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Abstract

The RFMP is an iterative regularization method for a class of linear inverse prob-
lems. It has proved to be applicable to problems which occur, for example, in the
geosciences. In the early publications [1, 2], it was shown that the iteration con-
verges in the unregularized case to an exact solution. In [4] and [5], it was later
shown (for two different scenarios) that the iteration also converges in the regular-
ized case, where the limit of the iteration is the solution of the Tikhonov-regularized
normal equation. However, the condition of these convergence proofs cannot be sat-
isfied and, therefore, has to be weakened, as it was pointed out for the convergence
theorem of the related iterated Regularized Orthogonal Functional Matching Pur-
suit (ROFMP) algorithm in [6]. Moreover, the convergence proof in [4] contained
a minor error. For these reasons, we reformulate here the convergence theorem for
the RFMP and its proof. We also use this opportunity to extend the algorithm for
an arbitrary infinite-dimensional separable Hilbert space setting. In addition, we
particularly elaborate the cases of non-injective and non-surjective operators.

1 Summary of the RFMP

The RFMP is an algorithm for the regularization of inverse problems of the following
type.

Problem 1. Let H be a separable and infinite-dimensional Hilbert space (of functions),
` ∈ N be the dimension of the data space, y ∈ R` be a given (data) vector and F : H → R`

be a given linear and continuous operator. The problem is to find (a function) F ∈ H
such that

FF = y .
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The RFMP tries to iteratively construct a sequence (Fn)n ⊂ H of approximations to
the solution F .

Algorithm 2 (Regularized Functional Matching Pursuit, RFMP). Let an initial approx-
imation F0 ∈ H (e.g. F0 = 0) be given. Moreover, choose a dictionary D ⊂ H \ {0} of
(possibly useful) trial functions.

1. Initialize the step number to n := 0 and the residual to R0 := y − FF0 and choose
a regularization parameter λ ∈ R+

0 .

2. Determine

dn+1 := arg max
d∈D

(〈Rn,Fd〉R` − λ 〈Fn, d〉H)
2

‖Fd‖2R` + λ ‖d‖2H
, (1)

αn+1 :=
〈Rn,Fdn+1〉R` − λ 〈Fn, dn+1〉H
‖Fdn+1‖2R` + λ ‖dn+1‖2H

(2)

and set Fn+1 := Fn + αn+1dn+1 and Rn+1 := Rn − αn+1Fdn+1.

3. Increase n by 1 and go to step 2.

In practice, the algorithm will be stopped by an appropriate criterion (see e.g. [4]).
Since we are interested in a convergence theorem, we neglect this aspect here.

2 The Convergence Theorem

Several properties can be proved for the RFMP. We summarize here only one result which
we will need (see [4, Eq. (2) and Theorem 1]) for the convergence proof. Note that we
used an L2-space in the earlier publications instead of a general Hilbert space H. The
proofs are, however, easily transferable to the general case.

Lemma 3. The sequences (Fn)n ⊂ H and (Rn)n ⊂ R` of the RFMP satisfy

‖Rn‖2R` + λ ‖Fn‖2H

=
∥∥Rn−1∥∥2

R` + λ ‖Fn−1‖2H −
(〈
Rn−1,Fdn

〉
R` − λ 〈Fn−1, dn〉H

)2
‖Fdn‖2R` + λ ‖dn‖2H

, (3)

n ∈ N, such that the sequence (‖Rn‖2R` + λ‖Fn‖2H)n is monotonically decreasing and
convergent.

The following theorem improves [1, Theorem 3.5], [2, Theorem 4.5], [4, Theorem 2]
and [5, Theorem 6.3].

Theorem 4 (Convergence Theorem). Let the setting of Problem 1 be given and let the
dictionary D ⊂ H \ {0} satisfy the following properties:
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1. ‘semi-frame condition’: There exists a constant c > 0 and an integer M ∈ N such
that, for all expansions H =

∑∞
k=1 βkdk with βk ∈ R and dk ∈ D, where the dk are

not necessarily pairwise distinct but |{j ∈ N | dj = dk}| ≤ M for each k ∈ N, the
following inequality is valid:

c‖H‖2H ≤
∞∑
k=1

β2k .

2. C1 := infd∈D(‖Fd‖2R` + λ‖d‖2H) > 0.

If the sequence (Fn)n is produced by the RFMP and no dictionary element is chosen more
than M times, then (Fn)n converges in H to F∞ :=

∑∞
k=1 αkdk +F0 ∈ H. Moreover, the

following holds true:

(a) If D is a spanning set for H (i.e. spanD‖·‖H = H), D is bounded (i.e. C2 :=
supd∈D ‖d‖H < +∞), and λ ∈ R+

0 is an arbitrary parameter, then F∞ solves the
Tikhonov-regularized normal equation

(F∗F + λI)F∞ = F∗y ,

where F∗ is the adjoint operator corresponding to F and I is the identity operator
on H. This also yields that

‖y −FF∞‖2R` + λ ‖F∞‖2H = min
F∈H

(
‖y −FF‖2R` + λ ‖F‖2H

)
,

where the minimizer is unique, if λ > 0.

(b) If FD is a spanning set for ranF ⊂ R` (i.e. span{Fd | d ∈ D} = ranF) and λ = 0
(no regularization), then F∞ solves FF∞ = PranF y, where PranF is the orthogonal
projection onto ranF .

Proof. With (2), (3), condition 2 of the current theorem and Lemma 3, we obtain

∞∑
k=n

α2
k =

∞∑
k=n

∥∥Rk−1∥∥2
R` + λ ‖Fk−1‖2H −

(∥∥Rk
∥∥2
R` + λ ‖Fk‖2H

)
‖Fdk‖2R` + λ ‖dk‖2H

≤ 1

C1

∞∑
k=n

[∥∥∥Rk−1
∥∥∥2
R`

+ λ ‖Fk−1‖2H −
(∥∥∥Rk

∥∥∥2
R`

+ λ ‖Fk‖2H
)]

=
1

C1

[∥∥Rn−1∥∥2
R` + λ ‖Fn−1‖2H − lim

k→∞

(∥∥∥Rk
∥∥∥2
R`

+ λ ‖Fk‖2H
)]

.

Consequently, limn→∞
∑∞

k=n α
2
k = 0 and, hence, limn→∞ αn = 0. We can define F∞ :=∑∞

k=1 αkdk + F0, which is an element of H due to the semi-frame condition and the

3



previous estimate. Indeed, (Fn)n converges to F∞ in H (in the strong sense), also due
to the semi-frame condition, which we can see as follows:

lim
n→∞

‖F∞ − Fn−1‖2H = lim
n→∞

∥∥∥∥∥
∞∑
k=n

αkdk

∥∥∥∥∥
2

H

≤ 1

c
lim
n→∞

∞∑
k=n

α2
k = 0 .

Since F is continuous, also (FFn)n, (Rn)n = (y − FFn)n and (F∗Rn)n must converge
(strongly).
Due to the continuity of F , the operator norm ‖F‖L := supF∈H, F 6=0

‖FF‖R`
‖F‖H is finite.

We use this together with the boundedness of the dictionary and (1) and get, for all
d ∈ D, the estimate

α2
n+1 ≥

1

(‖F‖2L + λ) ‖dn+1‖2H

(〈Rn,Fdn+1〉R` − λ 〈Fn, dn+1〉H)
2

‖Fdn+1‖2R` + λ ‖dn+1‖2H

≥ 1

(‖F‖2L + λ)C2
2

(〈Rn,Fd〉R` − λ 〈Fn, d〉H)
2

‖Fd‖2R` + λ ‖d‖2H
. (4)

Let us now concentrate on case (a). Since limn→∞ αn = 0, an immediate consequence of
the estimate in (4) is

〈Rn,Fd〉R` − λ 〈Fn, d〉H = 〈F∗Rn − λFn, d〉H −→ 0 as n→∞ (5)

for all d ∈ D. Due to the bilinearity of the inner product and the algebraic limit theorem,
we also have

〈F∗Rn − λFn, d〉H −→ 0 as n→∞

for all d ∈ spanD. As we derived above, (F∗Rn − λFn)n is a strongly convergent and,
thus, bounded, sequence. Now let d ∈ H be arbitrary. Due to the first condition in part
(a), there exists a sequence (d̃m)m ⊂ spanD such that ‖d̃m− d‖H → 0 as m→∞. Then
the Cauchy-Schwarz inequality yields∣∣∣〈F∗Rn − λFn, d̃m − d

〉
H

∣∣∣ ≤ ‖F∗Rn − λFn‖H
∥∥∥d̃m − d∥∥∥

H

≤ sup
n∈N0

‖F∗Rn − λFn‖H
∥∥∥d̃m − d∥∥∥

H

→ 0 as m→∞ .

Since this convergence for m→∞ is uniform with respect to n, we get, by applying the
Moore-Osgood double limit theorem, the identity

lim
n→∞

〈F∗Rn − λFn, d〉H = lim
n→∞

lim
m→∞

〈
F∗Rn − λFn, d̃m

〉
H

= lim
m→∞

lim
n→∞

〈
F∗Rn − λFn, d̃m

〉
H

= 0 .
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This shows that (F∗Rn)n weakly converges to λF∞ (and, due to the considerations above,
also strongly). Consequently, since F∗Rn = F∗y − F∗FFn, we obtain, using again the
continuity of F , that

F∗y −F∗FF∞ = λF∞ ,

which is equivalent to
F∗y = (F∗F + λI)F∞ . (6)

It is a basic result of Tikhonov regularization (see e.g. [3, p. 89]) that every solution
of (6) minimizes

‖y−FF‖2R` +λ‖F‖2H = ‖y‖2R` +〈(F∗F + λI) (F − F∞) , F − F∞〉H−〈F
∗y, F∞〉H . (7)

If λ > 0, then (6) and the minimization of (7) both are uniquely solvable by

F∞ = (F∗F + λI)−1F∗y .

For the remaining proof of part (b) of the theorem, we observe again the estimate in (4)
with λ = 0

0 ≤ 1

(C2‖F‖L)2
〈Rn,Fd〉2R`

‖Fd‖2R`

≤ α2
n+1 −→ 0 as n→∞ .

With the sandwich theorem, we directly obtain limn→∞ 〈Rn,Fd〉R` = 0 for all d ∈ D.
Since FD is a spanning set for ranF , which is closed since F is a finite rank operator,
we obtain for all f ∈ ranF

0 = lim
n→∞

〈Rn, f〉R` = lim
n→∞

〈PranF Rn, f〉R` = 〈PranF R∞, f〉R` ,

note that the orthogonal projection PranF is continuous. Thus, (PranF Rn)n converges
weakly to zero. In addition, due to the continuity of F , the sequence (Rn)n converges
strongly, that is, R∞ = limn→∞R

n. Due to the uniqueness of the limit and the continuity
of the orthogonal projection, we obtain PranF R∞ = 0. Eventually, we get

FF∞ = PranF (FF∞) = lim
n→∞

PranF (FFn) = lim
n→∞

PranF (y −Rn) = PranF y .

Note that in the case of a surjective operator F , the statement in part (b) of the latter
theorem coincides with the previous versions in [1, Theorem 3.5], [2, Theorem 4.5], [4,
Theorem 2] and [5, Theorem 6.3].

Corollary 5. If the condition in item (b) from the previous theorem is replaced by

(b) If FD is a spanning set for the closed set G ⊂ ranF ⊂ R` and λ = 0,

then F∞ solves FF∞ = PGy, where PG is the orthogonal projection onto G.

Proof. In analogy to the previous proof, we directly obtain limn→∞ 〈Rn,Fd〉R` = 0 for
all d ∈ D. Since G is closed and ranF is a spanning set for G, we get for all g ∈ G

0 = lim
n→∞

〈Rn, g〉R` = lim
n→∞

(〈PGRn, g〉R` + 〈PG⊥Rn, g〉R`)

= lim
n→∞

〈PGRn, g〉R` .
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Thus, PGRn converges weakly to zero. Hence the continuity of F and the uniqueness of
the limits yields

0 = PG(y −FF∞) = PGy −FF∞,

since G is closed and FD spans G.

In [7, Lem. 4.2.5], it was proved that F∞ ∈ (kerF)⊥. Hence, the condition spanD‖·‖H =
H in the convergence theorem is unnecessarily strong. If more knowledge of the operator
F is available, for instance, the singular value decomposition (σj ;xj , yj), the condition
for the dictionary in case (a) of Theorem 4 can be weakened.

Theorem 6. Let F∞ denote the unique solution of the Tikhonov-regularized normal
equation (F∗F +λI)F∞ = F∗y, where λ > 0. Let (σj ;xj , yj) denote the singular system
of F and let the set V be defined by V :=

⋃
j∈J{xj}, where J ⊂ N is a countable index

set. If the conditions of Theorem 4 with the case (a) are satisfied, except that D is (only)
a spanning set for V , then the solution F∞,V produced by the RFMP solves

F∞,V = PV F∞ ,

where PV is the orthogonal projection onto V .

Proof. (V, 〈·, ·〉H) is a Hilbert space, since V ⊂ H is closed. The operator FV := FPV
is a bounded operator FV : H → R`, and hence, its restriction FV |V : V → R` is also
bounded, where FV |V = F|V . We can apply Theorem 4 to this setting and obtain
the solution F∞,V ∈ V produced by the RFMP, which solves the Tikhonov-regularized
normal equation in V , that is,

(F∗V FV + λIV )F∞,V = F∗V y .

In order to prove that F∞,V is the best approximation of F∞ in V , it remains to show
that F∞,V = PV F∞. For this purpose, we study the singular system (σj ;xj , yj) of F ,
which exists due to the compactness of F . Due to the construction of V , we obtain, for
each j ∈ N, that xj is either in V or in V ⊥. Hence, F∗F and PV commute, that is,

PV F∗FF =
∞∑

j=1,
xj∈V

σ2j 〈F, xj〉xj = F∗FPV F for all F ∈ H.

Due to FV = FPV , we directly obtain F∗V = PV F∗. For F∞,V , we get

(F∗F + λI)F∞,V = (F∗FP2
V + λPV )F∞,V = (PV F∗FPV + λPV )F∞,V

= (F∗V FV + λPV )F∞,V = F∗V y = PV F∗y
= PV ((F∗F + λI)F∞) = (F∗F + λI)PV F∞.

Since F∗F + λI is one-to-one, we eventually get F∞,V = PV F∞.
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In the case of a non-injective operator F , we can choose, for example, V = (kerF)⊥
and obtain F∞,(kerF)⊥ = P(kerF)⊥F∞ = F∞.

Remark 7. The corrections of the previous versions of the convergence theorem and its
proof are as follows:

• In the semi-frame condition, it is now required that there is a maximum number of
recurring choices of the same dictionary element. This maximum number can be
arbitrarily large as long as it is finite and universal for all considered expansions.
The reason for this limitation, which then also has to be required for the solution
F∞ generated by the RFMP (see the proof of the existence of the limit F∞ above), is
that the semi-frame condition could not be satisfied otherwise, as we pointed out for
the convergence proof of the ROFMP in [6]: if c is the constant of the semi-frame
condition, then an unlimited number of recurring choices of dictionary elements
could yield (with d ∈ D arbitrary)

c

(
N∑
k=1

1

k

)2

‖d‖2H = c

∥∥∥∥∥
N∑
k=1

1

k
d

∥∥∥∥∥
2

H

≤
N∑
k=1

1

k2
for all N ∈ N ,

which cannot be satisfied for any c > 0. Certainly, the semi-frame condition now
has to be seen even more critically, since it implies limitations for the algorithmic
choice of the dictionary elements. There is still a gap between the theory of the
method, which uses limits to infinity as justifications for the results, and the practi-
cal implementation where, certainly, only finite dictionaries and stopped iterations
are used.

• The conclusions after (5) were previously erroneous and were corrected here. As
we showed here, the strong convergence of (F∗Rn − λFn)n is used to obtain the
weak convergence to 0 in H out of (5). However, in [4], it was only after this
corresponding part that the strong convergence was proved.
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