
The regularizing properties of the trapezoidal method for
weakly singular Volterra integral equations of the first kind

Robert Plato∗

Abstract

The repeated trapezoidal method was considered by P. Eggermont for the numerical solution of
weakly singular Volterra integral equations of the first kind with exactly given right-hand sides ([7]).
In the present paper we consider the regularizing properties of this method for perturbed right-hand sides.
Finally, numerical results are presented.

1 Introduction

In this paper we consider linear weakly singular Volterra integral equations of the following form,

(Au)(x) =
1

Γ(α)

∫ x

0

(x− y)α−1k(x, y)u(y) dy = f(x) for 0 ≤ x ≤ L, (1.1)

with 0 < α < 1 andL > 0, and with a sufficiently smooth kernel functionk : [0, L ]×[0, L ] → R, andΓ
denotes Euler’s gamma function. Moreover, the functionf : [0, L ] → R is supposed to be approximately
given, and a functionu : [0, L ] → R satisfying equation (1.1) is to be determined.

For applications see e.g. Durbin [6] and Lerche/Zeitler [15], where crossing probabilities for Brownian
motions and the inversion of the two-dimensional Radon transform are considered, respectively. In the
sequel we suppose that the kernel function does not vanish onthe diagonal0 ≤ x = y ≤ L, and without
loss of generality we may assume that

k(x, x) = 1 for 0 ≤ x ≤ L (1.2)

holds.
There exists many methods for the approximate solution of equation (1.1) if the right-hand sidef is

exactly given, see e.g., Brunner /van der Houwen [4] and Hackbusch [10]. One of these methods is the
repeated trapezoidal rule which is considered in detail, e.g., in Eggermont [7]. In the present paper we
consider its regularizing properties for perturbed right-hand sides in equation (1.1). Finally, some numerical
illustrations are presented.

2 The numerical scheme

2.1 Preparations

As a first step we consider in (1.1) the special situationk ≡ 1, with the corresponding integral operator
being the classical Abel integral operator

(Vαu)(x) =
1

Γ(α)

∫ x

0

(x − y)α−1u(y) dy for 0 ≤ x ≤ L, (2.1)
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whereu : [0, L ] → R is supposed to be a continuous function. One of the basic properties of the Abel
integral operator is as follows,

(Vαy
q)(x) = Γ(q+1)

Γ(q+1+α) x
q+α for x ≥ 0 (q ≥ 0) (2.2)

whereyq is short notation for the mappingy 7→ yq. This and other properties of the Abel integral operator
can be found e.g. in Gorenflo/Vessella [9] or Hackbusch [10].For the numerical approximation of the
integral operator (2.1) we introduce grid points

xn = nh, n = 0, 1, . . . , N with h =
L

N
, (2.3)

whereN is a positive integer. Consider the space of linear splines with respect to that grid,

SN =
{
sN : [0, L] → R | sN continuous on[0, L ], linear on[xj−1, xj ], j = 1, . . . , N

}
. (2.4)

The following lemma is used as a preparation for the numerical scheme to be considered.

Lemma 2.1(cf. [7]). For eachsN ∈ SN we have

(VαsN )(xn) = hα
{

ãnsN(0) +
n

X

j=1

an−jsN(xj)
}

for n = 1, 2, . . . , N. (2.5)

Here, the coefficientsa0, a1, . . . andã1, ã2, . . . are given by

an =
1

Γ(α + 2)

[
(n+ 1)α+1 − 2nα+1 + (n− 1)α+1

]
, n = 1, 2, . . . , a0 =

1

Γ(α + 2)
, (2.6)

ãn =
1

Γ(α + 2)

[
(n− 1)α+1 − nα+1 + (α+ 1)nα

]
for n = 1, 2, . . . . (2.7)

PROOF. The proof is elementary and is presented for convenience ofthe reader. We writeuj = sN (xj)
and obtain the following:

(VαsN )(xn) =
1

Γ(α)

n
X

j=1

∫ xj

xj−1

(xn − y)α−1
[
uj−1

xj − y

h
+ uj

y − xj−1

h

]
dy. (2.8)

We proceed with the terms considered in the integral in (2.8):
∫ xj

xj−1

(xn − y)α−1(xj − y) dy

= − 1

α(α + 1)

[
(n− j + 1)α+1 − (n− j)α+1

]
hα+1 +

1
α
(n− j + 1)αhα+1, (2.9)

and
∫ xj

xj−1

(xn − y)α−1(y − xj−1) dy

=
1

α(α + 1)

[
(n− j + 1)α+1 − (n− j)α+1

]
hα+1 − 1

α
(n− j)αhα+1. (2.10)

Summing up the terms in (2.9) and (2.10) finally gives the two representations (2.6) and (2.7). This com-
pletes the proof. 2
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2.2 The numerical scheme

In the sequel we suppose that the values of the right-hand side of equation (1.1) are only approximately
given with

|f δ
n − f(xn)| ≤ δ for n = 1, 2, . . . , N, (2.11)

whereδ > 0 is a known noise level. In this situation representation (2.5) leads to the following scheme for
the numerical solution of equation (1.1):

hα
n

X

j=1

an−j k(xn, xj)u
δ
j = f δ

n − hαãnk(xn, 0)uδ
0, n = 1, 2, . . . , N. (2.12)

For eachn the representation in (2.12) follows from the representation (2.5), considered forL = xn = nh
and with the functionu replaced by the functiony 7→ k(xn, y)u(y) for 0 ≤ y ≤ nh.

The procedure for determining these approximations is as follows:

(a) First determine a starting valueuδ
0 ≈ u(0) of sufficient accuracy, i.e.,

uδ
0 − u(0) = O(h2 + δ /hα) as (h, δ) → 0. (2.13)

A simple extrapolation scheme is considered at the end of this section.

(b) Then successively determine approximationsuδ
n ≈ u(xn) for n = 1, 2, . . . , N by using scheme (2.12).

Remark 2.2. The considered scheme coincides, for exact given right-hand sides, with a spline-collocation
method. In the special casek ≡ 1 andα = 1/2 it also can be obtained by a repeated one-point Gauss rule
followed by piecewise linear interpolation, cf. Branca [3]or Hackbusch [10]. △

3 The integration error

3.1 Preparations

We now consider the quadrature error corresponding to method (2.12). The basic assumptions are as fol-
lows.

Assumption 3.1. (a) The kernel functionk in the integral operator (1.1) has continuous partial derivatives
up to the order3 on [0, L ]× [0, L ], and there exists a solutionu of the integral equation (1.1) which is twice
continuously differentiable on the interval[0, L ], and the second derivativeu′′ is assumed to be Lipschitz
continuous.

(b) k(x, x) = 1 holds for each0 ≤ x ≤ L,

(c) the grid pointsxn are given by (2.3),

(d) the values of the right-hand side of equation (1.1) are approximately given at the grid points, cf. (2.11).

At the end of Section 4, conditions on the right-hand sidef of the considered weakly singular Volterra
integral equation of the first kind are given which guaranteethe existence of a solutionu satisfying (a) in
Assumption 3.1.

We start our numerical analysis of the regularizing properties of the product trapezoidal method method
for the numerical integration of the weakly singular Volterra integral operator considered in (1.1). As a
preparation we consider the Abel operator (2.1), this is,k ≡ 1. We approximate a given functionu on each
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subinterval by a linear polynomial interpolatingu at both ends of the considered subinterval:

(Vαu)(xn) =
1

Γ(α)

∫ xn

0

(xn − y)α−1u(y) dy

=
1

Γ(α)

∫ xn

0

(xn − y)α−1sN (y) dy +
1

Γ(α)

∫ xn

0

(xn − y)α−1(u(y) − sN(y)) dy

= hα
{

ãnu(0) +
n

X

j=1

an−ju(xj)
}

− EN,n for n = 1, 2, . . . , N, (3.1)

where

EN,n =
1

Γ(α)

∫ xn

0

(xn − y)α−1
[
sN (y) − u(y)

]
dy for n = 1, 2, . . . , N, (3.2)

denotes the integrated interpolation error. It is well known, cf. e.g., [17], that for each indexj ∈ { 1, 2,
. . . , n } and eachxj−1 ≤ y ≤ xj the error representation

sN (y) − u(y) =
1
2
(y − xj−1)(xj − y)u′′(ξ) (3.3)

holds, with some intermediate valuexj−1 ≤ ξ = ξ(y) ≤ xj . From that we obtain the following represen-
tations for the integrated interpolation errorsEN,n introduced in (3.2):

Lemma 3.2(cf. [7]). We have

EN,n = hα+2
n

X

j=1

cn−ju
′′(xj − θn,jh) for n = 1, 2, . . . , N (3.4)

with certain coefficients0 ≤ θn,j ≤ 1. The coefficientscn have the following asymptotic behavior:

cn =
1

12Γ(α)
nα−1 + O(nα−2) as n→ ∞. (3.5)

PROOF. From the representations (3.2) and (3.3) it follows that for j = 1, 2, . . . , n we have
∫ xj

xj−1

(xn − y)α−1
[
sN(y) − u(y)

]
dy

=
1
2

[ ∫ xj

xj−1

(xn − y)α−1(y − xj−1)(xj − y) dy
]

u′′(xj − θn,jh)

=
hα+2

2

[ ∫ 1

0

t(1 − t)(n− j + 1 − t)α−1 dt
]

u′′(xj − θn,jh),

where the mean value theorem for integrals and substitutionhas been employed. Integration by parts yields
the following representations:

∫ 1

0

t(1 − t)(n+ 1 − t)α−1 dt

=
1

α(α + 1)

{

(n+ 1)α+1 + nα+1 − 2
α + 2

(
(n+ 1)α+2 − nα+2

)}

for n = 1, 2, . . . .

The statement (3.5) on the asymptotic behavior of the coefficientsc0, c1, . . . now follows from the Taylor
expansions

(n+ 1)α+2 = nα+2 + (α+ 2)nα+1 +
(α + 1)(α + 2)

2
nα +

α(α + 1)(α + 2)

6
nα−1 + O(nα−2),

(n± 1)α+1 = nα+1 ± (α+ 1)nα +
α(α + 1)

2
nα−1 + O(nα−2) (3.6)
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asn→ ∞. This completes the proof of the lemma. 2

As a further preparation we note that the coefficientsa0, a1, . . . andã0, ã1, . . . (cf. (2.6) and (2.7)) have the
following asymptotic behavior (cf. (3.6)):

an =
1

Γ(α)
nα−1 + O(nα−2) as n→ ∞, (3.7)

ãn = O(nα−1) as n→ ∞. (3.8)

As an immediate consequence we obtain the following corollary.

Corollary 3.3 (cf. [7]). We have

EN,n =
hα+2

12

n
X

j=1

an−ju
′′(xj) + O(hα+2) for n = 1, 2, . . . , N. (3.9)

PROOF. This follows immediately from the representations (3.4),(3.5) and (3.7):

cn−ju
′′(xj − θn,jh) = cn−ju

′′(xj) + O((n− j)α−1h)

=
1
12
an−ju

′′(xj) + O((n− j)α−2) + O((n− j)α−1h) for j ≤ n− 1.

2

4 Error analysis of the trapezoidal method for first kind Volt erra
integral equations with perturbations

We now present the main result on the convergence order of theapproximations obtained by the scheme
(2.12). As a first step we observe that, under the conditions in Assumption 3.1, we have

hα
n

X

j=1

an−j k(xn, xj)u(xj)

= f(xn) +
hα+2

12

n
X

j=1

an−jϕ(xn, xj) − hαãnk(xn, 0)u(0) + O(hα+2) for n = 1, 2, . . . , N (4.1)

uniformly with respect ton, with the functionϕ(x, z) = d2

dy2 {k(x, y)u(y)}|y=z for 0 ≤ z ≤ x ≤ L. For
eachn the representation in (4.1) follows from the representation (3.1) and (3.9), considered forL = xn =
nh, and with the functionu replaced by the functiony 7→ k(xn, y)u(y) for 0 ≤ y ≤ nh.

As a further preparation, in the sequel we identify sequences (bn)n≥0 of complex numbers with their
(formal) power seriesb(ξ) =

∑∞
n=0 bnξ

n. Pointwise multiplication of two power series

( ∞
X

k=0

bkξ
k
)

·
( ∞

X

j=0

cjξ
j
)

=
∞

X

n=0

dnξ
n, with dn :=

n
X

k=0

bkcn−k for n = 0, 1, . . .

makes the set of power series into a complex commutative algebra with unit element1+0 · ξ+0 · ξ2 + . . . .
For any power seriesb(ξ) =

∑∞
n=0 bnξ

n with b0 6= 0 there exists a power series which inverts the power
seriesb with respect to pointwise multiplication and is denoted by1/b(ξ) or by [b(ξ)]−1. For a thorough
introduction to formal power series see, e.g., Henrici [12].

In the sequel we consider the inverse

[a(ξ)]−1 =
∞

X

n=0

a(−1)
n ξn (4.2)
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of the generating functiona(ξ) =
∑∞

n=0 an ξ
n. These coefficients satisfy

a(−1)
n = O(n−α−1) as n→ ∞ (4.3)

which is shown in [7]. Another proof of (4.3) which uses Banach algebra theory and may be of independent
interest is presented in Section 6 of the present paper.

The representations (4.1)–(4.3) provide basic tools for the convergence analysis.

Theorem 4.1. Let the conditions of Assumption 3.1 be satisfied, and letuδ
0 ∈ R be a starting value with

uδ
0 − u(0) = O(h2 + δ/hα) as(h, δ) → 0. Then the approximationsuδ

1, u
δ
2, . . . , u

δ
N determined by (2.12)

can be estimated as follows,

max
n=1,2,...,N

|uδ
n − u(xn)| = O(h2 + δ/hα) as (h, δ) → 0.

PROOF. The approximation property (2.13) of the starting value, the representations (4.1) and (2.12) and
the estimatẽan = O(1) asn→ ∞ (cf. (3.8)) imply the following,

hα
n

X

j=1

an−j k(xn, xj)e
δ
j = −hα+2

12

n
X

j=1

an−j ϕ(xn, xj) + O(hα+2 + δ) for n = 1, 2, . . . , N (4.4)

as(h, δ) → 0 uniformly with respect ton, where

eδ
n = uδ

n − u(xn), n = 1, 2, . . . , N.

We next consider a matrix-vector formulation of (4.4). As a preparation we consider the matrixAh ∈
RN×N given by

Ah =



















a0k1,1 0 · · · · · · 0

a1k2,1 a0k2,2
. . . 0

... a1k3,2
. . .

. . .
...

...
. . .

. . . 0

aN−1kN,1 · · · · · · a1kN,N−1 a0kN,N



















with the notation

kn,j = k(xn, xj) for 1 ≤ j ≤ n ≤ N.
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Additionally we consider the matrixBh ∈ RN×N given by

Bh =































a0ϕ(x1, x1) 0 · · · · · · 0

a1ϕ(x2, x1) a0ϕ(x2, x2)
. . . 0

... a1ϕ(x3, x2)
. . .

. . .
...

...
. . .

. . . 0

aN−1ϕ(xN , x1) · · · · · · a1ϕ(xN , xN−1) a0ϕ(xN , xN )































,

and the vectors

∆δ
h = (eδ

1, e
δ
2, . . . , e

δ
N)⊤, Gh = (1, 1, . . . , 1)⊤∈ R

N .

Using these notations, the linear system (4.4) becomes

hαAh∆δ
h = −hα+2

12
BhGh + F δ

h , with F δ
h ∈ R

N , ‖F δ
h‖∞ = O(hα+2 + δ) as (h, δ) → 0, (4.5)

where‖ · ‖∞ denotes the maximum norm onRN . For a further treatment of the identity (4.5) we consider
now the matrixDh ∈ RN×N given by

Dh =




















a
(−1)
0 0 · · · · · · 0

a
(−1)
1 a

(−1)
0 0 0

a
(−1)
2

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

a
(−1)
N−1 · · · · · · a

(−1)
1 a

(−1)
0




















. (4.6)

We apply the matrixh−αDh to both sides of (4.5) and show in the sequel that

‖DhAh∆δ
h‖∞ = O(h2 + δ/hα) as (h, δ) → 0 (4.7)

holds. For this purpose we first observe that

‖Dh‖∞ = O(1) as h→ 0, ‖Gh‖∞ = 1, (4.8)

holds, where in the first term‖ · ‖∞ denotes the matrix norm induced by the maximum vector norm onRN .
The first estimate in (4.8) follows from the decay of the coefficients of the inverse of the generating function
a, cf. estimate (4.3). The lower triangular matrixDhBh can be written as follows,

DhBh = Mh + hCh with Mh = diag(ϕ(x1, x1), ϕ(x2, x2), . . . , ϕ(xN , xN )),

Ch = (ch,n,j) ∈ R
N×N strictly lower triangular,

max
1≤j<n≤N

|ch,n,j | = O(1) as h→ 0,
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cf. the proof of Lemma 4.2 in Eggermont [7] for more details. This in particular means

‖DhBh‖∞ = O(1) as h→ 0. (4.9)

From (4.5), (4.8) and (4.9) we then obtain estimate (4.7). For a further treatment of estimate (4.7) we note
that the lower triangular matrixDhAh can be written as follows,

DhAh = I + hKh with Kh = (kh,n,j) ∈ R
N×N strictly lower triangular,

max
1≤j<n≤N

|kh,n,j | = O(1) as h→ 0.

This follows similarly as the representation ofDhBh considered above, cf. again Lemma 4.2 in [7] for more
details. This representation and the discrete version of Gronwall’s inequality now yields

‖(DhAh)−1‖∞ = O(1) as h→ 0. (4.10)

The statement of the theorem now follows from estimates (4.7) and (4.10). 2

In the sequel we consider (forL > 0 fixed) step sizesh = L/N which depend on the noise levelδ as
follows,

h ∼ δ1/(α+2) as δ → 0, (4.11)

i. e., there exist real constantsc2 ≥ c1 > 0 such thatc1h ≤ δ1/(α+2) ≤ c2h holds forδ → 0. As an
immediate consequence of Theorem 4.1 we obtain the following main result of this paper.

Corollary 4.2. Let Assumption 3.1 be satisfied, and leth = h(δ) be step sizes satisfying (4.11). Letuδ
0 ∈ R

be a starting value withuδ
0 − u(0) = O(δ2/(α+2)) asδ → 0. Then the error for the approximations given

by (2.12) can be estimated as follows:

max
n=1,2,...,N

|uδ
n − u(xn)| = O(δ2/(α+2)) as δ → 0.

We conclude this section with some remarks.

Remark 4.3. (a) The error estimate presented in Corollary 4.2 is order optimal within the class of functions
R(Ap) =

{
u = Apz, z : [0, L ] → R continuous

}
with p = 2/α. For a consideration of fractional powers

of Abel integral operators see, e.g., [16].

(b) The smoothness conditions on the solutionu considered in Assumption 3.1 are satisfied (and addition-
ally, the existence of the solutionu can be guaranteed then), if the exact right-hand sidef can be written
in the formf(x) = xαg(x) with a functiong ∈ C4[0, L ] and if in addition the kernelk(x, y) has for
0 ≤ y ≤ x ≤ L continuous partial derivatives up to the order5, cf. Atkinson [2] for the details.

(c) In the situation of part (b) of this remark there holdsΓ(α + 1)g(0) = u(0), see e.g., Theorem 1.3.11 in
Brunner /van der Houwen [4]. Thus, a possible strategy for determining a starting valueuδ

0 satisfying (2.13)
is to consider the interpolating polynomialP δ of degree not larger than1 which satisfiesP δ(xn) = f δ

n/x
α
n

for n = 1, 2. The choiceuδ
0 = αP δ(0) = u(0) + O(h2 + δ/hα) (cf. Lemma 4.4 below, applied with

ε = δ/hα, ψ(x) = g(x) andψε
n = f δ

n/x
α
n ) then gives a starting value of sufficient accuracy.

(d) For other special regularization methods for the approximate solution of Volterra integral equations of
the first kind with perturbed right-hand sides and with possibly weakly singular kernels, see e.g., Bughgeim [5],
Gorenflo/Vessella [9], Lamm [14], and [18], and the references therein.

We conclude this section with an elementary lemma on extrapolation with perturbed data which completes
the considerations in part (b) of the Remark 4.3. In the sequel, Π1 denotes the space of polynomials with
degree≤ 1.
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Lemma 4.4. Letψ : [0, 2h ] → R be a twice continuously differentiable function, withh > 0. Letψε
1 and

ψε
2 be real numbers with|ψε

n − ψ(nh)| ≤ ε for n = 1, 2, with someε > 0. Let the polynomialP ε ∈ Π1

satisfyP ε(nh) = ψε
n for n = 1, 2. Then there holds

|P ε(0) − ψ(0)| ≤ max
0≤x≤2h

|ψ′′(x)|h2 + 3ε.

PROOF. We consider the polynomialP ∈ Π1 with P (nh) = ψ(nh) for n = 1, 2. The standard error
representation for polynomial interpolation (see e.g., [17]) gives|P (0) − ψ(0)| ≤ max0≤x≤2h |ψ′′(x)|h2.
In addition, an expansion ofP ε(0) − P (0) in terms of Lagrange basis polynomialsLn ∈ Π1, n = 1, 2,
with respect to the two grid pointsh, 2h gives|P ε(0) − P (0)| ≤ cε with c = |L1(0)| + |L2(0)| = 3. This
completes the proof. 2

5 Numerical experiments

As an illustration of the main result considered in Corollary 4.2, we next present the results of some numer-
ical experiments. First we consider the following linear weakly singular Volterra integral equation of the
first kind,

1
√

π

∫ x

0

(x− y)−1/2e−(x−y)u(y) dy = e−x (x4 + x6)
︸ ︷︷ ︸

=: f(x)

for 0 ≤ x ≤ 1, (5.1)

with exact solution (cf. (2.2))

u(y) = e−y
( 4!

Γ(4.5)
y3.5 +

6!

Γ(6.5)
y5.5

)
for 0 ≤ y ≤ 1,

so that the conditions in (a) and (b) of Assumption 3.1 are satisfied. Here are some additional remarks on
the numerical tests:

• numerical experiments with step sizesh = 1/2q for q = 5, 6, . . . , 11 are employed, respectively;
• for each considered step sizeh, the noise levelδ = h2.5 is considered;
• in the numerical experiments, the perturbations are of the form f δ

n = f(xn) + ∆n with uniformly
distributed random values∆n with |∆n | ≤ δ;

• in each experiment, the starting valueuδ
0 is determined by the strategy described in part (c) of Remark

4.3.

Experiments are employed using the program system OCTAVE (http://www.octave.org). The results are
shown in Table 1. There,‖f‖∞ denotes the maximum norm of the functionf .

N δ 100 · δ/‖f‖∞ maxn |uδ
n − u(xn)| maxn |uδ

n − u(xn)| /δ4/5

32 1.7 · 10−4 2.35 · 10−2 2.95 · 10−3 3.02
64 3.1 · 10−5 4.15 · 10−3 1.04 · 10−3 4.26

128 5.4 · 10−6 7.33 · 10−4 2.03 · 10−4 3.32
256 9.5 · 10−7 1.30 · 10−4 5.79 · 10−5 3.79
512 1.7 · 10−7 2.29 · 10−5 1.72 · 10−5 4.50

1024 3.0 · 10−8 4.05 · 10−6 4.24 · 10−6 4.45
2048 5.3 · 10−9 7.16 · 10−7 1.09 · 10−6 4.58

Table 1: Numerical results for equation (5.1)

Next we present some numerical results for another right-hand side (and the same operator as above):

1
√

π

∫ x

0

(x− y)−1/2e−(x−y)u(y) dy = e−x (
√
x+ x4)

︸ ︷︷ ︸

=: f(x)

for 0 ≤ x ≤ 1, (5.2)
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with exact solution (cf. (2.2))

u(y) = e−y
(
√

π

2
+

4!

Γ(4.5)
y3.5

)
for 0 ≤ y ≤ 1,

so that the conditions in (a) and (b) of Assumption 3.1 are again satisfied, but this time we haveu(0) 6= 0.
Step sizes, noise levels and starting value are chosen similar to the example considered above. The results
are shown in Table 2.

N δ 100 · δ/‖f‖∞ maxn |uδ
n − u(xn)| maxn |uδ

n − u(xn)| /δ4/5

32 1.7 · 10−4 2.35 · 10−2 1.94 · 10−3 1.98
64 3.1 · 10−5 4.15 · 10−3 6.14 · 10−4 2.51

128 5.4 · 10−6 7.33 · 10−4 1.75 · 10−4 2.86
256 9.5 · 10−7 1.30 · 10−4 4.00 · 10−5 2.62
512 1.7 · 10−7 2.29 · 10−5 9.64 · 10−6 2.53

1024 3.0 · 10−8 4.05 · 10−6 2.54 · 10−6 2.66
2048 5.3 · 10−9 7.16 · 10−7 6.72 · 10−7 2.82

Table 2: Numerical results for equation (5.2)

Note that the relative errors in the right-hand side presented in the third column (of both tables in fact) are
rather small, respectively.

6 Estimates for the inverse of the generating function

We now present a proof of (4.3) for the coefficients of the inverse of the considered generating power series
∑∞

n=0 anξ
n which differs from that given in [7]. The proof presented here uses Banach algebra theory and

may be of independent interest.

6.1 Some results for power series

In the sequel we consider classes of power seriesb(ξ) =
∑∞

n=0 bnξ
n with (bn)n≥0 ⊂ C and convergence

radius of at least 1, e.g., power series with absolutely summable coefficients,

‖b‖1 =

∞∑

n=0

|bn | <∞.

In the latter case the series
∑∞

n=0 bnξ
n converges absolutely for eachξ ∈ C with |ξ | ≤ 1, and it is

continuous on the closed unit disc in the complex plane. The following lemma turns out to be useful.

Lemma 6.1. For each q > 1 the space of power series
∑∞

n=0 bnξ
n satisfyingbn = O(n−q) asn→ ∞ and

endowed with pointwise multiplication defines a complex algebra.

PROOF. We only show that the considered space is closed with respect to pointwise multiplication. For two
power series

∑∞
n=0 bnξ

n and
∑∞

n=0 cnξ
n satisfyingbn = O(n−q) andcn = O(n−q) asn→ ∞ we have:

|
n

X

k=0

bkcn−k | = |
X

k≤n/2

bkcn−k | + |
X

k>n/2

bkcn−k |

≤ 2q
( X

k≤n/2

|bk | · |cn−k |(n− k)q +
X

k>n/2

|bk | · kq|cn−k |
)
n−q

≤ 2q(‖b‖1O(1) + O(1)‖c‖1)n
−q = O(n−q) as n→ ∞.

This completes the proof. 2

For similar considerations and further analysis of similarspaces see Rogozin ([19], [20]).
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6.2 The power series
∑

∞

n=0
(n + 1)α+1ξn

Our analysis continues with a special representation of thepower series
∑∞

n=0(n + 1)α+1ξn. For this,
binomial expansions will be useful:

(1 − ξ)β =

∞∑

n=0

(−1)n
(
β
n

)
ξn for ξ ∈ C, |ξ | < 1 (β ∈ R), (6.1)

(−1)n
(
β
n

)
=

m−1∑

s=0

dβ,sn
−β−1−s + O(n−β−1−m) as n→ ∞, (6.2)

with certain real coefficientsdβ,s for s = 0, 1, . . . ,m − 1, m = 0, 1, . . . , wheredβ,0 = 1/Γ(−β), β 6=
0, 1, . . ., cf. e.g., Abramowitz /Stegun [1]. We need the following result.

Lemma 6.2. We have

1

Γ(α + 2)

∞∑

n=0

(n+ 1)α+1ξn = (1 − ξ)−α−2r(ξ) for ξ ∈ C, |ξ | < 1, (6.3)

with r(ξ) =

∞∑

n=0

rnξ
n, r(1) = 1, rn = O(n−α−3) asn→ ∞. (6.4)

PROOF. We first observe that for eachm ≥ 0 there exist real coefficientsc0, c1, . . . , cm with

1

Γ(α + 2)

∞∑

n=0

(n+ 1)α+1ξn =

m∑

j=0

cj(1 − ξ)−α−2+j + s(ξ) for ξ ∈ C, |ξ | < 1, (6.5)

with s(ξ) =
∑∞

n=0 snξ
n, wheresn = O(nα−m) asn → ∞, and we havec0 = 1. This follows by

comparing the coefficients in the Taylor expansion(n + 1)α+1 =
∑m

t=0 etn
α+1−t + O(nα−m) with the

coefficients in the expansions considered in (6.1) and (6.2).
A reformulation of (6.5) gives, withm = 5,

1

Γ(α + 2)

∞∑

n=0

(n+ 1)α+1ξn = (1 − ξ)−α−2
( 5∑

j=0

cj(1 − ξ)j + (1 − ξ)α+2s(ξ)
)

for ξ ∈ C, |ξ | < 1,

with s(ξ) =

∞∑

n=0

snξ
n, sn = O(nα−5) as n→ ∞.

Lemma 6.1 together with (6.1), (6.2) applied withβ = α+2,m = 0 then gives the statement of the lemma.
2

As a consequence of Lemma 6.2 we obtain the following representation.

Corollary 6.3. For the coefficients considered in (2.6) we have, with the power seriesr from (6.3), (6.4),

∞∑

n=0

anξ
n = (1 − ξ)−αr(ξ) for ξ ∈ C, |ξ | < 1. (6.6)

PROOF. The power series
∑∞

n=0(n+ 1)α+1ξn and the power seriesa(ξ) =
∑∞

n=0 anξ
n with coefficients

as in (2.6) are related as follows,

∞∑

n=0

anξ
n =

1

Γ(α + 2)
(1 − ξ)2

∞∑

n=0

(n+ 1)α+1ξn,

11



which follows from elementary computations. The representation (6.3) now implies the statement of the
corollary. 2

Inverting (6.6) now immediately gives the power series representation
∞∑

n=0

a(−1)
n ξn = (1 − ξ)α[r(ξ)]−1 (6.7)

wherea(−1)
n denote the coefficients of the inverse of the power seriesa(ξ) =

∑∞
n=0 anξ

n, cf. (4.2).
In the sequel we examine the asymptotic behavior of the coefficients in the power series

[r(ξ)]−1 =

∞∑

n=0

r(−1)
n ξn. (6.8)

Lemma 6.4. We haver(−1)
n = O(n−α−3+ε) asn→ ∞ for ε > 0 arbitrarily small.

PROOF. (a) We consider, forq > 1 fixed, the following space of power series,

c0,q :=
{

∞
X

n=0

bnξ
n | (bn)n≥0 ⊂ C, bnn

q → 0 for n→ ∞
}

with norm‖b‖∞,q = supn≥0 |bn |(n+1)q for b ∈ c0,q. It is easy to show that the spacec0,q, endowed with
pointwise multiplication and after a renorming

‖b‖′∞,q := sup
a∈c0,q,‖a‖∞,q≤1

‖a · b‖∞,q for b ∈ c0,q,

is a complex commutative Banach algebra with unit element.
(b) For each complex homomorphismh : c0,q → C not vanishing identically we haveh = δλ for some

λ = λ(h) ∈ C with |λ| ≤ 1, whereδλ means evaluation of a power series∈ c0,q atλ. This correspondence
between a homomorphismh and the complex numberλ is as follows:h(ξ) = λ, whereξ is short notation
for the power series0 + ξ + 0 · ξ2 + . . . . Details are left to the reader; we only note that the estimate
|λ| ≤ 1 follows from ‖ξn‖1/n

∞,q → 1 asn → ∞, and polynomials are dense inc0,q. Now it follows
from Banach algebra theory that a power series

∑∞
n=0 bnξ

n ∈ c0,q has an inverse inc0,q with respect to
pointwise multiplication if and only if

∑∞
n=0 bnξ

n 6= 0 for eachξ ∈ C with |ξ | ≤ 1. See, e.g., Rudin [21]
for a general treatment of Banach algebras, and see also Rogozin ([19], [20]).

(c) It follows from (6.4) that the power seriesr considered in (6.3) satisfiesr ∈ c0,α+3−ε for eachε > 0
small enough, and let us assume thatr(ξ) 6= 0 for ξ ∈ C, |ξ | ≤ 1. From (6.7) and parts (a) and (b) of this

lemma we then obtain that[r(ξ)]−1 ∈ c0,α+3−ε and thus in particularr(−1)
n = O(n−α−3+ε) asn→ ∞.

(d) In view of parts (a)–(c) of this proof it remains to show that r(ξ) 6= 0 holds forξ ∈ C, |ξ | ≤ 1. For
this purpose we consider a reformulation of (6.6),

r(ξ) = (1 − ξ)α
∞

X

n=0

anξ
n for ξ ∈ C, |ξ | < 1.

We have, for someτ > 0,

∣
∣

∞
X

n=0

anξ
n
∣
∣ ≥ τ for ξ ∈ C, |ξ | < 1, (6.9)

a proof of (6.9) is presented in the next section. Sincer(1) 6= 0 andr is continuous on{ ξ ∈ C | |ξ | ≤ 1 },
(6.9) then impliesr(ξ) 6= 0 for ξ ∈ C, |ξ | ≤ 1 as desired, and thus the statement of the lemma is proved.2

From the representation (6.1), (6.2) withβ = α it follows that the coefficients in the expansion(1 − ξ)α =
∑∞

n=0(−1)n
(
α
n

)
ξn satisfy (−1)n

(
α
n

)
= O(n−α−1) asn → ∞. This together with Lemma 6.4 (which

means in particularr(−1)
n = O(n−α−1)) and Lemma 6.1 finally results in the desired estimate (4.3) for the

coefficients of the power series[a(ξ)]−1.

12



6.3 The proof of the lower bound (6.9)

To complete our proof of (4.3) we need to show that (6.9) holds. We start with a useful lemma.

Lemma 6.5(cf. [7]). The coefficientsa0, a1, . . . in (2.6) are positive, respectively, with
∑∞

n=0 an = ∞.
Moreover they satisfy

an+1

an
>

an

an−1
for n = 2, 3, . . . ,

a2

a1
>

a1

2/Γ(α + 2)
. (6.10)

PROOF. From the asymptotic behavioran = nα−1/Γ(α) + O(nα−2) asn → ∞, cf. (3.7), it follows
∑∞

n=0 an = ∞. The second estimate in (6.10) is obtained by direct computation, and now we will consider
the first estimate in (6.10). Using the notation

f(x) = (x+ 1)α+1 − xα+1 for x ≥ 0

we obtain the following,

an+1

an
=

f(n + 1) − f(n)

f(n) − f(n − 1)

(∗)
=

f ′(tn)

f ′(tn − 1)
=

(tn + 1)α − tαn
tαn − (tn − 1)α

=
(1 + 1/tn)α − 1

1 − (1 − 1/tn)α =: h(1/tn) for n = 1, 2, . . . ,

with some real numbern < tn < n + 1. The identity(∗) follows from a generalized mean value theorem.
From the identities

(1 − (1 − s)α)2h′(s) = α(1 + s)α−1(1 − s)α−1g(s),

with g(s) = (1 − s)1−α + (1 + s)1−α − 2 for 0 < s < 1,

and from the inequalityg(s) < 0 for 0 < s < 1 it follows that h(s) is monotonically decreasing for
0 < s < 1 which yields the first of the two estimates in (6.10). Finally, we havea1 > 0, and from the
inequalities (6.10) it follows by induction then that the coefficientsa2, a3, . . . are positive, respectively.
This completes the proof. 2

From Lemma 6.5 it follows that the conditions of the following lemma are satisfied for the specific choice
p0 = 2 andpn = Γ(α+ 2)an for n = 1, 2, . . . .

Lemma 6.6(cf. Kaluza [13], see also Szegö [22], Hardy [11]).Letp0, p1, . . . be real numbers satisfying

pn > 0 for n = 0, 1, . . . ,
pn+1

pn
>

pn

pn−1
for n = 1, 2, . . . . (6.11)

Then the inverse[p(ξ)]−1 of the power seriesp(ξ) =
∑∞

n=1 pnξ
n can be written as follows,

[p(ξ)]−1 = c0 −
∞

X

n=1

cnξ
n, (6.12)

with coefficientsc0, c1, . . . satisfyingcn > 0 for n = 0, 1, . . . . If moreover
∑∞

n=0 pn = ∞ holds, then we
have

∑∞
n=1 cn = c0.

The following lemma is closely related to results in Erdös, Feller and Pollard [8].

Lemma 6.7. Letc1, c2, . . . be a sequence of real numbers satisfyingcn > 0 for n = 1, 2, . . . and
∑∞

n=1 cn =
1/2. Then the power seriesq(ξ) = 1/2−∑∞

n=1 cnξ
n satisfies|q(ξ)| < 1 for each complex numberξ with

|ξ | ≤ 1.
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PROOF. For complex numbersξ with |ξ | < 1 we have

|q(ξ)| ≤ 1
2 +

∞
X

n=1

cn
︸︷︷︸

>0

|ξ |n
︸︷︷︸

<1

< 1
2 +

∞∑

n=1

cn = 1.

We now consider a complex numberξ with |ξ | = 1 and assume contradictory that|q(ξ)| ≥ 1 holds. From
that we obtain

1 ≤ |q(ξ)| ≤ | 1
2 − c1ξ | +

∞∑

n=2

cn = | 1
2 − c1ξ | + 1

2 − c1 (6.13)

which shows(1/2 + c1)
2 ≤ |1/2 − c1ξ |2 = 1/4 − c1Reξ + c21 so that necessarilyξ = −1 holds. With a

similar reasoning as in (6.13) we then get

1 ≤ |q(ξ)| ≤ | 1
2 + c1 − c2 | +

∞∑

n=3

cn = | 1
2 + c1 − c2 | + 1

2 − c1 − c2

which results in the contradiction1/2+c1+c2 ≤ |1/2+c1−c2 |. This completes the proof of the lemma.2

We are now in a position to present a proof of the lower bound (6.9). In fact, from Lemma 6.5 it follows
that the coefficients of the power seriesp(ξ) = 1 + Γ(α+ 2)a(ξ) with an as in (2.6) satisfy the conditions
of Lemma 6.6. This implies that the coefficients of the power series

1

1 + Γ(α+ 2)a(ξ)
= c0 −

∞
X

n=1

cnξ
n

satisfycn > 0 for n = 0, 1, . . . as well as
∑∞

n=1 cn = c0 = 1/2. Lemma 6.7 and continuity then implies
that for someτ > 0 we have|1 + Γ(α+ 2)a(ξ)| ≥ 1 + τ for ξ ∈ C, |ξ | < 1 and thus

Γ(α+ 2)|a(ξ)| ≥ |1 + Γ(α+ 2)a(ξ)| − 1 ≥ τ for ξ ∈ C, |ξ | < 1.

This finally gives the desired estimate (6.9) needed in the proof of Lemma 6.4.

7 Conclusions

In the present paper we have considered the repeated trapezoidal rule for the regularization of weakly singu-
lar Volterra integral equations of the first kind with perturbed given right-hand sides. The applied techniques
are closely related to those used in Eggermont [7]. The results presented here (which include some numer-
ical experiments) have useful applications for the stable solution of inverse problems. In addition we have
given a new proof of the stability estimate for the inverse ofthe generating sequence, cf. (4.3), which may
be of independent interest.
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