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Abstract. For the numerical solution of the Galerkin equations associated with linear ill-posed
problems that are symmetric and positive semidefinite, the method of conjugate residuals is consid-
ered. An a posteriori stopping rule is introduced, and associated estimates for the approximations
are provided which are order-optimal with respect to noise in the right-hand side and with respect
to the discretization error.
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1. Introduction. In this paper we consider equations of the form

(1.1) Au = f,,

where

(1.2) A€ L(H), A=A">0,
f« € R(A).

Here H denotes a real Hilbert space with inner product (-,-) : H x H — R and
corresponding norm || - || : H — R, £(H) denotes the space of operators T : H — H
that are bounded and linear, and A* € £(H) in (1.2) denotes the adjoint operator of
A. Moreover, R(A) denotes the range of A which in general is non-closed, and then
equation (1.1) is ill-posed. In the sequel we assume that only an approximation f°
for f, is available, more specifically,

(1.4) fPern,  f—fl<s,

where § > 0 is a small and known error bound.
For practical reasons equation (1.1) has to be discretized, and in the sequel we
shall consider Galerkin equations associated with (1.1). For this purpose let

Vi CH, 0 < h < ho,

be given finite-dimensional linear subspaces. For fixed h, the corresponding Galerkin
equations for (1.1) are given by

(1.5) Apup, = Py [,
where
(1.6) Ap:H—H, u — PpAu,
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and Py, denotes the orthogonal projection onto Vp, i.e.,
(1.7) Pn€L(H), Pn=Pn, Pu=Pi,  R(Pn)=Vh

In order to determine a solution u, € H of equation (1.1) with noisy data as in (1.4)
we shall apply the method of conjugate residuals to the Galerkin equations (1.5) (see
the next section) associated with a discrepancy principle as stopping rule (cf. Section
3 for its introduction), and this shall be done for the following reasons:

1. Since the underlying equation (1.1) is ill-posed, usually also the finite-dimen-
sional version (1.5) has to be regularized. It is shown in this paper that
the method of conjugate residuals associated with the mentioned discrepancy
principle as a stopping rule has this desired regularizing property.

2. Typically only a small number of iteration steps is needed until the method
of conjugate residuals terminates according to the discrepancy principle, and
thus this yields a numerically efficient solver of equation (1.1).

2. The method of conjugate residuals for the Galerkin equations.

2.1. Description of the method. We next introduce the method of conjugate
residuals for the Galerkin equations (1.5), and for this purpose in the sequel we assume
that the noise level 6 > 0 and the discretization level A > 0 in conditions (1.2)-(1.4)
and in (1.6)-(1.7) are fixed. Moreover we introduce the Krylov subspaces with respect
to Ay and a vector r € Vy,

Kn(Ap, 1) = span{r,Ahr,...,AZ_lr} C Vh, n=0,1,... .

DEFINITION 2.1. Let conditions (1.2)—(1.4) be fulfilled, and let P, An € L(H)
be as in (1.7), (1.6). The method of conjugate residuals, applied to (1.5) with noisy

data as in (1.4), iteratively generates a (terminating) sequence ug = 0,uy,us, ..., with
U, € Vi and
(2 1) { Up € Icn(Aha,thé)a

[Anun = Prf°ll = infuex, (a,p,so) | Anu —Prfll,

and the algorithm terminates, by definition, at step n,. := n < dim V), if Apr, = 0.
Here, r,, denotes the residual, i.e.,

(2.2) Tn = Aptin —Pufl €V,  n=0,1,...,n..

Remarks. 1. For notational convenience, ug = 0 is taken as starting vector for the
method of conjugate residuals, and the dependence of § and & on vectors and scalars
that arise in the course of iteration is not stated explicitly.

2. The stopping index 7 to be defined in Definition 3.2 below usually is much
smaller than the final index n..

3. For technical reasons we shall not consider here the classical method of conju-
gate gradients where the iterates minimize the energy functional J(u) = 3 (Apu, u) —
(u, Prf°) over KCp(An, Prf?), n=0,1,.... A

The basic algorithm for computing u,, given by Definition 2.1 is:

ALGORITHM 2.2. (Method of conjugate residuals for (1.5) with noisy given right-
hand side) Let conditions (1.2)—(1.4) be fulfilled, and let Py, An € L(H) be as in
(1.7), (1.6). Step 0: Let ug := 0, 19 = —Ppf°.
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Forn=0,1,...:
1) If Apry, = 0 then terminate, n, = n;
2) If otherwise Apr,, # 0, then proceed with step n+1: compute from u,, d,—1

A nsy'n
(23) dn = —ry, + B’n—ldn—la ﬁn—l = wa
<Ah7"n71;7’n71>
<Ahrnvrn>
2.4 Up, = Up + anpdy, a, = ——F— .
24 " [Anda]?
Here we assume d_1 =0, f_1 =0.

It follows from (2.2)—(2.4) that for 0 < n < n, — 1 we have
(25) Ahdn = _Ahrn + ﬁn—lAhdn—la Tn+l = Tn + anAhdna

and in fact in any step for computational reasons Apd,, and r,y; are computed as
in (2.5) so that only one operator-vector multiplication (to obtain Apr,) has to be
performed in each step.

2.2. Matrix formulation of the method of conjugate residuals for the
Galerkin equations. A matrix formulation of the method of conjugate residuals for
positive definite linear systems of equations is presented, e.g., in Stoer [27], and for
other surveys on conjugate gradient type methods we refer to Ashby, Manteuffel &
Saylor [1] and Freund, Golub & Nachtigal [6].

For completeness we present a matrix formulation of the method of conjugate
residuals for our specific situation (1.5), and for this purpose we denote by N the
dimension of Vj,. Then let U1, U5, ..., Uy € V), be a basis of V},, and let

G = ((¥;,9;)) € RV
(2.6) B = ((AU;, 7)) € RN
f= ((f0.9;)) € RV

The approximations u, € V, n =0,1,...,n,, defined by Algorithm 2.2 then can be
represented as follows,

N
Up = E un,j\I/ja
j=1

where u,, = (u,,;) € R is determined by the following algorithm:

ALGORITHM 2.3. (Method of conjugate residuals for (1.5) with noisy given right-
hand side, matriz formulation) Let G, B and f as in (2.6). Step 0: Let ug := 0 €
RN, rg = -G fe RV,

Forn=0,1,...:

1) If Br,, = 0 then terminate, n, = n;
2) If otherwise Br,, # 0, then proceed with step n+1: compute from u,, d,_1:

T
r, Br
n n
d, = —r, + 6n71dn71; ﬂnfl = T
r, ;Br,
T
r, Br
n n
u,4+1 = Up + andna ap = TG
el'Ge,

where e,, := G_len.
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Hered_1 =0, f_1 =0.

Note that the numbers «,, and [3,_; in Algorithms 2.2 and 2.3 coincide, and
the vectors d,, € RY and r,, € RY are the coordinates of d,, € V), and r, € Vi,
respectively, i.e.,

N N
dn = Zdn,j\lljv Tn = Zrnaj\llj'
j=1

j=1

Note also that the vectors Bd,,, r,4+1 € RY can be computed efficiently for 0 < n <
Ny — 1,

Bd, = —-Br, + 8.,.1Bd,_1, rpp1 = Iy, + a, G 'Bd,,.

3. The main section.

3.1. Approximation properties of the subspaces V,. For a symmetric and
positive semidefinite operator A € L(H) and arbitrary real ¥ > 0 we next define
v-norms on R(A"),

(3.1) lull, == min{ 2] : zeM, Az=u } u € R(A").

Remark. Fractional powers AY € L(H), v > 0, as well as their elementary properties
are presented e.g., in a more general framework, in Fattorini [5], Chapter 6.3. For
symmetric and positive semidefinite operators A € L(H) that are compact and have an
infinite-dimensional range R(A), the fractional powers A” € L(H) can be introduced
in a simplified manner. In fact, the following spectral representation of A is valid
then,

o0
A=) %9,
j=1
where Ay > Ay > ... > 0 denote the pairwise distinct, non-vanishing eigenvalues

of A € L(H), and Q; € L(H) denote the associated orthogonal projections onto
N(A — \I) for j € N; the fractional powers A” € £(H) then are given by

o0
A = > N9, A

j=1
In the sequel we shall assume that the subspaces {V}, } fulfill an approzimation property
with respect to A, this is, for some integer

141 Z 1

and some known
(3.2) 0<& <1, 0<h<hy, with &, — 0 ash—0,
we suppose that for certain constants a, > 0

B3)VO<v<u: 125 lu—vnll < avéillully, uweR(AY), 0<h<hg,
Vh h
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holds. Note that the approximation property (3.3) is equivalent to
(3.4) VO<v<u: (I —Pr)A”|| < av&p, 0 < h < ho,

with P, € L(H) as in (1.7). Note moreover that if conditions (3.2), (3.4) are valid
then A necessarily is a compact operator. Finally we observe that the approximation
property (3.4) implies

(3.5) VOo<v<u: A“(I —Pu)|| < av&f, 0 < h < hy,

which follows from the fact that A¥ and P, are symmetric operators. The preceding
notations are summarized in the following basic assumption:

AssUMPTION 3.1. 1. H denotes a real Hilbert space, and A € L(H) is symmelric
and positive semidefinite.

2. For 0 < h < hg let Vi, C H be a finite-dimensional linear subspace and let
Pr, An € L(H) be as in (1.7), (1.6). We suppose that the approzimation property
(8.3) is fulfilled for some v > 1, with &, as in (3.2). In the sequel h is supposed to
be fized.

3. Let u, € R(AY) with some v >0, and let § > 0 and f° € H with

|Au, — £ < 6.
4. Finally we introduce the numbers

(3.6) 0 = [[ully,
b, = amin{l/,m}||A||max{01yiyl}a

n(h,6) =06 + ayb, eIt

cf. (3.1) for the definition of || - ||, -
From Assumption 3.1 it follows immediately that

b, og
n(h,9),

which are estimates that shall be used at several occasions.

(3.7) I(I = Pr)u|

<
IAPy . — £l <

3.2. The discrepancy principle as stopping rule for the method of con-
jugate residuals. Assume that the iteration process, described by Algorithm 2.2,
generates iterates 0 = ug, u1, Ug,..., Uy, € Vp, where 0 < n, < oo denotes the final

iteration step. Then for any 0 < n < n, there exists a unique polynomial (depending
on Ay and Py f?)

(3.9) Gn € 11,1
such that
(3.10) Uy = qn(Ah)'thé.

Here, I1_; := {0}, and II,,_; = { q : qis a polynomial of degree < n — 1 }, n =
1,2,... . We next introduce

(3.11) A, = || Apun — Pufl, 0<n<n,,
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the norm of the residual. From (2.1) we obtain
(312) An S An—l; 1 S n S Uy

and typically A,, decays fast and becomes small after a small number of iterations n.
In the infinite-dimensional setting (P, = I), a regularization method can be obtained
by stopping the iteration when A, = ¢ and taking u, € H then as approximation
for the desired solution, for references see Subsection 3.3.2. In our situation (P, # I)
several other cases, however, has to be taken into account to define a stopping rule
as well as a corresponding approximation that guarantees best possible convergence
rates, and in fact the precise stopping criterion is presented next.

DEFINITION 3.2. (A discrepancy principle as stopping rule) Suppose that As-
sumption 8.1 holds. Let u, € V,, n=0,1,..., be generated by the method of conju-
gate residuals, and let b > 1. Stop iteration at step W :=n, if

A, < b or an(0) > 5,?1 or n = Ny.
Then define
_ A if ¢:(0) > &
3.13 h,6) = { e i an hy
(8.13) uth ) { um i axl0) < &

We remark that the numbers ¢,(0), 0 < n < n,, increase as n increases, cf. also
Lemma 5.1 below. Moreover, ¢,(0) can be computed easily from the three-term
recurrence

20(0) =0,  ¢(0) = ao,
(3.14) i) = (1+252)g,0) — %22, 1(0) + an,
1<n S Ny — 1,

which follows immediately from the first equalities in (2.3) and (2.4) and from the
uniqueness of ¢,(t) in (3.9), (3.10). Note that (3.14) in particular means that the
situation ¢7(0) > 5,;1 may arise only for m > 1, i.e., the definition (3.13) makes sense.

3.3. Statement of the main result. We next present the main result of this
paper.

THEOREM 3.3. Suppose that Assumption 8.1 holds. Moreover, let u,, € Vi, n =
0,1,... be defined by Algorithm 2.2, and let the iteration be stopped according to the
stopping rule presented in Definition 3.2, with corresponding approzximation u(h, ) €
V. Then

(3.15) ||U*—U(h,5)|| < ey((g(sy)l/(l/-i-l) + gmm{uvl})

The constant e, is independent of §, h and o (and depends on v and b).
The proof of Theorem 3.3 shall be given in Section 5.

3.3.1. Conclusions. (1) The estimate in (3.15) is order-optimal with respect to
the noise in the right-hand side and with respect to the discretization, respectively.
Moreover, no knowledge of the degree of smoothness of the solution u, is required to
obtain the approximations u(h, d). Finally, no inverse property associated with quasi-
uniformity of the spaces V}, is needed and no stability of the Galerkin method for the
solution of (1.1) is required (both properties usually are needed for the convergence
analysis of Galerkin methods).
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(2) Suppose that u. is a solution of equation (1.1) that satisfies u. € R(AY) for
some 0 < v < vy. If h is chosen sufficiently small, i.e., if 5}’:“ < ¢ is satisfied, then
Theorem 3.3 guarantees an order-optimal estimate

lus —a(h, )| = O/ V)

for the approximations.

(3) In Theorem 3.3, the noise-free case 6 = 0 itself is of interest. Note that the
stopping rule given in Definition 3.2 as well as the corresponding error estimate in
Theorem 3.3 makes sense also in this case.

(4) In [25] a similar approach is carried out for the classical conjugate gradient
method of Hestenes and Stiefel applied to a normalized system of equations associated
with arbitrary linear ill-posed problems in Hilbert spaces.

(5) We note that the operator A, can be conceived as a specific perturbation of
the operator A € L(H). More generally as in our situation, Nemirovskii [21] considers
conjugate gradient type methods for linear ill-posed problems with arbitrary linear
perturbations of the underlying operator; for example, in the situation (1.2)—(1.4) the
method of conjugate residuals is applied to the perturbed equation A,u = f? where
A, € L(H) is an arbitrary positive semidefinite operator satisfying |4, — A < n. It
is shown in [21] for a specific stopping rule providing approximations u(n,d) € H that

an estimate of the following kind is satisfied, ||u. —u(n, )| = O((n+0) V/(UH)). We
thus can conclude that the result (3.15) improves the result obtained in [21], if one
considers specific operator perturbations generated by projection methods.

3.3.2. Further bibliographical remarks on conjugate gradient type meth-
ods for linear ill-posed problems. In this subsection we refer to related results
obtained for conjugate gradient type methods to solve linear ill-posed problems.

(1) Convergence results for precise data are presented in Kammerer & Nashed [14],
Nemirovskii & Polyak ([22], [23]), Brakhage [2], Louis [19] and Hanke [13].

(2) Results for noisy right-hand sides (and precisely given operators) are obtained
e.g., in King [15], Lardy [18], in Eicke, Louis & Plato [3], Plato ([24], [26]), Hanke [12],
and in Gilyazov [8]. For recent monographs containing associated results we refer to
Gilyazov [7], Hanke [11], Engl, Hanke & Neubauer [4] and Kirsch [16].

4. Numerical Illustrations.

4.1. The spaces. In our numerical experiments, as underlying space we consider
the real space of square-integrable real-valued functions on the interval [0, 1],

H = L?[0,1],

supplied with the inner product

1

(u,v)y = / u(t)v(t) dt, u, v € L*0,1],
0
and the corresponding norm is
lall = (w, )%, we L2[0,1].

For the Galerkin scheme (1.5) we use spaces of linear splines

41) VY = {uhEC[O,l]: up is linear on [t;_1, 1], j:2,...,N},
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where

h = 1/(N_ 1)?

tji = (j—Dh, j=12,...,N
and C10, 1] denotes the space of real-valued continuous functions defined on the in-
terval [0,1]. The following approximation property is valid for those functions % :

[0,1] — R where v and 1) are absolutely continuous functions and where ¢ € L2[0, 1],
cf. Hackbusch [9], Chapter 4.5.9:

1
V90

Finally, as basis functions for V), the standard hat functions ¥; € V3, j =1,...
are taken, i.e., one has

(4.2) I =Pr)ell < Rl k>0,

1, k=
\Ilj(tk) = { 0 k’;é:; )

and the Gram matrix G = ((¥;, ¥;)) then has the form

2 1 0 .. 0
1 4
h (N,N)
Do 4
0o ... 0 1 2]

4.2. Symm’s integral equation for circles I'.

4.2.1. Introduction. In our numerical experiments, for circles I' =T", = { T €
R? : |z| = p } with radius p we shall consider Symm’s weakly singular integral
equation which for a standard parametrization of I', looks as follows,

(4.3) (Au)(t) :== /0 log [2psin7(t — s)|u(s) ds = f(t), te€0,1],

see Vainikko [29] or Chapter 3.3 in Kirsch [16] for an introduction. It turns out that
for 0 < p < 1, the operator A : L?[0,1] — L?[0, 1] is compact, symmetric and positive
semidefinite, and the following decomposition is valid (here presented in complex
form),

@8 (A0 = (o) + 3 3 ame™™ e,
0#£n€Z

where @(n) = fol u(t)e=2™t dt denotes the n-th Fourier coefficient of v € L2[0,1]. Tt
follows from the decomposition (4.4) that equation (4.3) is modestly ill-posed.

We next show that the approximation property (3.3) is valid for &, = h, v; = 2
(and for H = L2[0, 1], for the operator A as in (4.3) and for the subspaces V}, as in
(4.1)). For this purpose let H*[0,1], A > 0, be the Sobolev space of (real-valued)
functions u € L?[0, 1] with

= (508 + 5 ) <o

0#£n€EZ
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From the eigenvalue decomposition (4.4) of A one easily derives
(4.5) R(A) = H'[0,1], v >0,

for 0 < p < 1; for p = 1, “="in (4.5) has to be replaced by “C”. Moreover we see
that supg_s,er2(0,1] |A%u|| g2 /||u|| < oo, and then the estimate (4.2) yields that the
estimate in (3.3) is valid for the specific case v = 2 (and & = h); the interpolation
inequality (cf. Fattorini [5], Examples 6.3.6 and 6.3.7) then finally yields that the
approximation property in (3.3) is valid in its general form.

4.2.2. Specific right-hand sides. In the numerical experiments with Symm’s
integral equation for circles the following radius is chosen,

1
p - 2)
and as right-hand side we consider
2
2rt)”, 0<t<0.5
R0 = (2rt),
(2m(1—1))7, 05<t<1,
2 oo —1)"
= % + 4; ( n2) cos(2mnt), 0<t<1
Then the function
2 0 —1)"
us(s) = 317;g2 + 8;( n) cos(2mns), 0<s<1,

solves the equation Au = f., where A is as in (4.3), and we obviously have

1
(4.6) u, € H0,1] for X< 3
(4.7) u, & HY?[0,1].

4.2.3. Specific choice of the parameters, and the experiments. In the
numerical experiments we choose perturbed right-hand sides f® = f, + ¢ - v, where
v € 'H has uniformly distributed random values with ||v|| < 1, and where

6 = [[f«ll - %/100,

with % noise € { 0.11, 0.33, 1.0, 3.0, 9.0 } in the implementations. The dimension
of the underlying system of equations is chosen as follows,

N =128.

Table 4.1 contains the results for the method of conjugate residuals, cf. Algorithm
2.2, which is terminated by the stopping rule described in Definition 3.2, with

b=1.5.

All computations are performed in MATLAB on an IBM RISC/6000.

Due to (4.5), (4.7) one cannot derive from Theorem 3.3 that the entries in the
third column stay bounded as % of noise decreases. On the other hand, however,
due to (4.5), (4.6) it is no surprise that these entries in fact stay bounded in our
experiments.
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TaBLE 4.1
Numerical results for Symm’s integral equation (4.3) for the circle IV

| % noise | [[u(h,0) —u.| | [[a(h,d) —u.]l/(6"3+1h¥?) | m | §flops |
9.0 3.01 3.65 2 | 0.93e+06
3.0 1.93 3.22 3 | 0.98e+-06
1.0 1.15 2.60 4 | 1.01e+06
0.33 0.76 2.29 5 | 1.05e+06
0.11 0.37 1.42 7 | 1.12e+06

4.3. Harmonic continuation of a function.

4.3.1. Introduction. To illustrate the results numerically once more, we next
consider the problem of harmonic continuation. For this purpose let

ID):{xER2: xf+x§<1}

be the open unit disk in the plane, let the function v : D — R be continuous on D,
the closure of D, and let v be harmonic on D, i.e.,
0% 0%
(Av)(z) = (a_xf + a—xg)(z) -0, zeD.

The problem then can be described as follows: we assume that v is known approxi-
mately on the boundary of a concentric disk of radius 0 < p < 1, i.e., the function

ft) = v(p,2nt), 0<t<1,

is assumed to be known approximately; from these informations we wish to determine
v on the boundary of D, i.e.,

u(s) = v(1,2ms), 0<s<1,

is the unknown function which has to be determined. The correspondence between
the functions u and f can be stated in terms of the following integral equation of the
first kind (cf. Kress [17], Problem 15.3, or Mikhlin [20], Chapter 13):

(4.8) (Au)(t) = /0 k(t— su(s) ds = f(8),  0<t<1,
1—p?
1+ p2 —2pcos(2nt)’

(4.9) k(t) :=

It turns out that for 0 < p < 1, the operator A : L?[0,1] — L?[0, 1] in (4.8) is compact,
symmetric and positive semidefinite, and the following decomposition is valid (again
given in complex form),

(4.10) (Au)(t) = Z pl™la(n)e? ™, t €10,1];
neZ

from this decomposition (4.10) it follows that (4.8)—(4.9) is severely ill-posed. The rep-
resentation (4.10) yields moreover that for arbitrarily small 4 > 0 one has R(A") C
H?[0,1] and

sup  [|[A"ul g2 /|ul| < oo,
0£u€L2[0,1]
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and then estimate (4.2) and the interpolation inequality yield that the approximation
property in (3.3) is valid in our situation for v; = 1 and &, = h2.

4.3.2. Specific right-hand sides. In our numerical illustrations for the prob-
lem of harmonic continuation we consider

(4.11) fot) = 1+ 2) pcos(2mnt),  0<t <1,

n=1

as right-hand side in (4.8), and the representation (4.10) yields that

us(s) = 1 + QZp" cos(2mns), 0<s<1,

n=1
solves Au = f., where A is as in (4.8), (4.9); moreover,
ux € R(AY) for 0 <wv <1, ux & R(A),

and thus it is no big surprise that the entries in the third column in the following
Table 4.2 stay bounded as % of noise decreases.

4.3.3. Specific choice of the parameters, and the experiments. The fol-
lowing table contains the results for the method of conjugate residuals, cf. Algorithm
2.2, which again is stopped according to the stopping rule described in Definition 3.2,
with b = 1.5. The perturbations of the right-hand side f. in (4.11) are employed sim-
ilar as for Symm’s integral equation in Section 4.2. The dimension of the underlying
system of equations again is N = 128. The constant p is chosen as follows, p = 1/2.

TABLE 4.2
Numerical results for the problem of harmonic continuation

| % noise | [[u(h,d) —u.] | [[u(h,d) —u.|/(6"2+h%) | m | §flops |
9.0 0.35 1.13 2 | 0.94e+06
3.0 0.24 1.33 3 | 0.98e+06
1.0 0.11 1.07 3 | 0.98e+06
0.33 0.07 1.25 4 | 1.02e+06
0.11 0.04 1.17 5 | 1.05e+06

In Figure 4.1, the result for % noise = 1.0 is demonstrated.

5. Basic properties of the method of conjugate residuals. Throughout
this section let Aj, € L(H) be as in (1.6). We start with a preliminary subsection on a
spectral representation of Ay, (cf. Section 5.1), and then (cf. Sections 5.2-5.4) we shall
recall some well-known results for the method of conjugate residuals, and for the sake
of convenience of the reader we frequently also provide the corresponding proofs.

5.1. Spectral decomposition of A;. In the sequel, at several places we shall
make use of the following (uniquely determined) spectral representation of Ay,

An =) N9,
j=1
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Fia. 4.1. Ezact solution ux (solid line) and reconstruction u(h,d) (dashed line) for 1.0% noise
in the right-hand side.
35

25r

15

051

Here, 0 < A1 < A2 < ... < Ay, denote the pairwise distinct, non-vanishing eigenvalues
of A, € L(H), and Q; € L(H) denote the associated orthogonal projections onto
N (A — N I) for j =1,2,...,m. For later notational convenience we also define

Xo =0

and denote by Qg € L(H) the orthogonal projection onto N (Ap,).
For any bounded function ¢ : Ry — R, an operator ¢)(Ay) € L(H) is defined by

m

(5.1) Y(An) =D 1h(A)Q;.

Jj=0

Note that for polynomials 1), this definition (5.1) coincides with the usual meaning of
¥(Ap). Tt is also useful to introduce the resolution of the identity,

(5.2) Fri= > Q;, 7>0,

j=>0: A<t
and then we have

(5.3) I-Fr = > Q, 7>0

3>0: Aj>T

The following properties will be useful: for any bounded function ¢ : Ry — R we
have

(5.4) [ Frb(An)ll < ,Sup [v()], T >0,
(5.5) Prip(An) = Y(An)Pn,

where P, € L(H) is asin (1.7). In fact, (5.4) follows immediately from the definitions,
while (5.5) is obtained from the following facts: for any j there exists a polynomial
p such that p(Ay) = Q,, and since Ppp(An) = p(Ap) Py is valid for each polynomial
p, it is now obvious that Q;P;, = P, Q;, and the definition (5.1) then finally yields
(5.5).
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5.2. First properties of the method of conjugate residuals. In the sequel
we assume that Assumption 3.1 is fulfilled, and we assume that the iteration process
described in Algorithm 2.2 generates iterates wug, ui,...,U,, € Vp, where n, > 0
denotes the final step. Then for the residuals r,, = Apu, — Prf?, cf. (2.2), we have

Tn = _pn(Ah)théa
for any 0 < n < n,, with residual polynomials
(56) pn(t) =1- th(t)v

cf. (3.9), (3.10) for the introduction of g, (t). We next state an important property of
the method of conjugate residuals which is an immediate consequence of (2.1).
Minimum property. For 0 < n < n,,

rall = (I = Angn(An)Puf’ < [1(1 = Ana(AR))Puf’ll  forall g € Il,y,
or equivalently,
(5.7) Irall < s(AR)PLf|| for any s € II,, with s(0) = 1.

As an immediate consequence of (5.7) we obtain:
Conjugacy property. For 0 < n < n, we have Apr, € K,(An, Prnf?)*, the
orthogonal complement of /C,, (A, P, f%), and thus

0 = (Appn(An)Prf’, s(An)Puf?)

(5.8) =D Apa(A)sON)IQ;Puf|?
j=1

for all s € II,,_1.

5.3. Some properties of the residual polynomials p,, (¢). The first equalities
in (2.3) and (2.4) and the uniqueness of g,(t) in (3.9), (3.10) imply the three-term
recurrence

po(t) = 1, p1(t) =1 — aot,

(0% — (6% —
anrl(t) = (1 + @ - ant)pn(t) - nbn 1pn71(t)7 1<n<n,—1,
Qp—1 Qp—1
which means that the system pg(t),...,pn, (t) forms, up to a normalization, a Sturm

sequence, cf. Chapter 5.6 in Stoer & Bulirsch [28]. Hence for n = 1,...,n,, the zeros
{tjn}j=1,...n of pn(t) are simple and fulfill an intertwining property; more explicitly,
if the zeros are ordered,

(5.9) 0<tin<ton<...<tpn, n=1...,n,,
then
(5.10) tem < thn—1 < thiln, k=1,....,.n—1, n=2,...,N,

is satisfied. Due to p,(0) = 1 we then have the following representation,

(5.11) Pult) = ﬁ (1 - L)

which implies

(5.12) 0<pn(t) <1 forall 0<t<t;,.
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5.4. Some properties of the polynomials g, (¢). Property (5.6) yields

1 —pn(t)

; , t>0 (0 <n < ny),

(5.13) an(t) =
and further properties of g, (¢) are listed in the following lemma.

LEMMA 5.1. Let {gn(t)}o<n<n. and {pn(t)} 1<n<n. be (arbitrary) polynomials
fulfilling (3.9) and (5.6), respectively, and let the roots {ty n}1<k<n 0f Pn(t) be ordered
as in (5.9). For 1 <n < n, we have:

(5.15) an(t) > 0, 0<t§t1,n,
(5.16) qn(0) = sup qn(t).
0<t<tin

If additionally the interlacing property (5.10) is satisfied, then

(5.17) qn—-1(0) < ¢n(0),
(5.18) an(0) < ti’}l + gn-1(0).

Proof. The equalities in (5.14) follow from the representations (5.11) and (5.13).
Moreover, (5.15) follows from (5.12) and (5.13). In order to prove (5.16) we observe
that p,(t) is convex on [0, t1 p]:

i = -3 =T (1--1).

—1 k.n J=1 t],n
i#k
1 1 t
o =X I ()
& k,n 12k lin kL 7,n

Now (5.16) follows from (5.13). Moreover, (5.17) is fulfilled trivially for n = 1, and
for n > 2 the intertwining property (5.10) yields

n—1
dn—1( Ztkn L <Y k< Zt = a(0
k=1

this is (5.17) for n > 2. Finally, the intertwining property (5.10) yields also (for n > 2;
the case n =1 in (5.18) is trivial)

0 (0) = tih + Zt <tk + Zt,m L= L 4 gaea(0),

this is (5.18). This completes the proof. O
We conclude this section with one more useful lemma.
LEMMA 5.2. Let p > 0, and let n be an integer. For any polynomial q,(t) €
IT,,—1 such that p,(t) = 1 —tq,(t) has increasingly ordered positive roots {tkn}1<k<n,
cf- (5.9), the following estimate is valid,

(5.19) d(t) = pa ()" < (uqn(o)—l)“, 0<t<tn.
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Proof. From the definition of ® and the product representation (5.11) of p,(t) we
get immediately ®(0) = ®(t1,,) =0, and ®(¢) > 0 for 0 < ¢ < t1 ,,. Moreover,

- 1
(1) = —pult )
P = )Y
=1k
Now let 0 < ¢ < t1,,, with
O(t) = sup D(¢).
0<t<tin

Hence 0 = ®'(f), and then (5.14) yields

P = P ——

\Y
s
3
—
o~
~—
~
=
()
3
—~
=)
=

therefore < 11g,(0)~!, and thus

- _ H
s 0(t) = o) = p (@ < 7 < (uan(0)7)
0<t<tin

and this completes the proof of (5.19). O

6. Subsidiary results and the proof of Theorem 3.3. The following dia-
gram illustrates the relations between the several lemmas and corollaries presented in
this section:

Corollary 6.3
Lemma 6.2 Y
Corollary 6.4 .
Lemma 6.1 — — Proposition 6.8.
Lemma 6.5
—>  Corollary 6.7
Lemma 6.6

Here, Corollaries 6.3 and 6.4 provide estimates for ||u. — u,| while Corollary
6.7 yields an estimate for the norm A,,_; of the residual. Finally, Corollary 6.7 and
Proposition 6.8 then provide the tools for completing the proof of Theorem 3.3.

6.1. Preliminaries. In the sequel, all arising constants ¢, co, ... are indepen-
dent of §, h and p (introduced in Assumption 3.1), and they may depend on b
(introduced in Definition 3.2), on a,, 0 < v < vy, (cf. (3.3)), and on [|A], if not
further specified. We start with a lemma that can be applied also to other than
conjugate gradient type methods; for a similar result we refer to Hamarik [10].

LEMMA 6.1. Let parts 1. and 2. of Assumption 3.1 be fulfilled. Let ¢ : [0,a] — R
be a bounded function, and let u > 0. Let F., 7 > 0, be the resolution of the identity
associated with Ay, cf. definition (5.2). Then

174 (An)Pr A"
Lp) R
6.1 < t t:“‘ + ¢ t] min{p—j,v1
(6.1) < (s ) clj_zo(oigyw )
62 < al g R - g,

0<t<r
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Here, |p] denotes the greatest integer < p, and c¢1 and cy are constants that are
independent of h and (and depend on ,u).
Proof. We have the following decomposition (with k = |u]):

Prdl = P[40 — AL ArH] - PLAb(ARE ) 4 Al

k—

(63) = Pu[ D AJAU - P + PuAb(An R - Al 1 Pl
j=0

—

<

(note that P,AI = PhA{LPh for j > 0). Then multiplying both sides of (6.3) with
Fr(Ap) yields (6.1), if we take into account that (5.4) as well as (3.4), (3.5) are
valid, and if we moreover use the estimates

(6.4) A7~ Al < 24— A7 < da]E),  0<y <1,

where the first of the estimates in (6.4) follows immediately from Lemma 1.1 in Chap-
ter 4 of Vainikko & Veretennikov [30]. To obtain (6.2), we use the elementary estimates

sup [w()t* < ((sup ()]}, s >0,
0<t<r o<t<r

as well as (recall that we assume &, < 1)

e < &+ o
(6.5) T < gttt 4 o if >0+ 1,
rigntt < entl o

(which are applied in (6.1) for the three situations (i) p < v1+1, (i) g > v1+1, p—j <
vi+land (i) p>m+1, p—j>u1 + 1). This completes the proof. a
LEMMA 6.2. Let Assumption 3.1 be valid. Let ¢ : R — R be bounded, and let

A= ||(I- Ahga(Ah))th6||'

Then for any T > 0 we have

e = (AP < 77 (A + 0 8)) + ( sup [w(®)])n(h,0)

0<t<r

+ ego sup [1—te(e)]) (r + grn),

0<t<r

where c3 is a constant that is independent of §, h, o and ¢ (and depends on 1/).
Proof. For 7 > 0 we have, with . as in (5.2):

. — (AP S|
- ) (e~ oA P) )+ 1EP (e~ o)) |
0 = Py
66) ' 10~ F)(ue - AP |+ 1F P - o)) |

+ bygé.}rlnin{u,lll}.
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In the sequel we shall estimate the first two terms on the right-hand side of (6.6).
First, with Q; as in Section 5.1 we have, cf. (5.3),

12 = F7) (e = AP I2 = D2 1195 (ue = o(An)Prf?) I

i Aj>T

< 7Y 2O (e - (AP
g A>T

< 723 N9, (e — (A)Ps) I
j=1

= 7% An (U* - <P(Ah)7’hf5)||2

2
< (I Awu. = Pufill + A)
(3.8)

2

< 72 (n(h, o) + A)
Second, by assumption we have the representation, u. = Az, ||z|| = o, cf. (3.6), thus
6.7)  we—@(A)Paf’ = (1= @(A)AL) A% + o(An)(Anu. = Puf?),
and then Lemma 6.1 for © = v and the properties (5.4), (5.5) yield

17 Pa (0 — (A1) Puf) |
172 (T = o(An) A1 ) PrA”2]| + [ Frp(An) (Anie = Puf?)|
177 (1= e(An)An) Pad”llo + | Fre(An)lin(h, o)

ca0 swp (11— to0)]) (7 + &™) 4 (sup Jot)])n(h, o)
0<t<r 0<t<r

IN A

IN

(recall that we assume &, < 1). This completes the proof. O
In a first corollary we state a result which is useful if the stopping rule given in
Definition 3.2 leads to an immediate termination of the method of conjugate residuals,
i.e., if we have n = 0.
COROLLARY 6.3. Let Assumption 8.1 be valid, and suppose that

(6.8) IPasll < C(5 + ogp™t It
holds for some constant C > 0. Then
el < ea(08) 0D 4 gt
where ¢4 is a constant that is independent of §, h and o (and depends on C' and 1/).
Proof. Tt follows immediately from Lemma 6.2, with ¢ = 0, as well as from (6.8)

that for 7 > 0 we have the following estimate,

69l = (0t (54 o017) + o+ o)
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Without loss of generality we may suppose that o # 0, and then we shall estimate the
right-hand side of (6.9) for the specific choice

T = (é)l/(u-H) + &

o
In fact,
5 < (é)fl/(wl)(s _ (961,)1/(1/4-1)’
T < 1,Q
o’ < QQV[(E)V/(qul) n }Tin{l/,u1}:| _ 2,,((@5,,)1/(V+1) n szr:in{u’yl})
(recall that we assume &, < 1). This completes the proof. O

6.2. Subsidiary results for the method of conjugate residuals. Now we
return to the method of conjugate residuals. From Lemma 6.2 we get the following
corollary.

COROLLARY 6.4. Let Assumption 3.1 be valid. Let {un}to<n<n. be as in Defini-
tion 2.1, and let {q,(t)}n and {A,}, be as in (3.9)—(3.10) and (3.11), respectively.
For any 1 <n < n, we have

l—unll < 77 (Bntn(h,8)) + au(O)n(h,6) + cso(T+E" ), 0 <7 <t

with constant cs as in Lemma 6.2.
Proof. We shall apply Lemma 6.2 with ¢(t) = ¢,,(¢). In fact, we have

0 < pu(t) = 1—tga(t) < 1, 0<t<tn,
cf. (5.6), (5.12), and from
0 < qu(t) < a(0), 0<t<tin,

cf. (5.15), (5.16), the assertion then follows immediately. O
We have obtained a first estimate for the error ||u, — uy||. The next two lemmas
provide reasonable estimates for the norm A,, of the residual.
LEMMA 6.5. Let Assumption 3.1 be valid. Let {uy}o<n<n. be as in Definition
2.1, and let {q,(t)}n and {A,}y, be as in (3.9)—(3.10) and (5.11), respectively. Then
for any 1 < n < n, we have

(6.10) A, < 6§ + 059(%(0)7(%1) + ghmin{l/,ln}-i-l),
where c5 denotes a constant that is independent of 6, h, o and n (and depends on V).

Proof. We decompose and estimate as follows,

A2 = R O)IQPuf?
=0

> mOIQPIP + DY prODIQPR S

VB Ajgtl,n VB >\j>t17n
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< Y mOIQPI?

J: Aj<tin
_ Aj -1
(6.11) o 2 AmO (7R 1) 1P,
Jr Xji>tin Ln

where the latter estimate follows from )\(% —1)7t > ¢y, for A > t1,. In order to
estimate (6.11), we observe that the conjugacy property (5.8) yields

-1 A\ L
> O (EE 1) QPP = S A (1= 22) 1P,
J:Aj >t1n Ln Jix;<ti,n 1’”
and this applied in (6.11) yields, cf. also (5.2),
s A\ —1
2 < 2 (\: N PN LIIE
s > PR+ (1= L) |IesPasl
. Jg>Ut1l,n

tl,n 1,n

D SRR (R I TN
Ji Aj<tin o
(6.12) = | Fe, o2 (A Puf %,
with (cf. (5.11))
t - t \2
vp(t) = (1—— 1——) |, 0<t<t1n,
()T 1

tl,n tk,n

and vy, (t) :== 0 for ¢ > t1,,. Note that 0 < v, (t) <1 for all 0 <t < ty,. We proceed
with an estimation of (6.12): from Assumption 3.1 and estimate (5.4) we obtain

Bu < |1Fe vy (An)Puf
< Fe, 0 2ARPRAT S 4 [1Fsy,on 2 (An)Pa(Au. — £9)]
< |Fe, 0 2(AnPRA e + 1, vx 2 (An)10
1/2 1 1/2
< 1Fi, o 2(AnPrA o + ( swp wa(®) o
0<t<t1n
(6.13) < P VIl (An)PrA™ o + 0,

where it has been taken into account that 0 <1— - < 1holdsfor 0 <t <t;,, k=

2,...,n. In order to provide further estimations of the right-hand side in (6.13), w
next shall apply Lemma 6.1 with 4 = v + 1; in fact, from the estimates (5.19) and
(6.1) we get

lv+1]

v+1
+ a Z 25¢,(0 §mm{y J’VI}H}Q + 4,

A, < [(z(y n 1)qn(0)*1)

and proceeding then as in (6.5), with 7 replaced by ¢, (0)~!, yields the assertion (6.10).
This completes the proof. O

LEMMA 6.6. Let Assumption 3.1 be valid. Let {un}o<n<n. be as in Definition
2.1, and let {g,(t)}n and {A,}n be as in (3.9)-(3.10) and (3.11), respectively. Fix
1<n<ng, 0>2and2<rk<20-1). If

(6.14) 0an-1(0) < ¢n(0),
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then we have
K—2

k—1

Anfl < 0 + CGQ(qn(O)f(V‘Fl) + ghmin{l’v’/l}"rl),

where cg is a constant that is independent of §, h, o and n (and depends on 6 and
).
Proof. Let

(6.15) s(t) = pn (t)(l - E) H (1 - E)

where p,(t) is as in (5.6), (5.11). We have s € II,,_; and s(0) = 1, and the minimum
property (5.7) then yields

A% < [ls(AR)Pu I
= > SOIPLIE + D SO PR
g Aj<nktin Jr Aj>Rtn
6.16) < > SONIQPLIP + k=17 > prO)IQPL?
g Aj<rktin Jr Aj >kt n
< > SOLPIP + (5 =172 pRA)IQ; Pl
J: Aj<ktin j=0
= || Farr o s(An)PRfO? + (k—1)72A7
(617) < (1Pt s(APRFIP + (5= 1)72A7
where (6.16) is valid since we have (1 — =)72 < (k — 1)72 for ¢ > kt1,,; moreover,

(6.17) follows from (3.12). A reformulation and further estimation of the right-hand
side in (6.17) then yields

K—2

K_lAnfl S antl,ns(Ah),th(;”
< NPt S(AR)PRA™ 2|+ (| Fry o s(Ap) Pr(Au — )]
(6.18) < 1 Futss(AR)PRA o + ([ Frtr, . 5(An)16.

Below we show that the estimates

(6.19) Ktin < 2tan, if n > 2,
(6.20) tin < (1—=60"H"g (007 if n>1,

are valid. Then, due to
Is(t)] < 1, 0<t<2t,, if n > 2, (cf. (6.15))
s(t) = 1, teR, ifn=1,
a further estimation of (6.18) yields, cf. (5.4), (6.2),

K—2
k—1

An—l

IN

5+ CQQ((I{th)V—i_l + £rmn{l/l/l}Jrl)

5+ cz@((ﬂqn( )~ éfm{"’"l}ﬂ),

IN
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with 3 := (1 —6~1!)/k, and with constant c3 as in Lemma 6.1.
It remains to show that the estimates (6.19), (6.20) are valid. For this purpose
we recall that the assumption (6.14) and the estimate (5.18) yield

and this implies immediately (6.20). We next show that (6.19) is valid: in fact, from
the estimate (6.21) we obtain

o (5.14) B .
(0 l)tl,nfl < (0 -1)gn-1(0) < tmo

and thus

Kt e
Kby, < 0L < opy

-1 —
and finally t1 ,—1 < tap, cf. (5.10), then yields (6.19). This completes the proof. 0O

Remarks. The proofs of Lemmas 6.5 and 6.6 follow the ideas of the paper by
Nemirovskif [21] until estimates (6.13) and (6.18), respectively. Beyond that we make
use of Lemma 6.1 which is applicable in our specific situation and leads to better
results than in [21]; cf. also part (5) in the conclusions in Section 3.3.1. A

From Lemmas 6.5 and 6.6 we get:

COROLLARY 6.7. Let Assumption 3.1 be valid. Let {un}o<n<n, be as in Defini-
tion 2.1, and let {q,(t)}n and {A,}, be as in (3.9)—(3.10) and (3.11), respectively.
For all 0 < v < 1 we have

N C7Q(qn(0)_(”+1) i 5211in{1/,u1}+1), | <n<n.,

where c7 is a constant that is independent of §, h, o and n (and depends on vy and
v).
) Proof. Let k > 2 such that v = (k — 2)/(x — 1) is valid. Moreover let § > 2 such
that x = 2(f — 1) holds. From Lemmas 6.5 and 6.6 we obtain the desired result by
considering the two different cases “0¢,—1(0) < ¢,(0)” and “6g,_1(0) > ¢,(0)”. Note
that in the latter case we necessarily have n > 2. 0

Corollaries 6.4 and 6.7 enable us to prove the following lemma which is presented
in a general form so that it may be applied for the cases n =7 and n =7 — 1, cf. the
specific situations described in Subsection 6.3, respectively.

PROPOSITION 6.8. Let Assumption 3.1 be valid, and let b > 1. Let {un}o<n<n,
be as in Definition 2.1, and let {q,(t)}n and {A,}n be as in (3.9)—(3.10) and (5.11),
respectively. Suppose that for some fived n with 1 < n < n, we have

(622) qu(0) < &1 b0 < Apy, A, < 0(5 n gg,‘j’i“{”*”l}“),
where C denotes some constant. Then

w1/ (v+1 min{v,v
o = unll < es((007) /Y 4 g,

where cg is a constant that is independent of §, h, o and n (and depends on C and
v).
Proof. Corollary 6.4 and the assumption on A, cf. (6.22), yield for 0 < 7 <t ,

(6.23) [u. —uall < C1([77! + qu(0)] (54 0gr™" " IHY) o7 + g,



22 6. SUBSIDIARY RESULTS AND THE PROOF OF THEOREM 3.3

with a constant C, and we shall estimate the right-hand side of (6.23). For this
purpose let

(6.24) €

0

T = min{g, qn(O)fl}.

+ &,

(5)1/<v+1>

Then we have, cf. (5.14), 7 < go(0)™! < t1,, hence (6.23) is valid for this specific
choice of 7. Now the different terms on the right-hand side of (6.23) remain to be
estimated.

(a) Similar as in the proof of Lemma 6.3 we obtain the following elementary
estimates (recall that &, < 1),

ot < 0e¥ < 2”((95”)1/(V+1) + Q&Zﬂm{y’yl})-

(b) Since by assumption &, < € and &, < ¢,(0)71, cf. (6.22) and (6.24), respec-
tively, we have &, < 7 and thus 771¢, < 1.

(c) We still have to estimate 71§ sufficiently good, and for this purpose we
consider two different cases. First, if ¢,(0) < e~!, then

o 1/ (v+1)
e
0

and thus

7_715 < (Qé‘y)l/(VJFl)

)

which provides a sufficiently good estimate. Now suppose that
(6.25) a(0) > 7.

Then Corollary 6.7 and the assumption on A, in (6.22) yields
by6 < YAn1 < 6+ cro(ga(0)” Y 4 gt

Here, 0 < v < 1 is chosen such that by > 1, and then c7 is chosen according to
Corollary 6.7. Subtracting § on both sides of the last inequality and multiplying then
both sides with 7! yields

by -1t < 070(%(0)7'/ + 5?11{”’”1})
5)1/(u+1)

C7(2"+ 1)@[(5

IN

+ é.}rlnin{u,l/l }:|

Y

where the assumption 7 = ¢,,(0)71, cf. (6.25), as well as the estimates in parts (a)
and (b) of this proof have been applied. Thus 714 is estimated sufficiently good in
this case. .

(d) Finally we shall estimate g,,(0)(6 + gg,rlmn{”’yl}ﬂ). In fact, ¢,(0) < &, ' holds
by assumption, and moreover we have ¢,(0) < 77!, thus with the result (c) of this
proof we can estimate ¢, (0)0 sufficiently good. This completes the proof. |
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6.3. The proof of Theorem 3.3. As a preparation we remark that we have
by definition Apr,, =0, and thus

(6.26) Ap, = |ra.|l = dist(Puf®, R(An)) < n(h,9).

Now we are in a position to prove the main result.
(1) We first suppose that

(6.27) “i=0" oo “‘m=1, q(0)>¢ ",

any of these two cases leading to w(h,d) = 0. We show below that in both cases we
have

(6.28) IPufl < O(5 + o)

for an appropriate constant C' > 0, which together with Corollary 6.3 yields an
adequate estimate of ||u. — @(h,d)|| = |Jus| for these cases in (6.27). We start
with the proof of (6.28): first, @ = 0 means Aprg = 0 (and (6.26) then yields
Ao = |[Puf? < n(h,8)) or Ag = [[Pnf®| < b3, and thus we have [Py f°|| <
max{b,a1b,}(§ + Qf,r:lm{y’”l}ﬂ), if @ = 0. Moreover, if @ = 1 and ¢1(0) > &',
then Corollary 6.7 yields (recall that &, < 1)

7||7)hf5|| = ~vAy) < 0 + chgznin{v,ul}ﬂ’

where 0 < v < 1 is arbitrary, and c¢7 is chosen as in Corollary 6.7. This completes the
proof for the cases in (6.27).

(2) We next consider the remaining cases, i.e., @ > 1 and ¢;(0) < &, *.

(a) First, if ¢z(0) < &, ', then we have Az < b or Apry = 0, in any case we
have Az < max{b,a1b,}(6 + gf,rlmn{”’yl}ﬂ), and then a sufficiently good estimate
for |Ju. —u(h,d)|| follows from Proposition 6.8 for n = 7, since also bd < Az;_; holds.

(b) Next suppose ¢(0) > &, ', and then @ > 2 and 7(h, §) = uz_1 holds. Corol-
lary 6.7 then provides the estimate

YAm_1 < 6 + 2eppeminivviitl

where 0 < v < 1 is arbitrary, and c¢7 is chosen as in Corollary 6.7. Since moreover
the estimates b0 < Az_» and gr—2(0) < &, 1 are valid, the assertion follows from
Proposition 6.8 applied with n =7n — 1. This completes the proof of Theorem 3.3. 0O
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