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M. Gutting1, B. Kretz1, V. Michel1, R. Telschow2

Abstract

Recently, the regularized functional matching pursuit (RFMP) was
introduced as a greedy algorithm for linear ill-posed inverse prob-
lems. This algorithm incorporates the Tikhonov-Phillips regulariza-
tion which implies the necessity of a parameter choice. In this paper,
some known parameter choice methods are evaluated with respect to
their performance in the RFMP and its enhancement, the regularized
orthogonal functional matching pursuit (ROFMP). As an example of
a linear inverse problem, the downward continuation of gravitational
field data from the satellite orbit to the Earth’s surface is chosen,
because it is exponentially ill-posed. For the test scenarios, different
satellite heights with several noise-to-signal ratios and kinds of noise
are combined. The performances of the parameter choice strategies
in these scenarios are analyzed. For example, it is shown that a
strongly scattered set of data points is an essentially harder chal-
lenge for the regularization than a regular grid. The obtained results
yield a first orientation which parameter choice methods are feasible
for the RFMP and the ROFMP.

Key words: gravitational field, ill-posed, inverse problem, parameter choice
methods, regularization, sphere
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1 Introduction
The gravitational field of the Earth is an important reference in the geosciences.
It is an indicator for mass transports and mass reallocation on the Earth’s sur-
face. These displacements of masses can be caused by ocean currents, evapora-
tion, changes of the groundwater level, ablating of continental ice sheets, changes
in the mean sea level or climate change (see e.g. [18, 19]).
However, it is difficult to model the gravitational field, because terrestrial mea-
surements are not globally available. In addition, the points of measurement on
the sea are more scattered than those on the continents. This has motivated
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the launch of satellite missions with a focus on the gravitational field (see e.g.
[8, 31, 37, 41]). Naturally, those data are given at a satellite orbit, not on the
Earth’s surface. Additionally, the measurements are only given pointwise and
are afflicted with noise. The problem of getting the potential from the satellite
orbit onto the Earth’s surface is the so-called downward continuation problem,
which is a severely unstable and, therefore, ill-posed inverse problem (see e.g.
[13, 40]).
Traditionally, the gravitational potential of the Earth has been represented in
terms of orthogonal spherical polynomials (i.e. spherical harmonics Yn,j , see e.g.
[12, 23, 30]) as in the case of the Earth Gravitational Model 2008 (EGM2008,
see [33]). An advantage of this representation is that the upward continuation
operator Ψ which maps a potential F from the Earth’s surface (which we assume
here to be the unit sphere Ω) to the orbit rΩ with r > 1 has the singular value
decomposition

(ΨF ) (x) =

∞∑
n=0

n∑
j=−n

〈F, Yn,j〉L2(Ω) r
−n Y rn,j (x) , (1)

where Y rn,j(x) := 1
rYn,j

(
x
r

)
, x ∈ rΩ. Its inverse is, therefore, given by

Ψ+G =

∞∑
n=0

n∑
j=−n

〈
G, Y rn,j

〉
L2(rΩ)

rnYn,j =

∞∑
n=0

n∑
j=−n

〈
G, Y rn,j

〉
L2(rΩ)

σ−1
n Yn,j

in the sense of L2(Ω) and for all G ∈ Ψ(L2(Ω)) ⊂ L2(rΩ). Note that the singular
values of Ψ+, which are given by (σ−1

n )n = (rn)n, increase exponentially. For
details, see [40, 42].
The outline of this paper is as follows. Section 2 deals with the RFMP and

its enhancement, the ROFMP, which are used here for the regularization of
Ψ+. For both algorithms, the essential theoretical results are recapitulated. In
Section 3, the parameter choice methods under consideration for the RFMP
and ROFMP are summarized and details of their implementation for the test
cases are explained. In Section 4, the relevant details of the considered test
scenarios are outlined. Section 5 analyzes and compares the results for the
various parameter choice strategies.

2 RFMP
In this section, we briefly resume the regularized functional matching pursuit
(RFMP), which was introduced in [9, 10, 24, 26], and an orthogonalized mod-
ification of it (see [27, 42]). It is an algorithm for the regularization of linear
inverse problems.
According to [25, 26, 42], we use an arbitrary Hilbert space H ⊂ L2(Ω).

Let an operator F : H → Rl be given which is continuous and linear. Concerning
the downward continuation, we have a vector y ∈ Rl of measurements at a
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satellite orbit, that means our data are given pointwise. The inverse problem
consists of the determination of a function F ∈ H such that

FF = y = ((ΨF )(xj))j=1,...,l, (2)

where (xj)j=1,...,l is a set of points at satellite height. In the following, we use
bold letters for vectors in Rl.

To find an approximation for our function F, we need to have a set of trial
functions D ⊂ H \ {0}, which we call the dictionary. Our unknown function F
is expanded in terms of dictionary elements, that means we can represent it as
F =

∑∞
k=1 αkdk with αk ∈ R and dk ∈ D for all k ∈ N.

2.1 The algorithm
The idea of the RFMP is the iterative construction of a sequence of approxima-
tions (Fn)n. This means that we add a basis function dk of the dictionary to the
approximation in each step. This basis function is furthermore equipped with a
coefficient αk.
Since the considered inverse problem is ill-posed, we use the Tikhonov-Phillips

regularization, that is, our task is to find a function F which minimizes

‖y −FF‖2Rl + λ ‖F‖2H .

That means, if we have the approximation Fn up to step n, our greedy algorithm
chooses αn+1 ∈ R and dn+1 ∈ D such that

‖y −F (Fn + αn+1dn+1)‖2Rl + λ ‖Fn + αn+1dn+1‖2H

is minimized. Here, λ > 0 is the regularization parameter.
We can state the following algorithm for the RFMP.

Algorithm 2.1. Let y ∈ Rl and an operator F : H → Rl (linear and continu-
ous) be given.

(1) Initialization Set n := 0, F0 := 0 and R0 := y−FF0 = y, choose a stopping
criterion (we stop, if ‖Rn+1‖ < % for a given % > 0 or αn+1 < δ for a
given δ > 0 or n + 1 > N for a given N ∈ N, see also Section 4.1), and
choose a regularization parameter λ ∈ R+.

(2) Iteration Build Fn+1 := Fn + αn+1dn+1 such that the following is fulfilled:

dn+1 := argmax
d∈D

(〈Rn,Fd〉Rl − λ 〈Fn, d〉H)
2

‖Fd‖2Rl + λ ‖d‖2H
,

αn+1 :=
〈Rn,Fdn+1〉Rl − λ 〈Fn, dn+1〉H
‖Fdn+1‖2Rl + λ ‖dn+1‖2H

.

Set Rn+1 := Rn − αn+1Fdn+1.
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(3) Stopping criterion Fn+1 is the output, if the stopping criterion is fulfilled.
Otherwise, increase n and go to step 2.

The maximization, which is necessary to get dn+1, is implemented by eval-
uating the fraction for all d ∈ D in each iteration and picking a maximizer.
Since many involved terms can be calculated in a preprocessing, the numerical
expenses can be kept low (see [24]). For a convergence proof of the RFMP, we
refer to [25]. Briefly, under certain conditions, one can show that the sequence
(Fn)n converges to the solution F∞ of the Tikhonov-regularized normal equation

(F∗F + λI)F∞ = F∗y, (3)

where I is the identity operator and F∗ is the adjoint operator to F .

2.2 ROFMP
The regularized orthogonal functional matching pursuit (ROFMP) is an ad-
vancement of the RFMP from the previous section.
The basic idea is to project the residual onto the span of the chosen vectors,

i.e.,

Vn := span{Fd1, . . . ,Fdn} ⊂ Rl ,

and then adjust the previously chosen coefficients in such a way that the residual
is afterwards contained in the orthogonal complement of the span. Since this
so-called backfitting (cf. [22, 32]) might not be optimal, we implement the so-
called prefitting (cf. [45]), where the next function and all coefficients are chosen
simultaneously to guarantee optimality at every single stage of the algorithm.
Moreover, let Wn := V⊥n and the orthogonal projections on Vn and Wn are
denoted by PVn and PWn , respectively. All in all, our aim is to find

(αn+1, dn+1) = argmin
α∈R, d∈D

(
‖Rn − αPWn

Fd‖2Rl + λ ‖Fn − αBn(d) + αd‖2H
)
.

Here,
n∑
i=1

β
(n)
i (d)Fdi = PVn(Fd) (4)

and, thereby, we set

Bn(d) :=

n∑
i=1

β
(n)
i (d)di ∈ H. (5)

The updated coefficients for the expansion at step n+ 1 are given by

α
(n+1)
i :=α

(n)
i − αn+1β

(n)
i (dn+1), i = 1, . . . , n, (6)

α
(n+1)
n+1 :=αn+1. (7)
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The ROFMP algorithm can be summarized as follows.

Algorithm 2.2. Let a dictionary D ⊂ H, a data vector y ∈ Rl and an operator
F : H → Rl (linear and continuous) be given.

(1) Initialization Set n := 0, F0 := 0 and R0 := y, choose a stopping criterion
(we stop, if ‖Rn+1‖ < % for a given % > 0 or αn+1 < δ for a given δ > 0
or n + 1 > N for a given N ∈ N, see also Section 4.1), and choose a
regularization parameter λ ∈ R+.

(2) Iteration Choose a function

dn+1 := argmax
d∈D

(〈Rn,PWnFd〉Rl + λ (〈Fn, Bn(d)〉H − 〈Fn, d〉H))
2

‖PWn
Fd‖2Rl + λ

(
‖d−Bn(d)‖2H

) ,

and calculate the corresponding coefficient

αn+1 :=
〈Rn,PWnFdn+1〉Rl + λ (〈Fn, Bn(dn+1)〉H − 〈Fn, dn+1〉H)

‖PWn
Fdn+1‖2Rl + λ ‖dn+1 −Bn(dn+1)‖2H

,

where Bn(d) is defined according to (4) and (5). With the updated coeffi-
cients α(n+1)

i := α
(n)
i − αn+1β

(n)
i (dn+1) for i = 1, . . . , n, we set α(n+1)

n+1 :=

αn+1 and build Fn+1 :=
∑n+1
i=1 α

(n+1)
i di. Finally, update the residual

Rn+1 := Rn − αn+1PWn
Fdn+1.

(3) Stopping criterion Fn+1 is the output, if the stopping criterion is fulfilled.
Otherwise, increase n and go to step 2.

For practical details of the implementation, see [42].

Remark 2.3. If we choose di ∈ D and αi as in Algorithm 2.2 and update α as
in (6) and (7), we obtain for the regularized case (λ > 0) that Rn is, in general,
not orthogonal to Vn for all n ∈ N0, that means

Rn /∈ Wn.

In [42], it was shown that, with the assumptions from Remark 2.3, there exists
a number N := N(λ) such that

Rn = RN for all n ≥ N.

That means we get a stagnation of the residual. This is a problem for the
ROFMP, because we cannot reconstruct a certain part of the signal which lies in
Vn. Therefore, we have to modify the algorithm to an iterated Tikhonov-Phillips
regularization. That means we run the algorithm for a given number of iterations
(in our case K > 0), then break up the process and start the algorithm again
with the previous residual RK . This is called the restart or repetition. For this
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process, we first need an additional notation: we add a further subscript j to the
expansion Fn. Note that we have two levels of iterations here. The upper level
is associated to the restart procedure and is enumerated by the second subscript
j. The lower iteration level is the previously described ROFMP iteration with
the first subscript n. We denote the current expansion by

Fn,j := FK,j−1 +

n∑
i=1

α
(n)
i,j di,j ,

where F0,1 := 0 and F0,j := FK,j−1. In analogy to the previous definitions, the
residual can be defined in the following way:

Rn,j := y −FFn,j , 1 ≤ n ≤ K, j ≥ 1 and R0,j := y −FFK,j−1 = RK,j−1.

That means, after K iterations, we keep the previously chosen coefficients fixed
and restart the ROFMP with the residual of the step before. All in all, we have
to solve

(αn+1,j , dn+1,j) = argmin
α∈R, d∈D

(∥∥Rn,j − αPWn,j
Fd
∥∥2

Rl + λ ‖Fn+1,j‖2H
)

and update the coefficients in the following way

α
(n+1)
i,j := α

(n)
i,j − αn+1,jβ

(n)
i,j (dn+1,j), i = 1, . . . , n.

We summarize for the expansion FK,m, which is the approximation produced by
the ROFMP after m restarts:

Tm := FK,m =

m∑
j=1

K∑
i=1

α
(K)
i,j di,j .

In analogy to the RFMP, we obtain a similar convergence result for the ROFMP.
That is, under certain technical conditions, the sequence (Tm)m converges in the
Sobolev space H. For further details, we refer to [27, 42].

3 Parameter choice methods
The choice of the regularization parameter λ is crucial for the RFMP and the
ROFMP, as for every other regularization method. In this section, we briefly
summarize the parameter choice methods which we test for the RFMP and the
ROFMP. This section is basically conform to [1, 2].

3.1 Introduction
The Earth Gravitational Model 2008 (EGM2008, see [33]) is a spherical harmon-
ics model of the gravitational potential of the Earth up to degree 2190 and order
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2159. We use this model up to degree 100 for the solution F in our numerical
tests. For checking the parameter choice methods, we generate different test
cases that means test scenarios which vary in the satellite height, the noise-to-
signal ratio and the data grid. Based on the chosen function F , our dictionary
contains all spherical harmonics up to degree 100 that means our approximation
F from the algorithm has the following representation

F =

100∑
n=0

n∑
j=−n

αn,jYn,j , where not all αn,j vanish.

This is a strong limitation, but higher degrees would essentially enlarge the
computational expenses.
Moreover, for the stabilization of the solution, we use the norm of the Sobolev

space H := H((an)n; Ω) which is constructed with

an :=

(
n+

1

2

)2

, n ∈ N0,

see [11]. This Sobolev space contains all functions F on Ω which fulfil

∞∑
n=0

n∑
j=−n

a2
n 〈F, Yn,j〉

2
L2(Ω) <∞.

The inner product of functions F,G ∈ H is given by

〈F,G〉H :=

∞∑
n=0

n∑
j=−n

a2
n 〈F, Yn,j〉L2(Ω) 〈G, Yn,j〉L2(Ω) .

The particular sequence (an)n = ((n + 1
2 )2) was chosen, because preliminary

numerical experiments showed that the associated regularization term yielded
results with an appropriate smoothness.
In our test scenarios, we use a finite set {λk}k=1,...,100 of 100 regularization

parameters (for details, see Section 4.4). The approximate solution of the inverse
problem as an output of the RFMP/ROFMP corresponding to the regularization
parameter λk and the data vector y is denoted by xk. This notation is introduced
to avoid confusions with the functions Fn which occur at the n-th step of the
iteration within the RFMP.
In practice, we deal with noisy data yε where the noise level ε is defined by

ε := N2S · ‖y‖Rl /
√
l,

where l is the length of the data vector y and N2S is called the noise-to-signal
ratio. The corresponding result of the RFMP/ROFMP for the regularization
parameter λk and the noisy data vector yε is called xεk. Due to the convergence
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results for the RFMP/ROFMP (see (3)), we introduce the linear regularization
operators Rk : Rl → H,

Rk := (F∗F + λkI)−1F∗

and assume xk to be Rky and xεk to be Rkyε, though this could certainly only
be guaranteed for an infinite number of iterations.
Due to the importance of the regularization parameter, we summarize in the

next section some methods for the choice of this parameter λ. For the comparison
of the methods, we have to define the optimal regularization parameter λkopt .
We do this by minimizing the difference between the exact solution x and the
regularized solution xεk corresponding to the parameter λk and noisy data.

kopt := argmin
k∈{1,...,100}

‖x− xεk‖L2(Ω).

Then we evaluate the results by computing the so-called inefficiency by∥∥x− xεk∗∥∥L2(Ω)∥∥∥x− xεkopt∥∥∥L2(Ω)

, (8)

where λk∗ is the regularization parameter selected by the considered parameter
choice method. For the computation of the inefficiency, we use the L2(Ω)-norm,
since our numerical results led to a better distinction of the different inefficiencies
than by using the H-norm. However, the tendency regarding ’good’ and ’bad’
parameters were the same in both cases. The closer the obtained inefficiency is
to 1, the better the parameter choice method performs.
The norms which occur in the several parameter choice methods can be com-

puted with the help of the singular value decomposition. However, we use the
singular values of Ψ (see (1) and (2)) for this purpose, because the singular value
decomposition of F is unavailable. This certainly causes an inaccuracy in our
calculations, but appears to be unavoidable for the sake of practicability.

3.2 Parameter Choice Methods
Table 1 shows the different parameter choice methods we tested. The tuning
parameters are chosen in accordance to [1, 2]. For the choice of the maximal
index K̂, see Section 4.5.

4 Evaluation

4.1 Specifications for the algorithm
In Sections 2.1 and 2.2, we mentioned that we need to define stopping criteria
for our algorithm. We state the following stopping criteria for the RFMP and
ROFMP (see also Algorithms 2.1 and 2.2).
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• ‖Rn+1‖Rl < % for a given % > 0 (in our case, this is the N2S),

• n + 1 > N for a given N ∈ N (in our case, N = 10000 because of our
computing capacity),

• αn+1 < δ for a given δ > 0 (in our case δ = 10−6).

In the case of the ROFMP, we choose K = 200 for the restart.

4.2 The data grids
Figure 1 shows two data grids which we use for our experiments. First of all,
the Reuter grid (see [38]) is an example of a regular data grid on the sphere.
Second, we have a set of irregularly distributed data points on a grid which
we refer to as the scattered grid in the following and which was first used in
[42]. The latter grid tries to imitate the distribution of measurements along the
tracks of a satellite. It possesses additional shorter tracks and, thus, a higher
accumulation of data points at the poles and only fewer tracks in a belt around
the equator.

 180° W  135° W   90° W   45° W    0°   45° E   90° E  135° E  180° E
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 90° N  

 180° W  135° W   90° W   45° W    0°   45° E   90° E  135° E  180° E

 90° S  

 45° S  
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Figure 1: Reuter grid with 8514 points (left) and scattered grid with 8500 points
(right).

4.3 Noise generation
For our various scenarios, we get our noisy data if we add white noise to our data
values or we add coloured noise that is obtained by an autoregression process.
Additionally, we test some local noise.

4.3.1 White noise scenario

For white noise, we add Gaussian noise corresponding to a certain noise-to-singal
ratio N2S to the particular value of each datum, that means we get our noisy
data by

yεi = (1 + N2S · εi)yi = N2S · yiεi + yi, i = 1, . . . , l, (9)

where yi are the components of y and εi ∼ N (0, 1), that means every εi is a
standard normally distributed random variable.
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4.3.2 Coloured noise scenario

Since our scattered grid tries to imitate tracks of satellites, we can assume that
we have a chronology of the data points for each track. To obtain some sort
of coloured noise, we use an autoregression process of order 1 (briefly: AR(1)-
process, see [6]) with whom we simulate correlated noise.
A stochastic process {εi, i ∈ Z} is called an autoregressive process of order 1,

if εi = αεi−1 + εi, |α| < 1, where εi ∼ N (0, 1). In the case of our simulation, we
start with ε1 ∼ N (0, 1) and run the recursion for a fixed α ∈ (−1, 1), which we
determined at random.
For each track of the scattered grid, we apply this autoregression process (for

the tracks, see Figure 2) and obtain yεi as in (9) using the εi from above.
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Figure 2: The track sets of the scattered grid (left and right). For the South
pole, we have an analogous point distribution.

4.3.3 Local noise scenario

For the local noise, we choose a certain area and add white noise with an N2S =
5% relative to the particular value to each data point. To the values of the
remaining data points we add white noise with an N2S = 1%. We choose
this area as illustrated in Figure 3. The choice of this area is a very rough
approximation of the domain of the South Atlantic Anomaly, where a dip in the
Earth’s magnetic field exists (see e.g. [17]). Since only a few points of our grid
would have been in the actual domain, we extended the area towards the South
pole.
Table 2 shows our different test cases for the RFMP and ROFMP.

11



 180° W  135° W   90° W   45° W    0°   45° E   90° E  135° E  180° E

 90° S  

 45° S  

  0°  

 45° N  

 90° N  

 180° W  135° W   90° W   45° W    0°   45° E   90° E  135° E  180° E

 90° S  

 45° S  

  0°  

 45° N  

 90° N  

Figure 3: Reuter grid (left) and scattered grid (right). The values of the data
points in the red area contain an N2S of 5% and the values of the data
points in the blue area an N2S of 1% for the local noise scenario.

height N2S noise grid shortcut
500km 5% white scattered (500,5,wn,S)
500km 5% coloured scattered (500,5,cn,S)
500km 5% white Reuter (500,5,wn,R)
500km 1% white scattered (500,1,wn,S)
500km 1% coloured scattered (500,1,cn,S)
500km 1% white Reuter (500,1,wn,R)
300km 5% white scattered (300,5,wn,S)
300km 5% coloured scattered (300,5,cn,S)
300km 5% white Reuter (300,5,wn,R)
500km 5%/1% local scattered (500,5,ln,S)
500km 5%/1% local Reuter (500,5,ln,R)

Table 2: Overview of the implemented test cases.

4.4 Regularization parameters
We constructed the admissible values λk for the parameter choice as a mono-
tonically decreasing sequence with 100 values from λ1 = 1 to λ100 = 10−14 and
a logarithmically equal spacing in the following way

λk = λ0q
k
λ, k ∈ {1, . . . , 100}. (10)

Here, λ0 = 1.3849 and qλ = 0.7221. The test scenarios are chosen such that the
parameter range lies between 1 and 10−14 and includes the optimal parameter
away from the boundaries λ1 and λ100. For the choice of the parameters λk, we
refer to [1, 2].

4.5 Maximal index
Most parameter choice methods either increase the index k until a certain condi-
tion is satisfied or minimize a certain function for all regularization parameters
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λ, i.e. after our discretization (see (10)) they minimize for all k (see Table 1).
For some methods like the quasi-optimality criterion, the values of k have to
be constrained by a suitable maximal index K̂ which must be chosen such that
kopt < K̂. To increase computational efficiency, such a maximal index can be
used for other methods as well without changing their performance. As in [1, 2],
we define this maximal index by

K̂ = max
{
k
∣∣ ρ(k) < 0.5ρ(∞)

}
,

where E‖xk − xεk‖2 = ε2ρ2(k) is the variance of the regularized solution corre-
sponding to noisy data and ε2ρ2(∞) is its largest value. It is well-known that, in
the case of white noise, ρ(k) for the Tikhonov-Phillips regularization is generally
given by

ρ2(k) =
∑
n

(
σn

σ2
n + λk

)2

.

Since our singular values occur with a multiplicity of 2n+ 1 and we restrict our
tests to n = 0, . . . , 100, the sum above in our tests is given by

ρ2(k) =

100∑
n=0

(2n+ 1)

(
σn

σ2
n + λk

)2

.

For any coloured noise, we use the estimate (cf. [2])

ε2ρ2(k) ≈ 2−1
∥∥xεk,1 − xεk,2∥∥2

H ,

with two independent data sets yε1, yε2 for the same regularization parameter λk.
Note that xεk,1, x

ε
k,2 are the regularized solutions corresponding to the parameter

λk and the noisy data sets yε1, yε2.

5 Comparison of the methods
For the error comparison, we compute the inefficiency (see (8)) in each scenario
(see Table 2 for an overview) for each parameter choice method and compare the
inefficiencies. We generate 32 data sets for each of the eleven scenarios, i.e. we
run each algorithm for 352 times for a single regularization parameter. Figures 4
to 14 show the inefficiencies, collected based on the parameter choice methods.
The red middle band in the box is the median and the red + symbol shows
outliers. The boxplots of our results are plotted at a logarithmic scale.

5.1 Discrepancy principle (DP)
We can see from Figure 4 that the DP leads to results which are in the range
from good to acceptable in all test cases. It yields better results with a more
uniformly distributed grid.
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Figure 4: DP for the RFMP (left) and the ROFMP (right).

5.2 Transformed discrepancy principle (TDP)
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Figure 5: TDP for the RFMP (left) and the ROFMP (right).

The results for the TDP (see Figure 5) for all test cases are rather poor. We
can remark that the results get better with a more uniformly distributed data
grid. Furthermore, the coloured noise leads to slightly bigger boxes than the
white noise.

5.3 Quasi-optimality criterion (QOC)
In Figure 6, the inefficiencies of the QOC show that the performance of this
method is rather poor. In the case of the Reuter grid, the results reach from
good to mediocre in contrast to the scattered grid.
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Figure 6: QOC for the RFMP (left) and the ROFMP (right).
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Figure 7: LC for the RFMP (left) and the ROFMP (right).

5.4 L-curve method (LC)
The LC (see Figure 7) yields good results in all test cases. We can remark that
there are a few outliers and bigger boxes for the test cases with coloured noise
and the scattered grid.

5.5 Extrapolated Error method (EEM)
The EEM yields acceptable to rather poor results (see Figure 8). We cannot
observe any dependency on the grid or the kind of noise related to the acceptable
results. Moreover, in the test case with a height of 300km and an N2S of 5%
with coloured noise we have some outliers for the RFMP and a large box for the
ROFMP.
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Figure 8: EEM for the RFMP (left) and the ROFMP (right).
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Figure 9: RM for the RFMP (left) and the ROFMP (right).

5.6 Residual method (RM)
The results for the RM (see Figure 9) are good to acceptable in all test cases.
We only have a few minor outliers.

5.7 Generalized maximum likelihood (GML)
In Figure 10, we can see that the GML leads to acceptable results only in the
case of the Reuter grid. In all cases of the scattered grid, its performance is
rather bad.

5.8 Generalized cross validation (GCV)
From Figure 11, we can observe that the GCV yields good results in all test
cases. We only have, in the case of the ROFMP, some minor outliers. It yields
the best results with a more regularly distributed data grid.

16



(5
00

,5
,w

n,
S)

(5
00

,5
,cn

,S
)

(5
00

,5
,w

n,
R)

(3
00

,5
,w

n,
S)

(3
00

,5
,cn

,S
)

(3
00

,5
,w

n,
R)

(5
00

,1
,w

n,
S)

(5
00

,1
,cn

,S
)

(5
00

,1
,w

n,
R)

(5
00

,5
,ln

,S
)

(5
00

,5
,ln

,R
)

1

2

3

4

5

6

In
ef

fic
ie

nc
y

(5
00

,5
,w

n,
S)

(5
00

,5
,cn

,S
)

(5
00

,5
,w

n,
R)

(3
00

,5
,w

n,
S)

(3
00

,5
,cn

,S
)

(3
00

,5
,w

n,
R)

(5
00

,1
,w

n,
S)

(5
00

,1
,cn

,S
)

(5
00

,1
,w

n,
R)

(5
00

,5
,ln

,S
)

(5
00

,5
,ln

,R
)

1

2

3

4

5

6

In
ef

fic
ie

nc
y

Figure 10: GML for the RFMP (left) and the ROFMP (right).
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Figure 11: GCV for the RFMP (left) and the ROFMP (right).

5.9 Robust generalized cross validation (RGCV)
The RGCV yields good to acceptable results (see Figure 12) which get slightly
worse and show a larger variance for a higher N2S or coloured noise scenarios.

5.10 Strong robust generalized cross validation (SRGCV)
The SRGCV (see Figure 13) has good to acceptable results in all the test cases
which are a little bit worse than for the RGCV. The Reuter grid leads to good
results whereas the scattered grid seems to be more difficult to handle by the
method.

5.11 Modified generalized cross validation (MGCV)
The inefficiencies for the MGCV (see Figure 14) for the test cases with white
noise and the Reuter grid are good. In particular, in several of the cases with
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Figure 12: RGCV for the RFMP (left) and the ROFMP (right).
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Figure 13: SRGCV for the RFMP (left) and the ROFMP (right).
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Figure 14: MGCV for the RFMP (left) and the ROFMP (right).

18



coloured noise the boxes are so big that they partially do not fit in the figure.
Obviously, we get here a very large distribution of the inefficiencies. These cases
seem to be very hard to handle for this method.

5.12 Plots of the results
In this section, we show briefly the approximations of the gravitational potential
which we obtain by the RFMP and the ROFMP for one typical noisy data set
considering a good or a rather poor parameter choice.
For the test case (500km, 5%, coloured noise, scattered grid) with α = 0.54

for the AR(1)-process, Figure 15 shows the approximation which we obtain by
the RFMP for the optimal regularization parameter λ29 and the difference to
the EGM2008 up to degree 100. Figure 16 shows the approximation belonging
to the regularization parameter λ22 which is chosen by the GCV. In Figure 17,
we can see the approximation belonging to the parameter λ43 which is chosen by
the MGCV. We can see that the MGCV chooses the regularization parameter
too small and with this choice we obtain a solution which is underregularized.
North-South oriented anomalies occur in the reconstruction which appear to be
artefacts due to the noise along the simulated satellite tracks. In contrast, the
approximation of the potential for the GCV-based parameter is only slightly
worse than the result for the optimal parameter.

Figure 15: The approximation from the RFMP for the best parameter (left) and
the difference to the EGM2008 up to degree 100 (right). Values in
m2/s2.

Furthermore, we show the same test case as above but with the approximation
from the ROFMP with α = 0.56 in the AR(1)-process. Figure 18 shows the
approximation for the optimal parameter λ29 and the difference to EGM2008. In
Figure 19, we see the approximation which belongs to the parameter λ22 which is
chosen by the GCV. Figure 20 shows the approximation with the regularization
parameter λ9 which is chosen by the GML.
Here, the GML chooses a regularization parameter which is too large that

means our approximation is overregularized. We get less information and de-
tails about the gravitational potential. Essential details such as signals due to
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Figure 16: The approximation from the RFMP for the parameter chosen by the
GCV (left) and the difference to the EGM2008 up to degree 100
(right). Values in m2/s2. The inefficiency amounts to 1.16.

Figure 17: The approximation from the RFMP for the parameter chosen by the
MGCV (left) and the difference to the EGM2008 up to degree 100
(right). Values in m2/s2. The inefficiency amounts to 2.29.

Figure 18: The approximation from the ROFMP for the best parameter (left)
and the difference to the EGM2008 up to degree 100 (right). Values
in m2/s2.

the Andes or the region around Indonesia occur in the difference plot – much
stronglier than for the other examples. Again the parameter choice of the GCV
yields a good approximation for the gravitational potential.
Finally, Figures 21 and 22 show the difference ‖x − xεk‖L2(Ω) between the
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Figure 19: The approximation from the ROFMP for the parameter chosen by
the GCV (left) and the difference to the EGM2008 up to degree 100
(right). Values in m2/s2. The inefficiency amounts to 1.14.

Figure 20: The approximation from the ROFMP for the parameter chosen by
the GML (left) and the difference to the EGM2008 up to degree 100
(right). Values in m2/s2. The inefficiency amounts to 3.03.

original solution (i.e. EGM2008 up to degree 100) and the approximation xεk
obtained for the different regularization parameters which were chosen by the
considered strategies. The horizontal axis states the index k of the regularization
parameter λk. The plots refer to the same scenario as Figures 15 to 20. The
arrows show the parameters which are chosen by the methods. The diagrams
confirm our observations that the GCV and the LC yield parameters which are
closest to the (theoretical) optimal parameter. We obtain almost equally good
results for the DP, the RM and the RGCV.

6 Conclusion and outlook
We tested parameter choice methods for the regularized (orthogonal) func-
tional matching pursuit (RFMP/ROFMP). For the evaluation of the parameter
choice methods, we constructed eleven different test cases with different satel-
lite heights, data grids, noise types and noise-to-signal ratios (see Table 2) for
the RFMP and ROFMP. For each test case, we generated 32 noisy data sets.
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Figure 21: The horizontal axis states the index k of the regularization parameter
and the vertical axis shows ‖x− xεk‖L2(Ω) for the RFMP.
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Altogether we ran each algorithm for 352 data sets and for each data set for
100 different regularization parameters, that means each algorithm was applied
35200 times.
Our study shows that the GCV, the LC, the RM, the RGCV and the SRGCV

yield the best results in all test cases. The DP provides good to acceptable
results. The performance of the QOC seriously depends on the data grid, that
means a less regularly distributed grid does not lead to good results. In our
experiments, the QOC had good results with the Reuter grid. The MGCV also
obtains both good and rather poor results in dependency on the grid and kind of
noise we used. Here, the irregularly distributed scattered grid and the coloured
noise did not yield good results. At last, the TDP, the EEM and the GML did
not always lead to good results in our test cases.
We want to remark that in average our results were better than in [1] and [2]

for all methods. Some possible reasons for that can be: the coloured noise in our
test cases was different and maybe easier to handle for the methods than in the
two papers, because we only had an AR(1)-process. There is a further difference
to the other cases in relation to the problem itself. Here we had a data grid given
which corresponds to a spatial discretization of the problem. Furthermore, the
RFMP and the ROFMP are iterative methods and use stopping criteria which
are also some kind of regularization. Since we stop the algorithm at a certain
point we do not obtain the approximation of the potential in the limit. For these
reasons, the outcomes of our experiments and of those in [1, 2] are not really
comparable.
The purpose of this paper is to provide a first guideline for the parameter

choice for the RFMP and the ROFMP. Certainly, further experiments should be
designed in the future. Maybe, the distribution of our regularization parameters
λk could be improved such that the relevant parameters themselves are not too
wide apart. Perhaps, the interval from 1 to 10−14 should be chosen smaller such
that the parameters are closer together.
Future changes in the implementation could also be the use of other stopping

criteria for the RFMP. Furthermore, an enhancement could be the extension of
the dictionary to localized trial functions. In addition, the generation of the
coloured noise can, for example, use an AR(k)-process for k > 1 or completely
different types of noise can be considered. Finally, we can test other tuning
parameters for the methods as far as these are required. Besides, it is possi-
ble that the performance of the investigated parameter choice methods in the
RFMP/ROFMP depends on the considered inverse problem.

References
[1] F. Bauer, M. Gutting, and M. A. Lukas. Evaluation of parameter choice

methods for the regularization of ill-posed problems in geomathematics. In
W. Freeden, M. Nashed, and T. Sonar, editors, Handbook of Geomathemat-
ics, pages 1713–1774. Springer, Berlin, Heidelberg, 2nd edition, 2014.

23



[2] F. Bauer and M. A. Lukas. Comparing parameter choice methods for reg-
ularization of ill-posed problems. Math. Comput. Simul., 81:1795–1841,
2011.

[3] F. Bauer and P. Mathé. Parameter choice methods using minimization
schemes. J. Complexity, 27:68–85, 2011.

[4] C. Brezinski, G. Rodriguez, and S. Seatzu. Error estimates for linear sys-
tems with applications to regularization. Numer. Algorithms, 49:85–104,
2008.

[5] C. Brezinski, G. Rodriguez, and S. Seatzu. Error estimates for the regular-
ization of least squares problems. Numer. Algorithms, 51:61–76, 2009.

[6] P. J. Brockwell and R. A. Davis. Introduction to Time Series and Forecast-
ing. Springer, New York, 2nd edition, 2002.

[7] D. J. Cummins, T. G. Filloon, and D. Nychka. Confidence intervals for
nonparametric curve estimates: toward more uniform pointwise coverage.
J. Am. Stat. Assoc., 96:233–246, 2001.

[8] M. R. Drinkwater, R. Haagmans, D. Muzi, A. Popescu, R. Floberghagen,
M. Kern, and M. Fehringer. The GOCE gravity mission: ESA’s first core
explorer. In Proceedings of the 3rd GOCE User Workshop, volume SP-627,
pages 1–8. ESA Special Publication, Frascati, 2006.

[9] D. Fischer. Sparse Regularization of a Joint Inversion of Gravitational
Data and Normal Mode Anomalies. PhD thesis, Geomathematics Group,
Department of Mathematics, University of Siegen, Verlag Dr. Hut, Munich,
2011.

[10] D. Fischer and V. Michel. Sparse regularization of inverse gravimetry—case
study: spatial and temporal mass variations in South America. Inverse
Probl., 28:065012, 2012.

[11] W. Freeden, T. Gervens, and M. Schreiner. Constructive Approximation
on the Sphere. With Applications to Geomathematics. Oxford University
Press, Oxford, 1998.

[12] W. Freeden and M. Gutting. Special Functions of Mathematical (Geo-)
physics. Birkhäuser, Basel, 2013.

[13] W. Freeden and V. Michel. Multiscale Potential Theory. With Applications
to Geoscience. Birkhäuser, Boston, 2004.

[14] P. C. Hansen. Analysis of discrete ill-posed problems by means of the L-
curve. SIAM Rev., 34:561–580, 1992.

[15] P. C. Hansen. Rank-deficient and Discrete Ill-posed Problems. Numerical
Aspects of Linear Inversion. SIAM, Philadelphia, 1998.

24



[16] P. C. Hansen and D. P. O’Leary. The use of the L-curve in the regularization
of discrete ill-posed problems. SIAM J. Sci. Comput., 14:1487–1503, 1993.

[17] J. Heirtzler. The future of the South Atlantic anomaly and implications for
radiation damage in space. J. Atmos. Sol.-Terr. Phy., 64:1701–1708, 2002.

[18] K. H. Ilk, J. Flury, R. Rummel, P. Schwintzer, W. Bosch,
C. Haas, J. Schröter, D. Stammer, W. Zahel, H. Schmeling,
D. Wolf, J. Riegger, A. Bardossy, and A. Güntner. Mass trans-
port and mass distribution in the Earth system:Contribution of
the New Generation of Satellite Gravity and Altimetry Missions to
Geosciences. Proposal for a German priority research program,
1st edition, GOCE-Projektbüro TU München, GeoForschungsZentrum
Potsdam, 2004. http://gfzpublic.gfz-potsdam.de/pubman/faces/
viewItemOverviewPage.jsp?itemId=escidoc:231104:1, last access: 10
October 2016.

[19] J. Kusche, V. Klemann, and N. Sneeuw. Mass distribution and mass trans-
port in the Earth system: recent scientific progress due to interdisciplinary
research. Surv. Geophys., 35:1243–1249, 2014.

[20] M. A. Lukas. Robust generalized cross-validation for choosing the regular-
ization parameter. Inverse Probl., 22:1883–1902, 2006.

[21] M. A. Lukas. Strong robust generalized cross-validation for choosing the
regularization parameter. Inverse Probl., 24:034006, 2008.

[22] S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictio-
naries. IEEE T. Signal Proces., 41:3397–3415, 1993.

[23] V. Michel. Lectures on Constructive Approximation – Fourier, Spline, and
Wavelet Methods on the Real Line, the Sphere, and the Ball. Birkhäuser,
New York, 2013.

[24] V. Michel. RFMP – an iterative best basis algorithm for inverse problems in
the geosciences. In W. Freeden, M. Nashed, and T. Sonar, editors, Hand-
book of Geomathematics, pages 2121–2147. Springer, Berlin, Heidelberg,
2nd edition, 2015.

[25] V. Michel and S. Orzlowski. On the convergence theorem for the Regu-
larized Functional Matching Pursuit (RFMP) algorithm. Preprint, Siegen
Preprints on Geomathematics, Issue 13, 2016.

[26] V. Michel and R. Telschow. A non-linear approximation method on the
sphere. GEM. Int. J. Geomath., 5:195–224, 2014.

[27] V. Michel and R. Telschow. The regularized orthogonal functional matching
pursuit for ill-posed inverse problems. SIAM J. Numer. Anal., 54:262–287,
2016.

25



[28] V. A. Morozov. On the solution of functional equations by the method of
regularization. Sov. Math. Dokl., 7:414–417, 1966.

[29] V. A. Morozov. Methods for Solving Incorrectly Posed Problems. Springer,
New York, 1984.

[30] C. Müller. Spherical Harmonics. Springer, Berlin, Heidelberg, 1966.

[31] R. Pail, H. Goiginger, W.-D. Schuh, E. Höck, J. M. Brockmann, T. Fecher,
T. Gruber, T. Mayer-Gürr, J. Kusche, A. Jäggi, and D. Rieser. Combined
satellite gravity field model GOCO01S derived from GOCE and GRACE.
Geophys. Res. Lett., 37:L20314, 2010.

[32] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching
pursuit: recursive function approximation with applications to wavelet de-
composition. In Asimolar Conference on Signals, Systems and Computers,
volume 1 of IEEE Conference Publications, pages 40–44, 1993.

[33] N. K. Pavlis, S. A. Holmes, S. C. Kenyon, and J. K. Factor. The develop-
ment and evaluation of the Earth Gravitational Model 2008 (EGM2008).
J. Geophys. Res.-Sol. Ea., 117, 2012.

[34] D. Phillips. A technique for the numerical solution of certain integral equa-
tions of the first kind. J. Assoc. Comput. Mach., 9:84–97, 1962.

[35] T. Raus. An a posteriori choice of the regularization parameter in case
of approximately given error bound of data. In A. Pedas, editor, Collo-
cation and Projection Methods for Integral Equations and Boundary Value
Problems, pages 73–87. Tartu: Tartu University, 1990.

[36] T. Raus. About regularization parameter choice in case of approximately
given error bounds of data. In G. Vainikko, editor, Methods for Solution
of Integral Equations and Ill-posed Problems, pages 77–89. Tartu: Tartu
University, 1992.

[37] C. Reigber, G. Balmino, P. Schwintzer, R. Biancale, A. Bode, J.-M.
Lemoine, R. König, S. Loyer, H. Neumayer, J.-C. Marty, F. Barthelmes,
F. Perosanz, and S. Y. Zhu. New global gravity field models from selected
CHAMP data sets. In First CHAMP Mission Results for Gravity, Mag-
netic and Atmospheric Studies, pages 120–127. Springer, Berlin, Heidelberg,
2003.

[38] R. Reuter. Integralformeln der Einheitssphäre und harmonische Splinefunk-
tionen. PhD thesis, RWTH Aachen, 1982.

[39] T. Robinson and R. Moyeed. Making robust the cross-validatory choice
of smoothing parameter in spline smoothing regression. Commun. Stat.
Theory Methods, 18:523–539, 1989.

26



[40] F. Schneider. Inverse Problems in Satellite Geodesy and Their Approx-
imation in Satellite Gradiometry. PhD thesis, Geomathematics Group,
Department of Mathematics, University of Kaiserslautern, 1997.

[41] B. D. Tapley, S. Bettadpur, M. Watkins, and C. Reigber. The gravity recov-
ery and climate experiment: mission overview and early results. Geophys.
Res. Lett., 31, 2004. L09607.

[42] R. Telschow. An Orthogonal Matching Pursuit for the Regularization of
Spherical Inverse Problems. PhD thesis, Geomathematics Group, Depart-
ment of Mathematics, University of Siegen, 2014, Verlag Dr. Hut, Munich,
2015.

[43] A. Tikhonov and V. Y. Arsenin. Solutions of Ill-posed Problems. Wiley,
New York, 1977.

[44] A. Tikhonov and V. Glasko. Use of the regularization method in non-linear
problems. USSR Comput. Math. Math. Phys., 5:93–107, 1967.

[45] P. Vincent and Y. Bengio. Kernel matching pursuit. Machine Learning,
48:165–187, 2002.

[46] R. Vio, P. Ma, W. Zhong, J. Nagy, L. Tenorio, and W. Wamsteker. Esti-
mation of regularization parameters in multiple-image deblurring. Astron.
Astrophys., 423:1179–1186, 2004.

[47] G. Wahba. Practical approximate solutions to linear operator equations
when the data are noisy. SIAM J. Numer. Anal., 14:651–667, 1977.

[48] G. Wahba. A comparison of GCV and GML for choosing the smooth-
ing parameter in the generalized spline smoothing problem. Ann. Stat.,
13:1378–1402, 1985.

27



 

  



Siegen Preprints  

on Geomathematics 
 

The preprint series “Siegen Preprints on Geomathematics” was established in 2010. 

See www.geomathematics-siegen.de for details and a contact address. At present, 

the following preprints are available: 

1. P. Berkel, D. Fischer, V. Michel: Spline multiresolution and numerical results for 

joint gravitation and normal mode inversion with an outlook on sparse 

regularisation, 2010. 

2. M. Akram, V. Michel: Regularisation of the Helmholtz decomposition and its 

application to geomagnetic field modelling, 2010. 

3. V. Michel: Optimally Localized approximate identities on the 2-sphere, 2010. 

4. N. Akhtar, V. Michel: Reproducing kernel based splines for the regularization of 

the inverse spheroidal gravimetric problem, 2011. 

5. D. Fischer, V. Michel: Sparse regularization of inverse gravimetry – case study: 

spatial and temporal mass variations in South America, 2011. 

6. A.S. Fokas, O. Hauk, V. Michel: Electro-magneto-encephalography for the 

three-shell model: numerical implementation for distributed current in spherical 

geometry, 2011. 

7. M. Akram, I. Amna, V. Michel: A study of differential operators for complete 

orthonormal systems on a 3D ball, 2011. 

8. D. Fischer, V. Michel: How to combine spherical harmonics and localized bases 

for regional gravity modelling and inversion, 2012. 

9. D. Fischer, V. Michel: Inverting GRACE gravity data for local climate effects, 

2012. 

10. V. Michel, R. Telschow: A non-linear approximation method on the sphere, 

2014. 

11. V. Michel, R. Telschow: The Regularized Orthogonal Functional Matching 

Pursuit for ill-posed inverse problems, 2014. 

12. V. Michel, S. Orzlowski: On the null space of a class of Fredholm integral 

equations of the first kind, 2015. 



13. V. Michel, S. Orzlowski: On the convergence theorem for the Regularized 

Functional Matching Pursuit (RFMP) algorithm, 2016. 

14. I. Amna, V. Michel: Pseudodifferential operators and equidistribution on the 

3D-ball - an approach based on orthonormal basis systems, 2016. 

15. S. Gramsch, M. Kontak, V. Michel: Three-dimensional simulation of nonwoven 

fabrics using a greedy approximation of the distribution of fiber directions, 

2016. 

16. M. Gutting, B. Kretz, V. Michel, R. Telschow: Study on parameter choice 

methods for the RFMP with respect to downward continuation, 2016. 

 

  



 
  



 

Geomathematics Group Siegen

Prof. Dr. Volker Michel 

 

 

Contact at: 

Geomathematics Group 

Department of Mathematics 

University of Siegen 

Walter‐Flex‐Str. 3 

57068 Siegen 

www.geomathematics‐siegen.de 

 


	Rahmen_a
	spg_16_Vorlage
	Rahmen_b

