0

(
p
q

)
DhB

(p−q)
h U

(q)
h + 1

hDhEh + 1
hDhF

δ
h . (53)

For t = 0, 1, . . . , p, the lower triangular matricesDhB
(t)
h can be written as follows,DhB

(t)
h = M

(t)
h +

C
(t)
h with the diagonal matrixMh = diag(g[m+µ+n,t](xn) : n = 0, 1, . . . , N −m−µ) and some lower

triangular matrixC(t)
h = (c

(t)
nj (h)) ∈ RN1×N1 with max0≤j≤n≤N−m−µ |c

(t)
nj (h)| = O(h) ash → 0

(see the third part of this proof for similar results for the matrixDhAh; details are omitted here). This
in particular means

‖DhB
(t)
h ‖∞ = O(1) as h→ 0 (t = 0, 1, . . . , p). (54)

This completes the proof of the theorem.2

Remark 3.8. The stability analysis presented in the third part of the proof of Theorem 3.7 uses tech-
niques similar to those used in Eggermont [5]; see also Lubich [14] as well as [16] and [17].

In the sequel, for step sizesh = h(δ) = L/N , with a slight abuse of notation we writeh ∼ δβ asδ → 0,
if there exist real constantsc2 ≥ c1 > 0 such thatc1h ≤ δβ ≤ c2h holds forδ → 0. As an immediate
consequence of Theorem 3.7 we obtain the following main result of this paper.

Corollary 3.9. Let Assumption 3.1 be satisfied. Forh = h(δ) ∼ δ1/(p+1) we have

max
n=0,1,...,N−µ

|uδ
n − u(xn)| = O(δp/(p+1)) as δ → 0.

Eachm-step method of orderp ≥ 1 is also of order1 ≤ q ≤ p, with accordingly reduced smoothness
assumptions on the involved functions in the considered Volterra integral equation of the first kind (1)
then. This fact allows to consider lower degrees of smoothness there.

Corollary 3.10. Let Assumption 3.1 be satisfied, with the smoothness assumptions in items (c) and (d)
there replaced byu ∈ Cq+1[0, L] and k ∈ Cq+1(E), respectively, with some1 ≤ q ≤ p. Let the
approximationsuδ

0, u
δ
1, . . . , u

δ
N−µ be determined by the scheme considered in Algorithm 3.3. Then the

following holds:

(a) We have

max
n=0,1,...,N−µ

|uδ
n − u(xn)| = O(hq + δ/h) as (h, δ) → 0.

(b) For h = h(δ) ∼ δ1/(q+1) we have

max
n=0,1,...,N−µ

|uδ
n − u(xn)| = O(δq/(q+1)) as δ → 0.

We conclude this section with some remarks.
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Remark 3.11. (a) The result of part (a) of the latter corollary follows in the case1 ≤ q ≤ p− 1 more
easily than forq = p. In the former case1 ≤ q ≤ p− 1, in the proof of Theorem 3.7 it would be in fact
sufficient to make use of the global error estimate (9) (withp replaced byq there), instead of using the
global error expansion considered in Lemma 2.3 (withp replaced byq there).

(b) Part (b) of Corollary 3.10 is of limited use only. In that case it is useful to apply an explicitm-step
method form = q in order to keep computational complexity as small as possible.

Remark 3.12. For results on the regularization properties of the composite midpoint rule, see e. g.
Apartsin [1] or Kaltenbacher [11]. For other special regularization methods for the approximate solution
of Volterra integral equations of the first kind with smooth kernels and perturbed right-hand sides, see
e.g., Lamm [12].

4 Numerical experiments

As an illustration of the main result considered in Corollary 3.9, we next present the results of numerical
experiments for three examples of Volterra integral equations of the first kind with smooth kernels of the
form (1), treated by different multistep methods, respectively. Here are some remarks on the numerical
tests:

• Numerical experiments with step sizesh = 1/2ν for ν = 5, 6, . . . , 12 are employed, respectively,
with the exception of the order 4 BDF method. In the latter method, the influence of rounding errors
becomes clearly visible forν ≥ 10.

• For each considered step sizeh and each consideredp-order multistep method, the noise levelδ =
h1/(p+1) is considered.

• In the numerical experiments, the perturbations are of the form f δ
n = f(xn) + ∆n with uniformly

distributed random values∆n with |∆n | ≤ δ.

First we consider the repeated midpoint rule which in fact coincides with the 2-step Nyström method
(see Example 2.1). In the formulation (5), this method readsas follows,ϕr+2−ϕr = 2hψr+1 for r = 0,
1, . . . , n− 2. This method is applied to the following linear Volterra integral equation of the first kind,

∫ x

0

cos(x− y)u(y) dy = sinx =: f(x) for 0 ≤ x ≤ 1, (55)

with exact solutionu(y) = 1 for 0 ≤ y ≤ 1. The conditions of Assumption 3.1 are satisfied with
m = 2 andp = 2. The numerical results of are shown in Table 1. There,‖f‖∞ denotes the maximum
norm of the functionf . All numerical experiments are employed using the program system OCTAVE

(http://www.octave.org).

N δ 100 · δ/‖f‖∞ maxn |uδ
n − u(xn)| maxn |uδ

n − u(xn)| /δ2/3

32 3.1 · 10−5 3.70 · 10−3 1.05 · 10−3 1.07
64 3.8 · 10−6 4.58 · 10−4 3.09 · 10−4 1.27

128 4.8 · 10−7 5.70 · 10−5 6.56 · 10−5 1.08
256 6.0 · 10−8 7.10 · 10−6 1.69 · 10−5 1.11
512 7.5 · 10−9 8.87 · 10−7 7.25 · 10−6 1.90

1024 9.3 · 10−10 1.11 · 10−7 1.09 · 10−6 1.14
2048 1.2 · 10−10 1.38 · 10−8 2.71 · 10−7 1.14
4096 1.5 · 10−11 1.73 · 10−9 6.71 · 10−8 1.13

Table 1: Numerical results of the repeated midpoint rule applied to equation (55)

Next we present some numerical results of the order 4 BDF method which in the formulation (5) reads
as follows, 1

12 (25ϕr+4 − 48ϕr+3 + 36ϕr+2 − 16ϕr+1 + 3ϕr) = hψr+4 for r = 0, 1, . . . , n− 4. This
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method is applied to the same operator as for the first numerical experiment but with another right-hand
side:

∫ x

0

cos(x− y)u(y) dy = 1 − cosx︸ ︷︷ ︸
=: f(x)

for 0 ≤ x ≤ 1, (56)

with exact solutionu(y) = y for 0 ≤ y ≤ 1. The conditions of Assumption 3.1 are satisfied withm = 4
andp = 4. Step sizes, noise levels, initial approximations and starting values are chosen similar to the
example considered above. The results are shown in Table 2.

N δ 100 · δ/‖f‖∞ maxn |uδ
n − u(xn)| maxn |uδ

n − u(xn)| /δ4/5

32 3.0 · 10−8 6.48 · 10−6 7.14 · 10−6 7.48
64 9.3 · 10−10 2.03 · 10−7 4.85 · 10−7 8.14

128 2.9 · 10−11 6.33 · 10−9 2.85 · 10−8 7.65
256 9.1 · 10−13 1.98 · 10−10 2.11 · 10−9 9.07
512 2.8 · 10−14 6.18 · 10−12 1.28 · 10−10 8.83

1024 8.9 · 10−16 1.93 · 10−13 2.32 · 10−11 25.50

Table 2: Numerical results of the 4th order BDF method applied to equation (56)

Finally we present the results of numerical experiments with the second order Adams–Bashfort method
ϕr+2 − ϕr+1 = h

2 (3ψr+1 − ψr) for r = 0, 1, . . . , n− 2, applied to the following test problem:
∫ x

0

(1 + x− y)u(y) dy = x− 1 + e−x

︸ ︷︷ ︸
=: f(x)

for 0 ≤ x ≤ 1, (57)

with exact solutionu(y) = ye−y for 0 ≤ y ≤ 1. The conditions of Assumption 3.1 are satisfied with
m = 2 andp = 2. Step sizes, noise levels, initial approximations and starting values are chosen similar
to the example considered above. The results are shown in Table 3.

N δ 100 · δ/‖f‖∞ maxn |uδ
n − u(xn)| maxn |uδ

n − u(xn)| /δ2/3

32 3.1 · 10−5 8.76 · 10−3 1.93 · 10−3 1.98
64 3.8 · 10−6 1.07 · 10−3 5.21 · 10−4 2.13

128 4.8 · 10−7 1.31 · 10−4 1.29 · 10−4 2.11
256 6.0 · 10−8 1.63 · 10−5 3.84 · 10−5 2.52
512 7.5 · 10−9 2.03 · 10−6 8.99 · 10−6 2.36

1024 9.3 · 10−10 2.54 · 10−7 2.36 · 10−6 2.47
2048 1.2 · 10−10 3.17 · 10−8 5.95 · 10−7 2.50
4096 1.5 · 10−11 3.96 · 10−9 1.60 · 10−7 2.68

Table 3: Numerical results of the 2nd order Adams–Bashfort method applied to equation (57)

Note that the relative errors in the right-hand side presented in the third column (of all three tables in
fact) are rather small, respectively.

5 Conclusions

In the present paper we present a comprehensive analysis formultistep methods for the regularization
of Volterra integral equations of the first kind with smooth kernels and perturbed given right-hand sides.
The applied techniques are closely related to those used in Wolkenfelt ([19], [20]). The results presented
here (which include some numerical experiments) have useful applications for the stable solution of
inverse problems.
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