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Abstract

The repeated trapezoidal method was considered by P. Eggefior the numerical solution of
weakly singular Volterra integral equations of the firstckiwith exactly given right-hand sides ([7]).
In the present paper we consider the regularizing proesfithis method for perturbed right-hand sides.
Finally, numerical results are presented.

1 Introduction

In this paper we consider linear weakly singular Voltertagnal equations of the following form,

(@) = 5 [ @0 ) dy = f@) for 0 <o < L (L1)

with 0 < a < 1 andL > 0, and with a sufficiently smooth kernel functién [0, L] %[0, L] — R, andTl’
denotes Euler's gamma function. Moreover, the functfon[0, L] — R is supposed to be approximately
given, and a functiom : [0, L] — R satisfying equation (1.1) is to be determined.

For applications see e.g. Durbin [6] and Lerche/Zeitlell [ihere crossing probabilities for Brownian
motions and the inversion of the two-dimensional Radonstiam are considered, respectively. In the
sequel we suppose that the kernel function does not vanisheodiagonab < = = y < L, and without
loss of generality we may assume that

k(x,z) =1 for0 <z <L 1.2)

holds.

There exists many methods for the approximate solution aftgn (1.1) if the right-hand sid¢ is
exactly given, see e.g., Brunner/van der Houwen [4] and biasth [10]. One of these methods is the
repeated trapezoidal rule which is considered in detail, @ Eggermont [7]. In the present paper we
consider its regularizing properties for perturbed rightid sides in equation (1.1). Finally, some numerical
illustrations are presented.

2 The numerical scheme

2.1 Preparations

As a first step we consider in (1.1) the special situaioa: 1, with the corresponding integral operator
being the classical Abel integral operator

Vou)(z) = ﬁ/j(w—y)a_lu(y) dy for 0 <z <L, (2.1)
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whereuw : [0, L] — R is supposed to be a continuous function. One of the basiceptiep of the Abel
integral operator is as follows,

(Voy") (@) = magma’™ forz>0  (¢>0) (2.2)

wherey? is short notation for the mapping— 2. This and other properties of the Abel integral operator
can be found e.g. in Gorenflo/Vessella [9] or Hackbusch [1&dr the numerical approximation of the
integral operator (2.1) we introduce grid points

Tn = nh, n=0,1,...,N with h = %, (2.3)

whereN is a positive integer. Consider the space of linear splin#sn@spect to that grid,
Sy = {sn:[0,L] = R | sy continuous ori0, L], linearon[z;_1,z;],j =1,...,N }. (2.4)

The following lemma is used as a preparation for the numiss@#&me to be considered.

Lemma 2.1(cf. [7]). For eachsy € Sy we have

Vasn)(@n) = hﬂ{ansN(0)+znjan_jsN(xj)} for n = 1,2,...,N. (2.5)

Jj=1

Here, the coefficientsy, a1, ... anday, as, . . . are given by

1 « a a 1
tn = Farml DT 2 (=) n=12 0 a0= gy (26)
a 1 « « «
an = F(a+2)[(n—1) Tt 4 (a+ )] forn=1,2,.... (2.7)

PrROOF. The proof is elementary and is presented for convenientieeofeader. We write,; = sy (z;)
and obtain the following:

n

Vosw)(@n) = 1

(2 — ) g1 Yy T2 . (2.8)

zj
j=1Y%j-1
We proceed with the terms considered in the integral in (2.8)

/ ( ) (ay —y) dy

j—

[(n =+ 1) = (n— 5o et 4 L — g+ 1)enett, (2.9)

ala+1)

and

[ @ity

1 . o e N 1 ara
= =D [(n—j+ 1) = (n— )™ ]aet = L — jyonet, (2.10)
Summing up the terms in (2.9) and (2.10) finally gives the tegresentations (2.6) and (2.7). This com-
pletes the proof. ]



2.2 The numerical scheme

In the sequel we suppose that the values of the right-harddgi@quation (1.1) are only approximately
given with

|f = flzn)] < 8 form = 1,2,...,N, (2.11)

whered > 0 is a known noise level. In this situation representatioB)(2ads to the following scheme for
the numerical solution of equation (1.1):

he> " an_jk(zn, ZCj)Ug = [0 — hank(zn, 0)ul, n=1,2,...,N. (2.12)

j=1

For eachm the representation in (2.12) follows from the represeataf?.5), considered fakt = z,, = nh
and with the function replaced by the functiop — k(z,,, y)u(y) for 0 <y < nh.
The procedure for determining these approximations is l&sifs:

(@) First determine a starting valug ~ «(0) of sufficient accuracy, i.e.,
ud —u(0) = O(h®>+6/h*) as(h,d) — 0. (2.13)

A simple extrapolation scheme is considered at the end s&#gtion.
(b) Thensuccessively determine approximatiohss u(z,,) forn = 1,2, ..., N by using scheme (2.12).

Remark 2.2. The considered scheme coincides, for exact given righttsates, with a spline-collocation
method. In the special cage= 1 anda = 1/2 it also can be obtained by a repeated one-point Gauss rule
followed by piecewise linear interpolation, cf. Branca @8JHackbusch [10]. A

3 The integration error

3.1 Preparations

We now consider the quadrature error corresponding to mgthd 2). The basic assumptions are as fol-
lows.

Assumption 3.1. (a) The kernel functioik in the integral operator (1.1) has continuous partial de¢rres
up to the ordeB on [0, L] x [0, L], and there exists a solutianof the integral equation (1.1) which is twice
continuously differentiable on the intenvidl, L], and the second derivativé is assumed to be Lipschitz
continuous.

(b) k(z,z) = 1 holds for eact) < = < L,
(c) the grid pointse,, are given by (2.3),
(d) the values of the right-hand side of equation (1.1) ap@pmately given at the grid points, cf. (2.11).

At the end of Section 4, conditions on the right-hand sid# the considered weakly singular Volterra
integral equation of the first kind are given which guararnkteeexistence of a solutiom satisfying (a) in
Assumption 3.1.

We start our numerical analysis of the regularizing prapsif the product trapezoidal method method
for the numerical integration of the weakly singular Votgeintegral operator considered in (1.1). As a
preparation we consider the Abel operator (2.1), thig s, 1. We approximate a given functianon each



subinterval by a linear polynomial interpolatingat both ends of the considered subinterval:

Voo = g [ o =0 ) dy
" n — )™
0

@)
_ 1 /
= T

—~

o) dy + s [ =0 ) — sl dy

= ho‘{dnu(O)—l—Zan_ju(xj)} —En, forn=12,...,N, (3.2)
j=1
where
T o
Enn = m/o (xn —y) 1[SN(y)—u(y)}dy forn = 1,2,... N, (3.2)

denotes the integrated interpolation error. It is well knpwf. e.g., [17], that for each indexe {1,2,
...,n}andeach;_; <y < z; the error representation

sv(y) —uy) = 50y —x-1) (x; — y)u"(€) (3.3)

holds, with some intermediate valug ; < { = {(y) < z;. From that we obtain the following represen-
tations for the integrated interpolation erré&g ,, introduced in (3.2):

Lemma 3.2(cf. [7]). We have

Enn = hot? ch,ju”(:zrj —0,,h) forn =1,2,...,N (3.4)
j=1

with certain coefficient8 < 6,, ; < 1. The coefficients,, have the following asymptotic behavior:

1 a— a—
¢ = Tor@y ™ L4+ 0(m*?) asn— oo. (3.5

PROOF. From the representations (3.2) and (3.3) it follows thatjfe- 1,2, ...,n we have

/ 7m0 sn(y) — u(y)] dy

= %[/:Jl (@0 —y)* "My —2j-1) (27 — y) dy} u (25 — 0p,5h)

1
.y ;2 [ /0 tl—t)(n—7+1—t)v! dt] u(z; — 0, ;h),

where the mean value theorem for integrals and substithigrbeen employed. Integration by parts yields
the following representations:

/1 tl—t)(n+1-t)>tat
0

= a(a1+ 5 { (n+ 1)Oz+1 + pott ((n + 1)oz+2 _ na+2) } forn = 1,2,....

2
T« +2
The statement (3.5) on the asymptotic behavior of the coefiliscy, ¢, . .. now follows from the Taylor
expansions

ala+1)(a+2)
6

(n+1)a+2 _ na+2+(a+2)na+1+ (a+1)(a+2)na+

5 na—l 4 (9(no¢—2)7

(n+ 1)t = n**t £ (o +1)n* + Mno‘fl +0(n*?) (3.6)



asn — oo. This completes the proof of the lemma. |

As a further preparation we note that the coefficiegtsay, . . . andag, a1, . . . (cf. (2.6) and (2.7)) have the
following asymptotic behavior (cf. (3.6)):

an = mno‘fl +0(n*?) asn — oo, (3.7)
in = On* 1) asn— oo. (3.8)

As an immediate consequence we obtain the following canolla

Corollary 3.3 (cf. [7]). We have
— ha+2 - a+2 —
Enn, = Zan ju'(z;) +OMT*) forn = 1,2,...,N. (3.9

j=1

PrROOF This follows immediately from the representations (3(3)5) and (3.7):

cn—ju" (x5 — O jh) = Cn ju"(z5) + O((n — j)* 'h)

= 12an (@) +O((n— 7))+ O((n—5)**h) for j<n-—1.

4 Error analysis of the trapezoidal method for first kind Volt erra
integral equations with perturbations

We now present the main result on the convergence order afghmximations obtained by the scheme
(2.12). As afirst step we observe that, under the conditioAssumption 3.1, we have

hS" anj k(2n, z5) u(z;)
=1

ha+2 o~ a+2 .
= f(zn) Zan jo(@n, ;) — h%ank(zn, 0)u(0) + O(L*™) for n=1,2,...,N (4.1)

uniformly with respect to, with the functiony(z, z) = duz{k(w y)u(y) }y=- for0 < z <z < L. For
eachn the representation in (4.1) follows from the represente§®1) and (3.9), considered f&wr= z,, =
nh, and with the function: replaced by the functiop — k(z,,, y)u(y) for 0 < y < nh.

As a further preparation, in the sequel we identify sequefige),,>o of complex numbers with their
(formal) power series(¢) = > b,£™. Pointwise multiplication of two power series

(ibkg’“) : (icjgj) = S da€n with dy =3 breas for no= 0,1,...
k=0 j=0 n=0

k=0

makes the set of power series into a complex commutativdedgeith unit element +0-£4+0-£2 4+
For any power seriely(&) = >, b,£" with by # 0 there exists a power series which inverts the power
seriesb with respect to pointwise multiplication and is denotedigy(¢) or by [b(¢)]~t. For a thorough
introduction to formal power series see, e.g., Henrici [12]

In the sequel we consider the inverse

i alen (4.2)
n=0



of the generating functioa(¢) = >-°° ; a, ™. These coefficients satisfy
oY = 0m ) asn— oo (4.3)

which is shown in [7]. Another proof of (4.3) which uses Banatgebra theory and may be of independent
interest is presented in Section 6 of the present paper.
The representations (4.1)—(4.3) provide basic tools ferctnvergence analysis.

Theorem 4.1. Let the conditions of Assumption 3.1 be satisfied, andjet R be a starting value with
ud —u(0) = O(h? +6/h%) as(h, §) — 0. Then the approximations], u3, . . ., u, determined by (2.12)
can be estimated as follows,

max |u), —u(za)| = O(h* +38/h")  as (h, ) — 0.

PROOF. The approximation property (2.13) of the starting valle, tepresentations (4.1) and (2.12) and
the estimate,, = O(1) asn — oo (cf. (3.8)) imply the following,

ha+2 n

h® Z an—j k(xn, :vj)ef- = -0 Z an—j P(Tn, ;) + O(h*T2 +6) for n=1,2,....N (4.4)
j=1 j=1

as(h, §) — 0 uniformly with respect to:, where
e =ul —u(x,), n=12,...,N.

We next consider a matrix-vector formulation of (4.4). Asrapgaration we consider the matri, €
RN*N given by

aoky 1 0 ... 0
arksn  aokap - 0
Ap = arkss
0
an—1kn1 - - artknN—1 aokn,N

with the notation

kn; = k(zn,z;) for 1<j<n<N.



Additionally we consider the matrig, ¢ RY* given by

arp(xe, 1) aop(xe,r2) 0
B pr—
4 arp(r3, r2) ’
0
CLN71<,0(17N75C1) al‘ﬁ(fEN,INfl) aoﬁp(iEN,IN)
and the vectors
A = (e9,e5,...,e5)7, Gn = (1,1,...,1)T e RV,

Using these notations, the linear system (4.4) becomes
% ha+2 H %
W AR = ——BiGy + Fp, with F) € RV, ||} = O(h**?+5) as (h,5) — 0, (4.5)

where|| - ||, denotes the maximum norm @V For a further treatment of the identity (4.5) we consider
now the matrixD;, € RV*Y given by

al™ 0 0
o™ a0 0
D), = agfl) : . (4.6)
0
e NPUUURR C N C

We apply the matrih~* Dy, to both sides of (4.5) and show in the sequel that

|DRARAY || = O(R? +6/h) as (h,d) — 0 (4.7)
holds. For this purpose we first observe that

[Dhlloc = O(1) @ash—0,  [|Ghllo = 1, (4.8)

holds, where in the first terrn- ||, denotes the matrix norm induced by the maximum vector nori¥n
The first estimate in (4.8) follows from the decay of the cadfits of the inverse of the generating function
a, cf. estimate (4.3). The lower triangular matiix, B;, can be written as follows,

DyB;, = My + hCh, with My, = diag(p(z1, 1), (22, 22), ..., p(zN,ZN)),
Ch = (chny) € RV strictly lower triangular,

max |cpn,i| = O() ash—0,
1<j<n<N ‘



cf. the proof of Lemma 4.2 in Eggermont [7] for more detailkisTin particular means
|DpBhllse = O(1) ash— 0. (4.9)

From (4.5), (4.8) and (4.9) we then obtain estimate (4.7).&Fuirther treatment of estimate (4.7) we note
that the lower triangular matrik;, A;, can be written as follows,

DyA, = I +hK;, with Ky, = (knn;) € RY*YN  strictly lower triangular,
max |knn,;| = O1) ash—0.
1<j<n<N :

This follows similarly as the representationof, B;, considered above, cf. again Lemma 4.2 in [7] for more
details. This representation and the discrete version oh@all’'s inequality now yields

I1(DrAR) e = O(1) ash — 0. (4.10)
The statement of the theorem now follows from estimateg @hd (4.10). )

In the sequel we consider (fdr > 0 fixed) step sizes = L/N which depend on the noise levélas
follows,

h~ 8@+ a5§ -0, (4.11)

i.e., there exist real constants > ¢; > 0 such thate;h < §/(@+2) < ¢,k holds for§ — 0. As an
immediate consequence of Theorem 4.1 we obtain the follpwiain result of this paper.

Corollary 4.2. Let Assumption 3.1 be satisfied, andilet h(5) be step sizes satisfying (4.11). Léte R
be a starting value with) — «(0) = O(§%/(>*+2)) as§ — 0. Then the error for the approximations given
by (2.12) can be estimated as follows:

max  |ud —u(z,)| = OBy as§— 0.

n=1,2,..,

We conclude this section with some remarks.

Remark 4.3. (a) The error estimate presented in Corollary 4.2 is ordénagb within the class of functions
R(AP) = {u= APz, z: [0, L] — R continuous} with p = 2/ For a consideration of fractional powers
of Abel integral operators see, e.g., [16].

(b) The smoothness conditions on the solutioconsidered in Assumption 3.1 are satisfied (and addition-
ally, the existence of the solutiancan be guaranteed then), if the exact right-hand gidan be written

in the form f(z) = z%g(x) with a functiong € C*[0, L] and if in addition the kernek(x,y) has for

0 <y <z < L continuous partial derivatives up to the ordecf. Atkinson [2] for the details.

(c) In the situation of part (b) of this remark there holdg: + 1)g(0) = u(0), see e.g., Theorem 1.3.11in
Brunner/van der Houwen [4]. Thus, a possible strategy fterdgining a starting value) satisfying (2.13)
is to consider the interpolating polynomif of degree not larger thanwhich satisfies?? (z,,) = f9/x2
for n = 1,2. The choiceud = aP°(0) = u(0) + O(h? + 6/h*) (cf. Lemma 4.4 below, applied with
e =0/h%(x) = g(x) andys = f2/2% ) then gives a starting value of sufficient accuracy.

(d) For other special regularization methods for the apjpnake solution of Volterra integral equations of
the first kind with perturbed right-hand sides and with plolgsiveakly singular kernels, see e.g., Bughgeim[5],
Gorenflo/Vessella [9], Lamm [14], and [18], and the refeeniherein.

We conclude this section with an elementary lemma on extatipa with perturbed data which completes
the considerations in part (b) of the Remark 4.3. In the sedliedenotes the space of polynomials with
degree< 1.



Lemma4.4. Lety : [0,2h] — R be a twice continuously differentiable function, with> 0. Let{ and
15 be real numbers witlé — ¢ (nh)| < e for n = 1,2, with some= > 0. Let the polynomiaP< € II;
satisfyP¢(nh) = ¢¢, for n = 1,2. Then there holds

|P%(0) —(0)] < max |9 (x)|h? 4 3e.

0<z<2

PrRoOF. We consider the polynomidP € II; with P(nh) = ¢(nh) for n = 1,2. The standard error
representation for polynomial interpolation (see e.gz])ives|P(0) — ¥(0)| < maxo<z<an |1 (x)|h%.
In addition, an expansion dP<(0) — P(0) in terms of Lagrange basis polynomidls € II;,n = 1,2,
with respect to the two grid points 2h gives|P<(0) — P(0)| < ce with ¢ = |L1(0)| + |L2(0)| = 3. This
completes the proof. |

5 Numerical experiments

As an illustration of the main result considered in Corglldr2, we next present the results of some numer-
ical experiments. First we consider the following linearakdy singular Volterra integral equation of the
first kind,

L/ (x—y) V2 @ Wyy)dy = e (a* +25) for 0 <z < 1, (5.1)
V7 Jy LA
=: f(z)

with exact solution (cf. (2.2))

_ = 4! 3.5 6! 5.5
u(y) = e y(r(4_5)y + temY ) foro<y<1,

so that the conditions in (a) and (b) of Assumption 3.1 arsféad. Here are some additional remarks on
the numerical tests:

« numerical experiments with step sizes= 1/27 for ¢ = 5,6,...,11 are employed, respectively;
- for each considered step sizethe noise leved = 12 is considered;

« in the numerical experiments, the perturbations are of then ff® = f(z,) + A, with uniformly
distributed random values,, with |A,, | < 6;

- in each experiment, the starting valu@is determined by the strategy described in part (c) of Remark
4.3.

Experiments are employed using the program systexma@e (http://www.octave.org). The results are
shown in Table 1. Therd,f|| .. denotes the maximum norm of the functiin

| N | 1) | 100 - 6/|| f o | maxn|ufl—u(xn)| | maxn|ufl—u(:cn)|/54 5 |

32]1.7-107¢ 2.35-1072 2.95-1073 3.02

64| 3.1-107° 4.15-1073 1.04-1073 4.26
128 | 5.4-1076 7.33-107* 2.03-107% 3.32
256 | 9.5-10~7 1.30-10~* 5.79-107° 3.79
512 | 1.7-1077 2.29-107° 1.72-107° 4.50
1024| 3.0-1078 4.05-1076 4.24.1076 4.45
2048| 5.3-107° 7.16-1077 1.09 - 10~ 4.58

Table 1: Numerical results for equation (5.1)

Next we present some numerical results for another rightlséde (and the same operator as above):

L/I(gc—y)_l/Qe_(I_y)u(y) dy = e *(Vz+a*) for0<z<1, (5.2)
o @
=: f(z



with exact solution (cf. (2.2))

_ 4!
uly) = e y(@ + F(4_5)y3'5) for 0 <y <1,
so that the conditions in (a) and (b) of Assumption 3.1 aréresgtisfied, but this time we havg0) # 0.
Step sizes, noise levels and starting value are choserasitnithe example considered above. The results
are shown in Table 2.

| N| ] | 100-6/[[flloc | maxy [ud —u(an)| | max, [ud —u(x,)] /6Y° |
32[1.7-107°1 2.35-102 1.94-1073 1.98
64|31-107° 4.15-1073 6.14-104 2.51
128 | 5.4-10°6 7.33-1074 1.75-10~4 2.86
256 | 9.5-107 1.30-10~4 4.00-107° 2.62
512 | 1.7-107 2.29.107° 9.64-106 2.53
1024 | 3.0-10°8 4.05-1076 2.54-106 2.66
2048 5.3-107? 7.16-107 6.72-10°7 2.82

Table 2: Numerical results for equation (5.2)

Note that the relative errors in the right-hand side presgirt the third column (of both tables in fact) are
rather small, respectively.

6 Estimates for the inverse of the generating function

We now present a proof of (4.3) for the coefficients of the ieeef the considered generating power series
oo ané&™ which differs from that given in [7]. The proof presentedéiases Banach algebra theory and
may be of independent interest.

6.1 Some results for power series

In the sequel we consider classes of power séi€s= >, b,£" with (b,),>0 C C and convergence
radius of at least 1, e.g., power series with absolutely sablencoefficients,

Ibs =D ba| < oo
n=0

In the latter case the seriés -, b,£" converges absolutely for eaghe C with [{| < 1, and it is
continuous on the closed unit disc in the complex plane. dHeviing lemma turns out to be useful.

Lemma 6.1. For each q > 1 the space of power serigy . b,&" satisfyingh,, = O(n~?) asn — oo and
endowed with pointwise multiplication defines a compleglaig.

PrROOF. We only show that the considered space is closed with régppointwise multiplication. For two
power serie$ "~ b,&™ andd " ¢,&™ satisfyingb,, = O(n~%) andc,, = O(n~9) asn — co we have:
IS bkenrl =1 > brcarl+] D brcail
k=0

k<n/2 k>n/2

<293 (bl lenkl(n— k)T + D |be|- K enr|)n 0
k<n/2 k>n/2

< 29(Jpl,O1) + O(M)[lef1)n™® = O(n™7) asn — oo.
This completes the proof. |

For similar considerations and further analysis of sinslaaces see Rogozin ([19], [20]).

10



6.2 The power serie$ > (n + 1)1

Our analysis continues with a special representation optiveer seriesy - ,(n + 1)*T1¢™. For this,
binomial expansions will be useful:

o0

(1-97 =) (-)"(})¢" for ceC, (<1 (BeR), (6.1)
n=0
= Z dgsn P17 £ O P71y asn — oo, (6.2)
with certain real coefficientds ; for s = 0,1,...,m —1, m = 0,1,..., wheredg o = 1/I'(-5),5 #

0,1,... cf. e.g., Abramowitz/Stegun [1]. We need the followinguies

Lemma 6.2. We have

o0

1 @ n —x—
m;ml) et = (1979 for e C g <1, 6.3)
with r(¢) = Z €™ r(1) =1, 7, =0Mn"*"3?) asn — . (6.4)
PrROOF. We first observe that for eaeh > 0 there exist real coefficients, c1, . . ., ¢, With
ey DT = D16 s(e) for €€ C el <1 (65
n= J1=

with s(&) = >°0°  sn&", wheres,, = O(n®* ™) asn — oo, and we have, = 1. This follows by
comparing the coefficients in the Taylor expansfent 1)>™! = > e,n®t =1 + O(n®~™) with the
coefficients in the expansions considered in (6.1) and (6.2)

A reformulation of (6.5) gives, withn = 5,

a+2 Zn+1 a-l—lgn_ —a— 2(ZCJ1_ €)a+2s(§)) fOffE(C, |€|<1’
n=0

with s(§) = Z 506", s, =O0(n“5) asn — oo.

Lemma 6.1 together with (6.1), (6.2) applied with= o+ 2, m = 0 then gives the statement of the lemma.
a

As a consequence of Lemma 6.2 we obtain the following reptasen.

Corollary 6.3. For the coefficients considered in (2.6) we have, with thegr@sries- from (6.3), (6.4),
D ang” = (1-8)7r(¢) for £€C, |¢] < 1. (6.6)

PROOF. The power seried > (n + 1)*T!¢"™ and the power serieg¢) = >, a,&™ with coefficients
asin (2.6) are related as follows,

[eS)
n 2 a+1 n
Zanf = farg (-8 e,

n=0

11



which follows from elementary computations. The represgon (6.3) now implies the statement of the
corollary. |

Inverting (6.6) now immediately gives the power series espntation

o0

> alher = -9 (6.7)

n=0

wherea!,” ") denote the coefficients of the inverse of the power seri€s= > -, a,&", cf. (4.2).
In the sequel we examine the asymptotic behavior of the cissffis in the power series

o0

QI = > Ve (6.8)

n=0
Lemma 6.4. We have, ") = O(n=273t¢) asn — oo for ¢ > 0 arbitrarily small.

PROOF. (a) We consider, fog > 1 fixed, the following space of power series,
Co,q 1= { Z bp&™ | (bn)n>0 C C, byn? — 0forn — oo}
n=0

with norm||b|| ¢ = sup,,>q |bn |(n+1)2forb € cg 4. Itis easy to show that the spagg,, endowed with
pointwise multiplication and after a renorming

||b||€)o,q = sup lla-bllo,g fOr b€ coyq,
a€co,g,llallos,g<1
is a complex commutative Banach algebra with unit element.

(b) For each complex homomorphism ¢ , — C not vanishing identically we have= ¢, for some
A = A(h) € Cwith |A| < 1, whered, means evaluation of a power series , at \. This correspondence
between a homomorphismand the complex numberis as follows:h(£) = A, where¢ is short notation
for the power serie§ + & + 0 - &2 + ... . Details are left to the reader; we only note that the esémat
[A] < 1 follows from ||§"|\ié,”q — 1 asn — oo, and polynomials are dense ip,. Now it follows
from Banach algebra theory that a power sepég3 , b,£" € co 4 has an inverse ing , with respect to
pointwise multiplication if and only i°>° / b,,£™ # 0 for each¢ € C with |£| < 1. See, e.g., Rudin [21]
for a general treatment of Banach algebras, and see alsa@Rd{t?], [20]).

(c) It follows from (6.4) that the power seriesonsidered in (6.3) satisfiesc ¢g o+3—. for eache > 0
small enough, and let us assume th@t) # 0 for £ € C, |£| < 1. From (6.7) and parts (a) and (b) of this
lemma we then obtain that(¢)] =" € co o 3_. and thus in particular, ) = O(n=°=3+¢) asn — .

(d) In view of parts (a)—(c) of this proof it remains to shovath(¢) = 0 holds for§ € C, |£] < 1. For
this purpose we consider a reformulation of (6.6),

r(€) = (1= an&" for £eC, [¢] <1
n=0
We have, for some > 0,
| > an"|>7 for £eC, €| <1, (6.9)

n=0

a proof of (6.9) is presented in the next section. Sirdg # 0 andr is continuouso{ £ € C | |£| <1},
(6.9) then implies: (&) # 0 for € € C, |£] < 1 as desired, and thus the statement of the lemma is praved.

From the representation (6.1), (6.2) with= « it follows that the coefficients in the expansifin— £)* =
S (=) (2)¢m satisfy (—1)" (%) = O(n~*"') asn — oo. This together with Lemma 6.4 (which

means in particulazr,(fl) = O(n=>"1)) and Lemma 6.1 finally results in the desired estimate (4B)fe
coefficients of the power seriég(¢)] 1.
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6.3 The proof of the lower bound (6.9)

To complete our proof of (4.3) we need to show that (6.9) hdlds start with a useful lemma.

Lemma 6.5(cf. [7]). The coefficientsg, a1, ... in (2.6) are positive, respectively, with* ja, = oo.
Moreover they satisfy

An41 QAn o as al

?>ﬁ forn_2,3,..., a—l>m. (610)

PROOF. From the asymptotic behavias, = n*~!/T'(a) + O(n*~?) asn — oo, cf. (3.7), it follows
>0 o an = 0. The second estimate in (6.10) is obtained by direct contiputaand now we will consider
the first estimate in (6.10). Using the notation

f(z) = (x4 1) —ztt for 2 >0
we obtain the following,

an+1 f(TL—‘rl) _f(n) (*) f/(tn) _ (tn+1)a _t%

i fm) -1 Fn—1) 15— (D"
(1+1/tn)* — 1

= 1-1_1/th)™ =: h(l/t,) form = 1,2,...,

with some real number < ¢,, < n + 1. The identity(x) follows from a generalized mean value theorem.
From the identities

(1= (1 =5)")?H(s) = a(l+s)"7"(1—s)"g(s),
with g(s) = (1—8)' "+ (1+s)'> -2 for 0<s<1,

and from the inequality(s) < 0 for 0 < s < 1 it follows that i(s) is monotonically decreasing for
0 < s < 1 which yields the first of the two estimates in (6.10). Finalye havea; > 0, and from the
inequalities (6.10) it follows by induction then that theefficientsas, as, . . . are positive, respectively.
This completes the proof. |

From Lemma 6.5 it follows that the conditions of the follogilemma are satisfied for the specific choice
po=2andp, =T(a+2)a,forn=1,2,....

Lemma 6.6(cf. Kaluza [13], see also Szeg0 [22], Hardy [11Det pg, p1, - . - be real numbers satisfying

pn>0 forn =0,1,..., ”;—“ > p”—l forn = 1,2,.... (6.11)

Then the inversgp(£)] ! of the power series(§) = >, p,&™ can be written as follows,

PO = co— > e, (6.12)
n=1
with coefficientsy, c1, . .. satisfyinge, > 0forn =0,1,.... If moreovery_ ", p, = oo holds, then we

have} ">~ | ¢, = co.
The following lemma is closely related to results in Erdéaljéf and Pollard [8].
Lemma 6.7. Letcy, o, . . . be asequence of real numbers satisfying- Oforn =1, 2,...and) ", ¢, =

1/2. Then the power serieg¢) = 1/2— > ° | ¢, £ satisfieg¢(¢) | < 1 for each complex numbérwith
1€l < 1.
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PROOF. For complex numbergwith |¢| < 1 we have

g <5+ e 6" < 34D en = 1.
n=1"~""~~ n=1
>0 <1

We now consider a complex numbkewith |£| = 1 and assume contradictory tHat¢)| > 1 holds. From
that we obtain

1< g <3 —cbl+D en = |F—al|+3—a (6.13)
n=2

which showg1/2 + ¢1)? < [1/2 — ¢1€|? = 1/4 — c;Re€ + 2 so that necessarily= —1 holds. With a
similar reasoning as in (6.13) we then get

o0
I < |‘J(f)|§|%+cl—02|+zcn = |%+61—C2|+%—61—C2

n=3
which results in the contradictidy2+ ¢; +¢2 < |1/24¢1 —c2|. This completes the proof of the lemma.
We are now in a position to present a proof of the lower boun@)(@n fact, from Lemma 6.5 it follows

that the coefficients of the power serigg) = 1 + I'(« + 2)a(€) with a,, as in (2.6) satisfy the conditions
of Lemma 6.6. This implies that the coefficients of the povezies

satisfyc,, > 0forn =0,1,...aswellasy >~ , ¢, = ¢ = 1/2. Lemma 6.7 and continuity then implies
that for somer > 0 we havell +T'(a + 2)a(§)| > 1+ 7 for€ € C,|£| < 1 and thus

Fla+2)al@)| > 1+ T(a+2)a(§)|—-1>71 for £€C,|¢| < 1.

This finally gives the desired estimate (6.9) needed in tbefof Lemma 6.4.

7 Conclusions

In the present paper we have considered the repeated tidalazibe for the regularization of weakly singu-
lar Volterra integral equations of the first kind with peliad given right-hand sides. The applied techniques
are closely related to those used in Eggermont [7]. Theteputsented here (which include some numer-
ical experiments) have useful applications for the stablet®n of inverse problems. In addition we have
given a new proof of the stability estimate for the invers¢haf generating sequence, cf. (4.3), which may
be of independent interest.
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