L

Siegen Preprints

on Geomathematics

Spline Multiresolution and Numerical
Results for Joint Gravitation and Normal
Mode Inversion With an Outlook on
Sparse Regularisation

P. Berkel D. Fischer V. Michel

Geomathematics Group Siegen

www.geomathematics-siegen.de

" UNIVERSITAT
SIEGEN







Spline Multiresolution and Numerical Results for Joint
Gravitation and Normal Mode Inversion With an Outlook on
Sparse Regularisation

Paula Berkel Doreen Fischer \Volker MicHel

February 11, 2010

Abstract

Numerical results of a spline regularisation techniquetfierdetermination of the mass density
distribution in the Earth based on a joint inversion of gratibnal and normal mode data are pre-
sented. Gravitational data yields many typical mass aniesal the Earth’s crust, whereas no deep
features can be recovered from it. However, normal moderdaéals certain structures in the Earth’s
mantle, although also this inversion suffers from a norguaness problem. The joint inversion re-
quires a weighting process to avoid a strong dominance ajrénatational data. Finally, an outlook
on a sparse regularisation is given.

Keywords: inverse problem, regularisation, tomography, crust, feanbverse gravimetry, normal
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1 Introduction

One of the fundamental problems in the geosciences is thstigation of the Earth’s interior. Three-
dimensional Earth models are needed e.g. for the detedtindaen resources or for precise earthquake
localisation and source characterisation. Knowledge efdénsity distribution within the mantle pro-
vides important information about the Earth’s dynamicshsas plate motions, convection and geochem-
istry (see e.g. [17, 47, 50]).

A well-known ansatz for the determination of the Earth’'sglgnis the inverse gravimetric problem, i.e.
the inversion of Newton’s gravitational potential

Voo -y [ 2hay. @

wherey is the gravitational constan# is an approximation of the Earth apds the unknown density.
The present satellite missions CHAMP, GRACE, and GOCE pmus with models of the gravitational

*Geomathematics Group, Department of Mathematics, Untyest Siegen, Walter-Flex-Str. 3, 57068 Siegen, Germany;
e-mail: fischer@mathematik.uni-siegen.de, michel @ nmattik. uni-siegen.de



1 Introduction 2

field which have an unprecedented precision. However, tersion of the integral operator in (1) is
non-unique since the null-space of the operator consistdl ahharmonic functions og# (see e.g. the
survey article [45]). This means that only the harmonic péithe density can be calculated from the
gravitational potential. As a matter of fact, the harmoréasity of a spherically symmetric Earth model
is a constant function. Since the structures in the deepadntaf the Earth are primarily spherically sym-
metric, one cannot obtain any reasonable density modeldrawitational data alone. As a consequence,
also other types of data, e.g. from seismology, have to bsidered.

One possible approach in seismology is the examination efE#rth’s normal modes. After major
earthquakes, the whole Earth oscillates for a relativetyg Iperiod of time. These vibrations are called
the free oscillations or the normal modes of the Earth. Thealysis gives us knowledge about the
structure of the Earth’s interior.

Today modern networks can easily record free oscillatioos fearthquakes with surface wave magni-
tudes greater than about 6.5. There are roughly 20 suchsepenyear such that now many thousands
of recordings are available for normal mode research.

For each normal mode, there exists an associated splittimgion, which corresponds to a local average
of the Earth’s three-dimensional heterogeneity. More ipedy, the value of the splitting function at a
particular directioré € Q (with Q being the unit sphere) can be interpreted as the degenezqgteshcy
perturbation that the mode would experience if the sphigrieseraged Earth structure was identical to
the structure in the directiof.

There is a known relation between the splitting functiond #re isotropic material properties of the
Earth, which can be described by three independent paresndibese are, for instance, the compres-
sional velocitya, the shear velocity3 and the densityp. Usually, density models are obtained by
scaling a compressional or shear velocity model. Howeklierassumption of a simple relationship be-
tween the velocities and the density is questionable whienallavariations are a result of non-thermal
effects, i.e. chemical heterogeneity (see e.g. [16, 38pwever, it is still a controversial discussion be-
tween seismologists if the current data situation is sefficfor the computation of independent density
models. Independent models are presented e.g. in [28, 2%830whereas their validity is denied in
[33, 40, 57, 61].

In this paper, we want to combine normal mode data with grtieital data in order to obtain more
detailed information about the Earth’s density distribntthan we get from the gravitational data alone.
Especially in regions below the Earth’s crust, the harmaoiation of the inverse gravimetric problem
provides us only with poor information due to the maximunmpiple.

Note that an ansatz for the combined inversion of normal maael gravity anomalies is presented in
[28, 29]. Therein, the authors use the spherical harmoratficeents of the splitting functions and of the
free air gravity anomalies to construct a combined systefimeér equations. The solution is expanded
laterally in spherical harmonics and radially in Chebyshelynomials. Then the system is solved by
a damped least-squares inversion where the damping geesatitat the solution is similar to a certain
starting model.

Here, we will use localised spline basis functions whichlased on certain reproducing kernel Hilbert
spaces. The resulting spline provides us with a preferablyoth solution of the interpolation problem,
which is the best approximation to the unknown function. é¢@pplications of related techniques can
be found e.g. in[1, 2, 4, 5, 15, 32, 46].

In addition, we construct a combination of the spline intdgion technique with features of a mul-
tiresolution analysis. Note that the techniques presemee are not only suitable for normal mode and
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inverse gravimetry but also for other problems with a simskaucture.

In the following, an outline of this paper is given.

After a summary of a few notations and basic fundamentaleati@ 2, Section 3 gives a short overview
of the geoscientific problems we are interested in, i.e. mbmode tomography and inverse gravimetry.
We introduce the necessary quantities and formulae andresme important theoretical properties of
the problems. In particular, the representation of thelabts data as the values of functionals applied
to the unknown functions is investigated, since such foamwre essential for the construction of the
spline method later on.

In Section 4, the used (scalar and vectorial) spline methdutiefly explained. One great advantage of
this method is that we are able to combine different typesaté,de.g. seismic and gravitational data,
into one system of linear equations. Among all interpotafinnctions this spline has minimal Sobolev
norm (first minimum property), which guarantees a certainahmess of the solution such that the name
“spline” is justified. Furthermore, the interpolating s@iis the unique best approximation of a given
functionF in the spline space (second minimum property).

In Section 5, we combine the presented spline interpolatiethod with features of a multiresolution
analysis. For this purpose, we construct a sequence of 8obpéaces in such a way that the “hat-width”
of the corresponding reproducing kernels decreases witleasing scale. At each step, we add more
data in order to obtain a better resolution. The resultirgieace of interpolating splines converges to
the unknown function. This multiresolution technique candpplied to the scalar and to the vectorial
case in a similar manner.

In Section 6, the spline method is applied to the geoscienifoblems introduced in Section 3. In
particular, the general form of the occurring systems addinequations and of the resulting splines is
derived.

In Section 7, we present some numerical results. We stalnt tivé inversion of a purely gravitational
dataset which gives us the harmonic density of the Earth.n T carry out inversions of both syn-
thetic and genuine normal mode data. At last, we considemn@uwd inversion of normal mode and
gravitational data and discuss the occurring problems.

In Section 8, we give an outlook on a matching pursuit tealnmigs an alternative method providing us
with sparsity of the solution and an enhanced zooming-irst Rumerical results for the application to
the inverse gravimetric problem are given.

Finally, Section 9 summarises the results of this work amdgan outlook for further research.

2 Preliminaries

There are two known4(%)-orthonormal systems on the ba#l:= {x € R®| |x| = a}, which are denoted

.....

is omitted if both systems may be used. For the numericaltsegresented in this paper, only system |

was used:
~[Am+2n+3_ontd) [, |X2 X \" X
e L 2<2¥— a) ™)

where{Prgno"ﬁ)}mel\lO represents the Jacobi polynomials (corresponding to thenpeters(a,) €] —

.....
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the unit sphere ifR3). This system is based on [3, 9]. Fourier coefficients wipeet to a chosen basis
system will be denoted by (m,n, j) := (F,Gmn,j)12(#)- Note thaia represents the radius of the Earth.
Moreover, ifX andY are Banach spaces, théfi(X,Y) represents the Banach space of all bounded linear
operatoraA: X — Y.

3 Theoretical Aspects of the Involved Inverse Problems

3.1 Normal Mode Tomography

After major earthquakes, the whole Earth oscillates fomg lbme. These vibrations are called the free
oscillations or the normal modes. The corresponding eiggnencies can be obtained by a Fourier
analysis of long period seismograms and have values appabedy between 0.3 and 20 mHz. For each
normal mode, one can calculate a unique splitting functiomfthe spatially varying difference between
the measured eigenfrequencies of the Earth and the eigeefieies calculated for a given Earth model.
The splitting functions correspond to a local average offheh’s 3D-structure and, therefore, reveal
information about the density inside the Earth.

3.1.1 Splitting Functions

The free oscillations of the Earth can be divided into twomgioups: spheroidal (or poloidal) modes,
denoted by S, and toroidal (or torsional) modes, denotediy (Note that in the literature we usually
find the notation,§ andT;.) Each displacement field is related to a spherical harmohitegreel,
i.e.Yim, me {1,...,21 +1}. If we consider a spherically symmetric, non-rotating Bartodel, the
frequency of a certain mode is independent of the ordef the corresponding spherical harmonic.
Therefore, we havel 2- 1 modes with the same (degenerate) frequency. Thesd 2nodes are called
the singlets and are combined into one multiplet. Sincedgh&Earth is not spherically symmetric, each
singlet has a slightly different frequency. This phenonteiscnamed the “splitting”.

Each multiplet has its own unique splitting function The value of the splitting function at a particular
direction £ € Q can be interpreted as the degenerate frequency perturltad the multiplet would
experience if the spherically averaged Earth structureideagical to the structure in the directidn
There are different methods for estimating splitting fimes from the data spectra, e.qg. iterative spec-
tral fitting ([26, 27, 56, 59, 60]), receiver stripping ([380]) and peak shift observation ([31, 64, 68]).
Several research groups provide splitting function cdeffits on the internet, usually with respect to
fully normalised spherical harmonics. For an overview araennformation, we refer the reader to the
“Reference Earth Model Website” ([54]). For the applicataf a localised technique it would, of course,
be more advantageous to have data with a spatial referamcgiéincy shifts could be an alternative, see
also [4]).

Since the splitting functiow (corresponding to one fixed multiplet) only depends on theationé € Q,

it can be regarded as an element &fQ). It, thus, can be expanded as= S5 zjzfgl o (N, j)Ynj. Its
coefficientsa”(n, j), ne Ny, j € {1,...,2n+ 1}, are related to the material properties of the Earth by

o’\n,j) = /(;akn(r)- (8m"(n,})) (r)dr . (1)

wheredm = (g—g,g—ﬁ, 2—5) represents the relative deviation of the compressionaicitg| the shear

4
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velocity and the mass density from the spherically symmetference modelam, v, om) (usually
PREM). Note that

((5m/\(n> J)) (r))i = ((5m(r))| >Yn.j)|_2(Q)> I = 17 273
Furthermorek, := (KZ, Kﬁ, Krﬁ’), n € Np, are the corresponding sensitivity kernels (see e.g. [663p.

Remark 3.1 A radial integration similar to that in equation (1) also ocxin the context of the inverse
problems in gravimetry (see [45, 48, 52, 62]) and magnetgmalography (MEG, see [13, 14]).

A linear functional mappingda,d,dp) to o(ék) € R, & € Q, can be defined by

o 2n+1

F&(0a,6B,8p) = 0(&) = > 3 o8 )
=0 j

o 2n+1

1
N Z) Z ~/(;al2n(r) ’ ((50{753»513)/\(”7 J)) (r)drYn.j (Ek) )

1

- KS KB KP
kn =l
am Bv’ pwm

where

3.2 Inverse Gravimetry

The relation between the gravitational potentishnd the mass density distributignis given by New-
ton’s Law of Gravitation
P 3
V(X)_y dyv XGR \%7 (3)
% [X=Y|
wherey is the gravitational constant. It is a well-known fact thatyothe harmonic part of the density
distribution can be obtained from the gravitational patnt

Theorem 3.2 The operator T: L?(#) — T(L?(%)), given by

(TF)(X) ::/ F) dy, xeR3\ £,

2 [X—Y|

has the null-space
kerT = Anharm( %) := {F cL%(B) ‘(F,H)Lz(%) —=OforallH e C? (%) with AH = 0} .

This theorem was proven in [51, 52, 34] (in chronologicaleordf the steps leading eventually to this
result). The result can also be found e.g. in [9, 49, 67].

Modern satellite techniques like SST (satellite-to-dits¢etracking), which is used in case of the satellites
CHAMP ([24, 53]) and GRACE ([10, 25]), and SGG (satellite\gragradiometry), which is applied in
case of the mission GOCE ([10, 11, 63]), yield data from widehvatives of the gravitational potential
can be deduced. The relevant types of functionals, whichgnap.?(%) to R, are:

5



3.2 Inverse Gravimetry 6

« gravitational potential:
FXp ::/ P ke R 2 fixed, )
2 XY

* (negative) first radial derivative:

FLp = — <L.Dx/ PY) dy> X € R3\ £ fixed,
X x=y T

« second radial derivative:

7= (g (oo [ 225 )v&)' K ERN\ B fixed.

We obtain forp € L?(%) the representation (cf. [23, 42, 43])

o 24l 3 n
i) Am a a\" 1, (%
o=3 3 W mir|ms s () i (5g) - ©

where
1, i=0
gl ={ mloi=1

Note that it is also possible to derive an expansion of theigi#onal potential in terms of the basis of
type Il, see [5].

If we want to apply the functionals to the density deviatidp = p — pm we have to calculate the
gravitational potential/ associated to this deviation, i.e.

& - Py 3
V(X): / / V(xX)— (T X), XER\ZA.
(%)= vaw_{vy|w ()~ (Tow) () \
Since a spherically symmetric model will be chosendgr, we can defingy : [0,a] — R by

pm(r) =pm([X) :==pu(x) forallx=rée 2.

In [41], it is shown thafl py is given by

(Tom)( /

V(%) =V (x)— 4"/0 1P (1) dr

X

hence,

6



4  Splines 7

for all x € R3\ 4. In case of the Earth model PRENpy, is (approximately) given by

4na3 g
T -5, 5134—
It should be noted that the inversion pfi— V (with the requirement of a harmonic solutignfor the
uniqueness) is ill-posed, i.e. instable, since the singrdues ofp — V converge to 0 (see (5)) and the
operator is, consequently, compact. Note that this coevery is exponential if the potential is not given

at the Earth’s surface but above it (exponential ill-possdrof the downward continuation problem).

4 Splines

In this section, a brief summary of the construction of scaled vectorial splines for the investigated
problems is given. For further details, the reader is reféto [4, 5, 44]. An advantage of these spline
methods is the possibility to combine different types ofad@.g. seismic and gravitational data) into
one interpolation problem. The vectorial approach is, fanaple, appropriate for the simultaneous
determination oba, 63, anddp and the treatment of the corresponding coupled problem.

4.1 Sobolev Spaces

Let {Amn} := {Amn}mnen, be a real sequence. Consider the &et= &({Amn}; %) of all functions

F € L?(%) of the form
o o 2n+1

Z ZOZ an)Gmnp (6)

satisfying
F*(m,n,j) =0 forallm,nec Ngwith Apnp =0 (7
and
o 2n+1 2
And (FAmn, ) < +oo.
mn=0 j=
Am,n#0

We can define an inner product-) s ({am.};2) ONé& by

o  2n+1

(F,G) e ({Ann}:2) - ngOJZlAm SF(mn, )G (mn,j) .

Amn#0

The Sobolev space?”’ ({Amn}; %) is defined as the completion &f{Amn}; %) with respect to the inner
product (-, ) s ({ann);2)- ¢ ({Amn}; %) equipped with the inner produgt, -) »((a,,}.2) IS @ Hilbert
space. Note that the Sobolev spaeg({1}; %) is equal to the space’(%).

Further on, we write’? instead of 7’ ({Amn}; %) if no confusion is likely to arise.

Note that we always assume that the chosen sequgkigg} is summable with respect to the basis of
type |, i.e.

1\ 2
S Z n(2m+n) <m+:1+§> < 400, (8)

7



4.2 Scalar Splines 8

The summability of the sequendé,,} automatically guarantees that every element®f{Amn}; %)
can be related to a continuous bounded function. Moreovenplies the existence of the reproducing
kernel

o o 2n+1

Kﬁ’(xvy) = z Z z Afz‘r\,nGm,n.j(X)Gm,n.j(y) , XY € B )
m=0n=0 j=1

of 7. For the discussion of examples and criteria for the fulfilingf the summability condition see
[4, 22].

4.2 Scalar Splines

By means of the reproducing kernels, we define splineg#ircorresponding to a system of bounded
linear functionals.

Definition 4.1 LetNe Nand let7 := {F1,..., #N} c .Z(s#,R) be alinearly independent system of
bounded linear functionals from?” into R. A function S= J# of the form

S(x) = k% aF Kp(x), xeR, 9)
=1
a=(ay,...,an)" € RN, is called a spline in# relative to.%. Spling.2#;.%) represents the space of all
such splines.
For further consideration, we need the following lemma \Wwtdan also be found in [7].
Lemma 4.2 Let.# € £ (2, R) be arbitrary. Then y— .ZK »(X,y) isin .2 and
FF = (F, 7K (X))
forall F € J7.

Here,.ZxK ,»(x,y) means that” is applied to the function — K ,+(X,y), wherey is arbitrary but fixed.

A spline interpolation problem can be formulated as followst there be given a linearly independent
system of functionals? := {#1,...,.#N} c Z(s,R), N € N, and a vectob = (by,...,by)" € RN.
DetermineS € Spling.7#;.%) such that

F's=p foralli=1,...,N

or, equivalently, determina € RN such that
N . .
Z aj FyF K r(xy) =l foralli=1,...,N.
=1

As a consequence, the spline interpolation problem cooretpto a system of linear equations with the
matrix o
(FyF K (XY)), (10)

8



4.3 \Vectorial Splines 9

which is (as a Gramian matrix) positive definite.
Hence, the spline interpolation problem is uniquely sdalMoreover, it is known that the obtained
spline has certain nice properties such as maximal smasgh(fiest minimum property), i.e.

Se Spling.7;.7) with Z'S=b; foralli=1,...,N (11)
& Se s with Y] < ||F||l» forall F € 2 with #'F = #'S=bforalli=1,...,N,

and best approximation (second minimum property), seedqg, 4

4.3 Vectorial Splines

As we mentioned above, models involving simple relatiopshietween the velocities and the mass
density are disputed. For this reason, we will not use suémpliication. As a consequence, we have
to solve the coupled problem based on (1). Since this regjtive simultaneous determination of the
three independent quantiti€éda,d3,5p) (although our primary intention is still to findp only), we
need vectorial splines. Vectorial splines on the sphereweroduced in [19, 20, 21]. These splines are
based on vector spherical harmonics, i.e. they can be segdranormal and tangential parts. Since we
are looking for a vector of three independent functions, wkdefine here a component based method.
The method is based on the scalar technique above and wyllboiefly be explained here. For further
details, see [4, 5].

Definition 4.3 Let A, .7, 743 be three scalar Sobolev spaces as introduced in SectiomAel spaces

may differ with respect to the chosen sympa,,} and the used basi@G'ré.'r'L i}. We consider the space
9 = JA x 5 x 3 and we define an inner product gnby

(£,9)5 1= (F1,G1)s + (F2,G2) s + (F3,G3) 55
where f:= (F1,F, F3) and g:= (G, Gy, G3) are elements ofj.
Obviously, (-, ) is an inner product oy since(-, -) .« is an inner product og# for i = 1,2, 3. Moreover,
(%,(-,-)s) is complete. Note that the data will now be represented bgtiomals.7 € £ ($,R).

We will now define a tensorial kernet, which inherits some reproducing kernel properties from th
scalar kernel& ., i =1,2,3.

Definition 4.4 Let K, : # x % — R be the unique reproducing kernel f, i = 1,2,3. The tensorial
kernelR : 2 x 2 — R3*3 corresponding ta) is defined by

Ko (X,Y) 0 0
R(xy) = 0 Ko (XY) 0 , XYER.
0 0 Kukxy

Note that if we choose one parametes % arbitrary but fixed, each row of(-,x) is an element of
9, sinceK (-, x) is an element of%, i = 1,2,3. Therefore, we can apply a function& € .Z($,R)

row-wise:
y(K%(’aX)a Oa 0)

FR(,X) = Z(0,Ku(-,X),0)
Z(0,0,Ks(-,X))

9



5 Spline Multiresolution 10

This property can be used for the definition of spline$in

Definition 4.5 Let Ne N and let.7 := {#1,... . #N} C .Z($,R) be a linearly independent system of
bounded linear functionals from into R. A function s= $ of the form

aZ R(-X), XEAB, (12)

Mz

s(x) =

k=1

a=(a,...,an)" € RN, is called a (vectorial) spline i relative to.%. Such splines are collected in
the spacespling $;.7).

A spline interpolation problem can be formulated in analégyhe scalar case: A system of linearly
independent functionals” := {71 ... . #N} c Z(%,R), N €N, and a vectob = (by,...,by)" € RN
are given. Determine € spling$;.#) such that

Fls=b foralli=1,...,N

or, equivalently, determina € RN such that

P4

a Ay FIA(xy) =b foralli=1,...,N. (13)
1

J

Obviously, (13) represents a system of linear equationis tivé matrix

(Loj)i/ggﬁ()(’y))i.jzl,...,N ;

(14)

which is positive definite.
Analogous properties can be proved for the vectorial spjisach as the maximal smoothness property
(see (11)) and the best approximation property.

5 Spline Multiresolution

In this section, we combine the introduced spline methob witnultiresolution concept. The concept is
explained in detail for the scalar splines and can be estaddiin an analogous manner for the vectorial
splines (see [4, 5] for further details). The principle isfaldows: We construct different sequences
{Aﬁi)n} (which will now be called{®} (m,n)}) corresponding to different scal@such that we obtain a
sequence of approximating splines at increasing scalesaétt step, we add more data and reduce the
“hat-width” of the spline basis functions in order to obtarbetter resolution. Our approach is based
on the spline-wavelet method in [12, 46]. The proofs arei@liyrtanalogous. Alternative spline-wavelet
approaches for different geomathematical problems caourelfin [18, 22].

Notation 5.1 In this section, the following notations are used: L#trepresent a given, fixed, and
countable system of linear and continuous functiogals- {9’1,9’2,...} C Z(s,R). Moreover, let
Ty = {FL,..., 7N} C .F be alinearly independent subsystem & € R’ be a given vector for
everyJ € No, where(N;) .y, is @ monotonically increasing sequence of positive integeth J”j'; N; =
+00.

10



5 Spline Multiresolution 11

Definition 5.2 Let the family of sequencg$}(m,n)} J € Ny, satisfy the conditions

m,neNp’

(i) 0<dy(mn) <), (mn) <1forallJ e Ng, mne N,
(i) {P3(M,N)} 1 hen, IS sSummable for all & N (see (8)),

(iii) for all fixed m,n € Ny, the sequencéd) (m, n)}JeNo is not identical ta, i.e. (in combination with
condition (i)) there existsyjn such that} (m,n) > Ofor all J > jmp.

Furthermore, let
Ay = ({®)(mn)};B) .

Then the elements 8pling(773;.7% ;) are called spline scaling functions.

Figure 1 shows the third component of the spline basis func%‘érﬁ(-,y) at a sphere withy| = 6365 km
corresponding to a data point satisfying| = 6371km (see Section 6 for further details). Here, the
symbol of the CP-scaling function was used which is defined by

0, if 2m+4+n>2’

1/2

. 15
1-27(2m+n)) (1+27(2m+n))”7*, if 2m+n<2’ (15)

o) (mn) ;= { (

The figure shows that the “hat-width” decreases with ingérgpscale.
The Sobolev space#3, J € Ny, defined by the symbdl®) (m,n)} represent a multiresolution analysis
as the following theorem shows.

Theorem 5.3 Let {®}(m,n)} . ., J € No, satisfy the conditions of Definition 5.2. Then the Sobolev
spacess7 form a multiresolution analysis, i.e.

() BHC...co5CH 3, 1C...CH Toralld e Ng,

(i) U B =,
JeNg

whereJ%, .= 7 ({¢(m,n)}; %) and$ (m,n) := JIim @7 (m,n) for all m,n € Np.

Proof. We first mention that, for fixedh,n € No, the sequencg®}(m,n)} ;_y is monotonically increas-
ing, bounded and, therefore, convergent. Moreover, thrd teiquirement in Definition 5.2 implies in
combination with the monotonicity that this limgt(m, n) is positive for eactim, n).

(i) Let F € 273 be an arbitrary element of the Sobolev space at skal&,. Hence, the condition

o  2n+1 ) 2
®3(mn) =2 (FA(mn, )" < +oo
mnh=0 =1
@) (mn)#0

must be satisfied. Because of the monotonicity of the synwmlonclude that

0 2n+1 5 N2 o 2n+1 ) 2
z (D./]\Jrl(m?n)i (F/\(ma naJ)) S Z Z q)\/]\(m7n)7 (F/\(ma na])) < +°° ) (16)
mh=0 =1 mh=0 =1
@}, 4(mn)#0 ) (mn)£0

11
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o @
<o @

Figure 1: Plots of the third component of the spline basiction ﬁ‘érﬁ(-,y) with respect to the CP-
scaling function at scale3= 5 (top left-hand),J = 6 (top right-hand)J = 7 (bottom left-hand), and
J = 8 (bottom right-hand)

such thaf € J43,1. Note that

F"(m,n, j) =0 for all (m,n) € {(p,q) € Nox No|®}(p,q) =0} > {(p,q) € No x No| @}, 1(p,q) =0}
due to condition (7).

In analogy, we obtain thdt € J%,, since¢ (m,n) > ®}(m,n).

(ii) Now, let F € %, be arbitrary. Hence, by definitiof, satisfies

o oo 2n+1
n;)n; ,Zl ¢(m,n)? (F'(mn, )* < +oo. (17)

After defining the sequenciH } 5, of functions by
2 Zoy(mn)
m=0n=0 j=1 ¢(m7n)
we observe thatly € 773 for all J € Ny, since

o 2n+1 1 dJA(m n)2 2 o0
Hy||%, = I (F) ) <
Mollss = 2 2, @5mnp g(mmz (M=

mnh=0 =1 on
@) (mn)#0

Hy = FA(ma N, j)Gmnj ,

8

2n+1 1
1

A i\ 2
b= ¢ (m,n)2 (F (m>n>l)) < 400,

12



5 Spline Multiresolution 13

Moreover, we observe that the series of the Parseval igientit

2

o o0 2n+1 q)/\(m n)
2 )
IF—HolZ, = (- S

WZOH; le ¢(m.n)

o oo 2n+1 q)g(m’n

_ -2(q_ ) ? A i) 2
= 555 emn (1- ) (Fr(mn )
(mn)

converges uniformly with respect tbe Ny due to estimate (17) and the fact thatg% <1
Consequently, we get

)FA(m,n,nGmm,,-

Hoo

lim ||F — H;,|| f 3 zglcp(m n)~2 lim <1 q’JA(m’”))z(FA(m nj)’=0
— g = y . b 1y =Y.
J—e e m;Oan =1 J—eo ¢ (m,n)
This implies the second property of the multiresolution. |

Furthermore, inequality (16) yields the following corolla

Corollary 5.4 Let Je Ng and let Fe .73 be an arbitrary function. Then

IF 1,0 < IF L -

By means of Theorem 5.3, we can construct a sequence of apating splinesS; € Spline(.73; 7 ;) ).
Each splineS; is the smoothest function in the spagg that interpolates the given data, i.€!'S; =
bi(J), i =1,...,N;. Since the symbo{®}(m, n)}mneNo increases with respect tbby definition, the
corresponding reproducing kernels become more and moaéided (see also Figure 1). This involves
that the resolution increases and, thus, more and more dati® e includedNy < Nj. 1).

If we additionally requirep (m,n) = 1 in Theorem 5.3, it directly follows that the “limit space’?s, is
the space &(%).

Finally, we get a system of linear equations for each scdte.approximating spline at scale= Np can
be calculated by solving the system of linear equationsngiye

N; )
S a0 F P K as(xy) =" =1, N,
k=1

The corresponding spline has the representation

Ny
SK =Y &’ F KX, xeZ.
k=1

By adding more and more data and decreasing the “hat-widtliieobasis functions at the same time,
we obtain a sequence of approximating splines. We want te stoov that this sequence converges to
the unknown function of our interpolation problem. Howe\mafore we can prove this convergence we
need some lemmata. Their proofs are analogous to proof&]n\[le omit them for this reason.

13



5 Spline Multiresolution 14

Lemma 5.5 The dual spaces?}* := £ (.73, R), satisfy
Sy C I C A CHy
for all J € Ng. Furthermore,

17 <171 < 1T, <17 1

forall 7 € J7;.

Lemma 5.6 For all F € 77}, | € No, we have

1m [IFl] = IFlL -

=]
Theorem 5.7 (Convergence Theorem) et F € U;cy, /4 be a given functionZ = {#'},_ be alin-
early independent system of linear and continuous funakoim .77; such tha‘rspan{f}‘i }ieN is dense

in ;. Let there exist subsystenBy) := {F1,...,. 7™} C #, J € Ny, with Ny < Ny, 1 forall J € No
andlim;_... Ny = +. Moreover, let the sequence of spline scaling functi@®$,., be given by

S € Spline(J4; Zy))
F's = ZF'Fforalli=1,...,N;. (18)

Then
JIim 1S9 —F| 4 =0. (29)

Proof. We prove property (19) foF € .77 for an arbitrary but fixed scalgc Ny. For this purpose, we
show in part a) tha®; converges weakly t& with respect td-,-) ,» . After that, we prove in part b) that
JIim 1S5l . = |IF|| ,, to obtain, in the end, the assumed result. For a related macrspherical case

without multiresolution we refer the reader to [18].

a) Let.7 € J; be arbitrary. We have to show thatS — JF asJ — ». Lete > 0 be given. Since
spar{.#' }icy is dense in;, there exists a finite linear combination

pd

T =Y b.F e (CHforalld e Ny ,

N € N, such that )
|7 - 7|

Now let Jo be sufficiently large such th&t;, > N andJy > j. Then we have for all > Jy due to (18)

o SE (20)

N N
IS =Sb7S=SbZF=9F.
2,07 %=20b

14



5 Spline Multiresolution 15

Hence, Lemma 4.2 and the Cauchy-Schwarz inequality imgly th
7S -TF| = [(7-9)(S—F)
= |(8-F(7- ) Knlx
1S —Fllyll(7—7),K

IN

) s
(x

s

)
< (ISl +1FlLg) [ (7 = 7)Kos (%), (21)
for all J > Jy. Using again Lemma 4.2, we obtain the estimate
(7= ) Kk = (7= F)Ks(x). (7 5‘) Kors(%))

= (T-9)y (T F) Konl

< N7 =T ( - 7)y Kffa X |yg
such that we get with Lemma 5.5

(7 = 7) Kot g <17 = TNy <N T = Tl -

Putting this result into inequality (21), we can concludenir(11), (20), and Corollary 5.4 that for all
J>JX
| 7S — TF| < 2[|F|| 4 Hﬂ—ﬂ\

e S2IF e <2IIF| e

Hence,
JIim IS =IF foral 7 e .

b) Without loss of generality, we may assume thag 0, since otherwisgS; | ,,; < [[F|| ,; (see (11))
implies that§; = 0 for all J ( > j). Furthermore, we may assume, without loss of generaligt, ah
given values > 0 is sufficiently small such that@ ¢ < ||F H%ﬂj . According to a well-known fact from
functional analysis (see e.g. [70], p. 91), we have

IFll=  sup [ZF]|.
T espad F#' tien
71|y <1

Therefore, we can find a functional

= Zldiﬁ' € A (C 7 forall J € Np)

with ||| s < 1 and||F e < |.7F |+ &. Moreover, due to Corollary 5.4 and Lemma 5.6, there exists
Jo > j such that for all > Jy the inequality

O<|Fll5—IFlle <€

15



6 Application to the Combined Inverse Problem 16

holds. Thus, if we choos& such thatl; > Jy andN; > N, we obtain for allJ > J;, using Corollary 5.4
and (11),

IN

|TF|+e=|TS]+e<|| T 4 [l 0+ < D]l 0, +€
1Sl + € < IF g + € S [Fll s, +2¢

IF 1z,

N

such that
Iim [1S]l e, = IF |z, -

Combining a) and b), we see that
JIim 1S —Fll =0

forallF e | 74. [
JeNg

Remark 5.8 It is enough to find a sufficiently largee No such that € 7], where(,cy, /73 is dense
in 7%, . Consequently, we have, in practice, a sufficiently larg@tapproximable functions.

6 Application of the Spline Method to the Combined Inverse Poblem

In this chapter, we give some details about the applicaticheoderived spline methods to the inverse
problems introduced in Chapter 3.
We consider functionals that m@pa,d3,0p) € (L?(%))? to a real number. The given data will be a
mixture of splitting function values and anomalies in thawational potential. For the normal mode
tomography, we have the functional given by (2). For the lisgegravimetric problem, we choose the
functional corresponding to the gravitational potentasdéd on (4):

op(y) 4

Z& (da,8B,0p) =

{&Jk € Q and {x}k C R3\ % are point grids on which the corresponding data is given.eNtwat the

gravitational potential is usually given either shortlyoab the Earth’s surface or at a satellite orbit.
Application of the functionals to the basis functions #(12) yields

(Glnn,,0,0) _ /4m+2n+3/a KGEI; p{ (on+3) <2ﬁ_1> (é)ndrYn.j(Ek),
(OG:nnPO) _ /4m+2n+3 aK”E:;POMZ) (2%_]) (é>nder(Ek)7
ffép(0,0,G'mn’j) _ /4m+ 2n+3 /oa K E:; ( (on+3) (2;_2 _1> (;)nderj(Ek) |

We will use the abbreviation

4m+2n+3 _(on+d) /. r? r\n
Fmn(r) := Tprg‘ n+3) (2——1> (a) , rejoal.

16



6 Application to the Combined Inverse Problem 17

Furthermore, we have

F& (Ghnnj0,0) = & (0,G},,;,0) =0,

Am ad a\"1 Xi
7&(0,0,Ghni) = Owos—— — ) il -
6r(0.0,Gmn;) d“02n+1\/ 2n+3<|Xk|> a0\ [

By means of these expressions, we are now able to calcuktsptime basis functions in (12) and the
matrix of the system of linear equations in (13). We assurae(ba,d3,0p) € 73, i.e. we choose
JA4 = 5 = A3 in accordance with our numerical implementation. Note,ttaé to the coupled struc-
ture of the problem, it is necessary to use a vectorial splitnéch involves the calculation of the spline
coefficients for the vectofda, df3,5p) by dissolving the corresponding whole system of linear equa
tions. However, after having obtained these spline coefitsi we can separately evaluate the expansion
of the third component of the spline for plottidgp. For this reason, we only show here the formula of
the third component of the spline basis functions assatiat¢he splitting function.

(m0.m), = §§

( OOGIan)) Glm.n,j(srl)

/ (:) Fun(r) drYn j (&k)Fmn(S)Yn,j (1)

m(r)
-5 1, AKED |
- z0n—o am Am'”/o om (1) Fmn(r) drFmn(S)Pa(ék-n)

sn € . The formulae for the first and second component, respégtigee analogous witlwr and f3,
respectively, replacing. Furthermore, we get

)
o] o 2n+1
FER(Y) = ( 3 5 3 A ooe:nn,))eln.n,j<y>>
m=0n=0 =1
oom2n+1 @ (a) iy (X)g T
- eog 2 Mt a3 () ™ () Soni

.
- M> Xk'Y>

0,0 —p,( XL 22

(’ s ’”(!Xk! P\ %l Y] ) ’ (22)

/\

17



7 Numerical Results 18

y € #. Moreover, here are the different types of matrix entries:

Arzn,n <¢gls(p (Glm,n.j (dv)v:l.z,s)) (yép (Glm.n,j (dv)v:l,2.3>)

e A Kg (1) 2 (kb i
. zAfn‘nK/o e an(r)dr) +< [ BM—(r)an(r)dr)

2n+1

Pn(a Ek)

FoHFER = Y A,%m(%p(o,oe'mnm(ﬂér(o,o,e:m,n) (23)

© akh(r) Xk
_ 2 .
- Z AOn/0 r FOn 2n_|_3 |Xk| <E| |Xk|>

pwm(r)
o ke
- nZoA%"_‘/o pME:; rxkr"+1 ( rxkr>

Il
* g%
S

: am a3 a2 \" 1 X - Xk
FoTER = ( > P, ( ) :
e ZJA°”2n+12n+3 TPl /- Dl \ el
We observe that all expressions are series of Legendre qoiwats, which can be computed (as trun-
cated series) by the Clenshaw algorithm (see [8]). The Jammknomials can be calculated via the

usual recurrence formula (see, for example, [65]) and ferikegrals over the intervd, a] a standard
quadrature rule (e.g. the composite trapezoidal rule opSim's rule) can be used.

7 Numerical Results

In this section, we present some numerical results of theudsed (vectorial) spline multiresolution
method. We start with the inversion of a purely gravitatiatataset which gives us the harmonic density
of the Earth. Afterwards, we carry out inversions of boththgtic and genuine normal mode data. Fi-
nally, we consider a combined inversion of normal mode aaslitational data and discuss the occurring
problems.

For the inverse gravimetric problem, we use the NASA GSFC A joint geopotential model
EGM96 (Earth Gravity Model 96, see [35]). EGM96 is a sphérttarmonic model of the Earth’s
gravitational potential complete to degree and order 360.

For the normal mode inversion, we use the structure coditiEi@gnd sensitivity kernels from the “Normal
Mode Seismology” website by J. Resovsky and M. RitzwollBb]].

The data is assumed to be given on the point grid defined inEXample 7.1.9].

We start with an inversion of gravitational data withoutngsinormal modes. For this purpose, we
take EGM96 from degree 3 up to degree 360. This means that tamdbe harmonic part of the density
variation. Figure 2 shows the reconstruction of the densitiationdp on a sphere which is locatedl®6

18



7 Numerical Results 19

Figure 2: Harmonic density variation shortly below the Barsurface

below the Earth’s surface, i.e. on a sphere with the radit®.999- a =~ 6365 km. For the inversion, we
used a CP-scaling function at scdle- 8 (see (15)). Note that the obtained spline is a harmonidifumc
due to the structure of the spline basis functions and theaatsn to pure gravitational data (see (22)).
We can see that many topographical structures at the Eattface and some tectonic boundaries are
well recognisable in the result.

However, with increasing depth we obtain more and more sheabtersions of the structures at the
surface. This is due to the fact that the dominating streciuside the Earth is almost spherically sym-
metric. The harmonic part of a spherically symmetric dgmdistribution is a constant function (see e.g.
[41]). Furthermore, we know from the maximum principle thabarmonic function on the ba® has

its maxima and minima on the boundary#f(cf. e.g. the results in [45]). These facts confirm that it is
absolutely necessary to include also seismic data in oersiens in order to get reasonable solutions in
the Earth’s interior.

As a next step, we want to test the normal mode inversion omalsisynthetic function. For this

purpose, we define
da(r§) _oB(ré) _ op(ré)
am(r) — Bu(r)  pm(r)
forallré € £, where?; is a real fully normalized spherical harmonic. Then we daleuthe spherical
harmonic coefficients of ten different splitting functioog

=%2(&)

o/ (n.J) = [ Kaur)- (3m"(n, ) ()

forn=246, j=1,....2n+1,i=1,...,10, using the composite trapezoidal rule for 222 points in
the interval[0,a] (the indexi corresponds to the choice of 10 different normal modes).eriards,
the calculated coefficients are regarded as the given namode data and we try to redetermine the
relative density deviatiodp/pm by the vectorial spline multiresolution method. We use asc&ling

19



7 Numerical Results 20
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Figure 3: Given density deviatiodp/py = Figure 4: Reconstructed density deviation
%4 on the unit sphere 0p/pwm for r ~ 6365 km

Figure 5: Reconstructed density deviati®/py on a cross section in the equatorial plane (with original
(left-hand) and adjusted (right-hand) colourbar)

function at scale) =9 (see (15)). Figure 3 shows the given funct®n/py = %4, on the unit sphere,
the resultdp/pw is shown in Figure 4 for ~ 6365km. We can see that the resbyfi/py has the same
spherical structure as the original functidp /pm, except for a change of sign. Figure 5 shows the result
dp/pm On a cross section in the equatorial plane, where the Earthnésis blackened. We see that the
change of sigh does not occur at all depths. Furthermoregea fiigh peak at the Earth’s surface and
a smaller peak at the core-mantle boundary (CMB). We camjedhat certain angular dependencies
may be detected qualitatively (maybe even at certain degges of the mantle), whereas the radial
dependence probably suffers from the occurrence of phantom

Note that we restrict our calculations to the Earth’s madtle to the following considerations. The
sensitivity kernelK?, Kr‘f andKf, n e Ng give us the sensitivity of the corresponding multiplet con-
cerning the material properties, 8 andp in a certain depth. Ideal in the mathematical sense would be
functions which are non-zero on the whole interfah). Furthermore, we would like to have functions
with varying structure for different multiplets.

However, in reality we do not have such ideal conditions. rétege only few known multiplets which
are core sensitive, such as the multipit (see Figure 6). Moreover, for most of these core sensitive

20



7 Numerical Results 21

Figure 6: Sensitivity kernelsFigure 7: Sensitivity kernelsFigure 8: Sensitivity kernels
Kg, KB, K of multiplet g5, K&, KE K2 of multiplet,Sg  K§, KE, K, K& of multiplet
the horizontal axis refers to the 28

radiusr

multiplets only the structure coefficients correspondionghte spherical harmonic degree 2 are known,
which is insufficient to obtain satisfying results. For théason, we use only mantle sensitive multiplets
for which the structure coefficients are known at least upeigrele 6.

Further numerical tests yield that the resulting splinegags have a similar structure with respect to
the radius, almost independently from the radial structréhe pre-given density distribution. This
result could be a consequence of the fact that many of thécapje sensitivity kernels have a similar
structure, comparable to that of the multip}& (see Figure 7). Note that the structures of the kernels
with different degrees corresponding to one multiplet dse aimilar (see Figure 8). If we consider the
kernelskf, n = 0,2,4,6, in Figure 8 we recognise immediately the structure of theva calculated
splines. We have two changes of sign, a high peak at the Eauface and a smaller peak at the core-
mantle boundary. This result confirms our speculation thatradial structure of the splines reproduces
mainly the structure of the sensitivity kernels.

Next we perform an inversion of genuine normal mode datathieestructure coefficients from [55], up to
degree 6. This time we calculate the absolute density demiap instead ofdp/pm. Again we choose
ten different splitting functions, we use a CP-scaling tiorcat scale] = 5 (see (15)). The resulting
splineSy is shown for different radii in Figure 9.

Figure 10 shows the result on a cross section in the equigitaize, where the Earth’s core is blackened.
Similarly to the synthetic case, we obtain a strong peakeaEtrth’s surface, then a change of sign and
weaker structures. One advantage over the gravity inveisithat we obtain maxima and minima in the
interior of the Earth, which is impossible for harmonic ftinos because of the maximum principle.

In the following, we compare our results to results by othesearch groups. In [28] and [40], the
relative density deviatiodp /py was also calculated for different radii but with differen¢tinods, which
motivates a comparison in the search for common structimesomparison with our splin&y, we can
see that the structure at the radius 3600 km is very similar in [28]. We have an elongate maximum
at the pacific region and one at the African continent. Moegothe distribution of the maxima at the
radiusr = 5070 km obtained in [28] is equal & for r = 3000 km. In [40], the result far = 5145 km

is comparable t&y for r = 3000 km.

In summary, we can say that the resstof our spline interpolation contains some of the structurieigh
were already obtained by other researchers, especialheidéeper mantle regions. In other depths, the
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Figure 9: SplineSy calculated from normal mode data fors 6365 km (top left-hand), 5690 km (top
right-hand), 5015 km (middle left-hand), 4340 km (middight-hand), 3670 km (bottom left-hand), and
3000 km (bottom right-hand)
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Figure 10: Splineésy calculated from normal mode data on a cross section in thatedal plane (with
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Figure 11: MatrixA

results of the groups differ strongly among each other shiatwte cannot be sure which results are right
(or if any is right). Moreover, it is a highly controversiakdussion between seismologists if the current
data situation is sufficient for the determination of indegient density models.

Finally, we want to carry out a combined inversion of normalda and gravitational data. For this
purpose, we consider at first a small example with one sgiitinction and the gravitational potential,
both evaluated at 500 points on the sphere. We set up thensyétinear equations and examine the
corresponding matrix which has the form

(AL AL
ae ().
The blockA; corresponds to the splitting function, the bloskcorresponds to the gravitational potential
and the blockAs is mixed from both (confer (23)). The matrixis displayed in Figure 11 and we see
immediately that it is strongly dominated by the gravitaibblock A,. For a better recognition, the
blocks are plotted separately in Figure 12.
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Figure 12: Blocks of the matrii: A; (left-hand),A, (middle),As (right-hand)
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Figure 13: SplineSyg calculated from normal mode and gravitational data on ascsestion in the
equatorial plane

The matrix and the diagonal blocks have the following caadg:

condA) ~ 3-10%
condA;) ~ 4-10'8
condAy) ~ 2-10°.

We realise that the matrix A is very ill-conditioned becaa$ahe different sizes of the entries in the

blocks. As a method of regularisation, the condition canngroved by weighting the main diagonal

(cf. [32]), which is related to the Tikhonov regularisation

In spite of the problems with the system of linear equatioesascomplish now a combined inversion

of normal mode and gravitational data. For this purpose, vamse ten different splitting functions and

evaluate each of them at 500 points on the sphere. Additypned evaluate the gravitational potential

at 500 points. In this way, we obtain a matrix which consigtélox 11 blocks. We use a CP-scaling

function at scald = 5 (see (15)). The resulting splif8c is shown on a cross section in the equatorial
plane, where the Earth’s core is blackened, in Figure 13urEi@4 shows the result for different radii.
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kg/m® kg/m®

Figure 14: SplineSyg calculated from normal mode and gravitational datarfer 6365 km (top left-
hand), 5690 km (top right-hand), 5015 km (middle left-hat840 km (middle right-hand), 3670 km
(bottom left-hand), and 3000 km (bottom right-hand)
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8 Outlook: Application of a Matching Pursuit Technique

A particular feature of the proposed method is common toihe methods. The basis functions of
the (scalar) splin&(x) = z{z‘:lakﬁkK%n(-,x), X € %, are chosen according to the data structure. This is
advantageous if one wants to locally adapt the resolutigheo§pline to the density of the data grid (see
[46]). Using the idea of a matching pursuit in our new apphoage select the basis functions to best
match the structure of the solution, which provides us wlittraative advantages.

Our method is based on a method developed for a Euclideangsdéscribed in [37] and [66]. We also
build a linear expansiofty = ZE:1 axdy to approximate the target functids, e.g. the mass density
distribution of the Earth. Herajy are basis functions that are adaptively and iterativelysehdo best
match the signal structure given by the dgta (Z'F,...,.#MF) =: ZF c RM at pointsxy,...,Xu.

In existing variations of the matching pursuit algorithrne tata is always given directly by the target
function, i.e.y = (F(x1),...,F(xu)). However, an extension to a more general setting of bouridedrl
functionals.ZX (as for the spline method) is possible.

Besides the more beneficial choice of basis functions, thera few other advantages of using a match-
ing pursuit technique to reconstruct the mass density oE#réh.

Since the basis functions are chosen stepwise, we canldioeetitrol the sparsity of the solution and
— in contrast to spline methods — we can use results fromegacbmputations as an intermediate
step to zoom in on interesting areas or to improve the solgtep by step. We refine the solution by
partitioning, for example, South America into four parthieh we start a new computation in every part
where we use the results from earlier computations as aaliafproximationF for the solution.
Furthermore, our new method allows us to collect differand& of basis functionsl, in a so-called
dictionary 2. We will use the basis functions of the spacé#), defined in Section 2, to cover global
trends and we will use localising kernel functioftsy(-,X) | h €]0,1[, x € £} with varying localisation
parameteh and centre points to represent the detail information. Here,

IZl’l(ya X)
Kh(y,X) = p ’ X>y€ % )
[Kn(+sX) L2
where
. N1 Nz 2n+1 | |
Kh(yax) = z Z Z hn+me.n,j(X)Gm.n,j(y)7 Xaye % .
m=0n=0 j=1

For the implementation, we chodk = 0 andN, = 512.

The basic algorithm is as follows:

We want to choose basis functiodg and the corresponding coefficientg such that they minimise
the residual (concerned with the deviation from the datahlwoed with a regularising penalty term
(concerned with the smoothness of the solution), i.e. we teaminimise

M .
> (F R ARl

whereA is the regularisation parameter.
We start withFy := 0. At stepN + 1, we buildFy. 1 := Ry + o 10n2 1 Out of By such that

M

. 2
Zl (' (A + ongadngs) — Vi) "+ A IR+ aN+1dN+1||EZ(’@)
i_
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Figure 15: Reconstructed density deviation (left-hand) @entre pointx of the chosen basis functions
Kn(+,X) (right-hand) computed out of 11,900 data points with 10,8€@cted basis functions from the
dictionary (i.e.Fio000is shown) A =10, h € {0.95,0.97,0.99}

is minimised. It can be shown that this task is equivalentrtdifig (on.1,dn+1) Such that

and

. Zd)gm — A (Fn, d
dvia =argm (R >R: (P 2>L2(‘%)
d<7 |\ JI1F By +Alld]Z2
(R, Fdns)rw — A (PN, Onga) L2 z)
17 dneal [+ Alldnsal 2 )

aN+1

)

whereRy = (Z'Fy — Yi)i=1...m € RM andFy are given.

The numerical implementation includes, consequentlyctimeputation of the scalar produc®y, -7 d)gm
and (F,d), 25 as well as the norm$§4‘d||]§M for all basis functiongl in the dictionaryZ. Note that

in our setting the basis functions are normed such \tdﬁﬁz 2 =1 for alld € 2. These calculations
represent a major part of the computations and can be ges@dle From a computational point of view,
this is an important advantage of the presented method.

Figure 15 shows the mass density variations of South Amati¢he Earth’s surface computed by our
new regularisation method. The given gravitational data welculated out of EGM96. Obviously,
the localised basis functions were chosen according totthetsre of the solution, since the data was
distributed uniformly. Figure 16 shows the results of a zomn, which is first restricted to the north-
west of South America and eventually applied to the wholdinent. For all three results shown in
Figure 16, we started our computations with the resultsadiregained in the computations for Figure
15. Obviously, the resolution is increased in comparisoRigmre 15. Note that the same colour scale
was used for all three density plots in Figures 15 and 16. Dube subdivision of the domain during
the zooming-in procedure, minor boundary effects occurctviiave to be controlled by an appropriate
weighting process.

Details of the new method will be published in a forthcomirgper. Note that this method also allows
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Figure 16: Zooming-in at the north-west of South Americé-{t@nd) and all four sections (right-hand)

the combination of different types of data.

9 Conclusions

The presented spline method is applicable to a joint ingarsf gravitational and normal mode anoma-
lies. This combination can reveal some deep mantle streetiin contrast to a pure gravitational inver-
sion). However, a severe non-uniqueness problem remaiose ptecisely, some lateral variations in the
deep mantle might be detectable, whereas the radial steucfuthe solution is probably dominated by
artefacts. Moreover, a strong weighting of normal mode datammparison to gravitational data is nec-
essary. (Both difficulties are properties of the combinegiise problem and not of the spline method.)
Further research on the choice of the weight should be dotieeifuture. Finally, a dictionary-based
sparse regularisation technigue yields first promisinglte$or the inverse gravimetric problem.
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