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Vectorial Slepian Functions on the Ball
V. Michel, S. Orzlowski, N. Schneider

Geomathematics Group, Department of Mathematics, University of Siegen, Germany

Abstract Due to the uncertainty principle, a function cannot be simultaneously lim-
ited in space as well as in frequency. The idea of Slepian functions in general is to find
functions that are at least optimally spatio-spectrally localised. Here, we are looking for
Slepian functions which are suitable for the representation of real-valued vector fields
on a three-dimensional ball. We work with diverse vectorial bases on the ball which all
consist of Jacobi polynomials and vector spherical harmonics. Such basis functions occur
in the singular value decomposition of some tomographic inverse problems in geophysics
and medical imaging, see [39]. Our aim is to find bandlimited vector fields that are
well-localised in a part of a cone whose apex is situated in the origin. Following the ori-
ginal approach towards Slepian functions, the optimisation problem can be transformed
into a finite-dimensional algebraic eigenvalue problem. The entries of the corresponding
matrix are treated analytically as far as possible. For the remaining integrals, numerical
quadrature formulae have to be applied. The eigenvalue problem decouples into a normal
and a tangential problem. The number of well-localised vector fields can be estimated
by a Shannon number which mainly depends on the maximal radial and angular degree
of the basis functions as well as the size of the localisation region. We show numerical
examples of vectorial Slepian functions on the ball, which demonstrate the good local-
isation of these functions and the accurate estimate of the Shannon number.

Keywords: ball, bandlimited functions, eigenvalue problem, Jacobi polynomials, spatio-
spectral localisation, spectral analysis, vector spherical harmonics, vectorial Slepian con-
centration problem

MSC: 33C45, 33C47, 33C50, 41A10, 41A30, 42C99, 65T99, 86-08

1. Introduction
An example for a tomographic problem in mathematics with an unknown vector field can
be obtained from medical imaging, more explicitly neuroscience. The effects of the neural
currents in the brain can be measured by means of magnetoencephalography, MEG, or
electroencephalography, EEG. As it was shown in [39], the inversion of EEG-MEG-data
is mathematically related to other inverse problems, for example, in the geosciences. In
a mathematical model, the unknown currents can be represented as vectorial functions
on a ball. Note that the neural currents exist in the cerebrum which is a proper subset
of the interior of the scalp.
For tomographic inverse problems, where the unknown is a function on the ball, several
different approaches have been used up to now for the construction of localised trial
functions including wavelet- and spline-based methods, see, for instance, [2, 12, 16, 32]
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[33, 34, 37, 38, 50, 51]. The more challenging task of finding localised vectorial functions
on the ball has, however, only rarely been tackled so far, although vectorial tomo-
graphic problems on balls and similar geometries occur in a series of applications (see
e.g. [6, 7, 8, 16, 17, 27, 46, 47, 48, 55]).
One out of many types of localised trial functions is represented by Slepian functions.
Such functions have been constructed in several settings. At first, localised functions on
the real axis have been presented by Landau, Pollak and Slepian in [29, 53, 54]. Later,
scalar Slepian functions on the sphere, for example [1, 52], and on the ball, for example
[28], as well as Slepian vector fields on the sphere, for example [26, 45], were studied.
Slepian functions have also been used for inverse problems on the sphere, see, for example
[43, 44]. Other studies on Slepian functions, for example [24, 31, 42], emphasize more
specific details. With respect to the MEG-problem, vectorial Slepian functions have
been discussed in [30]. In this approach, a (physically motivated) reproducing kernel
and the sensor positions are used to generate vectorial basis functions on the ball (in the
nomenclature of [2, 4, 16], these functions could be interpreted as spline basis functions).
The Slepian functions are then derived as optimally localised expansions in this ‘spline’
basis. We will elaborate here an alternative ansatz by using some known orthonormal
bases on the ball. The reason is that, in a forthcoming publication, we want to use
Slepian functions in some regularisation algorithms (see [13, 14, 36, 40, 41, 56]), which
profit numerically from analytic expressions for the application of the forward operator
to the used trial functions. We expect to be able to derive such expressions for basis
systems of the considered types. To the knowledge of the authors, such vectorial Slepian
functions on the ball are new.
The uncertainty principle forbids that a function can be limited in space and frequency
at the same time. Thus, for Slepian functions in general, the boundedness in frequency
is usually fixed. Then optimally localised functions can be considered. The general
approach to the previously studied Slepian functions can be summed up as follows for
the case of spatial localisation. In principle, we consider functions on a domain D which
shall be localised to a subdomain R. Then the quotient of the L2(R)-norm and the
L2(D)-norm is considered and is called the energy ratio. It is assumed that the Fourier
expansion of the Slepian functions with respect to a chosen orthonormal basis has a finite
number of terms (bandlimited expansion) – for this reason, the use of a different (finite)
basis essentially changes the obtained Slepian functions. By inserting this expansion into
the energy ratio, the problem is equivalently formulated as a finite-dimensional algebraic
eigenvalue problem of a so-called localisation matrix. The expansion coefficients of one
Slepian function form the entries of one eigenvector of this matrix. The corresponding
eigenvalue equals the energy ratio. An entry of this matrix is defined as the respective
inner product of two basis functions. Therefore, the Gramian matrix of the eigenvalue
problem can be calculated independently of the Slepian functions. Its solution yields a set
of functions, which have a finite expansion in the chosen basis and a related localisation
measure. Hence, their localisation in R can be compared pairwise. Functions are better
localised if their related eigenvalue has a higher value. Because of the principal axis
theorem, the eigenvectors constitute a basis for the respective Euclidean vector space.
Hence, the Slepian functions form an alternative basis in the respective function space
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due to Parseval’s identity. This approach was used in most publications regarding Slepian
functions. It is also convenient for our case of real-valued vector fields on the ball.
This paper is structured as follows. Section 2 points out some common geomathematical
notation. After that, three different vector bases on the ball are defined in Section 3.
They all consist of Jacobi polynomials and vector spherical harmonics. In Section 4, the
bases are used to formulate the bandlimited orthogonal expansion of a Slepian vector
field. In Section 4.1, following the original approach towards Slepian functions, the
optimisation problem is rearranged to a finite-dimensional algebraic eigenvalue problem.
The entries of the Gramian matrix are treated analytically as far as possible. The
analysis can be found in Appendix A. For practical purposes, some specifications mainly
regarding the localisation region are made in Section 4.2. The aim is to find vector
fields that are well-localised in a part of a cone whose apex is situated in the origin. In
Section 4.3, the number of well-localised vector fields is predicted by a Shannon number.
Finally, some Slepian functions are computed numerically and illustrated in Section 5.
It can be seen that the obtained functions are, indeed, strongly localised in the chosen
region.

2. Preliminaries
In the sequel, we sum up the definitions needed for the formulation of the Slepian
localisation problem. In this paper, the common geomathematical notation will be used.
It is introduced, for example, in [18, 19, 35]. The terms

Ω :=
{
ξ ∈ R3 : |ξ| = 1

}
, B :=

{
x ∈ R3 : |x| ≤ 1

}
stand for the unit sphere and the unit ball, respectively. For a measurable subset S ⊆ R3,
we define l2(S) := L2(S,R3). S can also be a surface in R3. A parameterisation of any
point x in R3 is given by

x(r, ϕ, t) =
(
r
√

1− t2 cos(ϕ), r
√

1− t2 sin(ϕ), rt
)T

(1)

for r ∈ [0,∞[, ϕ ∈ [0, 2π[ and t ∈ [−1, 1], t = cos(θ), θ ∈ [0, π]. Note that for any point
ξ ∈ Ω, the radial coordinate equals 1.
The surface gradient operator ∇∗ represents the angular part (up to a factor 1

r for the
length r of a point) of the gradient operator ∇. Furthermore, the surface gradient
operator always yields a tangential field. The Beltrami operator ∆∗ is correspondingly
the angular part of the Laplace operator ∆ (up to a factor 1

r2 for the length r of a point).
Moreover, the surface curl L∗ is defined via (L∗F )(ξ) := ξ×∇∗F (ξ). For further details,
see, e.g., [19, pp. 37-38] or [35, p. 87] and Appendix A of this paper. Note that there
exist versions of Green’s theorems with these surface operators, see, for instance, [19,
pp. 40-41].
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3. Orthonormal Basis Systems on the Ball
Note that we consider here a modelling based on polar coordinates, because structures in
a human brain (and inside the Earth) are, roughly speaking, layers with almost spherical
boundaries. For this reason, we need corresponding basis systems, as they can be found
in [3, 9, 39, 57] (see also the references therein). For orthogonal polynomials on B with
cartesian coordinates, see [10].
To obtain a vectorial orthonormal basis on the ball B, we transform the scalar functions
by means of the operators defined, for instance, in [18, p. 218]. Hence, we use com-
binations of diverse Jacobi polynomials and vector spherical harmonics. The latter are
defined as follows for ξ ∈ Ω:

y
(1)
n,j(ξ) := ξYn,j(ξ), y(2)

n,j(ξ) :=
√

1
n(n+ 1)∇

∗
ξYn,j(ξ), y

(3)
n,j(ξ) :=

√
1

n(n+ 1)L∗ξYn,j(ξ),

where Yn,j(ξ) are scalar spherical harmonics, for instance fully normalised spherical
harmonics as orthonormal polynomials on Ω. These are given as follows, see, for instance,
[18, p. 142]: for n ∈ N0, j ∈ Z, |j| ≤ n as well as polar coordinates ϕ ∈ [0, 2π[ and
t ∈ [−1, 1] we define

Yn,j(ξ(ϕ, t)) :=
√

(2n+ 1)
2

(n− |j|)!
(n+ |j|)! Pn,|j|(t)

1√
2π


√

2 cos (jϕ) , j < 0,

1, j = 0,
√

2 sin (jϕ) , j > 0

(2)

=: bn,jPn,|j|(t)
1√
2π

cj(ϕ).

The functions Pn,|j|, n ∈ N0, j = −n, ..., n, stand for associated Legendre functions. Note
that y(1)

n,j is defined for all non-negative integers n, but y(2)
n,j and y

(3)
n,j are only defined for

positive integers n. In the following, this will be denoted by
n ≥ 0i for 0i := 1− δi1

for the Kronecker Delta δi1 and i ∈ {1, 2, 3}. Then a basis of l2(B) is given as follows.

Definition 1: Let β > 0 be the radius of a given ball. Further, fixed integers are given
by i = 1, 2, 3, m ∈ N0, n ∈ N0i and j = −n, . . . , n. The functions P (α,β)

m stand for the
Jacobi polynomials. The functions y(i)

n,j denote vector spherical harmonics. At last, let
any point x ∈ B be given by x = rξ with r = |x| and ξ ∈ Ω. The system I is defined for
x ∈ B by

g
(I,i)
m,n,j (rξ) := F I

m,n(r) y(i)
n,j(ξ) :=

√
4m+ 2n+ 3

β3 P (0,n+1/2)
m

(
2r2

β2 − 1
)(

r

β

)n
y

(i)
n,j(ξ).

The systems II and III are defined for x ∈ B\{0}. The system II is given by

g
(II,i)
m,n,j (rξ) := F II

m,n(r) y(i)
n,j(ξ) :=

√
2m+ 3
β3 P (0,2)

m

(2r
β
− 1

)
y

(i)
n,j(ξ)
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and the system III is defined by

g
(III,i)
m,n,j (rξ) := F III

m,n(r) y(i)
n,j(ξ) :=

√
4m+ 2n+ 1

β3 P (0,n−1/2)
m

(
2r2

β2 − 1
)(

r

β

)n−1
y

(i)
n,j(ξ).

Note that only system I is well-defined in the origin. However, in the sense of l2(B), this
can be neglected. Further, the systems I and III are obviously very similar. Wherever
in this paper statements are made that hold true for every system I, II and III, the
formulation g(?,i)

m,n,j will be used.

Theorem 2: By construction, the functions of each system given in Definition 1 are
orthonormal and complete in l2(B).

Proof. The inner product of l2(B) of g(?,i)
m,n,j and g

(?,i′)
m′,n′,j′ yields〈

g
(?,i)
m,n,j , g

(?,i′)
m′,n′,j′

〉
l2(B)

=
∫
B
g

(?,i)
m,n,j(x) · g(?,i′)

m′,n′,j′(x) dx

=
∫ β

0

∫
Ω
g

(?,i)
m,n,j(rξ) · g

(?,i)
m′,n′,j′(rξ) r

2 dω(ξ) dr

=
∫ β

0
F ?m,n(r)F ?m′,n′(r)r2 dr

∫
Ω
y

(i)
n,j(ξ) · y

(i′)
n′,j′(ξ) dω(ξ). (3)

The orthonormality and completeness of the vector spherical harmonics on l2(Ω) are
well known, see for instance [18, pp. 219-220]. The integral over [0, β] is discussed,
for example, in [35, pp. 249–252] for systems I and II, and in [39, Th. 3.1] for system
III. Both references include the orthonormality and completeness of the radial systems
F ?m,n, ? ∈ {I, II, III} on the corresponding weighted L2-space on [0, β]. Hence, the
combination of these systems forms an orthonormal basis in the space l2(B).

The systems from Definition 1 serve in a Fourier expansion of a function f ∈ l2(B):

f =
3∑
i=1

∞∑
m=0

∞∑
n=0i

n∑
j=−n

f?i,m,n,jg
(?,i)
m,n,j , f?i,m,n,j :=

∫
B
f(x) · g(?,i)

m,n,j(x) dx.

Note that this equality includes that the series above converges in the sense of l2(B).
In this paper, summations of Fourier expansions of vectorial functions will be written as∑

i,m,n,j

:=
3∑
i=1

∞∑
m=0

∞∑
n=0i

n∑
j=−n

,
M,N∑
i,m,n,j

:=
3∑
i=1

M∑
m=0

N∑
n=0i

n∑
j=−n

.

Analogous versions are used if one or more summations are missing. Furthermore, the
vector of all Fourier coefficients is defined as

f̂? := (f?i,m,n,j)i=1,2,3,m≥0,n≥0i,j=−n,...,n

for each system I, II and III, where ? again represents this choice.
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4. Localisation of bandlimited vector fields
Now we can formulate the localisation problem. For a certain subregion, we give the
entries of the Gramian matrix. At last, we consider the number of well-localised functions
for this subregion. From now on, every vector field f is bandlimited. This means we
have

f =
M,N∑
i,m,n,j

f?i,m,n,j g
(?,i)
m,n,j

for M ∈ N0, N ∈ N0i and ? ∈ {I, II, III}.

4.1. Mathematical formulation with respect to arbitrary localisation
regions

The Slepian functions shall define a basis of a finite-dimensional subspace of l2(B). How-
ever, an everywhere vanishing vector field cannot be a basis function. Therefore, we
assume that f 6≡ 0.
Further, the Slepian functions shall be localised in a measurable subset R ⊆ B. There-
fore, a measure for the localisation of a vector field has to be defined, which will be done
here in accordance with the known concept of Slepian functions for the other cases.

Definition 3: For a square-integrable vector field f : B → R3, a localisation parameter
is formulated by the energy ratio

λ :=
‖f‖2l2(R)
‖f‖2l2(B)

=

∫
R
f(x) · f(x) dx∫

B
f(x) · f(x) dx

.

It clearly holds true that λ ∈ [0, 1]. The energy ratio and the expansion yield an
eigenvalue problem as follows:

λ =

M,N∑
i,m,n,j

M,N∑
i′,m′,n′,j′

f?i,m,n,j

[∫
R
g

(?,i)
m,n,j(x) · g(?,i′)

m′,n′,j′(x) dx
]
f?i′,m′,n′,j′

M,N∑
i,m,n,j

(
f?i,m,n,j

)2
=

(
f̂?
)T

K?f̂?(
f̂?
)T

f̂?
,

where we used the Parseval identity in the denominator. The localisation matrix K? has
the form

K? :=


P ? 0 0

0 B? D?

0 (D?)T C?

 =:

P ? 0

0 Q?

 , K?
p,p′ :=

∫
R
g

(?,i)
m,n,j(x) · g(?,i′)

m′,n′,j′(x) dx (4)

for p = (i,m, n, j) and p′ = (i′,m′, n′, j′). The submatrix P ? belongs to the case i =
i′ = 1, B? to i = i′ = 2, C? to i = i′ = 3 and D? to i = 2 and i′ = 3. The submatrix
Q? combines all four block matrices originating from the tangential problem. The cases
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i = 1 with i′ ∈ {2, 3} and vice versa vanish as the basis functions g(?,1)
m,n,j are pointwise

orthonormal to g(?,2)
m,n,j and g

(?,3)
m,n,j in the Euclidean sense. This holds true because g(?,1)

m,n,j is
a normal field to concentric spheres around 0 and g(?,i)

m,n,j , i ∈ {2, 3} are tangential fields
by construction. The matrix K? is symmetric due to the symmetry of the Euclidean
inner product. Thus, the case i = 3 and i′ = 2 yields the transpose (D?)T of the case
i = 2 and i′ = 3 as a submatrix. The number of rows and columns, respectively, of K?

is
Z := (M + 1)(3(N + 1)2 − 2).

The energy ratio λ is an eigenvalue of K?. The Principal Axis Theorem yields that K?

can be diagonalised. Moreover, K? has only real eigenvalues λ?k for positive integers
k ≤ Z. The related eigenvectors f̂k

?
, k ≤ Z, are also real and form an orthonormal

basis of RZ . Furthermore, they contain the Fourier coefficients of the vector field f . The
associated eigenfunctions f?k with index k = 1, . . . , Z are defined as

f?k :=
M,N∑
i,m,n,j

(
f̂k
)?
i,m,n,j

g
(?,i)
m,n,j .

They are called vectorial Slepian functions on the ball.

Remark 4: A few properties of vectorial Slepian functions on the ball shall be remarked
at this point.

1. Their definition shows that a vectorial Slepian function on the ball is a bandlimited
vector field, whose Fourier coefficients constitute an eigenvector of the localisation
matrix K?. The corresponding eigenvalue equals the energy ratio of the vectorial
Slepian function.

2. The best-localised vectorial Slepian function on the ball solves the optimisation
problem λ −→ max.

3. For a set of vectorial Slepian functions, the maximal eigenvalue can be determined.
The vectorial Slepian functions on the ball with respect to an eigenvalue close to
this maximal eigenvalue are called well-localised.

4. For a fixed ? ∈ {I, II, III}, the system of vectorial Slepian functions on the ball
{f?k : k = 1, . . . , Z} forms an orthonormal system in l2(B) as well as an orthogonal
system in l2(R) due to Parseval’s identity and the eigenvector property.

For practical purposes, the predominant question is what the matrix entries of K? look
like in detail. If these are calculated, the eigenvalues and -vectors of K? can be deter-
mined with the use of well-known methods from numerical linear algebra. Thereby, more
or less – depending on the value of the related eigenvalue – spatially localised vectorial
Slepian functions on the ball are obtained.
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4.2. Specifications for numerical experiments

The entries of K? cannot be more specified in the general setting. Both the localisation
region R and the vector spherical harmonics within the basis functions g(?,i)

m,n,j have to
be fixed. The basis functions are constructed with the use of fully normalised spherical
harmonics for practical purposes. With these, vector spherical harmonics and, hence,
basis functions g(?,i)

m,n,j are constituted.
The localisation regions in the brain that are of interest to the imaging of neural currents
are defined as follows.

Definition 5: Let β ∈ ]0,∞[ be the radius of the ball. Further, let the parameters
a ∈ [0, β[, b ∈ ]a, β] and Θ ∈ ]0, π] be fixed. For the construction of vectorial Slepian
functions on the ball, the localisation region R is called the original partial cone and is
defined as

R :=
{
x(r, ϕ, t) ∈ R3 : a ≤ r ≤ b, 0 ≤ ϕ < 2π, cos(Θ) ≤ t ≤ 1

}
, (5)

where r, ϕ and t are spherical coordinates.

−1−0.5
0

0.5
1

−1 −0.5 0
0.5

1

−1

−0.5

0

0.5

1

xy

z

Fig. 1: Example of an original partial
cone. The boundaries of the
cone are marked in yellow. The
cone is defined by a = 0.25, b =
0.75 and Θ = 45◦ = π

4 .

This region resembles a part of a cone. Its height is dir-
ected at (0, 0, 1)T. Clearly, for a fixed radius r, the inter-
section of R and the sphere with radius r and centre 0 is
a so-called spherical cap. An example of a region of this
type is given in Figure 1. With the use of Wigner rota-
tion matrices, as described, for example, in [5, App. C.8],
the Slepian vector fields can be rearranged. This allows
the concentration of functions to partial cones of the
type R, where, however, the symmetry axis (t = 1) is
arbitrarily rotated. All cones as defined above have in
common that their apex is situated in the origin.
In combination with the fully normalised spherical har-
monics, these subsets of the ball prove to be very con-
venient. Regarding the entries of K?, properties like the

fact that the spherical harmonics are the eigenfunctions of the Beltrami operator, the
periodicity of sine and cosine and Green’s surface identities simplify the volume integ-
rals. At this point, the results are assembled. Prior to this overview of matrix entries,
certain recurring factors are abbreviated.

Definition 6: A shorthand notation of normalisation factors of Jacobi polynomials and
the radial integrals with respect to the systems I, II and III is introduced as follows:

aI
m,m′,n,n′ :=

√
(4m+ 2n+ 3)(4m′ + 2n′ + 3)

2n+n′+5 , aII
m,m′,n,n′ :=

√
(2m+ 3)(2m′ + 3)

64 ,

aIII
m,m′,n,n′ :=

√
(4m+ 2n+ 1)(4m′ + 2n′ + 1)

2n+n′+3 ,
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II
m,m′,n,n′ :=

∫ 2b2
β2 −1

2a2
β2 −1

P (0,n+1/2)
m (u) P (0,n′+1/2)

m′ (u)(u+ 1)(n+n′+1)/2 du,

III
m,m′,n,n′ :=

∫ 2b
β
−1

2a
β
−1

P (0,2)
m (u) P (0,2)

m′ (u)(u+ 1)2 du,

IIII
m,m′,n,n′ :=

∫ 2b2
β2 −1

2a2
β2 −1

P (0,n−1/2)
m (u) P (0,n′−1/2)

m′ (u)(u+ 1)(n+n′−1)/2 du.

This notation provides the matrix entries as follows. The necessary computations can
be found in detail in Appendix A.

Theorem 7: Let fully normalised spherical harmonics be used to construct vectorial basis
functions of system I, II or III. Further, the vectorial Slepian functions on the ball shall
be localised in the original partial cone. The localisation matrix of the related eigenvalue
problem is denoted by K?. Then the use of the abbreviations from Definition 6 gives the
entries of K? with ? ∈ {I, II, III} as:

K?
(1,m,n,j),(1,m′,n′,j′) = a?m,m′,n,n′I

?
m,m′,n,n′bn,jbn′,jδjj′

∫ 1

cos(Θ)
Pn,|j|(t)Pn′,|j|(t) dt,

K?
(2,m,n,j),(2,m′,n′,j′) = K?

(3,m,n,j),(3,m′,n′,j′)

= a?m,m′,n,n′I
?
m,m′,n,n′bn,jbn′,jδjj′

(√
n′(n′ + 1)
n(n+ 1)

∫ 1

cos(Θ)
Pn,|j|(t)Pn′,|j|(t) dt

− sin2 (Θ)√
n(n+ 1)n′(n′ + 1)

Pn,|j|(cos (Θ))P ′n′,|j|(cos (Θ))
)
,

K?
(2,m,n,j),(3,m′,n′,j′)

= a?m,m′,n,n′I
?
m,m′,n,n′bn,jbn′,−j

jδ−j,j′√
n(n+ 1)n′(n′ + 1)

Pn,|j|(cos (Θ))Pn′,|j′|(cos (Θ)).

The proof of these identities can be found in Appendix A. Note that the submatrices B?

and C? coincide in this setting.

4.3. The number of well-localised vector fields

The solution of the eigenvalue problem yields as many as Z vectorial Slepian functions
on the ball. As mentioned before in Remark 4, these functions can be subdivided into
well-localised and poorly-localised ones. Hence, an eigenvalue related to a well-localised
function is called significant. Otherwise, it is called insignificant. This ‘division’ helps us
to consider the number of well-localised Slepian functions which is called the Shannon
number S?.
The idea of the familiar approach is as follows: the Shannon number can be estimated
by the summation of all eigenvalues. On the one hand, significant eigenvalues are values
closer to one than to zero. Assume, these values are precisely one. On the other hand,
insignificant eigenvalues attain values that are not close to one. In analogy, the assump-
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tion is made that the values are strictly zero. Then the summation of all eigenvalues
coincides with the number of significant eigenvalues. Hence, it also concurs with the
number of well-localised vectorial Slepian functions on the ball. This idea was utilised
in the previous works on Slepian functions mentioned above.
Due to basic linear algebra, see for instance [15, pp. 229-230], it holds true that similar
matrices have the same trace. Hence, the Shannon number can be computed by

S? =
Z∑
k=1

λ?k =
M,N∑
i,m,n,j

∫
R
g

(?,i)
m,n,j(x) · g(?,i)

m,n,j(x) dx.

In this paper, the original partial cone is chosen as the localisation region R for practical
purposes. This region is a particular case of a general type of subsets of the ball: regions
R with independent radial and angular part. For such regions, the volume integrals
of the matrix entries can be separated into an integral of the product of two Jacobi
polynomials and the integral of the product of two vector spherical harmonics. The
first one can be dealt with as in Appendix A. Regarding the latter one, let C denote
the angular part of this separation. For the summation of the integral over C, we use a
derivation from the vectorial addition theorem as seen in [19, p. 244]. Thus, if system II
is chosen, we obtain

N∑
i,n,j

∫
C
y

(i)
n,j(ξ) · y

(i)
n,j(ξ) dω(ξ) = 3(N + 1)2 − 2

4π A(C),

where A(C) indicates the surface area of C. In the case of the original partial cone, this
is a spherical cap which can be modelled as a rotation surface. Thus, we obtain

A(C) = 2πβ2(1− cos (Θ))
for the radius β of the ball and the angle Θ of the spherical cap. If system I or III is
chosen, the surface integral can be simplified to∑

i,j

∫
C
y

(i)
n,j(ξ) · y

(i)
n,j(ξ) dω(ξ) = 3(2n+ 1)

4π A(C) ∀ 0i ≤ n ≤ N,

with the surface area A(C). With the derivations of the integral of Jacobi polynomials
as in Appendix A together with the considerations about the integral of vector spherical
harmonics above, the Shannon number rearranges to

SI = β2(1− cos (Θ))
M,N∑
m,n

3(2n+ 1)(4m+ 2n+ 3)
2n+7/2

×
∫ 2b2

β2 −1

2a2
β2 −1

P (0,n+1/2)
m (u)P (0,n+1/2)

m (u)(u+ 1)n+1/2 du


for system I. If system II is selected, the number is given by

SII = 3(N + 1)2 − 2
16 β2(1− cos (Θ))

M∑
m

(2m+ 3)
∫ 2b

β
−1

2a
β
−1

P (0,2)
m (u)P (0,2)

m (u)(u+ 1)2 du.
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And, in the case of system III,

SIII = β2(1− cos (Θ))
M,N∑
m,n

3(2n+ 1)(4m+ 2n+ 1)
2n+5/2

×
∫ 2b2

β2 −1

2a2
β2 −1

P (0,n−1/2)
m (u)P (0,n−1/2)

m (u)(u+ 1)n−1/2 du

 .
Each formula points out a particular property of the vectorial Slepian functions on the
ball: the number of well-localised functions depends on the highest possible radial and
angular degree as well as on the size of the localisation region. This is in analogy to the
previous works on other Slepian functions. Both dependencies can be explained. On the
one hand, the more functions are used for the Fourier expansion of a Slepian function,
the smaller the differences between two Slepian functions can be. Hence, if the size of
K? increases, the number of significant eigenfunctions increases as well. On the other
hand, the larger the localisation region is, the less the spherical harmonics and Jacobi
polynomials have to be suppressed. Spherical harmonics are also polynomials. Hence,
both functions are not well-localised. Thus, if the localisation region decreases, it is
harder to find well-localised eigenfunctions.

5. Numerical results
Next, some numerical results are presented. For this purpose, some notes on the imple-
mentation and the setting of the experiments are made. After that the distribution of
the eigenvalues is discussed and the constructed functions, the Shannon number as well
as the rotated vector fields are evaluated.
First of all, note the order of the presented results. The results are sorted by the chosen
systems. This means that Figures 2 to 5 belong to system I and include the distribution
of the eigenvalues, the Shannon number as well as a presentation of a normal field and a
tangential field with large eigenvalues from different perspectives. In analogy, Figures 6
to 9 consider system II, Figures 10 to 13 belong to system III and Figures 14 to 15 show
some rotated results of system I.
On subsets of B, the normal field of type 1 is orthonormal to both tangential fields of
types 2 and 3 of any system. Thus, the implementation solves the problems independ-
ently. It follows the lines of the description of solving the localisation problem given
above. In the following, we use the GNU Scientific Library (GSL) as documented in [22].
All remaining one-dimensional integrals are computed with the so-called ‘QAG adaptive
integration’ which is an adaptive integration method using Gauß-Kronrod quadrature
formulae, see [22, Sect. 17.3]. The term ‘QAG’ defines that it is a quadrature routine
(Q) with an adaptive integrator (A) and a user-defined general integrand (G), see [22,
p. 192]. We set the absolute error limit as well as the relative error limit to 10−12. We
allow a maximum of 1000 subintervals and use a 61 point Gauß-Kronrod rule in each
subinterval. For further literature on adaptive integration methods or the Gauß-Kronrod
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Fig. 2: Distribution of the eigenvalues of P I (left) and QI (right).
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Fig. 3: The distribution of the eigenvalues (blue) of KI in the cases Θ = 15◦, 25◦, 35◦, 45◦ (left to right) is
shown. With red, the Shannon number is marked. It is given by SI ≈ 20, 54, 104, 169 (left to right).

rule see, for instance, [20, 21], [25, Sect. 42] and [49, Sect. 7.5].
The Jacobi polynomials are highly oscillating in the origin in our setting. Throughout
our research, it turned out that a non-adaptive integration method does not seem to be
able to cope with these oscillations very well. An adaptive integration method, however,
refines the integration grid autonomously in such areas. With the use of quadrature
formulae with a high degree of exactness, this ansatz yields far more accurate integral
values.
With these values, the localisation matrix is composed. Next, the eigenvalue problem
is solved using the respective method implemented in the GSL, see [22, Sect. 15.1]. For
this type of matrices, a symmetric bidiagonalisation in combination with a QR reduction
method can be applied, see, for instance, [49, Sect. 5.5.3] and [23, Sect. 8.3].
After that, the Fourier coefficients of the additional rotated version of the Slepian func-
tions are calculated. This is done using Wigner rotation matrices for vector fields. It
follows the line of, for instance, [5, App. C.8]. At last, the values of the (rotated and
non-rotated) vectorial Slepian functions on the ball at certain points in the ball are
calculated with the use of their Fourier expansion.
Recall that the bandlimits are denoted by M ∈ N0 and N ∈ N0i and the boundaries
of the original partial cone are given by a, b ∈ [0, β] for the radius β of the ball and
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Fig. 4: Vectorial Slepian functions on the ball from system I. Here, a normal field with related eigenvalue 0.999056
is given. The representation of the Euclidean norm in the interior of the ball is shown. Blue depicts values
close to zero and yellow stands for large values. Moreover, the vectorial functions are shown on a sphere
with radius 0.5 (right).
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Fig. 5: Vectorial Slepian functions on the ball from system I. Here, a tangential field with related eigenvalue
0.999123 is given. The function is illustrated in a similar manner as in Figure 4. Note the rotated
coordinate system on the right-hand side (for a better visibility of the vectors).

Θ ∈ [0, π]. In the sequel, these parameters have to be fixed for the numerical experiments.
Independent of the system, the choices for the parameters or ‘settings’ of the experiments
are given as

M = 6, N = 12, a = 0.25, b = 0.75, Θ = 45◦ = π

4 .

The ball is always chosen to be the unit ball B, i.e. the radius is β = 1. Thus, Figure 1
pictures the setting of the localisation region. However, note that some pictures illustrate
the functions on a sphere. For this, the sphere with radius 0.5 is chosen for the plotting.
For experiments with respect to the Shannon number, the eigenvalues of the vectorial
Slepian functions are calculated for diverse scenarios with the angle of the localisation
region Θ varying between 15◦, 25◦, 35◦ and 45◦. However, the choices of M, N, a and
b remain fixed. At last, some results of system I are also presented with respect to a
rotation of the localisation region where all three Euler angles are chosen as π

2 .

The distribution of the eigenvalues The construction of the vectorial Slepian func-
tions can be divided into the calculation of the normal fields and the tangential fields.
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Fig. 6: Distribution of the eigenvalues of P II (left) and QII (right)-
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Fig. 7: The distribution of the eigenvalues (blue) of KII in the cases Θ = 15◦, 25◦, 35◦, 45◦ (left to right) is
shown. With red, the Shannon number is marked. It is given by SII ≈ 22, 62, 119, 193 (left to right).

The matrices P ? and Q?, as seen in (4), stand for the respective problems. The distri-
butions of the eigenvalues are depicted in Figures 2, 6 and 10. In each illustration, the
values are sorted in descending order.
The results of P ? as well as Q? are generally as expected. The eigenvalues are situated in
the interval [0, 1]. Further, both distributions show a rapid decrease for each underlying
basis system. This is explained by the fact that the localisation region is small compared
to the whole of the unit ball B as seen in Figure 1. Note that the number of used basis
functions with respect to the normal fields is 1183. The tangential fields use 2352 basis
functions.

Evaluation of the functions At first, a few general properties are remarked. It is
noticed that functions related to higher eigenvalues have less extrema as seen for instance
in Figures 4 and 5 in comparison to Figures 14 and 15 where we purposely selected a
Slepian function with a lower eigenvalue for each case. Further, Slepian functions with
one angular and one radial extremum were obtained in each experiment. These look very
similar with respect to their Euclidean norm as seen, for example, in Figures 8 and 9.
With respect to the results of systems I and III, the visually best-localised vectorial
Slepian function on the ball is not necessarily the one related to the highest eigenvalue.
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Fig. 8: Vectorial Slepian functions on the ball from system II. Here, a normal field with related eigenvalue 0.996101
is given. The representation of the Euclidean norm in the interior of the ball is shown. Blue depicts values
close to zero and yellow stands for large values. Moreover, the vectorial functions are shown on a sphere
with radius 0.5 (right).
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Fig. 9: Vectorial Slepian functions on the ball from system II. Here, a tangential field with related eigenvalue
0.996101 is given. The function is illustrated in a similar manner as in Figure 8. Note the rotated
coordinate system on the right-hand side (for a better visibility of the vectors).

However, its related eigenvalue is close to the maximal eigenvalue of the respective
normal or tangential problem. The examples presented here in Figures 4, 5, 12 and 13
show mainly functions related to one of the largest eigenvalues.
Regarding the directions of the vector fields in Figures 4, 5, 8, 9, 12 and 13, the functions
depict the usual normal as well as tangential fields. Note that, with respect to the normal
fields, the directions are either outer or inner normal vectors of a respective sphere.
However, in general, the tangential fields show some properties that are in need of an
explanation. A general representation of a tangential Slepian vector field is given by

f?(x) =
3∑
i=2

M,N∑
m,n,j

f?i,m,n,j g
(?,i)
m,n,j(x), x ∈ B.

In contrast to this, some functions possess the properties of the directions of the vector
spherical harmonics as pictured, for instance, in [11, p. 34]. Some tangential Slepian
vector fields have a vanishing surface curl. For others, the surface divergence is zero.
This is explained as follows. The localisation submatrix Q? can be rearranged into a
block-diagonal structure. This is done similarly as presented in [45]. This rearrangement



5. Numerical results 16

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

rank k

ei
ge

nv
al

ue
λ

II
I

k

0 500 1,000 1,500 2,000
0

0.2

0.4

0.6

0.8

1

rank k

ei
ge

nv
al

ue
λ

II
I

k

Fig. 10: Distribution of the eigenvalues of P III (left) and QIII (right).
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Fig. 11: The distribution of the eigenvalues (blue) of KIII in the cases Θ = 15◦, 25◦, 35◦, 45◦ (left to right) is
shown. With red, the Shannon number is marked. It is given by SIII ≈ 21, 57, 109, 177 (left to right).

yields

Q? =



Q?0 0 · · · 0

0 Q?−1 0

0 Q?1 0
...

... . . . . . . . . .

0 Q?−N 0

0 · · · 0 Q?N


.

The submatrices Q?j have the form

Q?j =

 B?
j D?

j(
D?
j

)T
C?j

 =

 K?
(2,m,n,j),(2,m′,n′,j) K?

(2,m,n,j),(3,m′,n′,−j)

K?
(3,m′,n′,−j),(2,m,n,j) K?

(3,m,n,j),(3,m′,n′,j)


for fixed j = −N, . . . , N and running m, m′ = 0, . . . ,M and n, n′ = |j| + δj0, . . . , N .
Regarding a submatrixD?

j , the factor j is contained in the entriesK?
(2,m,n,j),(3,m′,n′,j′) and

K?
(3,m′,n′,j),(2,m,n,j′), respectively as seen in Theorem 7. If j = 0, these matrix coefficients
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Fig. 12: Vectorial Slepian functions on the ball from system III. Here, a normal field with related eigenvalue
0.998982 is given. The representation of the Euclidean norm in the interior of the ball is shown. Blue
depicts values close to zero and yellow stands for large values. Moreover, the vectorial functions are shown
on a sphere with radius 0.5 (right).
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Fig. 13: Vectorial Slepian functions on the ball from system III. Here, a tangential field with related eigenvalue
0.998987 is given. The function is illustrated in a similar manner as in Figure 12. Note the rotated
coordinate system on the right-hand side (for a better visibility of the vectors).

vanish, i.e. D?
0 = 0. Hence, the submatrix Q?0 for this case is again a block-diagonal

matrix:

Q?0 =

K?
(2,m,n,0),(2,m′,n′,0) 0

0 K?
(3,m,n,0),(3,m′,n′,0)

 =

B?
0 0

0 C?0

 .
Thus, one block provides Fourier coefficients for the basis functions g(?,2)

m,n,0. The other
one yields the coefficients for g(?,3)

m,n,0. Hence, for some tangential fields, their surface curl
vanishes. For others, the surface divergence is zero.
Next, the results for the different systems are described and compared. Among the
obtained functions, every combination of radial and angular extrema were observed
in the underlying numerical experiments. This means, there exist functions with one
radial extremum and a large amount of angular extrema as well as vice versa and every
combination in between. The results with respect to system I and III are very similar
to each other. This is justified by the similarity of the used basis functions.
The basis functions of system I contain the damping factor

(
r
β

)n
, where r denotes the

radial variable. Clearly, the influence of this factor diminishes near the surface of the ball.
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Fig. 14: Vectorial Slepian functions on the ball from system I. Here, a normal field with related eigenvalue 0.909985
is given. The representation of the Euclidean norm in the interior of the ball is shown. Blue depicts values
close to zero and yellow stands for large values. Moreover, the vectorial functions are shown on a sphere
with radius 0.5 (right).
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Fig. 15: Vectorial Slepian functions on the ball from system I. Here, a tangential field with related eigenvalue
0.909980 is given. The function is illustrated in a similar manner as in Figure 14. Note the rotated
coordinate system on the right-hand side (for a better visibility of the vectors).

This means that large values can be expected rather near or at the surface. Nonetheless,
the obtained Slepian functions like those in Figures 4 and 5 are well-localised in the
specified region.
With respect to system III, the basis functions have two important influences. On the
one hand, the factor

(
r
β

)n−1
has a similar effect on them as the respective one on system

I. On the other hand, the basis functions g(III,i)
m,0,0 are singular at the origin. These basis

functions are contained in the Fourier expansion of every normal Slepian function. To
present an example, where the localisation region provides a higher degree of difficulty
in the calculations, we chose a region in the interior of the ball that does not contain the
origin. As Figures 12 and 13 show, also system III provides well-localised vector fields.
Recall that system II contains no damping factor. Hence, the behaviour of the Jacobi
polynomials P (0,2)

m at −1 has a major impact on the basis functions. Note that, in the
used parameterisation, the argument t = −1 of P (0,2)

m (t) corresponds to the centre of the
ball. Thus, the basis functions of system II attain high values in a neighbourhood of
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this point and are discontinuous for n > 0 at the origin. The size of this neighbourhood
decreases for increasing radial degrees of the functions. The illustrations in Figures 8
and 9 show that, if less radial extrema are attained, the influence of the origin is hardly
recognizable and can, therefore, be neglected. All in all, the presented figures show
well-localised functions also with respect to system II.
The results of the vectorial Slepian functions on the ball can be summed up as follows. In
general, well-localised functions on the ball are obtained. Among these functions, some
have one radial and one angular extremum. Others attain several radial and/or angular
extrema. The properties noticed in the illustrations are explained by the theoretical
approach taken and are analogous to those of known Slepian functions on other domains.
Note that the vectorial Slepians functions on the ball inherit the properties of the chosen
basis system.

Θ SI SII SIII

15◦ 20 22 21

25◦ 54 62 57

35◦ 104 119 109

45◦ 169 193 177

Tab. 1: Approximate
Shannon number
of the diverse
experiments.

Evaluation of the Shannon number The experiments are
chosen as described above. The results are as expected. Figures 3,
7 and 11 show the distribution of the eigenvalues in the various
settings. Note that only the first 250 eigenvalues are shown. This
is done to improve the visualisation of the Shannon number. With
respect to the systems I, II and III, the distribution of the whole
set of eigenvalues from each experiment regarding the Shannon
number shows the same behaviour as seen in Figures 2, 6 and 10.
One figure stands for one experiment. The eigenvalues of P ? and
Q? are not separated here.
The approximate Shannon numbers of the experiments are given
in Table 1. Obviously, the amount of well-localised vectorial
Slepian functions on the ball increases if the size of the original

partial cone increases as well. This is not surprising, because larger regions require more
basis functions to cover the variability of all functions on such a subdomain. Moreover,
the Shannon number corresponding to system II is larger than those for systems I and
III, which becomes significant for bigger cones. Further, the Shannon number draws a
line between significant and insignificant eigenvalues at around 0.4 in each experiment.
Hence, the Shannon number predicts the number of well-localised Slepian functions
pretty well.

Evaluation of the rotated vector fields In the presented experiment, the vectorial
functions are rotated by equal Euler angles π

2 . The rotation of the vector fields only
alters the Fourier coefficients of the Slepian functions. Therefore, the eigenvalues remain
the same as in Figure 2. This means it suffices to calculate the Slepian functions only
for a partial cone centred around the North Pole, as we did it here, and to compute then
the Slepian functions for an arbitrarily located partial cone. The obtained functions are
merely rotated versions of the functions on the original partial cone, due to the symmetry
of the sphere.
Figures 14 and 15 show some rotated functions of system I. Here, two functions with
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slightly lower eigenvalues are presented to give an idea of what vectorial Slepian functions
on the ball can also look like. The properties, as for instance the directions of the vector
fields, and the idiosyncrasies, as for example the influence of the surface of the ball on
system I, of the functions certainly remain the same if they are rotated.

6. Conclusion
From the scope of certain tomographic problems on the ball such as the inverse MEG-
and EEG-problem, the need for well-localised vectorial functions on the ball occurs. The
difficulty therein is caused by the uncertainty principle. According to this, a function
cannot be simultaneously perfectly localised in space and in frequency. Therefore, in
this paper, bandlimited functions were constructed which are optimally space-localised.
This problem was approached in the following way. Three different vector bases on the
ball were used to build the bandlimited Fourier expansion of a Slepian vector field. They
all consist of Jacobi polynomials and vector spherical harmonics. These bases are called
systems I, II and III. The localisation region was defined as a part of a cone whose apex
is situated in the origin. Following the original approach towards Slepian functions, the
optimisation problem was altered into a finite-dimensional algebraic eigenvalue problem.
The entries of the corresponding matrix were treated analytically as far as possible. The
eigenvalue problem decouples into a normal and a tangential problem. For the remaining
integrals and the eigenvalue problems, the GNU Scientific Library was applied. The
number of well-localised vector fields was estimated by a Shannon number before the
actual computation of the functions. This estimate mainly depends on the maximal
radial and angular degree of the basis functions as well as the size of the localisation
region.
The results of this approach towards vectorial Slepian functions on the ball can be
summed up as follows. Regarding all three systems, well-localised functions on the ball
were obtained. Among these functions, some have one radial and one angular extremum.
Others attain several radial and/or angular extrema. Their visible properties can be
explained by the theoretical approach taken. System I provides Slepian functions which
tend to be concentrated near the surface of the ball. On the other hand, the origin
has a major impact on the functions of system II. The resulting Slepian vector fields
are concentrated there, if the localisation region is chosen close to the origin. At last,
system III is influenced by the origin as well as by the surface of the ball. As this system
is similarly constructed as system I, its results resemble the ones obtained from system
I.
Thus, regardless of the chosen system, the vectorial Slepian functions on the ball are
well-localised such that they appear to be suitable for applications where local vectorial
phenomena (like currents) are analysed or modelled. Furthermore, the Shannon number
predicts the number of well-localised vectorial Slepian functions on the ball pretty well.
In a forthcoming application, we will address the numerical regularisation of the in-
verse EEG-MEG-problem based on greedy algorithms developed in [13, 14, 36, 40, 41, 56].
These algorithms require the choice of a dictionary with suitable trial functions. This
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dictionary is typically chosen to be overcomplete. For instance, Slepian functions and
their rotated versions for other cones could be combined to better reveal the sources of
an inverse problem. In this respect, we hope to improve the localisation of the detected
neural currents by the inclusion of our Slepian functions in the dictionary.

Acknowledgement The authors gratefully acknowledge the financial support by the
German Research Foundation (DFG), projects MI 655/10-1 and MI 655/7-2.

A. The Entries of the Localisation Matrix
Let the localisation region R be the original partial cone as given in (5). Further, the
basis functions from Definition 1 are used. For the spherical harmonics, fully normalised
spherical harmonics as defined in (2) are chosen. The Slepian functions are bandlimited.
This means, the radial and angular degrees m and n, respectively, are finite, i.e. m =
0, . . . ,M and n = 0i, . . . , N for some M ∈ N0 and N ∈ N0i . The order j is bounded
by −n ≤ j ≤ n for each n. The entries of the corresponding localisation matrix K? are
given in Theorem 7. In this appendix, these values are derived.
For ϕ ∈ [0, 2π[ and t ∈ [−1, 1], an established local orthonormal basis of R3 in terms of
spherical coordinates is given by

εr(ϕ, t) =


√

1− t2 cos(ϕ)
√

1− t2 sin(ϕ)

t

 , εϕ(ϕ, t) =


− sin(ϕ)

cos(ϕ)

0

 , εt(ϕ, t) =


−t cos(ϕ)

−t sin(ϕ)
√

1− t2

 .
For an illustration, see [35, p. 86]. With this basis, formulations of the surface gradient
operator ∇∗ and the surface curl L∗ are given by

∇∗ = εϕ
1√

1− t2
∂

∂ϕ
+ εt

√
1− t2 ∂

∂t

and

L∗ = −εϕ
√

1− t2 ∂
∂t

+ εt
1√

1− t2
∂

∂ϕ
, (6)

see, for example, [19, p. 38]. The vector εr can also be used for the polar coordinate
representation x = rεr(ϕ, t) of x ∈ R3 in the polar coordinates (r, ϕ, t), confer (1).
The Jacobian of this parameterisation equals r2. It is obtained by straight forward
calculations. Thus, the integral of an arbitrary function F : R → R over the original
partial cone R ⊂ B is given by∫

R
F (x) dx =

∫ b

a

∫ 2π

0

∫ 1

cos(Θ)
F (x(r, ϕ, t)) r2 dt dϕ dr.

Now consider the localisation matrix K?. In general, the matrix entries have the form

K?
(i,m,n,j),(i′,m′,n′,j′) =

∫
R
g

(?,i)
m,n,j(x) · g(?,i′)

m′,n′,j′(x) dx

as seen in (4). Type 1 is orthonormal to both types 2 and 3 also on all subsets of B.
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Thus, the localisation problem decouples into a normal part for equal types i = i′ = 1
and a tangential part for types i, i′ ∈ {2, 3} as also seen in (4). For arbitrary i and i′,
the entries of K? can be formulated as

K?
(i,m,n,j),(i′,m′,n′,j′) =

∫
R
g

(?,i)
m,n,j(x) · g(?,i′)

m′,n′,j′(x) dx

= T ?m,m′,n,n′

∫ 2π

0

∫ 1

cos(Θ)
y

(i)
n,j(ξ(ϕ, t)) · y

(i′)
n′,j′(ξ(ϕ, t)) dt dϕ (7)

where T ?m,m′,n,n′ depends on the choice of the system. It is given by

T I
m,m′,n,n′ =

√
4m+ 2n+ 3

β3

√
4m′ + 2n′ + 3

β3

×
∫ b

a
P (0,n+1/2)
m

(
2r2

β2 − 1
)
P

(0,n′+1/2)
m′

(
2r2

β2 − 1
)(

r

β

)n+n′

r2 dr

for system I,

T II
m,m′,n,n′ =

√
2m+ 3
β3

√
2m′ + 3
β3

∫ b

a
P (0,2)
m

(2r
β
− 1

)
P

(0,2)
m′

(2r
β
− 1

)
r2 dr

for any choice of n and n′ with respect to system II and

T III
m,m′,n,n′ =

√
4m+ 2n+ 1

β3

√
4m′ + 2n′ + 1

β3

×
∫ b

a
P (0,n−1/2)
m

(
2r2

β2 − 1
)
P

(0,n′−1/2)
m′

(
2r2

β2 − 1
)(

r

β

)n+n′−2
r2 dr

for system III. The substitution

r = φ(u) = β

√
u+ 1

2 , φ′(u) = β

4

√
2

u+ 1 (8)

with respect to systems I and III, as well as the substitution

r = φ(u) = β(u+ 1)
2 , φ′(u) = β

2 (9)

with respect to system II, provides the formulation of T ?m,m′,n,n′ as

T I
m,m′,n,n′ =

√
(4m+ 2n+ 3) (4m′ + 2n′ + 3)

2n+n′+5

×
∫ 2b2

β2 −1

2a2
β2 −1

P (0,n+1/2)
m (u)P (0,n′+1/2)

m′ (u) (u+ 1)(n+n′+1)/2 du

for system I,

T II
m,m′,n,n′ =

√
(2m+ 3) (2m′ + 3)

64

∫ 2b
β
−1

2a
β
−1

P (0,2)
m (u)P (0,2)

m′ (u) (u+ 1)2 du
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for any choice of n and n′ with respect to system II and

T III
m,m′,n,n′ =

√
(4m+ 2n+ 1) (4m′ + 2n′ + 1)

2n+n′+3

×
∫ 2b2

β2 −1

2a2
β2 −1

P (0,n−1/2)
m (u)P (0,n′−1/2)

m′ (u) (u+ 1)(n+n′−1)/2 du

for system III. Note that with this formulation, T ?m,m′,n,n′ obviously coincides with the
term a?m,m′,n,n′I

?
m,m′,n,n′ from Definition 6. Hence, we have (7) in the form

K?
(i,m,n,j),(i′,m′,n′,j′) = a?m,m′,n,n′I

?
m,m′,n,n′

∫ 2π

0

∫ 1

cos(Θ)
y

(i)
n,j(ξ(ϕ, t)) · y

(i′)
n′,j′(ξ(ϕ, t)) dt dϕ.

Now consider the angular integral∫ 2π

0

∫ 1

cos(Θ)
y

(i)
n,j(ξ(ϕ, t)) · y

(i′)
n′,j′(ξ(ϕ, t)) dt dϕ.

Depending on the choice of i and i′, there are four different cases to be discussed. In
most of these cases, we need to consider the integral

∫ 2π

0
cj(ϕ)cj′(ϕ)dϕ :=

∫ 2π

0


√

2 cos (jϕ) , j < 0

1, j = 0
√

2 sin (jϕ) , j > 0



√

2 cos (j′ϕ) , j′ < 0

1, j′ = 0
√

2 sin (j′ϕ) , j′ > 0

 dϕ = 2πδjj′

(10)
with the same abbreviation as in (2) and the Kronecker Delta δjj′ .

Case 1 At first, the case i = i′ = 1 is examined. Here, the integral is∫ 2π

0

∫ 1

cos(Θ)
y

(1)
n,j(ξ(ϕ, t)) · y

(1)
n′,j′(ξ(ϕ, t)) dt dϕ. (11)

Inserting the definition of vector spherical harmonics of type 1 and of real fully normalised
spherical harmonics as well as (10) in (11), we obtain∫ 2π

0

∫ 1

cos(Θ)
y

(1)
n,j(ξ(ϕ, t)) · y

(1)
n′,j′(ξ(ϕ, t)) dt dϕ

=
∫ 2π

0

∫ 1

cos(Θ)
(εrYn,j(ξ(ϕ, t))) ·

(
εrYn′,j′(ξ(ϕ, t))

)
dt dϕ

=
∫ 2π

0

∫ 1

cos(Θ)
Yn,j(ξ(ϕ, t)) Yn′,j′(ξ(ϕ, t)) dt dϕ

=
∫ 2π

0

∫ 1

cos(Θ)

(
bn,jPn,|j|(t)

1√
2π

cj(ϕ)
)(

bn′,j′Pn′,|j′|(t)
1√
2π

cj′(ϕ)
)

dt dϕ

= bn,jbn′,j′
∫ 1

cos(Θ)
Pn,|j|(t) Pn′,|j′|(t) dt 1

2π

∫ 2π

0
cj(ϕ)cj′(ϕ) dϕ

= δjj′bn,jbn′,j

∫ 1

cos(Θ)
Pn,|j|(t) Pn′,|j|(t) dt.
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In combination with the radial part, this yields the representation of the matrix entries
K?

(1,m,n,j),(1,m′,n′,j′) as given in Theorem 7:

K?
(1,m,n,j),(1,m′,n′,j′) = a?m,m′,n,n′I

?
m,m′,n,n′bn,jbn′,jδjj′

∫ 1

cos(Θ)
Pn,|j|(t) Pn′,|j|(t) dt.

Case 2 The second case deals with i and i′ both of type 2, this means the integral of
the form ∫ 2π

0

∫ 1

cos(Θ)
y

(2)
n,j(ξ(ϕ, t)) · y

(2)
n′,j′(ξ(ϕ, t)) dt dϕ. (12)

The first simplifications are made with the use of the definition of vector spherical
harmonics, the definition of their normalisation factor and Green’s first surface identity:∫ 2π

0

∫ 1

cos(Θ)
y

(2)
n,j(ξ(ϕ, t)) · y

(2)
n′,j′(ξ(ϕ, t)) dt dϕ

= 1√
n(n+ 1)n′(n′ + 1)

∫ 2π

0

∫ 1

cos(Θ)

(
∇∗ξ Yn,j(ξ(ϕ, t))

)
·
(
∇∗ξ Yn′,j′(ξ(ϕ, t))

)
dt dϕ

= 1√
n(n+ 1)n′(n′ + 1)

(
−
∫ 2π

0

∫ 1

cos(Θ)
Yn,j(ξ(ϕ, t)) ∆∗ξ Yn′,j′(ξ(ϕ, t)) dt dϕ

+
∫
∂C

Yn,j(ξ)
∂

∂ν
Yn′,j′(ξ) ds(ξ)

)
, (13)

where ∂C indicates the boundary of the spherical cap and ν is the corresponding outer
unit normal vector. Note that the spherical harmonics of degree n′ are the eigenfunctions
of the Beltrami operator to the eigenvalue −n′(n′+1), see, for example, [35, pp. 123-124].
Hence, the first summand rearranges to√

n′(n′ + 1)
n(n+ 1)

∫ 2π

0

∫ 1

cos(Θ)
Yn,j(ξ(ϕ, t)) Yn′,j′(ξ(ϕ, t)) dt dϕ. (14)

The boundary ∂C is parameterised by

g : [0, 2π]→ R3, ϕ 7→
(

sin (Θ) cos(ϕ), sin (Θ) sin(ϕ), cos(Θ)
)T
. (15)

The Euclidean norm of its derivative equals sin (Θ). Further, the derivative of Yn′,j′
along the outer normal ν of ∂C is given by

∂

∂ν
Yn′,j′(ξ(ϕ, t))

= ν · ∇∗ξ Yn′,j′(ξ(ϕ, t))
= − εt · ∇∗ξ Yn′,j′(ξ(ϕ, t))

= − εt ·
(
εϕ

1√
1− t2

∂

∂ϕ
Yn′,j′(ξ(ϕ, t)) + εt

√
1− t2 ∂

∂t
Yn′,j′(ξ(ϕ, t))

)
= −

√
1− t2 ∂

∂t
Yn′,j′(ξ(ϕ, t)).
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The first step is based on the equality ∂
∂ν = ν · ∇∗ξ as given in [19, p. 41]. In the case

of the original partial cone, the outer normal of ∂C equals −εt. At the boundary of
the spherical cap, the polar distance t attains the value cos (Θ). Hence, the normal
derivative is given by(

∂

∂ν
Yn′,j′(ξ(ϕ, t))

)∣∣∣∣
t=cos(Θ)

= − sin (Θ)
(
∂

∂t
Yn′,j′(ξ(ϕ, t))

)∣∣∣∣
t=cos(Θ)

.

Therefore, (13) is rearranged to√
n′(n′ + 1)
n(n+ 1)

∫ 2π

0

∫ 1

cos(Θ)
Yn,j(ξ(ϕ, t)) Yn′,j′(ξ(ϕ, t)) dt dϕ

− sin2 (Θ)√
n(n+ 1)n′(n′ + 1)

∫ 2π

0
Yn,j(ξ(ϕ, cos (Θ)))

(
∂

∂t
Yn′,j′(ξ(ϕ, t))

)∣∣∣∣
t=cos(Θ)

dϕ.

(16)
Thus, a preliminary form of (12) is provided by (16). The integral of the first summand
in (16) is examined in case 1. It has the form√

n′(n′ + 1)
n(n+ 1)

∫ 2π

0

∫ 1

cos(Θ)
Yn,j(ϕ, t) Yn′,j′(ϕ, t) dt dϕ

= δjj′bn,jbn′,j

√
n′(n′ + 1)
n(n+ 1)

∫ 1

cos(Θ)
Pn,|j|(t) Pn′,|j|(t) dt.

The integral of the second summand needs to be discussed further. If the fully normalised
spherical harmonics are inserted, the integral is given by∫ 2π

0
Yn,j(ξ(ϕ, cos (Θ)))

(
∂

∂t
Yn′,j′(ξ(ϕ, t))

)∣∣∣∣
t=cos(Θ)

dϕ

=
∫ 2π

0

(
bn,jPn,|j|(cos (Θ)) 1√

2π
cj(ϕ)

)
∂

∂t

(
bn′,j′Pn′,|j′|(t)

1√
2π
cj′(ϕ)

)∣∣∣∣
t=cos(Θ)

dϕ

= bn,jbn′,j′Pn,|j|(cos (Θ))P ′n′,|j′|(cos (Θ)) 1
2π

∫ 2π

0
cj(ϕ)cj′(ϕ) dϕ.

Again, the use of (10) yields a Kronecker delta of j and j′ for the latter integral. Hence,
the second summand in (16) is given by

− sin2 (Θ)√
n(n+ 1)n′(n′ + 1)

∫ 2π

0
Yn,j(ξ(ϕ, cos (Θ)))

(
∂

∂t
Yn′,j′(ξ(ϕ, t))

)∣∣∣∣
t=cos(Θ)

dϕ

= − δjj′
sin2 (Θ)√

n(n+ 1)n′(n′ + 1)
bn,jbn′jPn,|j|(cos (Θ))P ′n′,|j|(cos (Θ)).
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All in all, this provides the form of the entries K?
(2,m,n,j),(2,m′,n′,j′) as given in Theorem 7:

K?
(2,m,n,j),(2,m′,n′,j′) = a?m,m′,n,n′I

?
m,m′,n,n′bn,jbn′,jδjj′

×
(√

n′(n′ + 1)
n(n+ 1)

∫ 1

cos(Θ)
Pn,|j|(t) Pn′,|j|(t) dt

− sin2 (Θ)√
n(n+ 1)n′(n′ + 1)

Pn,|j|(cos (Θ)) P ′n′,|j|(cos (Θ))
)
.

Case 3 The third case is the last case with equal i and i′, i.e. i = i′ = 3. It discusses
integrals of the form∫ 2π

0

∫ 1

cos(Θ)
y

(3)
n,j(ξ(ϕ, t)) · y

(3)
n′,j′(ξ(ϕ, t)) dt dϕ.

The equality of Case 2 and Case 3 was already seen in [45, eq. (46)]. Hence, this setting
yields equal submatrices B? and C? from (4) of K?:

K(3,m,n,j),(3,m′,n′,j′) = K(2,m,n,j),(2,m′,n′,j′).

Case 4 At last, the case of distinct types i and i′ is considered. Due to the orthonor-
mality of the basis functions from Definition 1, the mixed case deals with i = 2 and
i′ = 3. Note that the opposite case i = 3 and i′ = 2 produces the transposed submatrix
of this case because of the symmetry of the Euclidean inner product in (4). This means,
integrals of the form ∫ 2π

0

∫ 1

cos(Θ)
y

(2)
n,j(ξ(ϕ, t)) · y

(3)
n′,j′(ξ(ϕ, t)) dt dϕ

are considered at this point. Inserting the definition of the vector spherical harmonics,
we have

1√
n(n+ 1)n′(n′ + 1)

∫ 2π

0

∫ 1

cos(Θ)
∇∗ξYn,j(ξ(ϕ, t)) · L∗ξYn′,j′(ξ(ϕ, t)) dt dϕ.

For the next considerations, we abbreviate the quotient upfront with

cnn′ := 1√
n(n+ 1)n′(n′ + 1)

. (17)

We can extend the integral due to the orthogonality of the surface gradient operator and
the surface curl, see for example [19, p. 39, (2.142)], and obtain

cnn′

(∫ 2π

0

∫ 1

cos(Θ)
∇∗ξYn,j(ξ(ϕ, t)) · L∗ξYn′,j′(ξ(ϕ, t)) dt dϕ

+
∫ 2π

0

∫ 1

cos(Θ)
Yn,j(ξ(ϕ, t)) ∇∗ξ · L∗ξYn′,j′(ξ(ϕ, t)) dt dϕ

)
.
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With F = Yn,j and g = L∗ξYn′,j′ , this equals

cnn′

(∫
C
∇∗ξF (ξ) · g(ξ) dω(ξ) +

∫
C
F (ξ) ∇∗ξ · g(ξ) dω(ξ)

)
= cnn′

∫
C
∇∗ξ ·

(
F (ξ) g(ξ)

)
dω(ξ)

where C is the considered spherical cap. Due to the surface theorem of Gauß, see for
example [18, p. 116], we have

cnn′
∫
C
∇∗ξ ·

(
F (ξ)g(ξ)

)
dω(ξ) = cnn′

∫
∂C
ν ·
(
F (ξ)g(ξ)

)
ds(ξ)

= cnn′
∫
∂C
F (ξ) g(ξ) · ν ds(ξ).

Hence, in our case, we have∫ 2π

0

∫ 1

cos(Θ)
y

(2)
n,j(ξ(ϕ, t)) · y

(3)
n′,j′(ξ(ϕ, t)) dt dϕ

= cnn′
∫
∂C
Yn,j(ξ)

(
L∗ξYn′,j′(ξ)

)
· ν ds(ξ).

As mentioned before, the outer normal ν of the boundary of the spherical cap equals
−εt. Due to the local coordinate representation of the surface curl (6) and with the
parameterisation of ∂C from (15), we obtain

cnn′
∫
∂C
Yn,j(ξ)

(
L∗ξYn′,j′(ξ)

)
· ν ds(ξ)

= − cnn′
∫
∂C
Yn,j(ξ)

1√
1− t2

∂

∂ϕ
Yn′,j′(ξ(ϕ, t)) ds(ξ)

= − cnn′
∫ 2π

0
Yn,j(ξ(ϕ, cos (Θ))) ∂

∂ϕ
Yn′,j′(ξ(ϕ, cos (Θ))) dϕ.

The definition of the fully normalised spherical harmonics (2) shows that
∂

∂ϕ
Yn′,j′(ξ(ϕ, cos (Θ))) = j′ Yn′,−j′(ξ(ϕ, cos (Θ)).

Thus, we have

− cnn′
∫ 2π

0
Yn,j(ξ(ϕ, cos (Θ))) ∂

∂ϕ
Yn′,j′(ξ(ϕ, cos (Θ))) dϕ

= − cnn′
∫ 2π

0
Yn,j(ξ(ϕ, cos (Θ))) j′ Yn′,−j′(ξ(ϕ, cos (Θ))) dϕ.



References 28

At this point, we can insert the definition of the fully normalised spherical harmonics.

− cnn′
∫ 2π

0
Yn,j(ξ(ϕ, cos (Θ))) j′Yn′,−j′(ξ(ϕ, cos (Θ))) dϕ

= − j′√
n(n+ 1)n′(n′ + 1)

∫ 2π

0
bn,j Pn,|j|(cos (Θ)) 1√

2π
cj(ϕ)

× bn′,−j′ Pn,|−j′|(cos (Θ)) 1√
2π

c−j′(ϕ) dϕ

= − j′√
n(n+ 1)n′(n′ + 1)

bn,j bn′,−j′ Pn,|j|(cos (Θ)) Pn,|−j′|(cos (Θ))

× 1
2π

∫ 2π

0
cj(ϕ) c−j′(ϕ) dϕ.

With the use of (10), the last line equals

−
j′δj,−j′√

n(n+ 1)n′(n′ + 1)
bn,j bn′,−j′ Pn,|j|(cos (Θ)) Pn,|−j′|(cos (Θ))

= jδ−j,j′√
n(n+ 1)n′(n′ + 1)

bn,j bn′,−j′ Pn,|j|(cos (Θ)) Pn,|−j′|(cos (Θ)).

In combination with the respective radial integral, this yields the matrix entries as given
in Theorem 7 (note that bn′,−j′ = bn′,j′):
K?

(2,m,n,j),(3,m′,n′,j′)

= a?m,m′,n,n′I
?
m,m′,n,n′bn,j bn′,−j

jδ−j,j′√
n(n+ 1)n′(n′ + 1)

Pn,|j|(cos (Θ)) Pn′,|j′|(cos (Θ)).

Hence, Theorem 7 is proven. �
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