
THE METHOD OF CONJUGATE RESIDUALS FOR SOLVING THEGALERKIN EQUATIONS ASSOCIATED WITH SYMMETRICPOSITIVE SEMIDEFINITE ILL-POSED PROBLEMSR. PLATO∗Abstra
t. For the numeri
al solution of the Galerkin equations asso
iated with linear ill-posedproblems that are symmetri
 and positive semide�nite, the method of 
onjugate residuals is 
onsid-ered. An a posteriori stopping rule is introdu
ed, and asso
iated estimates for the approximationsare provided whi
h are order-optimal with respe
t to noise in the right-hand side and with respe
tto the dis
retization error.Key words. Ill-posed problems, �rst kind integral equations, 
onjugate gradient typemethods, Galerkin method, regularization s
hemes, dis
repan
y prin
iple, Symm's integralequation.AMS subje
t 
lassi�
ations. 65J20, 65R30, 45E99, 65N381. Introdu
tion. In this paper we 
onsider equations of the form
Au = f∗,(1.1)where

A ∈ L(H), A = A∗ ≥ 0,(1.2)
f∗ ∈ R(A).(1.3)Here H denotes a real Hilbert spa
e with inner produ
t 〈·, ·〉 : H × H → R and
orresponding norm ‖ · ‖ : H → R, L(H) denotes the spa
e of operators T : H → Hthat are bounded and linear, and A∗ ∈ L(H) in (1.2) denotes the adjoint operator of

A. Moreover, R(A) denotes the range of A whi
h in general is non-
losed, and thenequation (1.1) is ill-posed. In the sequel we assume that only an approximation f δfor f∗ is available, more spe
i�
ally,
f δ ∈ H, ‖f∗ − f δ‖ ≤ δ,(1.4)where δ ≥ 0 is a small and known error bound.For pra
ti
al reasons equation (1.1) has to be dis
retized, and in the sequel weshall 
onsider Galerkin equations asso
iated with (1.1). For this purpose let
Vh ⊂ H, 0 < h ≤ h0,be given �nite-dimensional linear subspa
es. For �xed h, the 
orresponding Galerkinequations for (1.1) are given by

Ahuh = Phf∗,(1.5)where
Ah : H → H, u 7→ PhAu,(1.6)
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2 2. THE METHOD OF CONJUGATE RESIDUALS FOR THE GALERKIN EQUATIONSand Ph denotes the orthogonal proje
tion onto Vh, i.e.,
Ph ∈ L(H), Ph = P2

h, Ph = P∗
h, R(Ph) = Vh.(1.7)In order to determine a solution u∗ ∈ H of equation (1.1) with noisy data as in (1.4)we shall apply the method of 
onjugate residuals to the Galerkin equations (1.5) (seethe next se
tion) asso
iated with a dis
repan
y prin
iple as stopping rule (
f. Se
tion3 for its introdu
tion), and this shall be done for the following reasons:1. Sin
e the underlying equation (1.1) is ill-posed, usually also the �nite-dimen-sional version (1.5) has to be regularized. It is shown in this paper thatthe method of 
onjugate residuals asso
iated with the mentioned dis
repan
yprin
iple as a stopping rule has this desired regularizing property.2. Typi
ally only a small number of iteration steps is needed until the methodof 
onjugate residuals terminates a

ording to the dis
repan
y prin
iple, andthus this yields a numeri
ally e�
ient solver of equation (1.1).2. The method of 
onjugate residuals for the Galerkin equations.2.1. Des
ription of the method. We next introdu
e the method of 
onjugateresiduals for the Galerkin equations (1.5), and for this purpose in the sequel we assumethat the noise level δ > 0 and the dis
retization level h > 0 in 
onditions (1.2)-(1.4)and in (1.6)-(1.7) are �xed. Moreover we introdu
e the Krylov subspa
es with respe
tto Ah and a ve
tor r ∈ Vh,

Kn(Ah, r) = span{r, Ahr, . . . , A
n−1
h r

}

⊂ Vh, n = 0, 1, . . . .Definition 2.1. Let 
onditions (1.2)�(1.4) be ful�lled, and let Ph, Ah ∈ L(H)be as in (1.7), (1.6). The method of 
onjugate residuals, applied to (1.5) with noisydata as in (1.4), iteratively generates a (terminating) sequen
e u0 = 0, u1, u2, . . . , with
un ∈ Vh and

{

un ∈ Kn(Ah,Phf
δ),

‖Ahun − Phf
δ‖ = infu∈Kn(Ah,Phfδ) ‖Ahu− Phf

δ‖,(2.1)and the algorithm terminates, by de�nition, at step n∗ := n ≤ dimVh if Ahrn = 0.Here, rn denotes the residual, i.e.,
rn = Ahun − Phf

δ ∈ Vh, n = 0, 1, . . . , n∗.(2.2)Remarks. 1. For notational 
onvenien
e, u0 = 0 is taken as starting ve
tor for themethod of 
onjugate residuals, and the dependen
e of δ and h on ve
tors and s
alarsthat arise in the 
ourse of iteration is not stated expli
itly.2. The stopping index n to be de�ned in De�nition 3.2 below usually is mu
hsmaller than the �nal index n∗.3. For te
hni
al reasons we shall not 
onsider here the 
lassi
al method of 
onju-gate gradients where the iterates minimize the energy fun
tional J(u) = 1
2 〈Ahu, u〉 −

〈u,Phf
δ〉 over Kn(Ah,Phf

δ), n = 0, 1, . . . . △The basi
 algorithm for 
omputing un given by De�nition 2.1 is:Algorithm 2.2. (Method of 
onjugate residuals for (1.5) with noisy given right-hand side) Let 
onditions (1.2)�(1.4) be ful�lled, and let Ph, Ah ∈ L(H) be as in(1.7), (1.6). Step 0: Let u0 := 0, r0 = −Phf
δ.



2.2 Matrix formulation of the method of 
onjugate residuals for the Galerkin equations 3For n = 0, 1, . . . :1) If Ahrn = 0 then terminate, n∗ := n;2) If otherwise Ahrn 6= 0, then pro
eed with step n+1: 
ompute from un, dn−1

dn = −rn + βn−1dn−1, βn−1 =
〈Ahrn, rn〉

〈Ahrn−1, rn−1〉
,(2.3)

un+1 = un + αndn, αn =
〈Ahrn, rn〉
‖Ahdn‖2

.(2.4)Here we assume d−1 = 0, β−1 = 0.It follows from (2.2)�(2.4) that for 0 ≤ n ≤ n∗ − 1 we have
Ahdn = −Ahrn + βn−1Ahdn−1, rn+1 = rn + αnAhdn,(2.5)and in fa
t in any step for 
omputational reasons Ahdn and rn+1 are 
omputed asin (2.5) so that only one operator-ve
tor multipli
ation (to obtain Ahrn) has to beperformed in ea
h step.2.2. Matrix formulation of the method of 
onjugate residuals for theGalerkin equations. A matrix formulation of the method of 
onjugate residuals forpositive de�nite linear systems of equations is presented, e.g., in Stoer [27℄, and forother surveys on 
onjugate gradient type methods we refer to Ashby, Manteu�el &Saylor [1℄ and Freund, Golub & Na
htigal [6℄.For 
ompleteness we present a matrix formulation of the method of 
onjugateresiduals for our spe
i�
 situation (1.5), and for this purpose we denote by N thedimension of Vh. Then let Ψ1,Ψ2, . . . ,ΨN ∈ Vh be a basis of Vh, and let







G =
(

〈Ψj ,Ψi〉
)

∈ R
(N,N)B =

(

〈AΨj ,Ψi〉
)

∈ R
(N,N)f =

(

〈f δ,Ψi〉
)

∈ R
N

(2.6)The approximations un ∈ Vh, n = 0, 1, . . . , n∗, de�ned by Algorithm 2.2 then 
an berepresented as follows,
un =

N
∑

j=1

un,jΨj,where un = (un,j) ∈ R
N is determined by the following algorithm:Algorithm 2.3. (Method of 
onjugate residuals for (1.5) with noisy given right-hand side, matrix formulation) Let G, B and f as in (2.6). Step 0: Let u0 := 0 ∈

R
N , r0 = −G−1f ∈ R

N .For n = 0, 1, . . . :1) If Brn = 0 then terminate, n∗ = n;2) If otherwise Brn 6= 0, then pro
eed with step n+1: 
ompute from un, dn−1:dn = −rn + βn−1dn−1, βn−1 =
rT

nBrnrT
n−1Brn−1

,un+1 = un + αndn, αn =
rT

nBrneT
nGen

,where en := G−1Bdn.



4 3. THE MAIN SECTIONHere d−1 = 0, β−1 = 0.Note that the numbers αn and βn−1 in Algorithms 2.2 and 2.3 
oin
ide, andthe ve
tors dn ∈ R
N and rn ∈ R

N are the 
oordinates of dn ∈ Vh and rn ∈ Vh,respe
tively, i.e.,
dn =

N
∑

j=1

dn,jΨj, rn =

N
∑

j=1

rn,jΨj.Note also that the ve
tors Bdn, rn+1 ∈ R
N 
an be 
omputed e�
iently for 0 ≤ n ≤

n∗ − 1, Bdn = −Brn + βn−1Bdn−1, rn+1 = rn + αnG−1Bdn.3. The main se
tion.3.1. Approximation properties of the subspa
es Vh. For a symmetri
 andpositive semide�nite operator A ∈ L(H) and arbitrary real ν > 0 we next de�ne
ν-norms on R(Aν),

‖u‖ν := min
{

‖z‖ : z ∈ H, Aνz = u
}

, u ∈ R(Aν).(3.1)Remark. Fra
tional powers Aν ∈ L(H), ν > 0, as well as their elementary propertiesare presented e.g., in a more general framework, in Fattorini [5℄, Chapter 6.3. Forsymmetri
 and positive semide�nite operatorsA ∈ L(H) that are 
ompa
t and have anin�nite-dimensional range R(A), the fra
tional powers Aν ∈ L(H) 
an be introdu
edin a simpli�ed manner. In fa
t, the following spe
tral representation of A is validthen,
A =

∞
∑

j=1

λjQj ,where λ1 > λ2 > . . . > 0 denote the pairwise distin
t, non-vanishing eigenvaluesof A ∈ L(H), and Qj ∈ L(H) denote the asso
iated orthogonal proje
tions onto
N (A− λjI) for j ∈ N; the fra
tional powers Aν ∈ L(H) then are given by

Aν =
∞
∑

j=1

λν
jQj. △In the sequel we shall assume that the subspa
es {Vh} ful�ll an approximation propertywith respe
t to A, this is, for some integer
ν1 ≥ 1and some known

0 < ξh ≤ 1, 0 < h ≤ h0, with ξh → 0 as h→ 0,(3.2)we suppose that for 
ertain 
onstants aν > 0

∀ 0 < ν ≤ ν1 : inf
vh∈Vh

‖u− vh‖ ≤ aνξ
ν
h‖u‖ν, u ∈ R(Aν), 0 < h ≤ h0,(3.3)



3.2 The dis
repan
y prin
iple as stopping rule for the method of 
onjugate residuals 5holds. Note that the approximation property (3.3) is equivalent to
∀ 0 < ν ≤ ν1 : ‖(I − Ph)Aν‖ ≤ aνξ

ν
h, 0 < h ≤ h0,(3.4)with Ph ∈ L(H) as in (1.7). Note moreover that if 
onditions (3.2), (3.4) are validthen A ne
essarily is a 
ompa
t operator. Finally we observe that the approximationproperty (3.4) implies

∀ 0 < ν ≤ ν1 : ‖Aν(I − Ph)‖ ≤ aνξ
ν
h, 0 < h ≤ h0,(3.5)whi
h follows from the fa
t that Aν and Ph are symmetri
 operators. The pre
edingnotations are summarized in the following basi
 assumption:Assumption 3.1. 1. H denotes a real Hilbert spa
e, and A ∈ L(H) is symmetri
and positive semide�nite.2. For 0 < h ≤ h0 let Vh ⊂ H be a �nite-dimensional linear subspa
e and let

Ph, Ah ∈ L(H) be as in (1.7), (1.6). We suppose that the approximation property(3.3) is ful�lled for some ν1 ≥ 1, with ξh as in (3.2). In the sequel h is supposed tobe �xed.3. Let u∗ ∈ R(Aν) with some ν > 0, and let δ ≥ 0 and f δ ∈ H with
‖Au∗ − f δ‖ ≤ δ.4. Finally we introdu
e the numbers

̺ := ‖u∗‖ν ,(3.6)
bν := amin{ν,ν1}‖A‖max{0,ν−ν1},

η(h, δ) := δ + a1bν̺ξ
min{ν,ν1}+1
h ,
f. (3.1) for the de�nition of ‖ · ‖ν .From Assumption 3.1 it follows immediately that

‖(I − Ph)u∗‖ ≤ bν̺ξ
min{ν,ν1}
h ,(3.7)

‖APhu∗ − f δ‖ ≤ η(h, δ),(3.8)whi
h are estimates that shall be used at several o

asions.3.2. The dis
repan
y prin
iple as stopping rule for the method of 
on-jugate residuals. Assume that the iteration pro
ess, des
ribed by Algorithm 2.2,generates iterates 0 = u0, u1, u2, . . . , un∗
∈ Vh, where 0 ≤ n∗ < ∞ denotes the �naliteration step. Then for any 0 ≤ n ≤ n∗ there exists a unique polynomial (dependingon Ah and Phf

δ)
qn ∈ Πn−1(3.9)su
h that

un = qn(Ah)Phf
δ.(3.10)Here, Π−1 := {0}, and Πn−1 =

{

q : q is a polynomial of degree ≤ n − 1
}

, n =
1, 2, . . . . We next introdu
e

∆n := ‖Ahun − Phf
δ‖, 0 ≤ n ≤ n∗,(3.11)



6 3. THE MAIN SECTIONthe norm of the residual. From (2.1) we obtain
∆n ≤ ∆n−1, 1 ≤ n ≤ n∗,(3.12)and typi
ally ∆n de
ays fast and be
omes small after a small number of iterations n.In the in�nite-dimensional setting (Ph = I), a regularization method 
an be obtainedby stopping the iteration when ∆n ≈ δ and taking un ∈ H then as approximationfor the desired solution, for referen
es see Subse
tion 3.3.2. In our situation (Ph 6= I)several other 
ases, however, has to be taken into a

ount to de�ne a stopping ruleas well as a 
orresponding approximation that guarantees best possible 
onvergen
erates, and in fa
t the pre
ise stopping 
riterion is presented next.Definition 3.2. (A dis
repan
y prin
iple as stopping rule) Suppose that As-sumption 3.1 holds. Let un ∈ Vh, n = 0, 1, . . . , be generated by the method of 
onju-gate residuals, and let b > 1. Stop iteration at step n := n, if

∆n ≤ bδ or qn(0) ≥ ξ−1
h or n = n∗.Then de�ne

u(h, δ) :=

{

un−1, if qn(0) ≥ ξ−1
h ,

un, if qn(0) < ξ−1
h .

(3.13)We remark that the numbers qn(0), 0 ≤ n ≤ n∗, in
rease as n in
reases, 
f. alsoLemma 5.1 below. Moreover, qn(0) 
an be 
omputed easily from the three-termre
urren
e










q0(0) = 0, q1(0) = α0,

qn+1(0) =
(

1 + αnβn−1

αn−1

)

qn(0) − αnβn−1

αn−1

qn−1(0) + αn,

1 ≤ n ≤ n∗ − 1,

(3.14)whi
h follows immediately from the �rst equalities in (2.3) and (2.4) and from theuniqueness of qn(t) in (3.9), (3.10). Note that (3.14) in parti
ular means that thesituation qn(0) ≥ ξ−1
h may arise only for n ≥ 1, i.e., the de�nition (3.13) makes sense.3.3. Statement of the main result. We next present the main result of thispaper.Theorem 3.3. Suppose that Assumption 3.1 holds. Moreover, let un ∈ Vh, n =

0, 1, . . . be de�ned by Algorithm 2.2, and let the iteration be stopped a

ording to thestopping rule presented in De�nition 3.2, with 
orresponding approximation u(h, δ) ∈
Vh. Then

‖u∗ − u(h, δ)‖ ≤ eν

(

(

̺δν
)1/(ν+1)

+ ̺ξ
min{ν,ν1}
h

)

.(3.15)The 
onstant eν is independent of δ, h and ̺ (and depends on ν and b).The proof of Theorem 3.3 shall be given in Se
tion 5.3.3.1. Con
lusions. (1) The estimate in (3.15) is order-optimal with respe
t tothe noise in the right-hand side and with respe
t to the dis
retization, respe
tively.Moreover, no knowledge of the degree of smoothness of the solution u∗ is required toobtain the approximations u(h, δ). Finally, no inverse property asso
iated with quasi-uniformity of the spa
es Vh is needed and no stability of the Galerkin method for thesolution of (1.1) is required (both properties usually are needed for the 
onvergen
eanalysis of Galerkin methods).



7(2) Suppose that u∗ is a solution of equation (1.1) that satis�es u∗ ∈ R(Aν) forsome 0 < ν ≤ ν1. If h is 
hosen su�
iently small, i.e., if ξν+1
h ≤ δ is satis�ed, thenTheorem 3.3 guarantees an order-optimal estimate

‖u∗ − u(h, δ)‖ = O
(

δν/(ν+1))for the approximations.(3) In Theorem 3.3, the noise-free 
ase δ = 0 itself is of interest. Note that thestopping rule given in De�nition 3.2 as well as the 
orresponding error estimate inTheorem 3.3 makes sense also in this 
ase.(4) In [25℄ a similar approa
h is 
arried out for the 
lassi
al 
onjugate gradientmethod of Hestenes and Stiefel applied to a normalized system of equations asso
iatedwith arbitrary linear ill-posed problems in Hilbert spa
es.(5) We note that the operator Ah 
an be 
on
eived as a spe
i�
 perturbation ofthe operator A ∈ L(H). More generally as in our situation, Nemirovski�� [21℄ 
onsiders
onjugate gradient type methods for linear ill-posed problems with arbitrary linearperturbations of the underlying operator; for example, in the situation (1.2)�(1.4) themethod of 
onjugate residuals is applied to the perturbed equation Aηu = f δ where
Aη ∈ L(H) is an arbitrary positive semide�nite operator satisfying ‖Aη −A‖ ≤ η. Itis shown in [21℄ for a spe
i�
 stopping rule providing approximations u(η, δ) ∈ H thatan estimate of the following kind is satis�ed, ‖u∗−u(η, δ)‖ = O

((

η+ δ
)ν/(ν+1))

. Wethus 
an 
on
lude that the result (3.15) improves the result obtained in [21℄, if one
onsiders spe
i�
 operator perturbations generated by proje
tion methods.3.3.2. Further bibliographi
al remarks on 
onjugate gradient type meth-ods for linear ill-posed problems. In this subse
tion we refer to related resultsobtained for 
onjugate gradient type methods to solve linear ill-posed problems.(1) Convergen
e results for pre
ise data are presented in Kammerer & Nashed [14℄,Nemirovski�� & Polyak ([22℄, [23℄), Brakhage [2℄, Louis [19℄ and Hanke [13℄.(2) Results for noisy right-hand sides (and pre
isely given operators) are obtainede.g., in King [15℄, Lardy [18℄, in Ei
ke, Louis & Plato [3℄, Plato ([24℄, [26℄), Hanke [12℄,and in Gilyazov [8℄. For re
ent monographs 
ontaining asso
iated results we refer toGilyazov [7℄, Hanke [11℄, Engl, Hanke & Neubauer [4℄ and Kirs
h [16℄.4. Numeri
al Illustrations.4.1. The spa
es. In our numeri
al experiments, as underlying spa
e we 
onsiderthe real spa
e of square-integrable real-valued fun
tions on the interval [0, 1],
H = L2[0, 1],supplied with the inner produ
t

〈u, v〉 =

∫ 1

0

u(t)v(t) dt, u, v ∈ L2[0, 1],and the 
orresponding norm is
‖u‖ = 〈u, u〉1/2, u ∈ L2[0, 1].For the Galerkin s
heme (1.5) we use spa
es of linear splines

Vh =
{

uh ∈ C[0, 1] : uh is linear on [tj−1, tj ], j = 2, . . . , N
}

,(4.1)



8 4. NUMERICAL ILLUSTRATIONSwhere
h = 1/(N − 1),

tj = (j − 1)h, j = 1, 2, . . . , N,and C[0, 1] denotes the spa
e of real-valued 
ontinuous fun
tions de�ned on the in-terval [0, 1]. The following approximation property is valid for those fun
tions ψ :
[0, 1] → R where ψ and ψ′ are absolutely 
ontinuous fun
tions and where ψ′′ ∈ L2[0, 1],
f. Ha
kbus
h [9℄, Chapter 4.5.9:

‖(I − Ph)ψ‖ ≤ 1√
90
h2‖ψ′′‖, h > 0.(4.2)Finally, as basis fun
tions for Vh the standard hat fun
tions Ψj ∈ Vh, j = 1, . . . , N,are taken, i.e., one has

Ψj(tk) =

{

1, k = j
0, k 6= j

,and the Gram matrix G =
(

〈Ψj ,Ψi〉
) then has the formG =

h

6



















2 1 0 . . . 0

1 4
. . . . . . ...

0
. . . . . . . . . 0... . . . . . . 4 1

0 . . . 0 1 2



















∈ R
(N,N).4.2. Symm's integral equation for 
ir
les Γ.4.2.1. Introdu
tion. In our numeri
al experiments, for 
ir
les Γ = Γρ =

{

x ∈
R

2 : |x| = ρ
} with radius ρ we shall 
onsider Symm's weakly singular integralequation whi
h for a standard parametrization of Γρ looks as follows,

(Au)(t) := −
∫ 1

0

log |2ρ sinπ(t− s)|u(s) ds = f(t), t ∈ [0, 1],(4.3)see Vainikko [29℄ or Chapter 3.3 in Kirs
h [16℄ for an introdu
tion. It turns out thatfor 0 < ρ ≤ 1, the operator A : L2[0, 1] → L2[0, 1] is 
ompa
t, symmetri
 and positivesemide�nite, and the following de
omposition is valid (here presented in 
omplexform),
(Au)(t) = −(log ρ)û(0) +

1

2

∑

06=n∈Z

1

|n| û(n)ei2πnt, t ∈ [0, 1],(4.4)where û(n) =
∫ 1

0 u(t)e
−i2πnt dt denotes the n-th Fourier 
oe�
ient of u ∈ L2[0, 1]. Itfollows from the de
omposition (4.4) that equation (4.3) is modestly ill-posed.We next show that the approximation property (3.3) is valid for ξh = h, ν1 = 2

(and for H = L2[0, 1], for the operator A as in (4.3) and for the subspa
es Vh as in(4.1)). For this purpose let Hλ[0, 1], λ > 0, be the Sobolev spa
e of (real-valued)fun
tions u ∈ L2[0, 1] with
‖u‖Hλ :=

(

|û(0)|2 +
∑

06=n∈Z

|n|2λ|û(n)|2
)1/2

<∞.



4.2 Symm's integral equation for 
ir
les Γ 9From the eigenvalue de
omposition (4.4) of A one easily derives
R(Aν ) = Hν [0, 1], ν > 0,(4.5)for 0 < ρ < 1; for ρ = 1, �=� in (4.5) has to be repla
ed by �⊂�. Moreover we seethat sup06=u∈L2[0,1] ‖A2u‖H2/‖u‖ < ∞, and then the estimate (4.2) yields that theestimate in (3.3) is valid for the spe
i�
 
ase ν = 2

(and ξh = h
); the interpolationinequality (
f. Fattorini [5℄, Examples 6.3.6 and 6.3.7) then �nally yields that theapproximation property in (3.3) is valid in its general form.4.2.2. Spe
i�
 right-hand sides. In the numeri
al experiments with Symm'sintegral equation for 
ir
les the following radius is 
hosen,

ρ =
1

2
,and as right-hand side we 
onsider

f∗(t) =

{

(

2πt
)2
, 0 ≤ t ≤ 0.5,

(

2π(1 − t)
)2
, 0.5 ≤ t ≤ 1,

=
π2

3
+ 4

∞
∑

n=1

(−1)n

n2
cos(2πnt), 0 ≤ t ≤ 1.Then the fun
tion

u∗(s) =
π2

3 log 2
+ 8

∞
∑

n=1

(−1)n

n
cos(2πns), 0 ≤ s ≤ 1,solves the equation Au = f∗, where A is as in (4.3), and we obviously have

u∗ ∈ Hλ[0, 1] for λ <
1

2
,(4.6)

u∗ 6∈ H1/2[0, 1].(4.7)4.2.3. Spe
i�
 
hoi
e of the parameters, and the experiments. In thenumeri
al experiments we 
hoose perturbed right-hand sides f δ = f∗ + δ · v, where
v ∈ H has uniformly distributed random values with ‖v‖ ≤ 1, and where

δ = ‖f∗‖ · %/100,with % noise ∈
{

0.11, 0.33, 1.0, 3.0, 9.0
} in the implementations. The dimensionof the underlying system of equations is 
hosen as follows,

N = 128.Table 4.1 
ontains the results for the method of 
onjugate residuals, 
f. Algorithm2.2, whi
h is terminated by the stopping rule des
ribed in De�nition 3.2, with
b = 1.5.All 
omputations are performed in MATLAB on an IBM RISC/6000.Due to (4.5), (4.7) one 
annot derive from Theorem 3.3 that the entries in thethird 
olumn stay bounded as % of noise de
reases. On the other hand, however,due to (4.5), (4.6) it is no surprise that these entries in fa
t stay bounded in ourexperiments.



10 4. NUMERICAL ILLUSTRATIONSTable 4.1Numeri
al results for Symm's integral equation (4.3) for the 
ir
le Γ1/2

% noise ‖u(h, δ) − u∗‖ ‖u(h, δ) − u∗‖/
(

δ1/3 + h1/2
)

n ♯ �ops9.0 3.01 3.65 2 0.93e+063.0 1.93 3.22 3 0.98e+061.0 1.15 2.60 4 1.01e+060.33 0.76 2.29 5 1.05e+060.11 0.37 1.42 7 1.12e+064.3. Harmoni
 
ontinuation of a fun
tion.4.3.1. Introdu
tion. To illustrate the results numeri
ally on
e more, we next
onsider the problem of harmoni
 
ontinuation. For this purpose let
D =

{

x ∈ R
2 : x2

1 + x2
2 < 1

}be the open unit disk in the plane, let the fun
tion v : D → R be 
ontinuous on D,the 
losure of D, and let v be harmoni
 on D, i.e.,
(∆v)(x) =

(∂2v

∂x2
1

+
∂2v

∂x2
2

)

(x) = 0, x ∈ D.The problem then 
an be des
ribed as follows: we assume that v is known approxi-mately on the boundary of a 
on
entri
 disk of radius 0 < ρ < 1, i.e., the fun
tion
f(t) = v(ρ, 2πt), 0 ≤ t ≤ 1,is assumed to be known approximately; from these informations we wish to determine

v on the boundary of D, i.e.,
u(s) = v(1, 2πs), 0 ≤ s ≤ 1,is the unknown fun
tion whi
h has to be determined. The 
orresponden
e betweenthe fun
tions u and f 
an be stated in terms of the following integral equation of the�rst kind (
f. Kress [17℄, Problem 15.3, or Mikhlin [20℄, Chapter 13):

(Au)(t) :=

∫ 1

0

k(t− s)u(s) ds = f(t), 0 ≤ t ≤ 1,(4.8)
k(t) :=

1 − ρ2

1 + ρ2 − 2ρ cos(2πt)
.(4.9)It turns out that for 0 < ρ < 1, the operator A : L2[0, 1] → L2[0, 1] in (4.8) is 
ompa
t,symmetri
 and positive semide�nite, and the following de
omposition is valid (againgiven in 
omplex form),

(Au)(t) =
∑

n∈Z

ρ|n|û(n)ei2πnt, t ∈ [0, 1];(4.10)from this de
omposition (4.10) it follows that (4.8)�(4.9) is severely ill-posed. The rep-resentation (4.10) yields moreover that for arbitrarily small ν1 > 0 one has R(Aν1 ) ⊂
H2[0, 1] and

sup
06=u∈L2[0,1]

‖Aν1u‖H2/‖u‖ <∞,



11and then estimate (4.2) and the interpolation inequality yield that the approximationproperty in (3.3) is valid in our situation for ν1 = 1 and ξh = h2.4.3.2. Spe
i�
 right-hand sides. In our numeri
al illustrations for the prob-lem of harmoni
 
ontinuation we 
onsider
f∗(t) = 1 + 2

∞
∑

n=1

ρ2n cos(2πnt), 0 ≤ t ≤ 1,(4.11)as right-hand side in (4.8), and the representation (4.10) yields that
u∗(s) = 1 + 2

∞
∑

n=1

ρn cos(2πns), 0 ≤ s ≤ 1,solves Au = f∗, where A is as in (4.8), (4.9); moreover,
u∗ ∈ R(Aν) for 0 < ν < 1, u∗ 6∈ R(A),and thus it is no big surprise that the entries in the third 
olumn in the followingTable 4.2 stay bounded as % of noise de
reases.4.3.3. Spe
i�
 
hoi
e of the parameters, and the experiments. The fol-lowing table 
ontains the results for the method of 
onjugate residuals, 
f. Algorithm2.2, whi
h again is stopped a

ording to the stopping rule des
ribed in De�nition 3.2,with b = 1.5. The perturbations of the right-hand side f∗ in (4.11) are employed sim-ilar as for Symm's integral equation in Se
tion 4.2. The dimension of the underlyingsystem of equations again is N = 128. The 
onstant ρ is 
hosen as follows, ρ = 1/2.Table 4.2Numeri
al results for the problem of harmoni
 
ontinuation

% noise ‖u(h, δ) − u∗‖ ‖u(h, δ) − u∗‖/
(

δ1/2 + h2
)

n ♯ �ops9.0 0.35 1.13 2 0.94e+063.0 0.24 1.33 3 0.98e+061.0 0.11 1.07 3 0.98e+060.33 0.07 1.25 4 1.02e+060.11 0.04 1.17 5 1.05e+06In Figure 4.1, the result for % noise = 1.0 is demonstrated.5. Basi
 properties of the method of 
onjugate residuals. Throughoutthis se
tion let Ah ∈ L(H) be as in (1.6). We start with a preliminary subse
tion on aspe
tral representation of Ah (
f. Se
tion 5.1), and then (
f. Se
tions 5.2-5.4) we shallre
all some well-known results for the method of 
onjugate residuals, and for the sakeof 
onvenien
e of the reader we frequently also provide the 
orresponding proofs.5.1. Spe
tral de
omposition of Ah. In the sequel, at several pla
es we shallmake use of the following (uniquely determined) spe
tral representation of Ah,
Ah =

m
∑

j=1

λjQj.



12 5. BASIC PROPERTIES OF THE METHOD OF CONJUGATE RESIDUALSFig. 4.1. Exa
t solution u∗ (solid line) and re
onstru
tion u(h, δ) (dashed line) for 1.0% noisein the right-hand side.
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Here, 0 < λ1 < λ2 < . . . < λm denote the pairwise distin
t, non-vanishing eigenvaluesof Ah ∈ L(H), and Qj ∈ L(H) denote the asso
iated orthogonal proje
tions onto
N (Ah − λjI) for j = 1, 2, . . . ,m. For later notational 
onvenien
e we also de�ne

λ0 = 0and denote by Q0 ∈ L(H) the orthogonal proje
tion onto N (Ah).For any bounded fun
tion ψ : R+ → R, an operator ψ(Ah) ∈ L(H) is de�ned by
ψ(Ah) :=

m
∑

j=0

ψ(λj)Qj .(5.1)Note that for polynomials ψ, this de�nition (5.1) 
oin
ides with the usual meaning of
ψ(Ah). It is also useful to introdu
e the resolution of the identity,

Fτ :=
∑

j≥0: λj≤τ

Qj , τ > 0,(5.2)and then we have
I −Fτ =

∑

j>0: λj>τ

Qj , τ > 0.(5.3)The following properties will be useful: for any bounded fun
tion ψ : R+ → R wehave
‖Fτψ(Ah)‖ ≤ sup

0≤t≤τ
|ψ(t)|, τ > 0,(5.4)

Phψ(Ah) = ψ(Ah)Ph,(5.5)where Ph ∈ L(H) is as in (1.7). In fa
t, (5.4) follows immediately from the de�nitions,while (5.5) is obtained from the following fa
ts: for any j there exists a polynomial
p su
h that p(Ah) = Qj , and sin
e Php(Ah) = p(Ah)Ph is valid for ea
h polynomial
p, it is now obvious that QjPh = PhQj, and the de�nition (5.1) then �nally yields(5.5).



5.2 First properties of the method of 
onjugate residuals 135.2. First properties of the method of 
onjugate residuals. In the sequelwe assume that Assumption 3.1 is ful�lled, and we assume that the iteration pro
essdes
ribed in Algorithm 2.2 generates iterates u0, u1, . . . , un∗
∈ Vh, where n∗ ≥ 0denotes the �nal step. Then for the residuals rn = Ahun − Phf
δ, 
f. (2.2), we have

rn = −pn(Ah)Phf
δ,for any 0 ≤ n ≤ n∗, with residual polynomials

pn(t) = 1 − tqn(t),(5.6)
f. (3.9), (3.10) for the introdu
tion of qn(t). We next state an important property ofthe method of 
onjugate residuals whi
h is an immediate 
onsequen
e of (2.1).Minimum property. For 0 ≤ n ≤ n∗,
‖rn‖ = ‖

(

I −Ahqn(Ah)
)

Phf
δ‖ ≤ ‖

(

I −Ahq(Ah)
)

Phf
δ‖ for all q ∈ Πn−1,or equivalently,

‖rn‖ ≤ ‖s(Ah)Phf
δ‖ for any s ∈ Πn with s(0) = 1.(5.7)As an immediate 
onsequen
e of (5.7) we obtain:Conjuga
y property. For 0 ≤ n ≤ n∗ we have Ahrn ∈ Kn(Ah,Phf

δ)⊥, theorthogonal 
omplement of Kn(Ah,Phf
δ), and thus

0 = 〈Ahpn(Ah)Phf
δ, s(Ah)Phf

δ〉

=

m
∑

j=1

λjpn(λj)s(λj)‖QjPhf
δ‖2(5.8)for all s ∈ Πn−1.5.3. Some properties of the residual polynomials pn(t). The �rst equalitiesin (2.3) and (2.4) and the uniqueness of qn(t) in (3.9), (3.10) imply the three-termre
urren
e

p0(t) = 1, p1(t) = 1 − α0t,

pn+1(t) =
(

1 +
αnβn−1

αn−1
− αnt

)

pn(t) − αnβn−1

αn−1
pn−1(t), 1 ≤ n ≤ n∗ − 1,whi
h means that the system p0(t), . . . , pn∗

(t) forms, up to a normalization, a Sturmsequen
e, 
f. Chapter 5.6 in Stoer & Bulirs
h [28℄. Hen
e for n = 1, . . . , n∗, the zeros
{tj,n}j=1,...,n of pn(t) are simple and ful�ll an intertwining property; more expli
itly,if the zeros are ordered,

0 < t1,n < t2,n < . . . < tn,n, n = 1, . . . , n∗,(5.9)then
tk,n < tk,n−1 < tk+1,n, k = 1, . . . , n− 1, n = 2, . . . , n∗,(5.10)is satis�ed. Due to pn(0) = 1 we then have the following representation,

pn(t) =
n

∏

k=1

(

1 − t

tk,n

)

,(5.11)whi
h implies
0 ≤ pn(t) ≤ 1 for all 0 ≤ t ≤ t1,n.(5.12)



14 5. BASIC PROPERTIES OF THE METHOD OF CONJUGATE RESIDUALS5.4. Some properties of the polynomials qn(t). Property (5.6) yields
qn(t) =

1 − pn(t)

t
, t > 0 (0 ≤ n ≤ n∗),(5.13)and further properties of qn(t) are listed in the following lemma.Lemma 5.1. Let {qn(t)}0≤n≤n∗

and {pn(t)}1≤n≤n∗
be (arbitrary) polynomialsful�lling (3.9) and (5.6), respe
tively, and let the roots {tk,n}1≤k≤n of pn(t) be orderedas in (5.9). For 1 ≤ n ≤ n∗ we have:

qn(0) = −p′n(0) =

n
∑

k=1

t−1
k,n,(5.14)

qn(t) ≥ 0, 0 < t ≤ t1,n,(5.15)
qn(0) = sup

0≤t≤t1,n

qn(t).(5.16)If additionally the interla
ing property (5.10) is satis�ed, then
qn−1(0) ≤ qn(0),(5.17)
qn(0) ≤ t−1

1,n + qn−1(0).(5.18)Proof. The equalities in (5.14) follow from the representations (5.11) and (5.13).Moreover, (5.15) follows from (5.12) and (5.13). In order to prove (5.16) we observethat pn(t) is 
onvex on [0, t1,n]:
p′n(t) = −

n
∑

k=1

1

tk,n

n
∏

j=1

j 6=k

(

1 − t

tj,n

)

,

p′′n(t) =
∑

k

1

tk,n

∑

l 6=k

1

tl,n

∏

j 6=k,l

(

1 − t

tj,n

)

.Now (5.16) follows from (5.13). Moreover, (5.17) is ful�lled trivially for n = 1, andfor n ≥ 2 the intertwining property (5.10) yields
qn−1(0) =

n−1
∑

k=1

t−1
k,n−1 ≤

n−1
∑

k=1

t−1
k,n ≤

n
∑

k=1

t−1
k,n = qn(0),this is (5.17) for n ≥ 2. Finally, the intertwining property (5.10) yields also (for n ≥ 2;the 
ase n = 1 in (5.18) is trivial)

qn(0) = t−1
1,n +

n
∑

k=2

t−1
k,n ≤ t−1

1,n +

n−1
∑

k=1

t−1
k,n−1 = t−1

1,n + qn−1(0),this is (5.18). This 
ompletes the proof.We 
on
lude this se
tion with one more useful lemma.Lemma 5.2. Let µ > 0, and let n be an integer. For any polynomial qn(t) ∈
Πn−1 su
h that pn(t) = 1− tqn(t) has in
reasingly ordered positive roots {tk,n}1≤k≤n,
f. (5.9), the following estimate is valid,

Φ(t) := pn(t)tµ ≤
(

µqn(0)−1
)µ

, 0 ≤ t ≤ t1,n.(5.19)



15Proof. From the de�nition of Φ and the produ
t representation (5.11) of pn(t) weget immediately Φ(0) = Φ(t1,n) = 0, and Φ(t) > 0 for 0 < t < t1,n. Moreover,
p′n(t) = −pn(t)

n
∑

k=1

1

tk,n − t
.Now let 0 < t < t1,n with

Φ(t) = sup
0≤t≤t1,n

Φ(t).Hen
e 0 = Φ′(t), and then (5.14) yields
µpn(t)t

µ−1
= pn(t)t

µ
n

∑

k=1

1

tk,n − t

≥ pn(t)t
µ
qn(0),therefore t ≤ µqn(0)−1, and thus

sup
0≤t≤t1,n

Φ(t) = Φ(t) = pn(t)t
µ ≤ t

µ ≤
(

µqn(0)−1
)µ

,and this 
ompletes the proof of (5.19).6. Subsidiary results and the proof of Theorem 3.3. The following dia-gram illustrates the relations between the several lemmas and 
orollaries presented inthis se
tion:
Lemma 6.1 =⇒















Lemma 6.2 =⇒
{

Corollary 6.3
Corollary 6.4

Lemma 6.5
Lemma 6.6

}

=⇒ Corollary 6.7















=⇒ Proposition 6.8.Here, Corollaries 6.3 and 6.4 provide estimates for ‖u∗ − un‖ while Corollary6.7 yields an estimate for the norm ∆n−1 of the residual. Finally, Corollary 6.7 andProposition 6.8 then provide the tools for 
ompleting the proof of Theorem 3.3.6.1. Preliminaries. In the sequel, all arising 
onstants c1, c2, . . . are indepen-dent of δ, h and ̺
(introdu
ed in Assumption 3.1), and they may depend on b

(introdu
ed in De�nition 3.2), on aν , 0 ≤ ν ≤ ν1, (
f. (3.3)), and on ‖A‖, if notfurther spe
i�ed. We start with a lemma that 
an be applied also to other than
onjugate gradient type methods; for a similar result we refer to Hämarik [10℄.Lemma 6.1. Let parts 1. and 2. of Assumption 3.1 be ful�lled. Let ψ : [0, a] → Rbe a bounded fun
tion, and let µ > 0. Let Fτ , τ > 0, be the resolution of the identityasso
iated with Ah, 
f. de�nition (5.2). Then
‖Fτψ(Ah)PhA

µ‖

≤
(

sup
0≤t≤τ

|ψ(t)|tµ
)

+ c1

⌊µ⌋
∑

j=0

(

sup
0≤t≤τ

|ψ(t)|tj
)

ξ
min{µ−j,ν1+1}
h(6.1)

≤ c2

(

sup
0≤t≤τ

|ψ(t)|
)(

τµ + ξ
min{µ,ν1+1}
h

)

, τ > 0.(6.2)



16 6. SUBSIDIARY RESULTS AND THE PROOF OF THEOREM 3.3Here, ⌊µ⌋ denotes the greatest integer ≤ µ, and c1 and c2 are 
onstants that areindependent of h and ψ (and depend on µ).Proof. We have the following de
omposition (with k = ⌊µ⌋):
PhA

µ = Ph

[

Aµ −Ak
hA

µ−k
]

+ PhA
k
h(Aµ−k −Aµ−k

h ) + PhA
µ
h

= Ph

[

k−1
∑

j=0

Aj
hA(I − Ph)Aµ−j−1

]

+ PhA
k
h(Aµ−k −Aµ−k

h ) + PhA
µ
h(6.3)

(note that PhA
j
h = PhA

j
hPh for j ≥ 0

). Then multiplying both sides of (6.3) with
Fτψ(Ah) yields (6.1), if we take into a

ount that (5.4) as well as (3.4), (3.5) arevalid, and if we moreover use the estimates

‖Aγ −Aγ
h‖ ≤ 2‖A−Ah‖γ ≤ 4aγ

1ξ
γ
h , 0 < γ ≤ 1,(6.4)where the �rst of the estimates in (6.4) follows immediately from Lemma 1.1 in Chap-ter 4 of Vainikko & Veretennikov [30℄. To obtain (6.2), we use the elementary estimates

sup
0≤t≤τ

|ψ(t)|ts ≤
(

sup
0≤t≤τ

|ψ(t)|
)

τs, s > 0,as well as (re
all that we assume ξh ≤ 1
)







τ jξµ−j
h ≤ ξµ

h + τµ,

τ jξµ−j
h ≤ ξν1+1

h + τµ, if µ ≥ ν1 + 1,

τ jξν1+1
h ≤ ξν1+1

h + τµ,

(6.5)
(whi
h are applied in (6.1) for the three situations (i) µ ≤ ν1+1, (ii) µ ≥ ν1+1, µ−j ≤
ν1 + 1 and (iii) µ ≥ ν1 + 1, µ− j ≥ ν1 + 1

). This 
ompletes the proof.Lemma 6.2. Let Assumption 3.1 be valid. Let ϕ : R+ → R be bounded, and let
∆ := ‖

(

I −Ahϕ(Ah)
)

Phf
δ‖.Then for any τ > 0 we have

‖u∗ − ϕ(Ah)Phf
δ‖ ≤ τ−1

(

∆ + η(h, δ)
)

+
(

sup
0≤t≤τ

|ϕ(t)|
)

η(h, δ)

+ c3̺
(

sup
0≤t≤τ

|1 − tϕ(t)|
)(

τν + ξ
min{ν,ν1}
h

)

,where c3 is a 
onstant that is independent of δ, h, ̺ and ϕ (and depends on ν).Proof. For τ > 0 we have, with Fτ as in (5.2):
‖u∗ − ϕ(Ah)Phf

δ‖
(5.5)

≤ ‖(I −Fτ )
(

u∗ − ϕ(Ah)Phf
δ
)

‖ + ‖FτPh

(

u∗ − ϕ(Ah)Phf
δ
)

‖
+ ‖(I − Ph)u∗‖

(3.7)

≤ ‖(I −Fτ )
(

u∗ − ϕ(Ah)Phf
δ
)

‖ + ‖FτPh

(

u∗ − ϕ(Ah)Phf
δ
)

‖(6.6)
+ bν̺ξ

min{ν,ν1}
h .



6.1 Preliminaries 17In the sequel we shall estimate the �rst two terms on the right-hand side of (6.6).First, with Qj as in Se
tion 5.1 we have, 
f. (5.3),
‖
(

I −Fτ

)

(

u∗ − ϕ(Ah)Phf
δ
)

‖2 =
∑

j: λj>τ

‖Qj

(

u∗ − ϕ(Ah)Phf
δ
)

‖2

≤ τ−2
∑

j: λj>τ

λ2
j‖Qj

(

u∗ − ϕ(Ah)Phf
δ
)

‖2

≤ τ−2
m

∑

j=1

λ2
j‖Qj

(

u∗ − ϕ(Ah)Phf
δ
)

‖2

= τ−2‖Ah

(

u∗ − ϕ(Ah)Phf
δ
)

‖2

≤ τ−2
(

‖Ahu∗ − Phf
δ‖ + ∆

)2

(3.8)

≤ τ−2
(

η(h, δ) + ∆
)2

.Se
ond, by assumption we have the representation, u∗ = Aνz, ‖z‖ = ̺, 
f. (3.6), thus
u∗ − ϕ(Ah)Phf

δ =
(

I − ϕ(Ah)Ah

)

Aνz + ϕ(Ah)
(

Ahu∗ − Phf
δ
)

,(6.7)and then Lemma 6.1 for µ = ν and the properties (5.4), (5.5) yield
‖FτPh

(

u∗ − ϕ(Ah)Phf
δ
)

‖

≤ ‖Fτ

(

I − ϕ(Ah)Ah

)

PhA
νz‖ + ‖Fτϕ(Ah)

(

Ahu∗ − Phf
δ
)

‖

≤ ‖Fτ

(

I − ϕ(Ah)Ah

)

PhA
ν‖̺ + ‖Fτϕ(Ah)‖η(h, δ)

≤ c2̺ sup
0≤t≤τ

(

|1 − tϕ(t)|
)

(

τν + ξ
min{ν,ν1}
h

)

+
(

sup
0≤t≤τ

|ϕ(t)|
)

η(h, δ)(re
all that we assume ξh ≤ 1). This 
ompletes the proof.In a �rst 
orollary we state a result whi
h is useful if the stopping rule given inDe�nition 3.2 leads to an immediate termination of the method of 
onjugate residuals,i.e., if we have n = 0.Corollary 6.3. Let Assumption 3.1 be valid, and suppose that
‖Phf

δ‖ ≤ C
(

δ + ̺ξ
min{ν,ν1}+1
h

)(6.8)holds for some 
onstant C > 0. Then
‖u∗‖ ≤ c4

(

(̺δν)1/(ν+1) + ̺ξ
min{ν,ν1}
h

)

,where c4 is a 
onstant that is independent of δ, h and ̺ (and depends on C and ν).Proof. It follows immediately from Lemma 6.2, with ϕ = 0, as well as from (6.8)that for τ > 0 we have the following estimate,
‖u∗‖ ≤

(

C + max{1, a1bν}
)

τ−1
(

δ+ ̺ξ
min{ν,ν1}+1
h

)

+ c3̺
(

τν + ξ
min{ν,ν1}
h

)

.(6.9)



18 6. SUBSIDIARY RESULTS AND THE PROOF OF THEOREM 3.3Without loss of generality we may suppose that ̺ 6= 0, and then we shall estimate theright-hand side of (6.9) for the spe
i�
 
hoi
e
τ =

( δ

̺

)1/(ν+1)

+ ξh.In fa
t,
τ−1δ ≤

( δ

̺

)−1/(ν+1)

δ =
(

̺δν
)1/(ν+1)

,

τ−1ξh ≤ 1,

̺τν ≤ ̺2ν
[( δ

̺

)ν/(ν+1)

+ ξ
min{ν,ν1}
h

]

= 2ν
(

(

̺δν
)1/(ν+1)

+ ̺ξ
min{ν,ν1}
h

)(re
all that we assume ξh ≤ 1). This 
ompletes the proof.6.2. Subsidiary results for the method of 
onjugate residuals. Now wereturn to the method of 
onjugate residuals. From Lemma 6.2 we get the following
orollary.Corollary 6.4. Let Assumption 3.1 be valid. Let {un}0≤n≤n∗
be as in De�ni-tion 2.1, and let {qn(t)}n and {∆n}n be as in (3.9)�(3.10) and (3.11), respe
tively.For any 1 ≤ n ≤ n∗ we have

‖u∗−un‖ ≤ τ−1
(

∆n+η(h, δ)
)

+ qn(0)η(h, δ) + c3̺
(

τν+ξ
min{ν,ν1}
h

)

, 0 < τ ≤ t1,n,with 
onstant c3 as in Lemma 6.2.Proof. We shall apply Lemma 6.2 with ϕ(t) = qn(t). In fa
t, we have
0 ≤ pn(t) = 1 − tqn(t) ≤ 1, 0 < t ≤ t1,n,
f. (5.6), (5.12), and from

0 ≤ qn(t) ≤ qn(0), 0 < t ≤ t1,n,
f. (5.15), (5.16), the assertion then follows immediately.We have obtained a �rst estimate for the error ‖u∗ − un‖. The next two lemmasprovide reasonable estimates for the norm ∆n of the residual.Lemma 6.5. Let Assumption 3.1 be valid. Let {un}0≤n≤n∗
be as in De�nition2.1, and let {qn(t)}n and {∆n}n be as in (3.9)�(3.10) and (3.11), respe
tively. Thenfor any 1 ≤ n ≤ n∗ we have

∆n ≤ δ + c5̺
(

qn(0)−(ν+1) + ξ
min{ν,ν1}+1
h

)

,(6.10)where c5 denotes a 
onstant that is independent of δ, h, ̺ and n (and depends on ν).Proof. We de
ompose and estimate as follows,
∆2

n =

m
∑

j=0

p2
n(λj)‖QjPhf

δ‖2

=
∑

j: λj≤t1,n

p2
n(λj)‖QjPhf

δ‖2 +
∑

j: λj>t1,n

p2
n(λj)‖QjPhf

δ‖2
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≤

∑

j: λj≤t1,n

p2
n(λj)‖QjPhf

δ‖2

+ t−1
1,n

∑

j: λj>t1,n

λjp
2
n(λj)

( λj

t1,n
− 1

)−1

‖QjPhf
δ‖2,(6.11)where the latter estimate follows from λ( λ

t1,n
− 1)−1 ≥ t1,n for λ > t1,n. In order toestimate (6.11), we observe that the 
onjuga
y property (5.8) yields

∑

j:λj>t1,n

λjp
2
n(λj)

( λj

t1,n
− 1

)−1

‖QjPhf
δ‖2 =

∑

j:λj≤t1,n

λjp
2
n(λj)

(

1 − λj

t1,n

)−1

‖QjPhf
δ‖2,and this applied in (6.11) yields, 
f. also (5.2),

∆2
n ≤

∑

j: λj≤t1,n

p2
n(λj)

[

1 +
λj

t1,n

(

1 − λj

t1,n

)−1]

‖QjPhf
δ‖2

=
∑

j: λj≤t1,n

p2
n(λj)

(

1 − λj

t1,n

)−1

‖QjPhf
δ‖2

= ‖Ft1,n
v1/2

n (Ah)Phf
δ‖2,(6.12)with (
f. (5.11))

vn(t) =
(

1 − t

t1,n

)[

n
∏

k=2

(

1 − t

tk,n

)2]

, 0 ≤ t ≤ t1,n,and vn(t) := 0 for t > t1,n. Note that 0 ≤ vn(t) ≤ 1 for all 0 ≤ t ≤ t1,n. We pro
eedwith an estimation of (6.12): from Assumption 3.1 and estimate (5.4) we obtain
∆n ≤ ‖Ft1,n

v1/2
n (Ah)Phf

δ‖
≤ ‖Ft1,n

v1/2
n (Ah)PhA

ν+1z‖ + ‖Ft1,n
v1/2

n (Ah)Ph(Au∗ − f δ)‖
≤ ‖Ft1,n

v1/2
n (Ah)PhA

ν+1‖̺ + ‖Ft1,n
v1/2

n (Ah)‖δ

≤ ‖Ft1,n
v1/2

n (Ah)PhA
ν+1‖̺ +

(

sup
0≤t≤t1,n

vn(t)
)1/2

δ

≤ ‖Ft1,n

√

|pn|(Ah)PhA
ν+1‖̺ + δ,(6.13)where it has been taken into a

ount that 0 ≤ 1− t

tk,n
≤ 1 holds for 0 ≤ t ≤ t1,n, k =

2, . . . , n. In order to provide further estimations of the right-hand side in (6.13), wenext shall apply Lemma 6.1 with µ = ν + 1; in fa
t, from the estimates (5.19) and(6.1) we get
∆n ≤

[(

2(ν + 1)qn(0)−1
)ν+1

+ c1

⌊ν+1⌋
∑

j=0

(

2jqn(0)−1
)j
ξ
min{ν−j,ν1}+1
h

]

̺ + δ,and pro
eeding then as in (6.5), with τ repla
ed by qn(0)−1, yields the assertion (6.10).This 
ompletes the proof.Lemma 6.6. Let Assumption 3.1 be valid. Let {un}0≤n≤n∗
be as in De�nition2.1, and let {qn(t)}n and {∆n}n be as in (3.9)�(3.10) and (3.11), respe
tively. Fix

1 ≤ n ≤ n∗, θ > 2 and 2 < κ ≤ 2(θ − 1). If
θqn−1(0) ≤ qn(0),(6.14)
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κ− 2

κ− 1
∆n−1 ≤ δ + c6̺

(

qn(0)−(ν+1) + ξ
min{ν,ν1}+1
h

)

,where c6 is a 
onstant that is independent of δ, h, ̺ and n (and depends on θ and
κ
). Proof. Let

s(t) := pn(t)
(

1 − t

t1,n

)−1

=

n
∏

k=2

(

1 − t

tk,n

)

,(6.15)where pn(t) is as in (5.6), (5.11). We have s ∈ Πn−1 and s(0) = 1, and the minimumproperty (5.7) then yields
∆2

n−1 ≤ ‖s(Ah)Phf
δ‖2

=
∑

j: λj≤κt1,n

s2(λj)‖QjPhf
δ‖2 +

∑

j: λj>κt1,n

s2(λj)‖QjPhf
δ‖2

≤
∑

j: λj≤κt1,n

s2(λj)‖QjPhf
δ‖2 + (κ− 1)−2

∑

j: λj>κt1,n

p2
n(λj)‖QjPhf

δ‖2(6.16)
≤

∑

j: λj≤κt1,n

s2(λj)‖QjPhf
δ‖2 + (κ− 1)−2

m
∑

j=0

p2
n(λj)‖QjPhf

δ‖2

= ‖Fκt1,n
s(Ah)Phf

δ‖2 + (κ− 1)−2∆2
n

≤ ‖Fκt1,n
s(Ah)Phf

δ‖2 + (κ− 1)−2∆2
n−1,(6.17)where (6.16) is valid sin
e we have (1 − t

t1,n
)−2 ≤ (κ − 1)−2 for t ≥ κt1,n; moreover,(6.17) follows from (3.12). A reformulation and further estimation of the right-handside in (6.17) then yields

κ− 2

κ− 1
∆n−1 ≤ ‖Fκt1,n

s(Ah)Phf
δ‖

≤ ‖Fκt1,n
s(Ah)PhA

ν+1z‖ + ‖Fκt1,n
s(Ah)Ph(Au∗ − f δ)‖

≤ ‖Fκt1,n
s(Ah)PhA

ν+1‖̺ + ‖Fκt1,n
s(Ah)‖δ.(6.18)Below we show that the estimates

κt1,n ≤ 2t2,n, if n ≥ 2,(6.19)
t1,n ≤ (1 − θ−1)−1qn(0)−1, if n ≥ 1,(6.20)are valid. Then, due to

|s(t)| ≤ 1, 0 ≤ t ≤ 2t2,n, if n ≥ 2,
(
f. (6.15))

s(t) = 1, t ∈ R, if n = 1,a further estimation of (6.18) yields, 
f. (5.4), (6.2),
κ− 2

κ− 1
∆n−1 ≤ δ + c2̺

(

(

κt1,n

)ν+1
+ ξ

min{ν,ν1}+1
h

)

≤ δ + c2̺
(

(

βqn(0)
)−(ν+1)

+ ξ
min{ν,ν1}+1
h

)

,
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onjugate residuals 21with β := (1 − θ−1)/κ, and with 
onstant c2 as in Lemma 6.1.It remains to show that the estimates (6.19), (6.20) are valid. For this purposewe re
all that the assumption (6.14) and the estimate (5.18) yield
θqn−1(0) ≤ qn(0) ≤ t−1

1,n + qn−1(0),(6.21)and this implies immediately (6.20). We next show that (6.19) is valid: in fa
t, fromthe estimate (6.21) we obtain
(θ − 1)t−1

1,n−1

(5.14)

≤ (θ − 1)qn−1(0) ≤ t−1
1,n,and thus

κt1,n ≤ κt1,n−1

θ − 1
≤ 2t1,n−1,and �nally t1,n−1 ≤ t2,n, 
f. (5.10), then yields (6.19). This 
ompletes the proof.Remarks. The proofs of Lemmas 6.5 and 6.6 follow the ideas of the paper byNemirovski�� [21℄ until estimates (6.13) and (6.18), respe
tively. Beyond that we makeuse of Lemma 6.1 whi
h is appli
able in our spe
i�
 situation and leads to betterresults than in [21℄; 
f. also part (5) in the 
on
lusions in Se
tion 3.3.1. △From Lemmas 6.5 and 6.6 we get:Corollary 6.7. Let Assumption 3.1 be valid. Let {un}0≤n≤n∗

be as in De�ni-tion 2.1, and let {qn(t)}n and {∆n}n be as in (3.9)�(3.10) and (3.11), respe
tively.For all 0 < γ < 1 we have
γ∆n−1 ≤ δ + c7̺

(

qn(0)−(ν+1) + ξ
min{ν,ν1}+1
h

)

, 1 ≤ n ≤ n∗,where c7 is a 
onstant that is independent of δ, h, ̺ and n (and depends on γ and
ν
). Proof. Let κ > 2 su
h that γ = (κ− 2)/(κ− 1) is valid. Moreover let θ > 2 su
hthat κ = 2(θ − 1) holds. From Lemmas 6.5 and 6.6 we obtain the desired result by
onsidering the two di�erent 
ases �θqn−1(0) ≤ qn(0)� and �θqn−1(0) > qn(0)�. Notethat in the latter 
ase we ne
essarily have n ≥ 2.Corollaries 6.4 and 6.7 enable us to prove the following lemma whi
h is presentedin a general form so that it may be applied for the 
ases n = n and n = n− 1, 
f. thespe
i�
 situations des
ribed in Subse
tion 6.3, respe
tively.Proposition 6.8. Let Assumption 3.1 be valid, and let b > 1. Let {un}0≤n≤n∗be as in De�nition 2.1, and let {qn(t)}n and {∆n}n be as in (3.9)�(3.10) and (3.11),respe
tively. Suppose that for some �xed n with 1 ≤ n ≤ n∗ we have

qn(0) ≤ ξ−1
h , bδ ≤ ∆n−1, ∆n ≤ C

(

δ + ̺ξ
min{ν,ν1}+1
h

)

,(6.22)where C denotes some 
onstant. Then
‖u∗ − un‖ ≤ c8

(

(

̺δν
)1/(ν+1)

+ ̺ξ
min{ν,ν1}
h

)

,where c8 is a 
onstant that is independent of δ, h, ̺ and n (and depends on C and
ν
). Proof. Corollary 6.4 and the assumption on ∆n, 
f. (6.22), yield for 0 < τ ≤ t1,n

‖u∗ − un‖ ≤ C1

(

[

τ−1 + qn(0)
]

(

δ + ̺ξ
min{ν,ν1}+1
h

)

+ ̺
(

τν + ξ
min{ν,ν1}
h

))

,(6.23)
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onstant C1, and we shall estimate the right-hand side of (6.23). For thispurpose let
ε =

( δ

̺

)1/(ν+1)

+ ξh,(6.24)
τ = min

{

ε, qn(0)−1
}

.Then we have, 
f. (5.14), τ ≤ qn(0)−1 ≤ t1,n, hen
e (6.23) is valid for this spe
i�

hoi
e of τ . Now the di�erent terms on the right-hand side of (6.23) remain to beestimated.(a) Similar as in the proof of Lemma 6.3 we obtain the following elementaryestimates (re
all that ξh ≤ 1
),

̺τν ≤ ̺εν ≤ 2ν
(

(

̺δν
)1/(ν+1)

+ ̺ξ
min{ν,ν1}
h

)

.(b) Sin
e by assumption ξh ≤ ε and ξh ≤ qn(0)−1, 
f. (6.22) and (6.24), respe
-tively, we have ξh ≤ τ and thus τ−1ξh ≤ 1.(
) We still have to estimate τ−1δ su�
iently good, and for this purpose we
onsider two di�erent 
ases. First, if qn(0) ≤ ε−1, then
τ = ε ≥

( δ

̺

)1/(ν+1)

,and thus
τ−1δ ≤

(

̺δν
)1/(ν+1)

,whi
h provides a su�
iently good estimate. Now suppose that
qn(0) > ε−1.(6.25)Then Corollary 6.7 and the assumption on ∆n−1 in (6.22) yields

bγδ < γ∆n−1 ≤ δ + c7̺
(

qn(0)−(ν+1) + ξ
min{ν,ν1}+1
h

)

.Here, 0 < γ < 1 is 
hosen su
h that bγ > 1, and then c7 is 
hosen a

ording toCorollary 6.7. Subtra
ting δ on both sides of the last inequality and multiplying thenboth sides with τ−1 yields
(bγ − 1)τ−1δ ≤ c7̺

(

qn(0)−ν + ξ
min{ν,ν1}
h

)

≤ c7
(

2ν + 1
)

̺
[( δ

̺

)1/(ν+1)

+ ξ
min{ν,ν1}
h

]

,where the assumption τ = qn(0)−1, 
f. (6.25), as well as the estimates in parts (a)and (b) of this proof have been applied. Thus τ−1δ is estimated su�
iently good inthis 
ase.(d) Finally we shall estimate qn(0)
(

δ+ ̺ξ
min{ν,ν1}+1
h

). In fa
t, qn(0) ≤ ξ−1
h holdsby assumption, and moreover we have qn(0) ≤ τ−1, thus with the result (
) of thisproof we 
an estimate qn(0)δ su�
iently good. This 
ompletes the proof.



6.3 The proof of Theorem 3.3 236.3. The proof of Theorem 3.3. As a preparation we remark that we haveby de�nition Ahrn∗
= 0, and thus

∆n∗
= ‖rn∗

‖ = dist
(

Phf
δ,R(Ah)

)

≤ η(h, δ).(6.26)Now we are in a position to prove the main result.(1) We �rst suppose that
“n = 0� or “n = 1, q1(0) ≥ ξ−1

h �,(6.27)any of these two 
ases leading to u(h, δ) = 0. We show below that in both 
ases wehave
‖Phf

δ‖ ≤ C
(

δ + ̺ξ
min{ν,ν1}+1
h

)(6.28)for an appropriate 
onstant C > 0, whi
h together with Corollary 6.3 yields anadequate estimate of ‖u∗ − u(h, δ)‖ = ‖u∗‖ for these 
ases in (6.27). We startwith the proof of (6.28): �rst, n = 0 means Ahr0 = 0
(and (6.26) then yields

∆0 = ‖Phf
δ‖ ≤ η(h, δ)

) or ∆0 = ‖Phf
δ‖ ≤ bδ, and thus we have ‖Phf

δ‖ ≤
max{b, a1bν}

(

δ + ̺ξ
min{ν,ν1}+1
h

), if n = 0. Moreover, if n = 1 and q1(0) ≥ ξ−1
h ,then Corollary 6.7 yields (re
all that ξh ≤ 1

)

γ‖Phf
δ‖ = γ∆0 ≤ δ + 2c7̺ξ

min{ν,ν1}+1
h ,where 0 < γ < 1 is arbitrary, and c7 is 
hosen as in Corollary 6.7. This 
ompletes theproof for the 
ases in (6.27).(2) We next 
onsider the remaining 
ases, i.e., n ≥ 1 and q1(0) < ξ−1

h .(a) First, if qn(0) < ξ−1
h , then we have ∆n ≤ bδ or Ahrn = 0, in any 
ase wehave ∆n ≤ max{b, a1bν}

(

δ + ̺ξ
min{ν,ν1}+1
h

), and then a su�
iently good estimatefor ‖u∗ − u(h, δ)‖ follows from Proposition 6.8 for n = n, sin
e also bδ < ∆n−1 holds.(b) Next suppose qn(0) ≥ ξ−1
h , and then n ≥ 2 and u(h, δ) = un−1 holds. Corol-lary 6.7 then provides the estimate

γ∆n−1 ≤ δ + 2c7̺ξ
min{ν,ν1}+1
h ,where 0 < γ < 1 is arbitrary, and c7 is 
hosen as in Corollary 6.7. Sin
e moreoverthe estimates bδ < ∆n−2 and qn−2(0) < ξ−1

h are valid, the assertion follows fromProposition 6.8 applied with n = n− 1. This 
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