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Abstract

We show the applicability of a modified version of the recently developed Regularized
Functional Matching Pursuit (RFMP) to the approximation of functions on the sphere from
grid-based data. We elaborate the mathematical details of the choice of trial functions and
the specifics of the algorithm. Moreover, we show numerical examples for some benchmark
functions. The dictionary of trial functions contains orthogonal polynomials (spherical har-
monics) as well as spherical scaling functions and wavelets. It turns out that the greedy al-
gorithm RFMP yields sparse approximations by combining different types of trial functions
in a (particular) optimal way, where the sparsity can essentially be increased by a-priori
choosing the dictionary appropriately. Moreover, the result of the RFMP can be used for a
multiresolution analysis of the investigated function.
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2 1 INTRODUCTION

1 Introduction

The approximation of functions on the sphere, in particular the 2-sphere, plays an important
role in many applications, with the geosciences leading the way. Many mathematical techniques
have been developed to find ‘good’ approximations to unknown functions based on given samples.
Several new challenges have occurred in the last decades due to the coming of novel technologies
like airborne or satellite-based measurements. This implied the need for tools which include two
important features: first, high-resolution models should be obtained from huge amounts of data.
Second, heterogeneities in the data sets have to be handled, i.e. data can be locally perturbed
or data grids could be extremely scattered on the sphere.
The use of a polynomial approximation, which is in the case of the sphere an expansion in spher-
ical harmonics, was considered as a suitable tool in numerical analysis and in the geosciences,
as long as very small and regular data sets had to be handled. It is well-known that modern
numerical requirements can no longer be appropriately fulfilled by using a basis which merely
consists of global trial functions such as orthogonal polynomials. It is an essential progress due
to scientists like Willi Freeden that the benefits from the use of localized trial functions have
been explored for more than the last three decades. Some of the first works in this respect are the
papers [13, 14], where a spherical spline approximation method was developed by Willi Freeden.
One major advantage of this spline method was the fact that hat-like basis functions were used,
i.e. basis functions which were concentrated around a certain centre. These centres coincided
with the data points. As a consequence, the resolution of the resulting approximant was locally
adapted to the (maybe spatially heterogeneous) density of the data grid. Moreover, in the case
of an exact interpolation, the interpolant minimizes a kind of spherical bending energy, which is
why this interpolant is called a (spherical) spline due to the obvious analogy to the predominant
property of the natural cubic spline.
In the 1990s, wavelet methods became very popular, also on the sphere. One of the major novel-
ties of this type of approach was the ability to produce a multiresolution analysis of an unknown
function, i.e. one can decompose the function into components corresponding to different spatial
scales. Moreover, the analysis of the differences between consecutive scales, the so-called scale
steps, yielded hidden aspects of particular details in the investigated function. Nowadays, many
wavelet methods on the sphere are known, including methods developed by Willi Freeden and
his Geomathematics Group (see e.g. [24] and later publications such as [16, 20, 22, 21]). For an
overview of the wide range of numerical methods based on localized trial functions which were
developed by Willi Freeden and his group for approximation as well as inverse problems, see the
books [15, 17, 18, 19, 23].

Of course, there also exist many other approximation and interpolation methods on the sphere.
As an incomplete list of examples (without order of priority), we would like to mention the
wavelet methods by Schröder and Sweldens (see [43]), by Antoine, Vandergheynst et al. (see
[1, 2]) and by Holschneider et al. (see [6, 26, 27, 28]). This list should also include other meth-
ods, which are not necessarily wavelet methods, where a stronger focus was on the localization
of the trial functions. Examples are the optimally localized wavelets by Láın Fernández and
Prestin in [29, 30], the optimally localized approximate identities by one of the authors in [34]
and the spherical Slepian functions by Simons et al. in [7, 44, 45, 46, 49, 50] (note also the vec-
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torial version by Plattner and Simons in [39, 40]), where the localization is particularly tailored
with respect to a predefined region.

In this paper, we will show that, as a continuation in the line of Freeden’s research, the use
of localized trial functions can be further improved. We demonstrate a non-linear approxima-
tion algorithm which iteratively constructs an approximation by choosing trial functions out
of a large and redundant set, which is called a dictionary (motivated by a concept known for
Euclidean domains). This dictionary contains, for example, a mixture of global trial functions
(such as spherical harmonics) and localized trial functions (such as spline basis functions, scaling
functions and wavelets). In our numerical experiments, we show, in particular, that we are able
to combine the features of Freeden’s splines and wavelets. From the splines, we preserve the
numerical stability even in the case of irregular data grids and the ability to locally adapt the
resolution of results. From the wavelets, we preserve the technique of a multiresolution analysis,
i.e. we are able to look at the approximation at different scales. In other words, we can separate
features of different spatial size or resolution. Moreover, most of our experiments reveal that the
algorithm is able to achieve the same approximation accuracy like a spline but with essentially
less trial functions, i.e. we additionally gain a sparsity feature.
In Section 2, we introduce some basic notations. In Section 3, the algorithm, which is based on
the Regularized Functional Matching Pursuit (RFMP) in [3, 9, 10] and which we will call the
‘RFMP for the Approximation on the Sphere’ (briefly RFMP AoS), is derived and explained.
Since it turns out that the theoretical foundations of the algorithm require the use of a repro-
ducing kernel Hilbert space, the theory of such spaces is explained in Section 4, where we also
extend an existing concept for the construction of such spaces from the case of a 2-sphere to
the general case of a q-sphere. In Section 5, we discuss possible choices of trial functions for the
dictionary which is used by the algorithm. In Section 6, we summarize the theoretical results
about the RFMP AoS based on known properties of the RFMP from [36]. After this, we show
the results of some numerical experiments with respect to known benchmark functions and the
example of gravity field modelling in Section 7. Finally, in Section 8, we summarize the obtained
results and discuss the pros and cons of the new method.

2 Preliminaries

The set of positive integers is denoted by N such that N0 := N ∪ {0}. Furthermore, we denote
the q-dimensional unit sphere in the (q + 1)-dimensional Euclidean space Rq+1 by Sq. The
usual dot product in Rn will be denoted by 〈x, y〉Rn :=

∑n
j=1 xjyj with the corresponding norm

‖x‖Rn :=
√

〈x, x〉Rn . Alternatively, in particular for n = q+1, we will also write x ·y := 〈x, y〉Rn

and |x| := ‖x‖Rn . Moreover, for a measurable subset D ⊂ Rn, the Hilbert space L2(D) is
the well-known space of (equivalence classes of almost everywhere identical) square-integrable
functions F : D → R.
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3 The Algorithm

In the following, we will briefly summarize the RFMP, which was introduced in [3, 9, 10]. The
RFMP has been designed for and applied to several inverse problems in geodesy and geophysics,
see the latter publications and [11, 12]. For a survey on the current state-of-the-art of the RFMP,
including the proofs of the theorems mentioned in Section 6, see [36]. We will see here that the
algorithm also performs well for the approximation of functions on the sphere from grid-based
data, if we slightly modify it.
The problem to be solved by the RFMP is as follows: We are given a continuous and linear
operator F : L2(D) → Rl, a set of trial functions D ⊂ L2(D) (which we call the dictionary
and which should satisfy some reasonable conditions like spanD‖·‖

L2(D) = L2(D)) and a vector
y = (yj)j=1,...,l ∈ Rl. Find a function F ∈ L2(D) of the form F =

∑∞
k=1αkdk (with αk ∈ R,

dk ∈ D for all k ∈ N) such that FF = y. Note that we use bold letters for vectors in Rl.
This is achieved by starting with F0 := 0 and the corresponding residual R0 := y − FF0 = y
and choosing the summands αndn iteratively in the following manner: if Fn =

∑n
k=1 αkdk and

Rn are given, then αn+1 ∈ R and dn+1 ∈ D are selected such that

Jλ(y, Fn, d, α) := ‖y −F(Fn + αd)‖2
Rl + λ‖Fn + αd‖2

L2(D), α ∈ R, d ∈ D,

is minimized by α = αn+1 and d = dn+1, where λ ∈ R+
0 is a regularization parameter. In other

words, the data misfit is iteratively minimized, where the minimization has to be understood
per iteration step. To handle ill-posed problems and numerical instabilities, a Tikhonov-type
regularization term is added to the data misfit. Note that the objective of this term is not to
obtain sparsity (though the algorithm yields some sense of sparsity in the end) but to stabilize
the approximation process.
It is easy to verify that the dictionary element dn+1 and its corresponding coefficient αn+1 can
be obtained as follows:

dn+1 := arg max
d∈D

(
〈Rn,Fd〉Rl − λ 〈Fn, d〉L2(D)

)2

‖Fd‖2
Rl + λ ‖d‖2

L2(D)

,

αn+1 :=
〈Rn,Fdn+1〉Rl − λ 〈Fn, dn+1〉L2(D)

‖Fdn+1‖2
Rl + λ ‖dn+1‖2

L2(D)

.

Within this paper, we investigate the following particular case: We are given a vector y =
(yj)j=1,...,l ∈ Rl and a point grid {ηj}j=1,...,l ⊂ Sq, find a function F ∈ L2(Sq) of the form
F =

∑∞
k=1αkdk such that F (ηj) ≈ yj for all j = 1, . . . , l, where αk ∈ R and dk ∈ D ⊂ L2(Sq)

for all k ∈ N. We skip here the requirement of exactness, i.e. we choose an approximation over
an interpolation, because typical data sets in the geosciences are contaminated with noise and
have a size which makes a stabilization of the numerical calculations more important than a
completely accurate interpolation. This aspect is reflected by the regularization term and the
choice of the parameter λ > 0. Note that the reduction of the RFMP to a pure interpolation
problem without a regularization (i.e. λ = 0) would yield an algorithm which is similar to the
Matching Pursuit (MP) introduced in [33, 48]. The RFMP, however, is a generalization of
the MP, since it allows to handle also some other kinds of problems (like the inverse problems
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mentioned above) and it allows the inclusion of a regularization in the numerical algorithm.
Within this paper, we profit from the latter aspect.
Before we proceed, we have to be aware of the following difficulty: In our case, the operator
F would map a function F to the vector of its samples on the given point grid. This operator
is, however, not continuous on L2(Sq). For this reason, we have to change the underlying
Hilbert space of the algorithm to a space H(Sq) $ L2(Sq) where the evaluation functional
H(Sq) 3 F 7→ F (η) is continuous for every fixed η ∈ Sq. According to Aronszajn’s Theorem
(see, e.g., [8, p. 317]), this is valid if and only if H(Sq) is a reproducing kernel Hilbert space. We
will elaborate this topic in Section 4 in further detail.
We now formulate the RFMP for our particular kind of problem that we want to solve.

Algorithm 3.1 (RFMP for the Approximation on the Sphere (RFMP AoS))
Let y ∈ Rl be a given vector and X := {ηj}j=1,...,l ⊂ Sq be a given point grid.

1. Initialization: Choose a reproducing kernel Hilbert space (H(Sq), 〈·, ·〉H(Sq)) and a dictio-
nary D ⊂ H(Sq). Furthermore, choose an initial approximation F0 ∈ H(Sq) (e.g. F0 := 0)
and calculate its samples F0 := (F0(ηj))j=1,...,l ∈ Rl. Set n := 0 and R0 := y − F0.
Moreover, choose a regularization parameter λ ∈ R+

0 and a stopping criterion (e.g. require
that ‖Rn+1‖Rl < ε for a given ε > 0 or require n + 1 ≤ N for a given N ∈ N).

2. Preprocessing: Provided that enough memory space is available, compute and store the
samples d = (d(ηj))j=1,...,l ∈ Rl as well as the norms ‖d‖2

Rl and ‖d‖2
H(Sq) for all d ∈ D.

3. Core part of the algorithm: Determine

dn+1 := arg max
d∈D

(
〈Rn,d〉Rl − λ 〈Fn, d〉H(Sq)

)2

‖d‖2
Rl + λ ‖d‖2

H(Sq)

, (1)

αn+1 :=
〈Rn,dn+1〉Rl − λ 〈Fn, dn+1〉H(Sq)

‖dn+1‖2
Rl + λ ‖dn+1‖2

H(Sq)

, (2)

where dn+1 := (dn+1(ηj))j=1,...,l ∈ Rl.

4. Update: Set Fn+1 := Fn + αn+1dn+1 and Rn+1 := Rn − αn+1dn+1.

5. Stopping Criterion: If the stopping criterion is fulfilled, return Fn+1 as the approxi-
mating function and Rn+1 as the approximation error on the point grid X. Otherwise,
increase n by 1 and go to step 3.

Note that the dictionary certainly has to be finite in practice such that the requirement H(Sq) =
spanD‖·‖H(Sq) plays a role in the theoretical investigations only (unless H(Sq) is finite-dimensional
as well).
The most expensive task in the core part of the algorithm is the determination of dn+1 in (1),
because (in each iteration step n) all dictionary elements d ∈ D have to be tested here to find
the maximizer. For this reason, the algorithm is essentially accelerated, if as much work as
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possible is transferred to the preprocessing in step 2. Moreover, one can additionally compute
and store the inner products 〈d, d̃〉H(Sq) and 〈d, d̃〉Rl for all d, d̃ ∈ D in the preprocessing. This
also reduces the effort to compute the inner products

〈Rn,d〉Rl =
〈
Rn−1,d

〉
Rl − αn 〈dn,d〉Rl ,

〈Fn, d〉H(Sq) = 〈Fn−1, d〉H(Sq) + αn〈dn, d〉H(Sq)

in (1).

4 Reproducing Kernel Hilbert Spaces on the Sphere

If we have a Hilbert space H(Sq) of functions on Sq, then a kernel K : Sq × Sq → R is called a
reproducing kernel, if

K(ξ, ·) ∈ H(Sq) for all ξ ∈ Sq ,

〈K(ξ, ·), F 〉H(Sq) = F (ξ) for all F ∈ H(Sq) and all ξ ∈ Sq .

For further details on the theory of reproducing kernels, see, for example, [8, Section 12.6].
Aronszajn’s Theorem states, as we mentioned above, that a Hilbert space H(Sq) of functions
on Sq is a reproducing kernel Hilbert space (RKHS), i.e. it possesses a reproducing kernel, if
and only if the evaluation functional Lη : H(Sq) → R given by LηF := F (η), F ∈ H(Sq), is
continuous for every fixed η ∈ Sq. Furthermore, it is well-known that a reproducing kernel is
always unique and symmetric (i.e. K(ξ, η) = K(η, ξ) for all ξ, η ∈ Sq).
Since linear operators acting between finite-dimensional spaces are always continuous, every
finite-dimensional subspace of L2(Sq) is automatically a RKHS. Since all norms are equivalent
in a finite-dimensional space, the choice of the norm (respectively the inner product) is arbitrary
such that, for example, also the L2(Sq)-norm may be chosen in this case. The representation of
the reproducing kernel, however, depends on the choice of the inner product.
Certainly, there also exist infinite-dimensional RKHSs on the sphere. These can be constructed
in analogy to the Sobolev spaces on the 2-sphere S2 which are known from the works by W.
Freeden, see, for example, [13, 14, 18]. These spaces were constructed by inserting weights into
the Parseval identity of the L2(S2)-inner product. Particular cases Hs(S2) were obtained by
choosing weights which are related to the eigenvalues of the Laplace-Beltrami operator on S2.
This idea was used to construct Sobolev spaces Hs(Sq) in [5] and, in a slightly modified way,
in [4, 32]. We will follow here Freeden’s approach to construct equally general Sobolev spaces
H(Sq) like his spaces on S2.
For this purpose, we use the well-known system of spherical harmonics in L2(Sq), see also [37].
A spherical harmonic of degree n is the restriction of a homogeneous harmonic polynomial on
Rq+1 to the unit sphere Sq. The space of all such functions is denoted by Harmn(Sq) and its
dimension is denoted by N(q + 1, n). One can prove that

1 + x

(1 − x)q
=

∞∑
n=0

N(q + 1, n)xn
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for all x in the neighbourhood of 0. For instance, the geometric series yields that

1 + x

(1 − x)2
= (1 + x)

d
dx

1
1 − x

= (1 + x)
∞∑

n=1

nxn−1

=
∞∑

n=1

nxn−1 +
∞∑

n=1

nxn

=
∞∑

n=0

(2n + 1)xn

such that N(3, n) = 2n + 1 for all n ∈ N0. We assume that {Yn,j}j=1,...,N(q+1,n) denotes an
orthonormal basis in Harmn(Sq) with respect to 〈·, ·〉L2(Sq). Two fundamental results are valid
for all such systems (see [37]):

(a) The system {Yn,j}n∈N0; j=1,...,N(q+1,n) is complete and orthonormal in L2(Sq).

(b) For all ξ, η ∈ Sq, the addition theorem

N(q+1,n)∑
j=1

Yn,j(ξ)Yn,j(η) =
N(q + 1, n)

ωq
P (q)

n (ξ · η)

holds, where ωq =
∫

Sq 1 dω is the surface area of the unit sphere and the system of orthogonal
polynomials {P (q)

n }n∈N0 is uniquely determined by

(i) P
(q)
n is a polynomial of degree n,

(ii)
∫ 1
−1 P

(q)
n (t) P

(q)
m (t) (1 − t2)(q−2)/2 dt = 0, if n 6= m,

(iii) P
(q)
n (1) = 1.

The P
(q)
n are particular examples of Jacobi polynomials, more precisely Gegenbauer polynomials

(in particular, q = 2 yields the Legendre polynomials). One of their properties is that |P (q)
n (t)| ≤

1 for all t ∈ [−1, 1].
We are now in the position to define the Sobolev spaces.

Definition 4.1 (Sobolev space) Let (An)n∈N0 be a sequence of real numbers. We consider
the subspace E((An); Sq) of C(∞)(Sq) consisting of all F which satisfy

∞∑
n=0

N(q+1,n)∑
j=1

A2
n 〈F, Yn,j〉2L2(Sq) < +∞

and 〈F, Yn,j〉L2(Sq) = 0 if An = 0. Then the completion of E((An); Sq) with respect to the inner
product

〈F, G〉H :=
∞∑

n=0

N(q+1,n)∑
j=1

A2
n 〈F, Yn,j〉L2(Sq) 〈G,Yn,j〉L2(Sq)
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is called the Sobolev space H((An); Sq). If no confusion is likely to arise, we will simply write
H(Sq). The induced norm is denoted by ‖ · ‖H.

Definition 4.2 (Summability) A real sequence (An)n∈N0 is called summable if it satisfies the
summability condition

∞∑
n=0

An 6=0

A−2
n N(q + 1, n) < +∞ .

Note that the summability condition for q = 2 is the usual condition

∞∑
n=0

An 6=0

A−2
n (2n + 1) < +∞ .

Two fundamental properties of the Sobolev spaces H(Sq) are available in the case of summable
sequences. They provide us with the foundations for the construction of approximating struc-
tures.

Theorem 4.3 Let the Sobolev space H(Sq) correspond to a summable real sequence (An)n∈N0.
Then the following holds true:

1) Every F ∈ H(Sq) is continuous and has a uniformly convergent Fourier expansion in the
basis {Yn,j}n∈N0, An 6=0; j=1,...,N(q+1,n).

2) H(Sq) has a unique reproducing kernel. This is given by

KH(ξ, η) =
∞∑

n=0
An 6=0

A−2
n

N(q + 1, n)
ωq

P (q)
n (ξ · η) ; ξ, η ∈ Sq .

Proof. 1) We use the Cauchy-Schwarz inequality, the addition theorem, the definition of the
Sobolev space (see Definition 4.1), the summability condition (see Definition 4.2) and the fact
that P

(q)
n (1) = 1 for all n ∈ N0 and q ∈ N to derive that∣∣∣∣∣∣∣

∞∑
n=M
An 6=0

N(q+1,n)∑
j=1

〈F, Yn,j〉L2(Sq) Yn,j(ξ)

∣∣∣∣∣∣∣
≤

 ∞∑
n=M

N(q+1,n)∑
j=1

A2
n 〈F, Yn,j〉2L2(Sq)

1/2
 ∞∑

n=M
An 6=0

A−2
n

N(q + 1, n)
ωq

P (q)
n (ξ · ξ)


1/2

−→ 0 as M → ∞

for all F ∈ H(Sq).
2) For each ξ ∈ Sq, we define the linear functional Lξ : H(Sq) → R by LξF := F (ξ), F ∈ H(Sq).
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Then each Lξ is bounded due to the summability condition, because part 1 of this proof yields

|LξF | =

∣∣∣∣∣∣∣
∞∑

n=0
An 6=0

N(q+1,n)∑
j=1

〈F, Yn,j〉L2(Sq) Yn,j(ξ)

∣∣∣∣∣∣∣
≤ ‖F‖H

 ∞∑
n=0

An 6=0

A−2
n

N(q + 1, n)
ωq


1/2

.

Hence, Aronszajn’s Theorem (see, for example, [8, p. 317]) implies the existence of the repro-
ducing kernel. Furthermore, due to the construction of the inner product in Definition 4.1, the
system {A−1

n Yn,j}n∈N0, An 6=0; j=1,...,N(q+1,n) is an orthonormal basis in H(Sq). Moreover,

∞∑
n=0

An 6=0

N(q+1,n)∑
j=1

(
A−1

n Yn,j(ξ)
)2 =

∞∑
n=0

An 6=0

A−2
n

N(q + 1, n)
ωq

< +∞

due to the addition theorem, the identity P
(q)
n (1) = 1 and the summability condition. Hence,

Theorem 6.2. in [35, p. 147] tells us that the reproducing kernel of H(Sq) is represented by

KH(ξ, η) =
∞∑

n=0
An 6=0

N(q+1,n)∑
j=1

A−1
n Yn,j(ξ) A−1

n Yn,j(η)

=
∞∑

n=0
An 6=0

A−2
n

N(q + 1, n)
ωq

P (q)
n (ξ · η)

for all ξ, η ∈ Sq.

Note that the reproducing kernel is a radial basis function, i.e. it only depends on the inner
product ξ · η of its two arguments ξ, η ∈ Sq. Furthermore, due to the behaviour

N(q + 1, n) = O
(
nq−1

)
as n → ∞ (see [37, p. 3]), the summability condition is equivalent to the requirement that

∞∑
n=0

An 6=0

A−2
n nq−1 < +∞ . (3)

Example 4.4 We consider here some examples of reproducing kernels.

(a) In the case q = 2, the Abel-Poisson kernel

Kh(ξ · η) := KH(ξ, η) =
1
4π

1 − h2

(1 + h2 − 2hξ · η)3/2
; ξ, η ∈ S2 ;

is a popular choice. It corresponds to the sequence An = h−n/2 for a fixed h ∈]0, 1[. We will
use the representation Kh(ξ · η) in the section on our numerical experiments (Section 7).
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(b) The Laplace operator ∆q+1 in q + 1 dimensions can be decomposed, in terms of (q + 1)-
dimensional polar coordinates, into a radial part and an angular part (see [37, p. 38]) by

∆q+1 =
∂2

∂r2
+

q

r

∂

∂r
+

1
r2

∆∗
q+1 ,

where the operator ∆∗
q+1 : C(2)(Sq) → C(Sq) is the (q + 1)-dimensional Laplace-Beltrami

operator. Note that we consider only cases here where q ≥ 2. From [37, Lemma 22], we
know that all Yn,j are eigenfunctions of ∆∗

q+1 corresponding to the eigenvalue −n(n+ q−1).
With the calculations

n(n + q − 1) = n2 + (q − 1)n =
(

n +
q − 1

2

)2

−
(

q − 1
2

)2

in mind, we set An := (n + q−1
2 )s for all n ∈ N0 and a fixed s ∈ R+. This sequence satisfies

the summability condition (3), i.e.

∞∑
n=0

(
n +

q − 1
2

)−2s

nq−1 < +∞ ,

if and only if −2s + q − 1 < −1, i.e. s > q
2 . Provided that this is satisfied, we have the

Sobolev spaces

Hs (Sq) := H

(((
n +

q − 1
2

)s)
n∈N0

; Sq

)
with the reproducing kernel

KH(ξ, η) =
∞∑

n=0

(
n +

q − 1
2

)−2s N(q + 1, n)
ωq

P (q)
n (ξ · η) ; ξ, η ∈ Sq .

Note that the choice s
2 ∈ N (with s > q

2) yields here, for all F ∈ Hs(Sq),

‖F‖2
H =

∞∑
n=0

N(q+1,n)∑
j=1

(
n +

q − 1
2

)2s

〈F, Yn,j〉2L2(Sq)

=
∞∑

n=0

N(q+1,n)∑
j=1

[
n(n + q − 1) +

(
q − 1

2

)2
]s

〈F, Yn,j〉2L2(Sq) ,

where the particular case s = 2 corresponds to (provided that ∆∗
q+1 can be interchanged with

the summation of the Fourier expansion of F )

‖F‖2
H =

∫
Sq

[(
−∆∗

q+1 +
(

q − 1
2

)2
)

F (ξ)

]2

dω(ξ) ,

which is a useful measure for the non-smoothness of a function on the sphere since it takes
a second-order derivative into account as it is common for the well-known cubic splines.
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Moreover, it does not cancel out 0th and 1st degree polynomials since the null space of
−∆∗

q+1 + ( q−1
2 )2 is trivial.

These spaces Hs(Sq), which were contructed here, can be associated to known RKHSs on
the sphere. More precisely, Hs(S2) is identical to the homonymous space in [18] and Hs(Sq)
equals the spaces considered in [5], which can, from this point of view, be regarded as the
most intuitive generalization of the spaces Hs(S2). These analogies also show that the spaces
introduced here, indeed, generalize the existing concepts on the sphere.

Theorem 4.5 Let X be a countable and dense subset of Sq. Moreover, let (An)n∈N0 be a
sequence of non-vanishing real numbers and let KH be the reproducing kernel in the corresponding
Sobolev space H(Sq) = H((An); Sq). Then the linear space span {KH(ξ, ·) | ξ ∈ X} is dense in

(a) H(Sq) with respect to ‖ · ‖H(Sq),

(b) C(Sq) with respect to ‖ · ‖C(Sq),

(c) L2(Sq)with respect to ‖ · ‖L2(Sq).

The proof is analogous to the known proof for the case q = 2 (see, for example, [18, pp. 155-156]
or [35, pp. 175-177]).

5 Options to Choose a Dictionary

For our dictionary D, we intend to choose a redundant combination of different types of basis
functions. The purpose of this choice is to combine the advantages of different sets of trial
functions. For example, strongly localized ansatz functions appear to be more appropriate for
the representation of fine, i.e. strongly spatially localized, details, whereas weakly localized trial
functions are probably more useful to cover regional to global trends in the signal. Based on the
previous considerations, we are able to consider, i.e. combine, the following basis systems:

• Spherical harmonics: These trial functions are typical examples of global functions with
no space localization but a maximum frequency (i.e. degree) localization. Moreover, they
constitute a complete orthonormal system in L2(Sq).

• Truncated reproducing kernels: The series expansions of the reproducing kernels above
can be truncated. This corresponds to the restriction to a polynomial subspace of H(Sq).
For the choice of the sequence (An)n∈N0 , the generators of bandlimited spherical scaling
functions (see [18, pp. 290-296] and the references therein) represent one possibility. In
this case, the scale of the scaling function (or the associated wavelet) yields a possibility
to vary the localization.

• Non-bandlimited reproducing kernels: Reproducing kernels like the Abel-Poisson kernel
(see above) usually possess a stronger localization than bandlimited kernels, though their
support is still global. In the case of Abel-Poisson kernels, the parameter h provides us
with a possibility to control the localization of the kernel.
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• Locally supported kernels: Locally supported kernels appear to be well appropriate for the
approximation of signals which vanish on some regions of the sphere.

Note that, if we have a countable and dense subset X of Sq, then one single reproducing kernel
KH (with An 6= 0 for all n ∈ N0) suffices to construct a basis KH(ξ, ·), ξ ∈ X, of L2(Sq),
see Theorem 4.5. Hence, if we use spherical harmonics {Yn,j}n∈N0; j=1,...,2n+1 and the rotation-
ally symmetric “hat-functions” {KH((An);Sq)(ξ, ·)}ξ∈X for different sequences (An)n∈N0 (e.g. for
different parameters h in the case of Abel-Poisson kernels), then our dictionary is a redundant
union of several basis systems with different localization characteristics. This is what we want to
achieve. We will, to keep this paper acceptably brief, only discuss here examples of combinations
of the functions of the kind above.

6 Properties of the Algorithm

In the following, we will study some of the properties of our algorithm RFMP AoS. First of all,
we will demonstrate in the following simple example that it is non-linear.

Example 6.1 We consider here the 2-sphere S2 and a finite-dimensional space H(S2) which
is equipped with the L2(S2)-inner product and is large enough to contain the dictionary chosen
below. For our particular problem, we use the simple point grid X consisting of the two points

η1 :=

 0
0
1

 , η2 :=

 0
0
−1


and two different vectors of values on this grid which have to be approximated

y :=
(

1
0

)
, z :=

(
0
1

)
,

i.e. in the first case (data vector y) we seek F ∈ L2(S2) such that F (0, 0, 1) ≈ 1 and F (0, 0,−1) ≈
0 and in the second case (data vector z) we seek F ∈ L2(S2) such that F (0, 0, 1) ≈ 0 and
F (0, 0,−1) ≈ 1.
Moreover, our dictionary consists of the three functions I, N, S ∈ L2(S2) which are defined by

I(ξ) := 1, N(ξ) :=
{

1, ξ3 ≥ 1
2

0 else
, S(ξ) :=

{
1, ξ3 ≤ −1

2
0 else

for all ξ ∈ S2, where ξ3 is the third cartesian coordinate of ξ. In the preprocessing, we obtain
the samples

I =
(

1
1

)
, N =

(
1
0

)
, S =

(
0
1

)
and the corresponding norms and inner products

‖d‖2
R2 + λ‖d‖2

L2(S2) =


2 + 4πλ, d = I,
1 + πλ, d = N,
1 + πλ, d = S
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〈y,d〉R2 =


1, d = I,
1, d = N,
0, d = S

, 〈z,d〉R2 =


1, d = I,
0, d = N,
1, d = S

, 〈y + z,d〉R2 =


2, d = I,
1, d = N,
1, d = S

.

We start the algorithm with F0 = 0. If y is the data vector, i.e. R0 := y, then d1 = N is the
maximizer in (1) and (2) yields α1 = 1

1+πλ , i.e. F1 = 1
1+πλ N . On the other hand, if z is the

data vector, i.e. R0 := z, then (analogously) we get F1 = 1
1+πλ S. However, if we set y + z as

the data vector, then R0 := y + z yields d1 = I and α1 = 1
1+2πλ such that F1 = 1

1+2πλ I.
As a consequence, if we truncate the algorithm already after n = 1, then the result F1 obtained
for the data vector y + z is not the sum of the results for y and z. Hence, the approximations
depend in a non-linear sense on the given data.

Our further considerations refer to the known theorems about the RFMP, where we simply
formulate them for the particular case that D = Sq and the operator F : H(Sq) → R is given by

FF :=
(
F
(
ηj
))

j=1,...,l
∈ Rl .

Obviously, F is linear and, due to the choice of a RKHS H(Sq), also continuous. We omit most
of the proofs of the following theorems, since they are analogous to the proofs for the RFMP,
see, [36].

Theorem 6.2 The sequence (‖Rn‖2
Rn + λ‖Fn‖2

H(Sq))n produced by Algorithm 3.1 is monotoni-
cally decreasing and convergent.

Theorem 6.3 (Convergence Theorem) Let the dictionary D satisfy the following condi-
tions:

1. ‘semi-frame condition’: Every expansion H =
∑∞

k=1 βkdk with βk ∈ R and dk ∈ D, where
the dk need not be pairwise distinct but none of them occurs infinitely often, continuously
depends on the sequence of coefficients (βk)k, i.e. there exists a constant γ > 0 such that∥∥∥∥∥

∞∑
k=1

βkdk

∥∥∥∥∥
2

H(Sq)

≤ γ

∞∑
k=1

β2
k ,

where γ is independent of H.

2. C1 := infd∈D(‖Fd‖2
Rl + λ‖d‖2

H(Sq)) > 0.

Moreover, let y ∈ F(H(Sq)) be a given vector of samples and (Fn)n be the sequence produced by
the RFMP AoS, where no dictionary element is chosen infinitely often. Then the sequence (Fn)n

converges in H(Sq) to F∞ :=
∑∞

k=1 αkdk ∈ H(Sq) and this limit has the following properties:

(a) If spanD‖·‖H(Sq) = H(Sq), C2 := supd∈D ‖d‖H(Sq) < +∞, and λ ∈ R+
0 , then F∞ solves the

Tikhonov-regularized normal equation

(F∗F + λI) F∞ = F∗y ,
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where F∗ is the adjoint operator of F given by

F∗z =
l∑

j=1

zjKH
(
ηj , ·

)
, z ∈ Rl .

This means that F∞ minimizes the regularized least-square error in the sense that

l∑
j=1

(
yj − F∞

(
ηj
))2 + λ ‖F∞‖2

H(Sq) = min
F∈H(Sq)

 l∑
j=1

(
yj − F

(
ηj
))2 + λ ‖F‖2

H(Sq)

 ,

where the solution if unique, if λ > 0.

(b) If span {(d(ηj))j=1,...,l | d ∈ D} = Rl and λ = 0, then F∞(ηj) = yj for all j = 1, . . . , l.

Proof. The formula for the adjoint operator F∗ is valid, because

〈z,FF 〉Rl =
l∑

j=1

zj F
(
ηj
)

=
l∑

j=1

zj

〈
KH

(
ηj , ·

)
, F
〉
H(Sq)

=

〈
l∑

j=1

zj KH
(
ηj , ·

)
, F

〉
H(Sq)

= 〈F∗z, F 〉H(Sq)

for all z ∈ Rl and all F ∈ H(Sq). The rest of the proof is analogous to the proof of Theorem 4
in [36].

Remark 6.4 In the implementation, it can be reasonable to normalize all dictionary elements
d to ‖d‖H(Sq) = 1. This reduces the computational expenses in (1) and (2). Moreover, in this
case, two conditions in Theorem 6.3 become trivial (at least, if λ > 0) since then

C1 = inf
d∈D

(‖Fd‖2
Rl + λ‖d‖2

H(Sq)) ≥ λ ,

C2 = sup
d∈D

‖d‖H(Sq) = 1 .

Theorem 6.3 tells us that the RFMP AoS yields a smoothed approximation of the unknown
function, where the smoothness is controlled by the Sobolev norm. In the case λ = 0, we
obtain an exact interpolant. Note that these results are similar to the properties of a spline
interpolation or approximation (see [13, 14, 18]). The difference is, however, the flexibility of
the representation of F∞. We will see below in the numerical experiments (Section 7) that
we are able to achieve the approximation quality of a spline but (in several examples) with an
essentially sparser representation of the solution.
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Theorem 6.5 (Stability of the Solution) Let the dictionary satisfy conditions 1, 2, and (a)
of Theorem 6.3 and let λ > 0. For a given convergent sequence (yk)k ⊂ Rl with limit y ∈ Rl,
let (F∞,yk)k and F∞,y be the corresponding solutions produced by the RFMP AoS (according to
Theorem 6.3). Then

lim
k→∞

∥∥F∞,yk − F∞,y

∥∥
H(Sq)

= 0 .

Theorem 6.5 means that the application of the RFMP AoS to a given data vector y is stable.
Small perturbations in the data only cause small variations of the approximating function F∞.
This is clearly the effect of the Tikhonov regularization.

Theorem 6.6 (Convergence of the Regularization) Let the dictionary satisfy conditions
1, 2, and (a) of Theorem 6.3. For an unknown function F ∈ H(Sq), let y = (F (ηj))j=1,...,l ∈ Rl

be the corresponding vector of samples and let (yε)ε>0 ⊂ F(H(Sq)) be a family of given perturbed
data vectors with ‖y − yε‖Rl ≤ ε. Moreover, let F+ be the minimum-norm solution of the
interpolation problem, i.e.,∥∥F+

∥∥
H(Sq)

= min
{
‖F‖H(Sq)

∣∣ F ∈ H(Sq) and F
(
ηj
)

= yj for all j = 1, . . . , l
}

.

Furthermore, let the regularization parameter λ : R+ → R+ be parameterized with respect to the
noise level ε such that

lim
ε→0+

λ(ε) = 0 = lim
ε→0+

ε2

λ(ε)
.

Moreover, for each data vector yε (ε > 0) and the corresponding regularization parameter λ(ε),
let F∞,ε denote the approximation produced by the RFMP AoS (due to Theorem 6.3). Then

lim
ε→0+

∥∥F∞,ε − F+
∥∥
H(Sq)

= 0 .

Note that the minimum-norm solution F+ is known to be the interpolating spline in H(Sq) due
to the first minimum property of spline interpolation. In this respect and in view of the fact
that the Sobolev norm ‖·‖H(Sq) may be regarded as a non-smoothness measure, we can interpret
Theorem 6.6 as follows: the more accurate the available data of the unknown function are, the
better we can approximate the unknown function by the smoothest function which fits to the
data.
Note that both Theorems 6.5 and 6.6 are the basic ingredients of a regularization.

7 Numerical Experiments

In this section, we present results of some numerical experiments on the unit sphere in R3. That
is, in what follows, the underlying domain is S2.
First of all, we will consider some benchmark functions, which were originally proposed by various
authors (see [31] and the references therein). These functions are, for ξ = (ξ1, ξ2, ξ3)T ∈ S2, given
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by

g1(ξ) = (ξ1 − 0.9)3/4
+ + (ξ3 − 0.9)3/4

+ ,

g2(ξ) =
[
0.01 −

(
ξ2
1 + ξ2

2 + (ξ3 − 1)2
)]

+
+ exp(ξ1 + ξ2 + ξ3) ,

g3(ξ) =
1

101 − 100ξ3
, (4)

g4(ξ) =
1

|ξ1| + |ξ2| + |ξ3|
,

g5(ξ) =

{
cos2

(
3π
2 |ξ − η|

)
, if |ξ − η| < 1/3 ,

0 , if |ξ − η| ≥ 1/3 ,

where η = (−1/2,−1/2, 1/
√

2)T and x+ = max{x, 0} for x ∈ R. The benchmark functions are
plotted in Figure 1.

Figure 1: Benchmark functions g1 (top left), g2 (top right), g3 (middle left), g4 (middle right),
and g5 (bottom).

In a second experiment, we will consider the Earth’s gravitational potential as an example of
an application of the algorithm in the geosciences. In order to be able to use data of the
gravitational potential on a point grid as the input, we sample the Earth’s Gravitational Model
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2008 (EGM2008, see [38]) on a given set of irregularly distributed points, which is displayed in
Figure 4.
We will compare different dictionaries. In the first one, we want to combine spherical harmonics
as well as Abel-Poisson kernels. Let now N ∈ N be a prescribed number and let us denote by

YN := {Yn,j |n = 0, . . . , N ; j = 1, . . . , 2n + 1}

the set of spherical harmonics up to degree N and order 2N + 1. Furthermore, let XM :=
{ξ1, . . . , ξM} ⊂ S2 be a set of M ∈ N pairwise distinct points which are regularly distributed
over the entire unit sphere. These points will be used for the locations of the kernels which are
contained in our dictionary. In fact, we use a so-called Reuter grid as proposed in [41] with a
parameter γ = 80 which results in a total of 8102 pairwise distinct points. Moreover, let

h := {0.75, 0.80, 0.85, 0.89, 0.91, 0.93, 0.94, 0.95, 0.96, 0.97}

be the parameter set for the localization of the Abel-Poisson kernels (see Example 4.4) in or-
der to ensure a large variety of localized functions in our dictionary. Note that the localized
trial functions Kh(ξ·) correspond to spline basis functions (or to scaling functions, see also the
construction of dictionary D2 below).
The first dictionary which we are going to use for the numerical experiments then reads as
follows,

D1 := Y25 ∪ {Kh(ξ·) |h ∈ h, ξ ∈ XM} .

Furthermore, we want to take spherical wavelets into account as well. For an overview on this
topic, the reader is referred to [18] and the references therein. In the present case, we construct
the wavelets with the Abel-Poisson scaling function, which is generated by

ϕ0(x) := exp(−Rx) for all x ∈ R+ . (5)

Consequently, the Legendre coefficients of the scaling function are, for all n ∈ N0 and all scales
J ∈ N0, given by Φ∧

J (n) = ϕJ(n) := ϕ0(2−Jn) such that, for all t ∈ [−1, 1],

ΦJ(t) =
∞∑

n=0

exp
(
−R2−J

)n 2n + 1
4π

Pn(t)

which is a reproducing kernel due to Theorem 4.3. More specifically, we know from Example
4.4 that

ΦJ(t) =
1
4π

1 − exp(−R21−J)
(1 + exp(−R21−J) − 2 exp(−R2−J)t)3/2

, t ∈ [−1, 1] ,

which means that the Abel-Poisson scaling function is an Abel-Poisson kernel with the parameter
h = exp(−R2−J), where t = ξ · η for ξ, η ∈ S2. We choose R = 0.1791 as the parameter for
the generator (see (5)) such that the iterated scaling function Φ(2)

0 := Φ0 ∗ Φ0 corresponds to
an Abel-Poisson kernel with parameter h = 0.6989, where the convolution of spherical kernels
K, L ∈ L2[−1, 1] is (as usual) defined by

(K ∗ L) (ξ · η) :=
∫

S2

F (ξ · ζ)L(η · ζ) dω(ζ) , ξ, η ∈ S2 .
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Moreover, the corresponding P-wavelets are, for every n ∈ N0, defined by the Legendre coeffi-
cients

Ψ∧
J (n) := Ψ̃∧

J (n) :=
√

exp (−R2−Jn) − exp (−R21−Jn) .

It is well-known that the Legendre coefficients of the associated spherical convolution are given
by (

Ψ̃J ∗ ΨJ

)∧
(n) = Ψ∧

J (n) · Ψ̃∧
J (n) , n ∈ N0 ,

such that we are able to conclude that, for every scale J ∈ N0 and every t ∈ [−1, 1], the
Abel-Poisson P-wavelets are given by(

Ψ̃J ∗ ΨJ

)
(t) =

∞∑
n=0

exp
(
−R2−J

)n 2n + 1
4π

Pn(t) −
∞∑

n=0

exp
(
−R21−J

)n 2n + 1
4π

Pn(t) .

Again, by virtue of Theorem 4.3, the wavelets above are simply a difference of two reproducing
kernels which are Abel-Poisson kernels with h = exp(−R2−J) and h = exp(−R21−J), respec-
tively. Hence, we have a closed representation for these kernels as we already saw above. We
now define another dictionary by

D2 := Y25 ∪
{

Φ(2)
0 (ξ·)

∣∣∣ ξ ∈ XM

}
∪
{(

Ψ̃J ∗ ΨJ

)
(ξ·)

∣∣∣ ξ ∈ XM , J = 0, 1, 2
}

,

which combines spherical harmonics and scaling functions as well as wavelets for different scales,
where the grid for the centres of the localized trial functions is the same as above. The latter
dictionary additionally gives us the opportunity to obtain a multiresolution of the signal where
we do not have to solve any integration problem as it would be the case for the application of
the corresponding wavelet method.
We start with the approximation of data which is generated by the various benchmark functions
given in (4) and compare our results with the associated results obtained with the spherical
spline method based on Abel-Poisson kernels. For more information on this method see, for
example, [14, 18] and the references therein. To do so, let now H(S2) be a certain Sobolev space
with corresponding reproducing kernel KH. Moreover, let l ∈ N be a prescribed number and
let y = (y1, . . . , yl)T ∈ Rl be the underlying data which is given at distinct points ηi ∈ S2 for
i = 1, . . . , l. Then, for every ξ ∈ S2, a function S defined by

S(ξ) =
l∑

j=1

ajKH(ηj , ξ)

is a spherical spline in H(S2) relative to {η1, . . . , ηl} ⊂ S2. If we require the spline to interpolate
the data, i.e. S(ηi) = yi for i = 1, . . . , l, then the vector of the coefficients a = (a1, . . . , al)T ∈ Rl

of the corresponding interpolating spline is given by the solution of the system(
KH(ηj , ηi)

)
i,j=1,...,l

a = y .

As the input data for our first experiments, we sample the different benchmark functions at
locations which are regularly distributed over the sphere. Therefore, we use another Reuter grid
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with γ = 100, which results in a set {η1, . . . , ηl} ⊂ S2 with a total of l = 12 684 pairwise distinct
points. That is, we consider the samples

gk(ηi) = yi , i = 1, . . . , 12 684

for every function gk, k = 1, . . . , 5 and use the RFMP AoS as well as the spherical spline
method to reconstruct these data. To construct the spline, we choose Abel-Poisson kernels with
h = 0.93, i.e. H(S2) = H((h−n/2); S2) is the corresponding Sobolev space. The associated system
of equations to obtain the vector of spline coefficients has a condition number of 6.6077 · 103

such that there is no need for a regularization to stabilize the solution in the case of the spline
method.
In the case of the RFMP AoS, we will at least use a very slight regularization to improve the
results of the algorithm. That means, we use a very low parameter λ > 0 while the penalizing
norm will be the H2(S2)-norm (see Example 4.4). Also note that the dictionaries which we de-
fined do not contain localized functions which are located at the data points and the locations of
the kernels and wavelets are totally independent of the data. In general, due to the construction
of the spline, since the reproducing kernels are located at the data points, the data misfit of
the spline is expected to be lower than the one obtained with the RFMP AoS. In fact, for all
benchmark functions, the data misfit of the spline is smaller than 2 ·10−15 which we are not able
to obtain with our algorithm. However, if we denote by F the underlying signal which produces
the data and G is an approximation of the given data, then the relative approximation error
which is defined by

εr :=
‖F − G‖L2(S2)

‖F‖L2(S2)
=

(∫
S2 (F (ξ) − G(ξ))2 dω(ξ)∫

S2 (F (ξ))2 dω(ξ)

)1/2

is more significant for the quality of the approximation than the data misfit, in particular in the
case of irregularly distributed data. Let now

{ζi}i=1,...,45 000

be an equispaced grid of the longitude and the latitude with 300 × 150 = 45 000 grid points
which we will use to display our results below, then we can approximately compute the relative
approximation error by

er :=

(∑
i (F (ζi) − G(ζi))

2∑
i (F (ζi))

2

)1/2

.

In the case of the benchmark functions g1, g2 and g5 we run the RFMP AoS with a regularization
parameter λ = 1 · 10−5. Note that for these functions the approximation is not very sensitive
to the regularization parameter since the signals are very smooth. Moreover, we will terminate
each approximation process after 2000 iterations which already leads to satisfactory results. We
also have to keep in mind that the iteration process itself has a regularizing effect on the solution
such that too many iterations might result in a too severe regularization. In contrast to the
spline, which is constructed with 12 684 reproducing kernels, the RFMP AoS needs essentially
less functions to attain slightly smaller approximation errors. In the case of g5, the ROFMP
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yields an expansion with only 793 different trial functions which even produces an essentially
lower approximation error in comparison to the spline. The function g4, however, contains much
more detailed structures which demand a higher amount of trial functions to reconstruct such
that we, in that case, run the algorithm for 20 000 iterations and use a smaller regularization
parameter of λ = 1 · 10−8 to support the reconstruction of the details. The solution is an
expansion with about half of the number of functions which are used for the spline and which
still results in an approximation error which is slightly lower than the one obtained with the
spline method. Note that the algorithm chooses dictionary elements several times. For this
reason, we eventually count the number of pairwise distinct dictionary elements used for the
approximation.

Benchmark Rel. Approximation Error Number of Functions
Spline RFMP AoS RFMP AoS

g1 0.066493 0.061319 1325
g2 0.016497 0.012493 1106
g3 0.075570 0.094869 750
g4 0.008980 0.008941 6315
g5 0.132759 0.093599 793

Table 1: Relative approximation errors corresponding to the solutions with a spherical spline
and with the RFMP AoS for data given by the various benchmark functions gk, k = 1, . . . , 5,
as well as the number of pairwise distinct trial functions chosen by the RFMP AoS algorithm.
Note that the spline always uses l = 12 864 basis functions.

The only exception to the former results is the benchmark function g3 where our algorithm
attains a higher approximation error even after 10 000 iterations with a parameter λ = 1 · 10−8.
However, the number of chosen trial functions is extremely low in comparison to the number of
kernels in the spline and in comparison to the number of iterations. For this reason, the result
might also be improved with the use of a different dictionary. All the other approximation errors
are comparable and all important numbers can be found in Table 1.
If we now use the other dictionary D2, we are also able to obtain a multiresolution of the
underlying signal. Therefore, let us again consider benchmark function g4 (which has a relatively
complicated structure) and approximate the given samples with the RFMP AoS where we now
provide D2 for the algorithm to pick functions from. As it was the case with the dictionary
D1, the algorithm reconstructs the major features of the signal in terms of spherical harmonics
in the beginning of the approximation process. However, since the dictionary now contains
spherical scaling functions as well as wavelets, we can take a look at the details which are added
by these functions. Particularly interesting in that regard are the wavelets of the highest scale,
i.e. wavelets of scale J = 2. We choose again the regularization parameter λ = 1 · 10−8 and
run the algorithm for 10 000 iterations. The result is displayed in Figure 2 and the associated
approximation error is with er = 0.008960 between the one of the spherical spline method and
the one obtained with the RFMP AoS with dictionary D1 after 20 000 iterations, which is double
the amount. We see that the wavelet scales contribute to a ’sharper’ image of the smoothed
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version of g4 which is obtained from the chosen spherical harmonics of the solution. In total,
the RFMP AoS chooses 3924 pairwise distinct trial functions (56 spherical harmonics and 3868
localized functions) from D2 to obtain an approximation which is comparable to a spline (with
6968 basis functions) but is also equipped with a multiresolution. Hence, in the case of function
g4, we can say that the use of the wavelet dictionary is advantageous.

Figure 2: Approximation of benchmark function g4 with RFMP AoS and D2 after 10 000 iter-
ations. The upper row contains the chosen spherical harmonics (top left) as well as the picked
wavelets of scale J = 2 (top right) while the entire expansion is displayed in the bottom row
(bottom left) with the corresponding absolute approximation error (bottom right).

In that regard, it is also interesting to have a look at the centres for the localized basis functions
which were chosen by the algorithm, that is, the subset of XM which is used to locate the
trial functions in our expansion of the signal. These points are displayed in Figure 3 and one
can easily recognize the structure of the function in the chosen centres, which means that the
outcome of the RFMP AoS is, in fact, adapted to the detail structure of the underlying signal.

Figure 3: The centres of the 3868 localized trial functions which were chosen by the algorithm
for benchmark function g4.
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As a second experiment (which is more appropriate to test the multiresolution feature), let us
consider a geoscientific application and approximate the gravitational potential on the Earth’s
surface. Therefore, we sample the EGM2008 expansion on an irregular data grid consisting of
6968 points (see Figure 4). As we can see, the point grid contains essentially more points on
the continents than in other areas which is reasonable for the case of terrestrial measurements,
although this grid is certainly contrived.

Figure 4: Irregular point grid for the approximation of terrestrial gravitational data (6968 points,
left) and the EGM2008 signal (right) in m2/s2.

First of all, for a better comparison, we again compute a spherical spline consisting of Abel-
Poisson kernels with h = 0.9 such that again H(S2) = H((h−n/2); S2) and we stabilize the
corresponding system of equations with

λS = 0.159513

which appears to approximately minimize the relative approximation error of the result. That
means, we now have to solve [(

KH(ηj , ηi)
)
i,j=1,...,l

+ λSI
]
a = y

where I is the 6968 × 6968 identity matrix.
If we let the algorithm run for 50 000 iterations while using dictionary D1 and a regularization
parameter λ = 2 · 10−5, the method picks a total of 10 162 different functions. These functions
consist of 148 spherical harmonics which are chosen up to 4 times and 10 014 Abel-Poisson
kernels with various centres and different localizations which are picked up to 187 times by
the algorithm. The relative approximation error of the spline is already attained after 18 500
iterations with 7374 functions (140 spherical harmonics and 7234 Abel-Poisson kernels). The
corresponding errors can be found in Table 2 while the results are displayed in Figure 5.
As we can see, the data fidelity of the spline is again higher which is due to the fact that
the reproducing kernels for the spline are located at the data points but these points are not
contained in the grid XM which we use to contruct the dictionary. That means, the spline can
again reconstruct the data more accurately. However, the RFMP AoS is still able to attain the
approximation error of the spline after 18500 iterations and even falls below it in the iterations
following thereafter although the approximation error decreases very slowly. Note that, in
particular in the case of irregularly distributed data, the approximation error is more important
than the data misfit for the quality of the approximation.
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Method Spline RFMP AoS
Iterations 18500 50000
Data misfit 0.032974 0.043043 0.041157
Approximation error 0.063583 0.063583 0.062449
Number of functions 6968 7374 10162

Table 2: Errors corresponding to the approximations of the EGM2008 data with a spherical
spline as well as with the RFMP AoS.

Figure 5: Approximation of EGM2008 samples with spherical spline (top left) and with
RFMP AoS (bottom left) after 50000 iterations with dictionary D1 as well as the corresponding
absolute approximation errors with regard to EGM2008 (right hand). All values in m2/s2.

Let us again use dictionary D2 and consider a multiscale analysis of the signal. Again, we use
the parameter λ = 2 ·10−5 for the regularization and, this time, we abort the process after 30 000
iterations. The relative approximation error is with

er = 0.063824 (6)

only negligibly larger than the approximation error obtained above with the spline method for
the same data. Within the 30 000 iterations, the RFMP chooses 329 different spherical harmonics
as well as 26 different scaling functions and 3544 wavelets which is a total of 3899 functions.
Apparently, this means that, with the dictionary D2, the algorithm needs less functions to
achieve comparable results than before. This is due to the construction of the wavelets, which
is a difference of two scaling functions, such that the algorithm is able to add details more
effectively. With the dictionary D1 which we used at first, the RFMP had to pick at least two
functions to add to the expansion what it is now able to add with one single wavelet. This
explains the smaller number of functions which are necessary for an appropriate representation
of the signal.
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In Figure 6 and Figure 7, we see the approximation of the potential data at different scales in the
left-hand column and the details which are added to each scale in the right-hand column. That
is, in the top left image of 6 the chosen spherical harmonics are displayed and the top right image
shows the chosen scaling functions. The combination of both of the latter functions is shown in
the left image of the second row. Obviously, the spherical harmonics and the scaling functions
alone, which is a total of 371 functions (296 spherical harmonics as well as 75 scaling functions),
do not yield a proper approximation of the signal since certain structures, in particular around
Greenland near the North pole, are missing. The other image in the right-hand column features
the wavelets of scale J = 0 while the combination of the chosen spherical harmonics as well as
scaling functions and wavelets of scale J = 0 is displayed in the bottom row. With this first
wavelet scale (J = 0), we are now actually able to get a rough image of the signal and the major
structures of the signal are contained, although the resolution is not very fine yet. However, this
changes as soon as we add the finer wavelet scales, which exactly conforms with the intention
of this multiresolution approach.

Figure 6: Multiresolution of EGM2008 samples with ROFMP AoS and Dictionary D2. The
chosen spherical harmonics are shown in the top left image. The right-hand column features
the chosen scaling functions (top) as well as the chosen wavelets of scale J = 0 (second row).
The corresponding approximations are shown in the left-hand column, i.e. the combination of
spherical harmonics and scaling functions (second row) and all chosen functions up to wavelet
scale J = 0 in the bottom row. All values in m2/s2.
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In Figure 7, we see again the latter image (top left) as well as the approximations with all of the
chosen functions up to the finer wavelet scales J = 1 (middle left) and J = 2 (bottom) while the
right-hand column again features the added details, i.e. the chosen wavelets of scale J = 1 (top
right) and scale J = 2 (middle right). In these details, certain structures of the signal such as
the Andes or the Himalayas can be easily recognized such that the details themselves contain a
lot of information about the signal.

Figure 7: Multiresolution of EGM2008 samples with ROFMP AoS and Dictionary D2. The top
left iage is again the combination of chosen spherical harmonics, scaling functions as well as
wavelets of scale J = 0. The right-hand column features the chosen wavelets of scale J = 1
and J = 2. The corresponding approximations are shown in the left-hand column, i.e. the
combination of spherical harmonics and scaling functions (second row) and all chosen functions
up to wavelet scale J = 1 (middle) and J = 2 (bottom). All values in m2/s2.

Let us once more take a look at the chosen centres of the localized trial functions, in particular,
at the centres of the chosen wavelets. In Figure 8, we display those centres where the color of
the points corresponds to the associated coefficent of the chosen function. We can see that the
functions are chosen according to the data density (locations) as well as to the detail structure
of the underlying signal (value of coefficients). The centres of all of the chosen wavelets are
again shown in Figure 9.
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Figure 8: The centres of the wavelets chosen by the RFMP AoS at scale J = 0 (top left), J = 1
(top right) and scale J = 2 (bottom) where the color indicates the value of the corresponding
coefficient of the wavelet within the expansion. Note the different colorbars.

Figure 9: The centres of the 3544 wavelets of scales J = 0, 1, 2 which were chosen by the
algorithm.

8 Conclusions and Outlook

The RFMP AoS is able to combine trial functions with different characteristics for a sparse
approximation of spherical signals. In particular, a multi-scale analysis of the signal is possi-
ble if the obtained approximation is split into the parts corresponding to the different kinds
of trial functions. For example, the contribution by the spherical harmonics yields a low-scale,
coarse approximation of the signal. More localized parts of the signal are represented by scaling
functions (or spline basis functions). Furthermore, the wavelet functions yield strongly localized
details in the signal. Another feature of the new method is the fact that strongly irregular
data grids do not represent a numerical difficulty — this is a feature which is also known for
spherical spline interpolation. In this respect, the new algorithm combines the advantages of
previously rather competitive approaches such as spherical harmonics expansion, spline inter-
polation/approximation and wavelet analysis. Moreover, since the algorithm is iterative and
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avoids the resolution of a system of linear equations (as it is necessary for the other methods
— either directly for the interpolation or indirectly due to the necessity of a quadrature rule),
numerical instabilities in the case of very large data sets are not likely.
Further improvements of the algorithm are possible. For example, the numerical tests revealed
that trial functions are often chosen several times. This can be avoided if the coefficients of the
chosen trial functions are appropriately adapted. We will address this issue in a forthcoming
publication. Moreover, further numerical tests with much larger data sets in the dimension of
the degrees of freedom of current gravity models like EGM2008 (approximately 4 · 106 degrees
of freedom) are necessary to verify the potential of the method for practical applications in
the geosciences and to investigate the possible sparsity effect in such cases. In this context, an
efficient parallelization on a high-performance computing cluster appears to be useful.
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[30] Láın Fernández N, Prestin J (2006) Interpolatory band-limited wavelet bases on the sphere.
Constr. Appr. 23:79-101.

[31] Le Gia QT, Mhasar HN (2009) Localized linear polynomial operators and quadrature for-
mulas on the sphere. SIAM J. Num. Anal. 47:440-466.

[32] Le Gia QT, Sloan IH, Wendland H (2012) Multiscale approximation for functions in arbi-
trary Sobolev spaces by scaled radial basis functions on the unit sphere. Appl. Comput.
Harmon. Anal. 32:401-412.

[33] Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE
Trans. Signal Process. 41:3397-3415.

[34] Michel V (2005) Optimally localized approximate identities on the 2-sphere. Numer. Func.
Anal. Opt. 32:877-903.

[35] Michel V (2013) Lectures on constructive approximation — Fourier, spline, and wavelet
methods on the real line, the sphere, and the ball. Birkhäuser, New York.
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