
THE METHOD OF CONJUGATE RESIDUALS FOR SOLVING THEGALERKIN EQUATIONS ASSOCIATED WITH SYMMETRICPOSITIVE SEMIDEFINITE ILL-POSED PROBLEMSR. PLATO∗Abstrat. For the numerial solution of the Galerkin equations assoiated with linear ill-posedproblems that are symmetri and positive semide�nite, the method of onjugate residuals is onsid-ered. An a posteriori stopping rule is introdued, and assoiated estimates for the approximationsare provided whih are order-optimal with respet to noise in the right-hand side and with respetto the disretization error.Key words. Ill-posed problems, �rst kind integral equations, onjugate gradient typemethods, Galerkin method, regularization shemes, disrepany priniple, Symm's integralequation.AMS subjet lassi�ations. 65J20, 65R30, 45E99, 65N381. Introdution. In this paper we onsider equations of the form
Au = f∗,(1.1)where

A ∈ L(H), A = A∗ ≥ 0,(1.2)
f∗ ∈ R(A).(1.3)Here H denotes a real Hilbert spae with inner produt 〈·, ·〉 : H × H → R andorresponding norm ‖ · ‖ : H → R, L(H) denotes the spae of operators T : H → Hthat are bounded and linear, and A∗ ∈ L(H) in (1.2) denotes the adjoint operator of

A. Moreover, R(A) denotes the range of A whih in general is non-losed, and thenequation (1.1) is ill-posed. In the sequel we assume that only an approximation f δfor f∗ is available, more spei�ally,
f δ ∈ H, ‖f∗ − f δ‖ ≤ δ,(1.4)where δ ≥ 0 is a small and known error bound.For pratial reasons equation (1.1) has to be disretized, and in the sequel weshall onsider Galerkin equations assoiated with (1.1). For this purpose let
Vh ⊂ H, 0 < h ≤ h0,be given �nite-dimensional linear subspaes. For �xed h, the orresponding Galerkinequations for (1.1) are given by

Ahuh = Phf∗,(1.5)where
Ah : H → H, u 7→ PhAu,(1.6)
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2 2. THE METHOD OF CONJUGATE RESIDUALS FOR THE GALERKIN EQUATIONSand Ph denotes the orthogonal projetion onto Vh, i.e.,
Ph ∈ L(H), Ph = P2

h, Ph = P∗
h, R(Ph) = Vh.(1.7)In order to determine a solution u∗ ∈ H of equation (1.1) with noisy data as in (1.4)we shall apply the method of onjugate residuals to the Galerkin equations (1.5) (seethe next setion) assoiated with a disrepany priniple as stopping rule (f. Setion3 for its introdution), and this shall be done for the following reasons:1. Sine the underlying equation (1.1) is ill-posed, usually also the �nite-dimen-sional version (1.5) has to be regularized. It is shown in this paper thatthe method of onjugate residuals assoiated with the mentioned disrepanypriniple as a stopping rule has this desired regularizing property.2. Typially only a small number of iteration steps is needed until the methodof onjugate residuals terminates aording to the disrepany priniple, andthus this yields a numerially e�ient solver of equation (1.1).2. The method of onjugate residuals for the Galerkin equations.2.1. Desription of the method. We next introdue the method of onjugateresiduals for the Galerkin equations (1.5), and for this purpose in the sequel we assumethat the noise level δ > 0 and the disretization level h > 0 in onditions (1.2)-(1.4)and in (1.6)-(1.7) are �xed. Moreover we introdue the Krylov subspaes with respetto Ah and a vetor r ∈ Vh,

Kn(Ah, r) = span{r, Ahr, . . . , A
n−1
h r

}

⊂ Vh, n = 0, 1, . . . .Definition 2.1. Let onditions (1.2)�(1.4) be ful�lled, and let Ph, Ah ∈ L(H)be as in (1.7), (1.6). The method of onjugate residuals, applied to (1.5) with noisydata as in (1.4), iteratively generates a (terminating) sequene u0 = 0, u1, u2, . . . , with
un ∈ Vh and

{

un ∈ Kn(Ah,Phf
δ),

‖Ahun − Phf
δ‖ = infu∈Kn(Ah,Phfδ) ‖Ahu− Phf

δ‖,(2.1)and the algorithm terminates, by de�nition, at step n∗ := n ≤ dimVh if Ahrn = 0.Here, rn denotes the residual, i.e.,
rn = Ahun − Phf

δ ∈ Vh, n = 0, 1, . . . , n∗.(2.2)Remarks. 1. For notational onveniene, u0 = 0 is taken as starting vetor for themethod of onjugate residuals, and the dependene of δ and h on vetors and salarsthat arise in the ourse of iteration is not stated expliitly.2. The stopping index n to be de�ned in De�nition 3.2 below usually is muhsmaller than the �nal index n∗.3. For tehnial reasons we shall not onsider here the lassial method of onju-gate gradients where the iterates minimize the energy funtional J(u) = 1
2 〈Ahu, u〉 −

〈u,Phf
δ〉 over Kn(Ah,Phf

δ), n = 0, 1, . . . . △The basi algorithm for omputing un given by De�nition 2.1 is:Algorithm 2.2. (Method of onjugate residuals for (1.5) with noisy given right-hand side) Let onditions (1.2)�(1.4) be ful�lled, and let Ph, Ah ∈ L(H) be as in(1.7), (1.6). Step 0: Let u0 := 0, r0 = −Phf
δ.



2.2 Matrix formulation of the method of onjugate residuals for the Galerkin equations 3For n = 0, 1, . . . :1) If Ahrn = 0 then terminate, n∗ := n;2) If otherwise Ahrn 6= 0, then proeed with step n+1: ompute from un, dn−1

dn = −rn + βn−1dn−1, βn−1 =
〈Ahrn, rn〉

〈Ahrn−1, rn−1〉
,(2.3)

un+1 = un + αndn, αn =
〈Ahrn, rn〉
‖Ahdn‖2

.(2.4)Here we assume d−1 = 0, β−1 = 0.It follows from (2.2)�(2.4) that for 0 ≤ n ≤ n∗ − 1 we have
Ahdn = −Ahrn + βn−1Ahdn−1, rn+1 = rn + αnAhdn,(2.5)and in fat in any step for omputational reasons Ahdn and rn+1 are omputed asin (2.5) so that only one operator-vetor multipliation (to obtain Ahrn) has to beperformed in eah step.2.2. Matrix formulation of the method of onjugate residuals for theGalerkin equations. A matrix formulation of the method of onjugate residuals forpositive de�nite linear systems of equations is presented, e.g., in Stoer [27℄, and forother surveys on onjugate gradient type methods we refer to Ashby, Manteu�el &Saylor [1℄ and Freund, Golub & Nahtigal [6℄.For ompleteness we present a matrix formulation of the method of onjugateresiduals for our spei� situation (1.5), and for this purpose we denote by N thedimension of Vh. Then let Ψ1,Ψ2, . . . ,ΨN ∈ Vh be a basis of Vh, and let







G =
(

〈Ψj ,Ψi〉
)

∈ R
(N,N)B =

(

〈AΨj ,Ψi〉
)

∈ R
(N,N)f =

(

〈f δ,Ψi〉
)

∈ R
N

(2.6)The approximations un ∈ Vh, n = 0, 1, . . . , n∗, de�ned by Algorithm 2.2 then an berepresented as follows,
un =

N
∑

j=1

un,jΨj,where un = (un,j) ∈ R
N is determined by the following algorithm:Algorithm 2.3. (Method of onjugate residuals for (1.5) with noisy given right-hand side, matrix formulation) Let G, B and f as in (2.6). Step 0: Let u0 := 0 ∈

R
N , r0 = −G−1f ∈ R

N .For n = 0, 1, . . . :1) If Brn = 0 then terminate, n∗ = n;2) If otherwise Brn 6= 0, then proeed with step n+1: ompute from un, dn−1:dn = −rn + βn−1dn−1, βn−1 =
rT

nBrnrT
n−1Brn−1

,un+1 = un + αndn, αn =
rT

nBrneT
nGen

,where en := G−1Bdn.



4 3. THE MAIN SECTIONHere d−1 = 0, β−1 = 0.Note that the numbers αn and βn−1 in Algorithms 2.2 and 2.3 oinide, andthe vetors dn ∈ R
N and rn ∈ R

N are the oordinates of dn ∈ Vh and rn ∈ Vh,respetively, i.e.,
dn =

N
∑

j=1

dn,jΨj, rn =

N
∑

j=1

rn,jΨj.Note also that the vetors Bdn, rn+1 ∈ R
N an be omputed e�iently for 0 ≤ n ≤

n∗ − 1, Bdn = −Brn + βn−1Bdn−1, rn+1 = rn + αnG−1Bdn.3. The main setion.3.1. Approximation properties of the subspaes Vh. For a symmetri andpositive semide�nite operator A ∈ L(H) and arbitrary real ν > 0 we next de�ne
ν-norms on R(Aν),

‖u‖ν := min
{

‖z‖ : z ∈ H, Aνz = u
}

, u ∈ R(Aν).(3.1)Remark. Frational powers Aν ∈ L(H), ν > 0, as well as their elementary propertiesare presented e.g., in a more general framework, in Fattorini [5℄, Chapter 6.3. Forsymmetri and positive semide�nite operatorsA ∈ L(H) that are ompat and have anin�nite-dimensional range R(A), the frational powers Aν ∈ L(H) an be introduedin a simpli�ed manner. In fat, the following spetral representation of A is validthen,
A =

∞
∑

j=1

λjQj ,where λ1 > λ2 > . . . > 0 denote the pairwise distint, non-vanishing eigenvaluesof A ∈ L(H), and Qj ∈ L(H) denote the assoiated orthogonal projetions onto
N (A− λjI) for j ∈ N; the frational powers Aν ∈ L(H) then are given by

Aν =
∞
∑

j=1

λν
jQj. △In the sequel we shall assume that the subspaes {Vh} ful�ll an approximation propertywith respet to A, this is, for some integer
ν1 ≥ 1and some known

0 < ξh ≤ 1, 0 < h ≤ h0, with ξh → 0 as h→ 0,(3.2)we suppose that for ertain onstants aν > 0

∀ 0 < ν ≤ ν1 : inf
vh∈Vh

‖u− vh‖ ≤ aνξ
ν
h‖u‖ν, u ∈ R(Aν), 0 < h ≤ h0,(3.3)



3.2 The disrepany priniple as stopping rule for the method of onjugate residuals 5holds. Note that the approximation property (3.3) is equivalent to
∀ 0 < ν ≤ ν1 : ‖(I − Ph)Aν‖ ≤ aνξ

ν
h, 0 < h ≤ h0,(3.4)with Ph ∈ L(H) as in (1.7). Note moreover that if onditions (3.2), (3.4) are validthen A neessarily is a ompat operator. Finally we observe that the approximationproperty (3.4) implies

∀ 0 < ν ≤ ν1 : ‖Aν(I − Ph)‖ ≤ aνξ
ν
h, 0 < h ≤ h0,(3.5)whih follows from the fat that Aν and Ph are symmetri operators. The preedingnotations are summarized in the following basi assumption:Assumption 3.1. 1. H denotes a real Hilbert spae, and A ∈ L(H) is symmetriand positive semide�nite.2. For 0 < h ≤ h0 let Vh ⊂ H be a �nite-dimensional linear subspae and let

Ph, Ah ∈ L(H) be as in (1.7), (1.6). We suppose that the approximation property(3.3) is ful�lled for some ν1 ≥ 1, with ξh as in (3.2). In the sequel h is supposed tobe �xed.3. Let u∗ ∈ R(Aν) with some ν > 0, and let δ ≥ 0 and f δ ∈ H with
‖Au∗ − f δ‖ ≤ δ.4. Finally we introdue the numbers

̺ := ‖u∗‖ν ,(3.6)
bν := amin{ν,ν1}‖A‖max{0,ν−ν1},

η(h, δ) := δ + a1bν̺ξ
min{ν,ν1}+1
h ,f. (3.1) for the de�nition of ‖ · ‖ν .From Assumption 3.1 it follows immediately that

‖(I − Ph)u∗‖ ≤ bν̺ξ
min{ν,ν1}
h ,(3.7)

‖APhu∗ − f δ‖ ≤ η(h, δ),(3.8)whih are estimates that shall be used at several oasions.3.2. The disrepany priniple as stopping rule for the method of on-jugate residuals. Assume that the iteration proess, desribed by Algorithm 2.2,generates iterates 0 = u0, u1, u2, . . . , un∗
∈ Vh, where 0 ≤ n∗ < ∞ denotes the �naliteration step. Then for any 0 ≤ n ≤ n∗ there exists a unique polynomial (dependingon Ah and Phf

δ)
qn ∈ Πn−1(3.9)suh that

un = qn(Ah)Phf
δ.(3.10)Here, Π−1 := {0}, and Πn−1 =

{

q : q is a polynomial of degree ≤ n − 1
}

, n =
1, 2, . . . . We next introdue

∆n := ‖Ahun − Phf
δ‖, 0 ≤ n ≤ n∗,(3.11)



6 3. THE MAIN SECTIONthe norm of the residual. From (2.1) we obtain
∆n ≤ ∆n−1, 1 ≤ n ≤ n∗,(3.12)and typially ∆n deays fast and beomes small after a small number of iterations n.In the in�nite-dimensional setting (Ph = I), a regularization method an be obtainedby stopping the iteration when ∆n ≈ δ and taking un ∈ H then as approximationfor the desired solution, for referenes see Subsetion 3.3.2. In our situation (Ph 6= I)several other ases, however, has to be taken into aount to de�ne a stopping ruleas well as a orresponding approximation that guarantees best possible onvergenerates, and in fat the preise stopping riterion is presented next.Definition 3.2. (A disrepany priniple as stopping rule) Suppose that As-sumption 3.1 holds. Let un ∈ Vh, n = 0, 1, . . . , be generated by the method of onju-gate residuals, and let b > 1. Stop iteration at step n := n, if

∆n ≤ bδ or qn(0) ≥ ξ−1
h or n = n∗.Then de�ne

u(h, δ) :=

{

un−1, if qn(0) ≥ ξ−1
h ,

un, if qn(0) < ξ−1
h .

(3.13)We remark that the numbers qn(0), 0 ≤ n ≤ n∗, inrease as n inreases, f. alsoLemma 5.1 below. Moreover, qn(0) an be omputed easily from the three-termreurrene










q0(0) = 0, q1(0) = α0,

qn+1(0) =
(

1 + αnβn−1

αn−1

)

qn(0) − αnβn−1

αn−1

qn−1(0) + αn,

1 ≤ n ≤ n∗ − 1,

(3.14)whih follows immediately from the �rst equalities in (2.3) and (2.4) and from theuniqueness of qn(t) in (3.9), (3.10). Note that (3.14) in partiular means that thesituation qn(0) ≥ ξ−1
h may arise only for n ≥ 1, i.e., the de�nition (3.13) makes sense.3.3. Statement of the main result. We next present the main result of thispaper.Theorem 3.3. Suppose that Assumption 3.1 holds. Moreover, let un ∈ Vh, n =

0, 1, . . . be de�ned by Algorithm 2.2, and let the iteration be stopped aording to thestopping rule presented in De�nition 3.2, with orresponding approximation u(h, δ) ∈
Vh. Then

‖u∗ − u(h, δ)‖ ≤ eν

(

(

̺δν
)1/(ν+1)

+ ̺ξ
min{ν,ν1}
h

)

.(3.15)The onstant eν is independent of δ, h and ̺ (and depends on ν and b).The proof of Theorem 3.3 shall be given in Setion 5.3.3.1. Conlusions. (1) The estimate in (3.15) is order-optimal with respet tothe noise in the right-hand side and with respet to the disretization, respetively.Moreover, no knowledge of the degree of smoothness of the solution u∗ is required toobtain the approximations u(h, δ). Finally, no inverse property assoiated with quasi-uniformity of the spaes Vh is needed and no stability of the Galerkin method for thesolution of (1.1) is required (both properties usually are needed for the onvergeneanalysis of Galerkin methods).



7(2) Suppose that u∗ is a solution of equation (1.1) that satis�es u∗ ∈ R(Aν) forsome 0 < ν ≤ ν1. If h is hosen su�iently small, i.e., if ξν+1
h ≤ δ is satis�ed, thenTheorem 3.3 guarantees an order-optimal estimate

‖u∗ − u(h, δ)‖ = O
(

δν/(ν+1))for the approximations.(3) In Theorem 3.3, the noise-free ase δ = 0 itself is of interest. Note that thestopping rule given in De�nition 3.2 as well as the orresponding error estimate inTheorem 3.3 makes sense also in this ase.(4) In [25℄ a similar approah is arried out for the lassial onjugate gradientmethod of Hestenes and Stiefel applied to a normalized system of equations assoiatedwith arbitrary linear ill-posed problems in Hilbert spaes.(5) We note that the operator Ah an be oneived as a spei� perturbation ofthe operator A ∈ L(H). More generally as in our situation, Nemirovski�� [21℄ onsidersonjugate gradient type methods for linear ill-posed problems with arbitrary linearperturbations of the underlying operator; for example, in the situation (1.2)�(1.4) themethod of onjugate residuals is applied to the perturbed equation Aηu = f δ where
Aη ∈ L(H) is an arbitrary positive semide�nite operator satisfying ‖Aη −A‖ ≤ η. Itis shown in [21℄ for a spei� stopping rule providing approximations u(η, δ) ∈ H thatan estimate of the following kind is satis�ed, ‖u∗−u(η, δ)‖ = O

((

η+ δ
)ν/(ν+1))

. Wethus an onlude that the result (3.15) improves the result obtained in [21℄, if oneonsiders spei� operator perturbations generated by projetion methods.3.3.2. Further bibliographial remarks on onjugate gradient type meth-ods for linear ill-posed problems. In this subsetion we refer to related resultsobtained for onjugate gradient type methods to solve linear ill-posed problems.(1) Convergene results for preise data are presented in Kammerer & Nashed [14℄,Nemirovski�� & Polyak ([22℄, [23℄), Brakhage [2℄, Louis [19℄ and Hanke [13℄.(2) Results for noisy right-hand sides (and preisely given operators) are obtainede.g., in King [15℄, Lardy [18℄, in Eike, Louis & Plato [3℄, Plato ([24℄, [26℄), Hanke [12℄,and in Gilyazov [8℄. For reent monographs ontaining assoiated results we refer toGilyazov [7℄, Hanke [11℄, Engl, Hanke & Neubauer [4℄ and Kirsh [16℄.4. Numerial Illustrations.4.1. The spaes. In our numerial experiments, as underlying spae we onsiderthe real spae of square-integrable real-valued funtions on the interval [0, 1],
H = L2[0, 1],supplied with the inner produt

〈u, v〉 =

∫ 1

0

u(t)v(t) dt, u, v ∈ L2[0, 1],and the orresponding norm is
‖u‖ = 〈u, u〉1/2, u ∈ L2[0, 1].For the Galerkin sheme (1.5) we use spaes of linear splines

Vh =
{

uh ∈ C[0, 1] : uh is linear on [tj−1, tj ], j = 2, . . . , N
}

,(4.1)



8 4. NUMERICAL ILLUSTRATIONSwhere
h = 1/(N − 1),

tj = (j − 1)h, j = 1, 2, . . . , N,and C[0, 1] denotes the spae of real-valued ontinuous funtions de�ned on the in-terval [0, 1]. The following approximation property is valid for those funtions ψ :
[0, 1] → R where ψ and ψ′ are absolutely ontinuous funtions and where ψ′′ ∈ L2[0, 1],f. Hakbush [9℄, Chapter 4.5.9:

‖(I − Ph)ψ‖ ≤ 1√
90
h2‖ψ′′‖, h > 0.(4.2)Finally, as basis funtions for Vh the standard hat funtions Ψj ∈ Vh, j = 1, . . . , N,are taken, i.e., one has

Ψj(tk) =

{

1, k = j
0, k 6= j

,and the Gram matrix G =
(

〈Ψj ,Ψi〉
) then has the formG =

h

6



















2 1 0 . . . 0

1 4
. . . . . . ...

0
. . . . . . . . . 0... . . . . . . 4 1

0 . . . 0 1 2



















∈ R
(N,N).4.2. Symm's integral equation for irles Γ.4.2.1. Introdution. In our numerial experiments, for irles Γ = Γρ =

{

x ∈
R

2 : |x| = ρ
} with radius ρ we shall onsider Symm's weakly singular integralequation whih for a standard parametrization of Γρ looks as follows,

(Au)(t) := −
∫ 1

0

log |2ρ sinπ(t− s)|u(s) ds = f(t), t ∈ [0, 1],(4.3)see Vainikko [29℄ or Chapter 3.3 in Kirsh [16℄ for an introdution. It turns out thatfor 0 < ρ ≤ 1, the operator A : L2[0, 1] → L2[0, 1] is ompat, symmetri and positivesemide�nite, and the following deomposition is valid (here presented in omplexform),
(Au)(t) = −(log ρ)û(0) +

1

2

∑

06=n∈Z

1

|n| û(n)ei2πnt, t ∈ [0, 1],(4.4)where û(n) =
∫ 1

0 u(t)e
−i2πnt dt denotes the n-th Fourier oe�ient of u ∈ L2[0, 1]. Itfollows from the deomposition (4.4) that equation (4.3) is modestly ill-posed.We next show that the approximation property (3.3) is valid for ξh = h, ν1 = 2

(and for H = L2[0, 1], for the operator A as in (4.3) and for the subspaes Vh as in(4.1)). For this purpose let Hλ[0, 1], λ > 0, be the Sobolev spae of (real-valued)funtions u ∈ L2[0, 1] with
‖u‖Hλ :=

(

|û(0)|2 +
∑

06=n∈Z

|n|2λ|û(n)|2
)1/2

<∞.



4.2 Symm's integral equation for irles Γ 9From the eigenvalue deomposition (4.4) of A one easily derives
R(Aν ) = Hν [0, 1], ν > 0,(4.5)for 0 < ρ < 1; for ρ = 1, �=� in (4.5) has to be replaed by �⊂�. Moreover we seethat sup06=u∈L2[0,1] ‖A2u‖H2/‖u‖ < ∞, and then the estimate (4.2) yields that theestimate in (3.3) is valid for the spei� ase ν = 2

(and ξh = h
); the interpolationinequality (f. Fattorini [5℄, Examples 6.3.6 and 6.3.7) then �nally yields that theapproximation property in (3.3) is valid in its general form.4.2.2. Spei� right-hand sides. In the numerial experiments with Symm'sintegral equation for irles the following radius is hosen,

ρ =
1

2
,and as right-hand side we onsider

f∗(t) =

{

(

2πt
)2
, 0 ≤ t ≤ 0.5,

(

2π(1 − t)
)2
, 0.5 ≤ t ≤ 1,

=
π2

3
+ 4

∞
∑

n=1

(−1)n

n2
cos(2πnt), 0 ≤ t ≤ 1.Then the funtion

u∗(s) =
π2

3 log 2
+ 8

∞
∑

n=1

(−1)n

n
cos(2πns), 0 ≤ s ≤ 1,solves the equation Au = f∗, where A is as in (4.3), and we obviously have

u∗ ∈ Hλ[0, 1] for λ <
1

2
,(4.6)

u∗ 6∈ H1/2[0, 1].(4.7)4.2.3. Spei� hoie of the parameters, and the experiments. In thenumerial experiments we hoose perturbed right-hand sides f δ = f∗ + δ · v, where
v ∈ H has uniformly distributed random values with ‖v‖ ≤ 1, and where

δ = ‖f∗‖ · %/100,with % noise ∈
{

0.11, 0.33, 1.0, 3.0, 9.0
} in the implementations. The dimensionof the underlying system of equations is hosen as follows,

N = 128.Table 4.1 ontains the results for the method of onjugate residuals, f. Algorithm2.2, whih is terminated by the stopping rule desribed in De�nition 3.2, with
b = 1.5.All omputations are performed in MATLAB on an IBM RISC/6000.Due to (4.5), (4.7) one annot derive from Theorem 3.3 that the entries in thethird olumn stay bounded as % of noise dereases. On the other hand, however,due to (4.5), (4.6) it is no surprise that these entries in fat stay bounded in ourexperiments.



10 4. NUMERICAL ILLUSTRATIONSTable 4.1Numerial results for Symm's integral equation (4.3) for the irle Γ1/2

% noise ‖u(h, δ) − u∗‖ ‖u(h, δ) − u∗‖/
(

δ1/3 + h1/2
)

n ♯ �ops9.0 3.01 3.65 2 0.93e+063.0 1.93 3.22 3 0.98e+061.0 1.15 2.60 4 1.01e+060.33 0.76 2.29 5 1.05e+060.11 0.37 1.42 7 1.12e+064.3. Harmoni ontinuation of a funtion.4.3.1. Introdution. To illustrate the results numerially one more, we nextonsider the problem of harmoni ontinuation. For this purpose let
D =

{

x ∈ R
2 : x2

1 + x2
2 < 1

}be the open unit disk in the plane, let the funtion v : D → R be ontinuous on D,the losure of D, and let v be harmoni on D, i.e.,
(∆v)(x) =

(∂2v

∂x2
1

+
∂2v

∂x2
2

)

(x) = 0, x ∈ D.The problem then an be desribed as follows: we assume that v is known approxi-mately on the boundary of a onentri disk of radius 0 < ρ < 1, i.e., the funtion
f(t) = v(ρ, 2πt), 0 ≤ t ≤ 1,is assumed to be known approximately; from these informations we wish to determine

v on the boundary of D, i.e.,
u(s) = v(1, 2πs), 0 ≤ s ≤ 1,is the unknown funtion whih has to be determined. The orrespondene betweenthe funtions u and f an be stated in terms of the following integral equation of the�rst kind (f. Kress [17℄, Problem 15.3, or Mikhlin [20℄, Chapter 13):

(Au)(t) :=

∫ 1

0

k(t− s)u(s) ds = f(t), 0 ≤ t ≤ 1,(4.8)
k(t) :=

1 − ρ2

1 + ρ2 − 2ρ cos(2πt)
.(4.9)It turns out that for 0 < ρ < 1, the operator A : L2[0, 1] → L2[0, 1] in (4.8) is ompat,symmetri and positive semide�nite, and the following deomposition is valid (againgiven in omplex form),

(Au)(t) =
∑

n∈Z

ρ|n|û(n)ei2πnt, t ∈ [0, 1];(4.10)from this deomposition (4.10) it follows that (4.8)�(4.9) is severely ill-posed. The rep-resentation (4.10) yields moreover that for arbitrarily small ν1 > 0 one has R(Aν1 ) ⊂
H2[0, 1] and

sup
06=u∈L2[0,1]

‖Aν1u‖H2/‖u‖ <∞,



11and then estimate (4.2) and the interpolation inequality yield that the approximationproperty in (3.3) is valid in our situation for ν1 = 1 and ξh = h2.4.3.2. Spei� right-hand sides. In our numerial illustrations for the prob-lem of harmoni ontinuation we onsider
f∗(t) = 1 + 2

∞
∑

n=1

ρ2n cos(2πnt), 0 ≤ t ≤ 1,(4.11)as right-hand side in (4.8), and the representation (4.10) yields that
u∗(s) = 1 + 2

∞
∑

n=1

ρn cos(2πns), 0 ≤ s ≤ 1,solves Au = f∗, where A is as in (4.8), (4.9); moreover,
u∗ ∈ R(Aν) for 0 < ν < 1, u∗ 6∈ R(A),and thus it is no big surprise that the entries in the third olumn in the followingTable 4.2 stay bounded as % of noise dereases.4.3.3. Spei� hoie of the parameters, and the experiments. The fol-lowing table ontains the results for the method of onjugate residuals, f. Algorithm2.2, whih again is stopped aording to the stopping rule desribed in De�nition 3.2,with b = 1.5. The perturbations of the right-hand side f∗ in (4.11) are employed sim-ilar as for Symm's integral equation in Setion 4.2. The dimension of the underlyingsystem of equations again is N = 128. The onstant ρ is hosen as follows, ρ = 1/2.Table 4.2Numerial results for the problem of harmoni ontinuation

% noise ‖u(h, δ) − u∗‖ ‖u(h, δ) − u∗‖/
(

δ1/2 + h2
)

n ♯ �ops9.0 0.35 1.13 2 0.94e+063.0 0.24 1.33 3 0.98e+061.0 0.11 1.07 3 0.98e+060.33 0.07 1.25 4 1.02e+060.11 0.04 1.17 5 1.05e+06In Figure 4.1, the result for % noise = 1.0 is demonstrated.5. Basi properties of the method of onjugate residuals. Throughoutthis setion let Ah ∈ L(H) be as in (1.6). We start with a preliminary subsetion on aspetral representation of Ah (f. Setion 5.1), and then (f. Setions 5.2-5.4) we shallreall some well-known results for the method of onjugate residuals, and for the sakeof onveniene of the reader we frequently also provide the orresponding proofs.5.1. Spetral deomposition of Ah. In the sequel, at several plaes we shallmake use of the following (uniquely determined) spetral representation of Ah,
Ah =

m
∑

j=1

λjQj.



12 5. BASIC PROPERTIES OF THE METHOD OF CONJUGATE RESIDUALSFig. 4.1. Exat solution u∗ (solid line) and reonstrution u(h, δ) (dashed line) for 1.0% noisein the right-hand side.
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Here, 0 < λ1 < λ2 < . . . < λm denote the pairwise distint, non-vanishing eigenvaluesof Ah ∈ L(H), and Qj ∈ L(H) denote the assoiated orthogonal projetions onto
N (Ah − λjI) for j = 1, 2, . . . ,m. For later notational onveniene we also de�ne

λ0 = 0and denote by Q0 ∈ L(H) the orthogonal projetion onto N (Ah).For any bounded funtion ψ : R+ → R, an operator ψ(Ah) ∈ L(H) is de�ned by
ψ(Ah) :=

m
∑

j=0

ψ(λj)Qj .(5.1)Note that for polynomials ψ, this de�nition (5.1) oinides with the usual meaning of
ψ(Ah). It is also useful to introdue the resolution of the identity,

Fτ :=
∑

j≥0: λj≤τ

Qj , τ > 0,(5.2)and then we have
I −Fτ =

∑

j>0: λj>τ

Qj , τ > 0.(5.3)The following properties will be useful: for any bounded funtion ψ : R+ → R wehave
‖Fτψ(Ah)‖ ≤ sup

0≤t≤τ
|ψ(t)|, τ > 0,(5.4)

Phψ(Ah) = ψ(Ah)Ph,(5.5)where Ph ∈ L(H) is as in (1.7). In fat, (5.4) follows immediately from the de�nitions,while (5.5) is obtained from the following fats: for any j there exists a polynomial
p suh that p(Ah) = Qj , and sine Php(Ah) = p(Ah)Ph is valid for eah polynomial
p, it is now obvious that QjPh = PhQj, and the de�nition (5.1) then �nally yields(5.5).



5.2 First properties of the method of onjugate residuals 135.2. First properties of the method of onjugate residuals. In the sequelwe assume that Assumption 3.1 is ful�lled, and we assume that the iteration proessdesribed in Algorithm 2.2 generates iterates u0, u1, . . . , un∗
∈ Vh, where n∗ ≥ 0denotes the �nal step. Then for the residuals rn = Ahun − Phf
δ, f. (2.2), we have

rn = −pn(Ah)Phf
δ,for any 0 ≤ n ≤ n∗, with residual polynomials

pn(t) = 1 − tqn(t),(5.6)f. (3.9), (3.10) for the introdution of qn(t). We next state an important property ofthe method of onjugate residuals whih is an immediate onsequene of (2.1).Minimum property. For 0 ≤ n ≤ n∗,
‖rn‖ = ‖

(

I −Ahqn(Ah)
)

Phf
δ‖ ≤ ‖

(

I −Ahq(Ah)
)

Phf
δ‖ for all q ∈ Πn−1,or equivalently,

‖rn‖ ≤ ‖s(Ah)Phf
δ‖ for any s ∈ Πn with s(0) = 1.(5.7)As an immediate onsequene of (5.7) we obtain:Conjugay property. For 0 ≤ n ≤ n∗ we have Ahrn ∈ Kn(Ah,Phf

δ)⊥, theorthogonal omplement of Kn(Ah,Phf
δ), and thus

0 = 〈Ahpn(Ah)Phf
δ, s(Ah)Phf

δ〉

=

m
∑

j=1

λjpn(λj)s(λj)‖QjPhf
δ‖2(5.8)for all s ∈ Πn−1.5.3. Some properties of the residual polynomials pn(t). The �rst equalitiesin (2.3) and (2.4) and the uniqueness of qn(t) in (3.9), (3.10) imply the three-termreurrene

p0(t) = 1, p1(t) = 1 − α0t,

pn+1(t) =
(

1 +
αnβn−1

αn−1
− αnt

)

pn(t) − αnβn−1

αn−1
pn−1(t), 1 ≤ n ≤ n∗ − 1,whih means that the system p0(t), . . . , pn∗

(t) forms, up to a normalization, a Sturmsequene, f. Chapter 5.6 in Stoer & Bulirsh [28℄. Hene for n = 1, . . . , n∗, the zeros
{tj,n}j=1,...,n of pn(t) are simple and ful�ll an intertwining property; more expliitly,if the zeros are ordered,

0 < t1,n < t2,n < . . . < tn,n, n = 1, . . . , n∗,(5.9)then
tk,n < tk,n−1 < tk+1,n, k = 1, . . . , n− 1, n = 2, . . . , n∗,(5.10)is satis�ed. Due to pn(0) = 1 we then have the following representation,

pn(t) =
n

∏

k=1

(

1 − t

tk,n

)

,(5.11)whih implies
0 ≤ pn(t) ≤ 1 for all 0 ≤ t ≤ t1,n.(5.12)



14 5. BASIC PROPERTIES OF THE METHOD OF CONJUGATE RESIDUALS5.4. Some properties of the polynomials qn(t). Property (5.6) yields
qn(t) =

1 − pn(t)

t
, t > 0 (0 ≤ n ≤ n∗),(5.13)and further properties of qn(t) are listed in the following lemma.Lemma 5.1. Let {qn(t)}0≤n≤n∗

and {pn(t)}1≤n≤n∗
be (arbitrary) polynomialsful�lling (3.9) and (5.6), respetively, and let the roots {tk,n}1≤k≤n of pn(t) be orderedas in (5.9). For 1 ≤ n ≤ n∗ we have:

qn(0) = −p′n(0) =

n
∑

k=1

t−1
k,n,(5.14)

qn(t) ≥ 0, 0 < t ≤ t1,n,(5.15)
qn(0) = sup

0≤t≤t1,n

qn(t).(5.16)If additionally the interlaing property (5.10) is satis�ed, then
qn−1(0) ≤ qn(0),(5.17)
qn(0) ≤ t−1

1,n + qn−1(0).(5.18)Proof. The equalities in (5.14) follow from the representations (5.11) and (5.13).Moreover, (5.15) follows from (5.12) and (5.13). In order to prove (5.16) we observethat pn(t) is onvex on [0, t1,n]:
p′n(t) = −

n
∑

k=1

1

tk,n

n
∏

j=1

j 6=k

(

1 − t

tj,n

)

,

p′′n(t) =
∑

k

1

tk,n

∑

l 6=k

1

tl,n

∏

j 6=k,l

(

1 − t

tj,n

)

.Now (5.16) follows from (5.13). Moreover, (5.17) is ful�lled trivially for n = 1, andfor n ≥ 2 the intertwining property (5.10) yields
qn−1(0) =

n−1
∑

k=1

t−1
k,n−1 ≤

n−1
∑

k=1

t−1
k,n ≤

n
∑

k=1

t−1
k,n = qn(0),this is (5.17) for n ≥ 2. Finally, the intertwining property (5.10) yields also (for n ≥ 2;the ase n = 1 in (5.18) is trivial)

qn(0) = t−1
1,n +

n
∑

k=2

t−1
k,n ≤ t−1

1,n +

n−1
∑

k=1

t−1
k,n−1 = t−1

1,n + qn−1(0),this is (5.18). This ompletes the proof.We onlude this setion with one more useful lemma.Lemma 5.2. Let µ > 0, and let n be an integer. For any polynomial qn(t) ∈
Πn−1 suh that pn(t) = 1− tqn(t) has inreasingly ordered positive roots {tk,n}1≤k≤n,f. (5.9), the following estimate is valid,

Φ(t) := pn(t)tµ ≤
(

µqn(0)−1
)µ

, 0 ≤ t ≤ t1,n.(5.19)



15Proof. From the de�nition of Φ and the produt representation (5.11) of pn(t) weget immediately Φ(0) = Φ(t1,n) = 0, and Φ(t) > 0 for 0 < t < t1,n. Moreover,
p′n(t) = −pn(t)

n
∑

k=1

1

tk,n − t
.Now let 0 < t < t1,n with

Φ(t) = sup
0≤t≤t1,n

Φ(t).Hene 0 = Φ′(t), and then (5.14) yields
µpn(t)t

µ−1
= pn(t)t

µ
n

∑

k=1

1

tk,n − t

≥ pn(t)t
µ
qn(0),therefore t ≤ µqn(0)−1, and thus

sup
0≤t≤t1,n

Φ(t) = Φ(t) = pn(t)t
µ ≤ t

µ ≤
(

µqn(0)−1
)µ

,and this ompletes the proof of (5.19).6. Subsidiary results and the proof of Theorem 3.3. The following dia-gram illustrates the relations between the several lemmas and orollaries presented inthis setion:
Lemma 6.1 =⇒















Lemma 6.2 =⇒
{

Corollary 6.3
Corollary 6.4

Lemma 6.5
Lemma 6.6

}

=⇒ Corollary 6.7















=⇒ Proposition 6.8.Here, Corollaries 6.3 and 6.4 provide estimates for ‖u∗ − un‖ while Corollary6.7 yields an estimate for the norm ∆n−1 of the residual. Finally, Corollary 6.7 andProposition 6.8 then provide the tools for ompleting the proof of Theorem 3.3.6.1. Preliminaries. In the sequel, all arising onstants c1, c2, . . . are indepen-dent of δ, h and ̺
(introdued in Assumption 3.1), and they may depend on b

(introdued in De�nition 3.2), on aν , 0 ≤ ν ≤ ν1, (f. (3.3)), and on ‖A‖, if notfurther spei�ed. We start with a lemma that an be applied also to other thanonjugate gradient type methods; for a similar result we refer to Hämarik [10℄.Lemma 6.1. Let parts 1. and 2. of Assumption 3.1 be ful�lled. Let ψ : [0, a] → Rbe a bounded funtion, and let µ > 0. Let Fτ , τ > 0, be the resolution of the identityassoiated with Ah, f. de�nition (5.2). Then
‖Fτψ(Ah)PhA

µ‖

≤
(

sup
0≤t≤τ

|ψ(t)|tµ
)

+ c1

⌊µ⌋
∑

j=0

(

sup
0≤t≤τ

|ψ(t)|tj
)

ξ
min{µ−j,ν1+1}
h(6.1)

≤ c2

(

sup
0≤t≤τ

|ψ(t)|
)(

τµ + ξ
min{µ,ν1+1}
h

)

, τ > 0.(6.2)



16 6. SUBSIDIARY RESULTS AND THE PROOF OF THEOREM 3.3Here, ⌊µ⌋ denotes the greatest integer ≤ µ, and c1 and c2 are onstants that areindependent of h and ψ (and depend on µ).Proof. We have the following deomposition (with k = ⌊µ⌋):
PhA

µ = Ph

[

Aµ −Ak
hA

µ−k
]

+ PhA
k
h(Aµ−k −Aµ−k

h ) + PhA
µ
h

= Ph

[

k−1
∑

j=0

Aj
hA(I − Ph)Aµ−j−1

]

+ PhA
k
h(Aµ−k −Aµ−k

h ) + PhA
µ
h(6.3)

(note that PhA
j
h = PhA

j
hPh for j ≥ 0

). Then multiplying both sides of (6.3) with
Fτψ(Ah) yields (6.1), if we take into aount that (5.4) as well as (3.4), (3.5) arevalid, and if we moreover use the estimates

‖Aγ −Aγ
h‖ ≤ 2‖A−Ah‖γ ≤ 4aγ

1ξ
γ
h , 0 < γ ≤ 1,(6.4)where the �rst of the estimates in (6.4) follows immediately from Lemma 1.1 in Chap-ter 4 of Vainikko & Veretennikov [30℄. To obtain (6.2), we use the elementary estimates

sup
0≤t≤τ

|ψ(t)|ts ≤
(

sup
0≤t≤τ

|ψ(t)|
)

τs, s > 0,as well as (reall that we assume ξh ≤ 1
)







τ jξµ−j
h ≤ ξµ

h + τµ,

τ jξµ−j
h ≤ ξν1+1

h + τµ, if µ ≥ ν1 + 1,

τ jξν1+1
h ≤ ξν1+1

h + τµ,

(6.5)
(whih are applied in (6.1) for the three situations (i) µ ≤ ν1+1, (ii) µ ≥ ν1+1, µ−j ≤
ν1 + 1 and (iii) µ ≥ ν1 + 1, µ− j ≥ ν1 + 1

). This ompletes the proof.Lemma 6.2. Let Assumption 3.1 be valid. Let ϕ : R+ → R be bounded, and let
∆ := ‖

(

I −Ahϕ(Ah)
)

Phf
δ‖.Then for any τ > 0 we have

‖u∗ − ϕ(Ah)Phf
δ‖ ≤ τ−1

(

∆ + η(h, δ)
)

+
(

sup
0≤t≤τ

|ϕ(t)|
)

η(h, δ)

+ c3̺
(

sup
0≤t≤τ

|1 − tϕ(t)|
)(

τν + ξ
min{ν,ν1}
h

)

,where c3 is a onstant that is independent of δ, h, ̺ and ϕ (and depends on ν).Proof. For τ > 0 we have, with Fτ as in (5.2):
‖u∗ − ϕ(Ah)Phf

δ‖
(5.5)

≤ ‖(I −Fτ )
(

u∗ − ϕ(Ah)Phf
δ
)

‖ + ‖FτPh

(

u∗ − ϕ(Ah)Phf
δ
)

‖
+ ‖(I − Ph)u∗‖

(3.7)

≤ ‖(I −Fτ )
(

u∗ − ϕ(Ah)Phf
δ
)

‖ + ‖FτPh

(

u∗ − ϕ(Ah)Phf
δ
)

‖(6.6)
+ bν̺ξ

min{ν,ν1}
h .



6.1 Preliminaries 17In the sequel we shall estimate the �rst two terms on the right-hand side of (6.6).First, with Qj as in Setion 5.1 we have, f. (5.3),
‖
(

I −Fτ

)

(

u∗ − ϕ(Ah)Phf
δ
)

‖2 =
∑

j: λj>τ

‖Qj

(

u∗ − ϕ(Ah)Phf
δ
)

‖2

≤ τ−2
∑

j: λj>τ

λ2
j‖Qj

(

u∗ − ϕ(Ah)Phf
δ
)

‖2

≤ τ−2
m

∑

j=1

λ2
j‖Qj

(

u∗ − ϕ(Ah)Phf
δ
)

‖2

= τ−2‖Ah

(

u∗ − ϕ(Ah)Phf
δ
)

‖2

≤ τ−2
(

‖Ahu∗ − Phf
δ‖ + ∆

)2

(3.8)

≤ τ−2
(

η(h, δ) + ∆
)2

.Seond, by assumption we have the representation, u∗ = Aνz, ‖z‖ = ̺, f. (3.6), thus
u∗ − ϕ(Ah)Phf

δ =
(

I − ϕ(Ah)Ah

)

Aνz + ϕ(Ah)
(

Ahu∗ − Phf
δ
)

,(6.7)and then Lemma 6.1 for µ = ν and the properties (5.4), (5.5) yield
‖FτPh

(

u∗ − ϕ(Ah)Phf
δ
)

‖

≤ ‖Fτ

(

I − ϕ(Ah)Ah

)

PhA
νz‖ + ‖Fτϕ(Ah)

(

Ahu∗ − Phf
δ
)

‖

≤ ‖Fτ

(

I − ϕ(Ah)Ah

)

PhA
ν‖̺ + ‖Fτϕ(Ah)‖η(h, δ)

≤ c2̺ sup
0≤t≤τ

(

|1 − tϕ(t)|
)

(

τν + ξ
min{ν,ν1}
h

)

+
(

sup
0≤t≤τ

|ϕ(t)|
)

η(h, δ)(reall that we assume ξh ≤ 1). This ompletes the proof.In a �rst orollary we state a result whih is useful if the stopping rule given inDe�nition 3.2 leads to an immediate termination of the method of onjugate residuals,i.e., if we have n = 0.Corollary 6.3. Let Assumption 3.1 be valid, and suppose that
‖Phf

δ‖ ≤ C
(

δ + ̺ξ
min{ν,ν1}+1
h

)(6.8)holds for some onstant C > 0. Then
‖u∗‖ ≤ c4

(

(̺δν)1/(ν+1) + ̺ξ
min{ν,ν1}
h

)

,where c4 is a onstant that is independent of δ, h and ̺ (and depends on C and ν).Proof. It follows immediately from Lemma 6.2, with ϕ = 0, as well as from (6.8)that for τ > 0 we have the following estimate,
‖u∗‖ ≤

(

C + max{1, a1bν}
)

τ−1
(

δ+ ̺ξ
min{ν,ν1}+1
h

)

+ c3̺
(

τν + ξ
min{ν,ν1}
h

)

.(6.9)



18 6. SUBSIDIARY RESULTS AND THE PROOF OF THEOREM 3.3Without loss of generality we may suppose that ̺ 6= 0, and then we shall estimate theright-hand side of (6.9) for the spei� hoie
τ =

( δ

̺

)1/(ν+1)

+ ξh.In fat,
τ−1δ ≤

( δ

̺

)−1/(ν+1)

δ =
(

̺δν
)1/(ν+1)

,

τ−1ξh ≤ 1,

̺τν ≤ ̺2ν
[( δ

̺

)ν/(ν+1)

+ ξ
min{ν,ν1}
h

]

= 2ν
(

(

̺δν
)1/(ν+1)

+ ̺ξ
min{ν,ν1}
h

)(reall that we assume ξh ≤ 1). This ompletes the proof.6.2. Subsidiary results for the method of onjugate residuals. Now wereturn to the method of onjugate residuals. From Lemma 6.2 we get the followingorollary.Corollary 6.4. Let Assumption 3.1 be valid. Let {un}0≤n≤n∗
be as in De�ni-tion 2.1, and let {qn(t)}n and {∆n}n be as in (3.9)�(3.10) and (3.11), respetively.For any 1 ≤ n ≤ n∗ we have

‖u∗−un‖ ≤ τ−1
(

∆n+η(h, δ)
)

+ qn(0)η(h, δ) + c3̺
(

τν+ξ
min{ν,ν1}
h

)

, 0 < τ ≤ t1,n,with onstant c3 as in Lemma 6.2.Proof. We shall apply Lemma 6.2 with ϕ(t) = qn(t). In fat, we have
0 ≤ pn(t) = 1 − tqn(t) ≤ 1, 0 < t ≤ t1,n,f. (5.6), (5.12), and from

0 ≤ qn(t) ≤ qn(0), 0 < t ≤ t1,n,f. (5.15), (5.16), the assertion then follows immediately.We have obtained a �rst estimate for the error ‖u∗ − un‖. The next two lemmasprovide reasonable estimates for the norm ∆n of the residual.Lemma 6.5. Let Assumption 3.1 be valid. Let {un}0≤n≤n∗
be as in De�nition2.1, and let {qn(t)}n and {∆n}n be as in (3.9)�(3.10) and (3.11), respetively. Thenfor any 1 ≤ n ≤ n∗ we have

∆n ≤ δ + c5̺
(

qn(0)−(ν+1) + ξ
min{ν,ν1}+1
h

)

,(6.10)where c5 denotes a onstant that is independent of δ, h, ̺ and n (and depends on ν).Proof. We deompose and estimate as follows,
∆2

n =

m
∑

j=0

p2
n(λj)‖QjPhf

δ‖2

=
∑

j: λj≤t1,n

p2
n(λj)‖QjPhf

δ‖2 +
∑

j: λj>t1,n

p2
n(λj)‖QjPhf

δ‖2
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≤

∑

j: λj≤t1,n

p2
n(λj)‖QjPhf

δ‖2

+ t−1
1,n

∑

j: λj>t1,n

λjp
2
n(λj)

( λj

t1,n
− 1

)−1

‖QjPhf
δ‖2,(6.11)where the latter estimate follows from λ( λ

t1,n
− 1)−1 ≥ t1,n for λ > t1,n. In order toestimate (6.11), we observe that the onjugay property (5.8) yields

∑

j:λj>t1,n

λjp
2
n(λj)

( λj

t1,n
− 1

)−1

‖QjPhf
δ‖2 =

∑

j:λj≤t1,n

λjp
2
n(λj)

(

1 − λj

t1,n

)−1

‖QjPhf
δ‖2,and this applied in (6.11) yields, f. also (5.2),

∆2
n ≤

∑

j: λj≤t1,n

p2
n(λj)

[

1 +
λj

t1,n

(

1 − λj

t1,n

)−1]

‖QjPhf
δ‖2

=
∑

j: λj≤t1,n

p2
n(λj)

(

1 − λj

t1,n

)−1

‖QjPhf
δ‖2

= ‖Ft1,n
v1/2

n (Ah)Phf
δ‖2,(6.12)with (f. (5.11))

vn(t) =
(

1 − t

t1,n

)[

n
∏

k=2

(

1 − t

tk,n

)2]

, 0 ≤ t ≤ t1,n,and vn(t) := 0 for t > t1,n. Note that 0 ≤ vn(t) ≤ 1 for all 0 ≤ t ≤ t1,n. We proeedwith an estimation of (6.12): from Assumption 3.1 and estimate (5.4) we obtain
∆n ≤ ‖Ft1,n

v1/2
n (Ah)Phf

δ‖
≤ ‖Ft1,n

v1/2
n (Ah)PhA

ν+1z‖ + ‖Ft1,n
v1/2

n (Ah)Ph(Au∗ − f δ)‖
≤ ‖Ft1,n

v1/2
n (Ah)PhA

ν+1‖̺ + ‖Ft1,n
v1/2

n (Ah)‖δ

≤ ‖Ft1,n
v1/2

n (Ah)PhA
ν+1‖̺ +

(

sup
0≤t≤t1,n

vn(t)
)1/2

δ

≤ ‖Ft1,n

√

|pn|(Ah)PhA
ν+1‖̺ + δ,(6.13)where it has been taken into aount that 0 ≤ 1− t

tk,n
≤ 1 holds for 0 ≤ t ≤ t1,n, k =

2, . . . , n. In order to provide further estimations of the right-hand side in (6.13), wenext shall apply Lemma 6.1 with µ = ν + 1; in fat, from the estimates (5.19) and(6.1) we get
∆n ≤

[(

2(ν + 1)qn(0)−1
)ν+1

+ c1

⌊ν+1⌋
∑

j=0

(

2jqn(0)−1
)j
ξ
min{ν−j,ν1}+1
h

]

̺ + δ,and proeeding then as in (6.5), with τ replaed by qn(0)−1, yields the assertion (6.10).This ompletes the proof.Lemma 6.6. Let Assumption 3.1 be valid. Let {un}0≤n≤n∗
be as in De�nition2.1, and let {qn(t)}n and {∆n}n be as in (3.9)�(3.10) and (3.11), respetively. Fix

1 ≤ n ≤ n∗, θ > 2 and 2 < κ ≤ 2(θ − 1). If
θqn−1(0) ≤ qn(0),(6.14)
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κ− 2

κ− 1
∆n−1 ≤ δ + c6̺

(

qn(0)−(ν+1) + ξ
min{ν,ν1}+1
h

)

,where c6 is a onstant that is independent of δ, h, ̺ and n (and depends on θ and
κ
). Proof. Let

s(t) := pn(t)
(

1 − t

t1,n

)−1

=

n
∏

k=2

(

1 − t

tk,n

)

,(6.15)where pn(t) is as in (5.6), (5.11). We have s ∈ Πn−1 and s(0) = 1, and the minimumproperty (5.7) then yields
∆2

n−1 ≤ ‖s(Ah)Phf
δ‖2

=
∑

j: λj≤κt1,n

s2(λj)‖QjPhf
δ‖2 +

∑

j: λj>κt1,n

s2(λj)‖QjPhf
δ‖2

≤
∑

j: λj≤κt1,n

s2(λj)‖QjPhf
δ‖2 + (κ− 1)−2

∑

j: λj>κt1,n

p2
n(λj)‖QjPhf

δ‖2(6.16)
≤

∑

j: λj≤κt1,n

s2(λj)‖QjPhf
δ‖2 + (κ− 1)−2

m
∑

j=0

p2
n(λj)‖QjPhf

δ‖2

= ‖Fκt1,n
s(Ah)Phf

δ‖2 + (κ− 1)−2∆2
n

≤ ‖Fκt1,n
s(Ah)Phf

δ‖2 + (κ− 1)−2∆2
n−1,(6.17)where (6.16) is valid sine we have (1 − t

t1,n
)−2 ≤ (κ − 1)−2 for t ≥ κt1,n; moreover,(6.17) follows from (3.12). A reformulation and further estimation of the right-handside in (6.17) then yields

κ− 2

κ− 1
∆n−1 ≤ ‖Fκt1,n

s(Ah)Phf
δ‖

≤ ‖Fκt1,n
s(Ah)PhA

ν+1z‖ + ‖Fκt1,n
s(Ah)Ph(Au∗ − f δ)‖

≤ ‖Fκt1,n
s(Ah)PhA

ν+1‖̺ + ‖Fκt1,n
s(Ah)‖δ.(6.18)Below we show that the estimates

κt1,n ≤ 2t2,n, if n ≥ 2,(6.19)
t1,n ≤ (1 − θ−1)−1qn(0)−1, if n ≥ 1,(6.20)are valid. Then, due to

|s(t)| ≤ 1, 0 ≤ t ≤ 2t2,n, if n ≥ 2,
(f. (6.15))

s(t) = 1, t ∈ R, if n = 1,a further estimation of (6.18) yields, f. (5.4), (6.2),
κ− 2

κ− 1
∆n−1 ≤ δ + c2̺

(

(

κt1,n

)ν+1
+ ξ

min{ν,ν1}+1
h

)

≤ δ + c2̺
(

(

βqn(0)
)−(ν+1)

+ ξ
min{ν,ν1}+1
h

)

,



6.2 Subsidiary results for the method of onjugate residuals 21with β := (1 − θ−1)/κ, and with onstant c2 as in Lemma 6.1.It remains to show that the estimates (6.19), (6.20) are valid. For this purposewe reall that the assumption (6.14) and the estimate (5.18) yield
θqn−1(0) ≤ qn(0) ≤ t−1

1,n + qn−1(0),(6.21)and this implies immediately (6.20). We next show that (6.19) is valid: in fat, fromthe estimate (6.21) we obtain
(θ − 1)t−1

1,n−1

(5.14)

≤ (θ − 1)qn−1(0) ≤ t−1
1,n,and thus

κt1,n ≤ κt1,n−1

θ − 1
≤ 2t1,n−1,and �nally t1,n−1 ≤ t2,n, f. (5.10), then yields (6.19). This ompletes the proof.Remarks. The proofs of Lemmas 6.5 and 6.6 follow the ideas of the paper byNemirovski�� [21℄ until estimates (6.13) and (6.18), respetively. Beyond that we makeuse of Lemma 6.1 whih is appliable in our spei� situation and leads to betterresults than in [21℄; f. also part (5) in the onlusions in Setion 3.3.1. △From Lemmas 6.5 and 6.6 we get:Corollary 6.7. Let Assumption 3.1 be valid. Let {un}0≤n≤n∗

be as in De�ni-tion 2.1, and let {qn(t)}n and {∆n}n be as in (3.9)�(3.10) and (3.11), respetively.For all 0 < γ < 1 we have
γ∆n−1 ≤ δ + c7̺

(

qn(0)−(ν+1) + ξ
min{ν,ν1}+1
h

)

, 1 ≤ n ≤ n∗,where c7 is a onstant that is independent of δ, h, ̺ and n (and depends on γ and
ν
). Proof. Let κ > 2 suh that γ = (κ− 2)/(κ− 1) is valid. Moreover let θ > 2 suhthat κ = 2(θ − 1) holds. From Lemmas 6.5 and 6.6 we obtain the desired result byonsidering the two di�erent ases �θqn−1(0) ≤ qn(0)� and �θqn−1(0) > qn(0)�. Notethat in the latter ase we neessarily have n ≥ 2.Corollaries 6.4 and 6.7 enable us to prove the following lemma whih is presentedin a general form so that it may be applied for the ases n = n and n = n− 1, f. thespei� situations desribed in Subsetion 6.3, respetively.Proposition 6.8. Let Assumption 3.1 be valid, and let b > 1. Let {un}0≤n≤n∗be as in De�nition 2.1, and let {qn(t)}n and {∆n}n be as in (3.9)�(3.10) and (3.11),respetively. Suppose that for some �xed n with 1 ≤ n ≤ n∗ we have

qn(0) ≤ ξ−1
h , bδ ≤ ∆n−1, ∆n ≤ C

(

δ + ̺ξ
min{ν,ν1}+1
h

)

,(6.22)where C denotes some onstant. Then
‖u∗ − un‖ ≤ c8

(

(

̺δν
)1/(ν+1)

+ ̺ξ
min{ν,ν1}
h

)

,where c8 is a onstant that is independent of δ, h, ̺ and n (and depends on C and
ν
). Proof. Corollary 6.4 and the assumption on ∆n, f. (6.22), yield for 0 < τ ≤ t1,n

‖u∗ − un‖ ≤ C1

(

[

τ−1 + qn(0)
]

(

δ + ̺ξ
min{ν,ν1}+1
h

)

+ ̺
(

τν + ξ
min{ν,ν1}
h

))

,(6.23)



22 6. SUBSIDIARY RESULTS AND THE PROOF OF THEOREM 3.3with a onstant C1, and we shall estimate the right-hand side of (6.23). For thispurpose let
ε =

( δ

̺

)1/(ν+1)

+ ξh,(6.24)
τ = min

{

ε, qn(0)−1
}

.Then we have, f. (5.14), τ ≤ qn(0)−1 ≤ t1,n, hene (6.23) is valid for this spei�hoie of τ . Now the di�erent terms on the right-hand side of (6.23) remain to beestimated.(a) Similar as in the proof of Lemma 6.3 we obtain the following elementaryestimates (reall that ξh ≤ 1
),

̺τν ≤ ̺εν ≤ 2ν
(

(

̺δν
)1/(ν+1)

+ ̺ξ
min{ν,ν1}
h

)

.(b) Sine by assumption ξh ≤ ε and ξh ≤ qn(0)−1, f. (6.22) and (6.24), respe-tively, we have ξh ≤ τ and thus τ−1ξh ≤ 1.() We still have to estimate τ−1δ su�iently good, and for this purpose weonsider two di�erent ases. First, if qn(0) ≤ ε−1, then
τ = ε ≥

( δ

̺

)1/(ν+1)

,and thus
τ−1δ ≤

(

̺δν
)1/(ν+1)

,whih provides a su�iently good estimate. Now suppose that
qn(0) > ε−1.(6.25)Then Corollary 6.7 and the assumption on ∆n−1 in (6.22) yields

bγδ < γ∆n−1 ≤ δ + c7̺
(

qn(0)−(ν+1) + ξ
min{ν,ν1}+1
h

)

.Here, 0 < γ < 1 is hosen suh that bγ > 1, and then c7 is hosen aording toCorollary 6.7. Subtrating δ on both sides of the last inequality and multiplying thenboth sides with τ−1 yields
(bγ − 1)τ−1δ ≤ c7̺

(

qn(0)−ν + ξ
min{ν,ν1}
h

)

≤ c7
(

2ν + 1
)

̺
[( δ

̺

)1/(ν+1)

+ ξ
min{ν,ν1}
h

]

,where the assumption τ = qn(0)−1, f. (6.25), as well as the estimates in parts (a)and (b) of this proof have been applied. Thus τ−1δ is estimated su�iently good inthis ase.(d) Finally we shall estimate qn(0)
(

δ+ ̺ξ
min{ν,ν1}+1
h

). In fat, qn(0) ≤ ξ−1
h holdsby assumption, and moreover we have qn(0) ≤ τ−1, thus with the result () of thisproof we an estimate qn(0)δ su�iently good. This ompletes the proof.



6.3 The proof of Theorem 3.3 236.3. The proof of Theorem 3.3. As a preparation we remark that we haveby de�nition Ahrn∗
= 0, and thus

∆n∗
= ‖rn∗

‖ = dist
(

Phf
δ,R(Ah)

)

≤ η(h, δ).(6.26)Now we are in a position to prove the main result.(1) We �rst suppose that
“n = 0� or “n = 1, q1(0) ≥ ξ−1

h �,(6.27)any of these two ases leading to u(h, δ) = 0. We show below that in both ases wehave
‖Phf

δ‖ ≤ C
(

δ + ̺ξ
min{ν,ν1}+1
h

)(6.28)for an appropriate onstant C > 0, whih together with Corollary 6.3 yields anadequate estimate of ‖u∗ − u(h, δ)‖ = ‖u∗‖ for these ases in (6.27). We startwith the proof of (6.28): �rst, n = 0 means Ahr0 = 0
(and (6.26) then yields

∆0 = ‖Phf
δ‖ ≤ η(h, δ)

) or ∆0 = ‖Phf
δ‖ ≤ bδ, and thus we have ‖Phf

δ‖ ≤
max{b, a1bν}

(

δ + ̺ξ
min{ν,ν1}+1
h

), if n = 0. Moreover, if n = 1 and q1(0) ≥ ξ−1
h ,then Corollary 6.7 yields (reall that ξh ≤ 1

)

γ‖Phf
δ‖ = γ∆0 ≤ δ + 2c7̺ξ

min{ν,ν1}+1
h ,where 0 < γ < 1 is arbitrary, and c7 is hosen as in Corollary 6.7. This ompletes theproof for the ases in (6.27).(2) We next onsider the remaining ases, i.e., n ≥ 1 and q1(0) < ξ−1

h .(a) First, if qn(0) < ξ−1
h , then we have ∆n ≤ bδ or Ahrn = 0, in any ase wehave ∆n ≤ max{b, a1bν}

(

δ + ̺ξ
min{ν,ν1}+1
h

), and then a su�iently good estimatefor ‖u∗ − u(h, δ)‖ follows from Proposition 6.8 for n = n, sine also bδ < ∆n−1 holds.(b) Next suppose qn(0) ≥ ξ−1
h , and then n ≥ 2 and u(h, δ) = un−1 holds. Corol-lary 6.7 then provides the estimate

γ∆n−1 ≤ δ + 2c7̺ξ
min{ν,ν1}+1
h ,where 0 < γ < 1 is arbitrary, and c7 is hosen as in Corollary 6.7. Sine moreoverthe estimates bδ < ∆n−2 and qn−2(0) < ξ−1
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