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Abstract

In this paper, we present a regularised Green’s function for −∇2 in R3 and
a regularised scalar and vector potential of a vector field on a bounded domain
in R3. We prove that the regularised Green’s function for −∇2 converges
to the actual Green’s function. We also show that the regularised parts of
the Helmholtz decomposition converge to the actual decomposition. This
convergence is given in the pointwise and the distributional sense as well as
with respect to the L1-norm. Moreover, applications to the modelling of static
electromagnetic fields are discussed. Finally, numerical results for a synthetic
example are presented.
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1 Introduction

It is well-known that the Helmholtz theorem decomposes an arbitrary vector func-
tion into two parts: One is an irrotational component which can be expressed by
the gradient of a scalar function and the other one is a rotational part which can be
expressed by the curl of a vector function. As a particular decomposition form of a
vector function, the theorem has very important applications in electromagnetics
because its decomposition terms have been closely related to the scalar potential
and the vector potential of a vector field. As we know, the Helmholtz theorem is
based on the Green’s functions of −∇2 in the space R3 and we also know that the
Green’s functions have singular points. To avoid the singularity, we introduce a
regularised version of the Green’s function for −∇2 in the space R3 and we prove
that the irrotational as well as the rotational part of the vector function can be
approximated by using our regularised Green’s function for −∇2 in the space R3.
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†Geomathematics Group, Department of Mathematics, University of Siegen, Walter-Flex-Str.
3, 57068 Siegen, Germany, Email: michel@mathematik.uni-siegen.de

1



2 Preliminaries

The function G0 defined by

G0(x, y) :=
1

4π|x− y|

for all x, y ∈ R3 with x 6= y is a Green’s function for the operator −∇2 in the
space R3 (see [7]). For δ ∈ (0, 1), we may define the regularised Green’s function
with respect to −∇2 for all x, y ∈ R3 by

Gδ
0(x, y) :=

1

4π (|x− y|2 + δ)
1
2

.

The graph of the regularised Green’s function for the operator −∇2 for different
values of the parameter δ can be seen in Figure 1.

Figure 1: (a,b) are the graphs of the regularised Green’s function for the operator
−∇2 (restricted on the 3-D unit ball) at the fixed point x = (0, 0,−0.7), where the
function is plotted in the y1 = 0 plane. In (a) we chose the parameter δ = 0.01
and in (b) δ = 0.0001
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Lemma 2.1 Let G0 and Gδ
0 be as defined above then the following equalities hold

for arbitrary but fixed x in R3.

(i)
lim

δ→0+
Gδ

0(x, y) = G0(x, y) for all y ∈ R3 with y 6= x.

(ii)
lim

δ→0+
∇xGδ

0(x, y) = ∇xG0(x, y) for all y ∈ R3 with y 6= x.

The proof of this lemma is easy and only involves elementary analytical operations.

3 Convergence of the Regularised Scalar and Vector
Potential

Theorem 3.1 [12] (Helmholtz Theorem in a Bounded Domain) Let S be an ar-
bitrary closed curved surface that is smooth or piecewise smooth and let V be the
volume surrounded by the surface S, where V = V ∪ S represents a closure of the
domain V . Moreover, let f be a vector function which is defined in the domain V .
If f satisfies the following conditions:
(i) f is continuously differentiable in V ,
(ii) f is almost everywhere continuous and bounded on the boundary S,
then f can be decomposed into the sum of an irrotational field and a solenoidal
field in the following sense:

f = −∇ρ +∇× Λ (1)

with

ρ(x) =
∫

V

∇y · f(y)
4π|x− y|dy −

∫

S

f(y) · n̂(y)
4π|x− y| dy (2)

Λ(x) =
∫

V

∇y × f(y)
4π|x− y| dy +

∫

S

f(y)× n̂(y)
4π|x− y| dy, (3)

where n̂ is the exterior unit normal vector of the closed surface S.

Theorem 3.2 Let f be a vector-valued function which is defined in the domain
V such that f is continuous on V and has continuous first order derivatives in V .
Then f = −∇ρ +∇× Λ such that

(i)
ρ(x) = lim

δ→0+
ρδ(x)
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with
ρδ(x) =

∫

V
∇xGδ

0(x, y) · f(y) dy

and

(ii)
Λ(x) = lim

δ→0+
Λδ(x)

with
Λδ(x) =

∫

V
∇xGδ

0(x, y)× f(y) dy,

for all x ∈ V , where Gδ
0 is the regularised Green’s function for −∇2 on R3.

Proof. Due to Theorem 3.1, we have f = −∇ρ +∇× Λ with

ρ(x) =
∫

V
G0(x, y)∇y · f(y) dy −

∫

S
G0(x, y)f(y) · n̂(y) dy (4)

and
Λ(x) =

∫

V
G0(x, y)∇y × f(y) dy +

∫

S
G0(x, y) (f(y)× n̂(y)) dy, (5)

where n̂(y) is the outward unit surface normal at the surface point y. From the
vector calculus (see [15]), we have

G0(∇ · f) = ∇ · (G0f)− (∇G0) · f (6)

and
G0(∇× f) = ∇× (G0f)− (∇G0)× f. (7)

Using Equation (6), we have

ρ(x) =
∫

V
∇y · (G0(x, y)f(y)) dy −

∫

V
(∇yG0(x, y)) · f(y) dy

−
∫

S
G0(x, y)f(y) · n̂(y) dy.

Now applying Gauß’s Divergence Theorem (see [15]) on the first integral of the
equation given above and using the fact ∇xG0(x, y) = −∇yG0(x, y) we have

ρ(x) =
∫

S
G0(x, y)f(y) · n̂(y) dy −

∫

V
(∇yG0(x, y)) · f(y) dy

−
∫

S
G0(x, y)f(y) · n̂(y) dy

= −
∫

V
(∇yG0(x, y)) · f(y) dy

=
∫

V
(∇xG0(x, y)) · f(y) dy. (8)
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Similarly, using Equation (7) we get

Λ(x) =
∫

V
∇y × (G0(x, y)f(y)) dy −

∫

V
∇yG0(x, y)× f(y) dy

+
∫

S
G0(x, y) (f(y)× n̂(y)) dy.

From Gauß’s Divergence Theorem we can deduce that
∫

V
∇× f dv =

∫

S
−(f × n̂) ds (9)

( see [1], p. 15). Now using Equation (9) and the equality∇xG0(x, y) = −∇yG0(x, y)
we have

Λ(x) =
∫

S
− (G0(x, y)f(y)× n̂(y)) dy −

∫

V
∇yG0(x, y)× f(y) dy

+
∫

S
G0(x, y) (f(y)× n̂(y)) dy

=
∫

V
∇xG0(x, y)× f(y) dy =

∫

V
∇x × (G0(x, y)f(y))dy.

(10)

To prove (i) and (ii), we have to show that

lim
δ→0+

∫

V
∇xGδ

0(x, y) · f(y) dy =
∫

V
∇x · (G0(x, y)f(y)) dy

and
lim

δ→0+

∫

V
∇xGδ

0(x, y)× f(y) dy =
∫

V
∇x × (G0(x, y)f(y)) dy.

Using Lemma 2.1 and the continuity of f on V we can say that for arbitrary but
fixed x

lim
δ→0+

(
∇xGδ

0(x, y) · f(y)
)

= ∇xG0(x, y) · f(y) on V with x 6= y

and
∣∣∣∇xGδ

0(x, y) · f(y)
∣∣∣ ≤ gx(y) for all δ > 0, y ∈ V,with x 6= y, (11)

where gx is defined as

gx(y) :=
{ |∇xG0(x, y) · f(y)| for y 6= x

0 for y = x.
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Now first we confirm that gx is integrable on V. For this purpose, we consider the
integral

∫

V
|∇xG0(x, y) · f(y)| dy =

∫

V

∣∣∣∣
−(x− y)
4π|x− y|3 · f(y)

∣∣∣∣ dy

=
∫

V

∣∣∣− x−y
|x−y| · f(y)

∣∣∣
4π|x− y|2 dy

≤
∫

V

∣∣∣− x−y
|x−y|

∣∣∣ |f(y)|
4π|x− y|2 dy

=
∫

V

|f(y)|
4π|x− y|2 dy.

Since the function f is continuous on the compact domain V , therefore it is
bounded on V . Let

M = sup
x∈V

|f(x)| ,

then we get
∫

V
|∇xG0(x, y) · f(y)| dy ≤ M

4π

∫

V

1
|x− y|2 dy.

From the proof of a theorem (see [13], p. 158-159) we can see that

∫

V

1
|x− y|2 dy ≤ 4π

3
2 R

Γ(3
2)

is bounded, where R is the radius of the ball containing V . Therefore, we can
conclude

∫

V
|∇xG0(x, y) · f(y)| dy ≤ M

4π

∫

V

1
|x− y|2 dy ≤ M

π
1
2 R

Γ(3
2)

< ∞.

(12)

This gives that |∇xG0(x, y) · f(y)| is integrable with respect to y on V. Since
gx(y) = |∇xG0(x, y) · f(y)| almost everywhere on V as a function of y, therefore gx

is also integrable on V. Now by using Lebesgue’s Dominated Convergence Theorem
(see [6, 8]) we have

lim
δ→0+

∫

V
∇xGδ

0(x, y) · f(y) dy =
∫

V
lim
δ→0

∇xGδ
0(x, y) · f(y) dy

=
∫

V
∇xG0(x, y) · f(y) dy = ρ(x).
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For part (ii), let us consider
{∇x × (Gδ

0(x, y)f(y))
}

δ
=

{∇xGδ
0(x, y)× f(y)

}
δ

which is a family of vectors with real components and by [1], p. 102, (A.1.7)

lim
δ→0+

∇xGδ
0(x, y)× f(y) = ∇xG0(x, y)× f(y)

almost everywhere on V , for arbitrary but fixed x in V . By using again equation
(10), we get

Λ(x) =
∫

V
∇xG0(x, y)× f(y) dy

for all x ∈ V . Now, we show that the function Λ is bounded on V , that is the
components Λ1, Λ2 and Λ3 of Λ are bounded. We denote the components of f by
F1, F2 and F3 and get

|Λ1(x)| =
∣∣∣∣
∫

V
(∇xG0(x, y)× f(y))1 dy

∣∣∣∣

≤
∫

V
|(∇xG0(x, y)× f(y))1| dy

≤
∫

V

∣∣∣∣
(x2 − y2)F3(y)− (x3 − y3)F2(y)

4π|x− y|3
∣∣∣∣ dy,

see also the proof of Lemma A.1.1. in [1]. This gives

|Λ1(x)| ≤
∫

V

|(x2 − y2)F3(y)|+ |(x3 − y3)F2(y)|
4π|x− y|3 dy

≤
∫

V

∣∣∣x2−y2

|x−y|
∣∣∣ |f(y)|+

∣∣∣x3−y3

|x−y|
∣∣∣ |f(y)|

4π|x− y|2 dy

≤
∫

V

2 |f(y)|
4π|x− y|2 dy

≤ M

2π

∫

V

1
|x− y|2 dy =

2Mπ
1
2 R

Γ(3
2)

< ∞. (13)

Similarly, we can show that Λ2 and Λ3 are also bounded on V . We can also
conclude that

|(∇xG0(x, y)× f(y))1| , |(∇xG0(x, y)× f(y))2|

and |(∇xG0(x, y)× f(y))3| are integrable with respect to y. The real components
of

∇xGδ
0(x, y)× f(y)
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satisfy the following relations

∣∣∣
(
∇xGδ

0(x, y)× f(y)
)

1

∣∣∣ =

∣∣∣∣∣
(x2 − y2)F3(y)− (x3 − y3)F2(y)

4π (|x− y|2 + δ)
3
2

∣∣∣∣∣

≤
∣∣∣∣
(x2 − y2)F3(y)− (x3 − y3)F2(y)

4π|x− y|3
∣∣∣∣

= | (∇xG0(x, y)× f(y))1 | (14)

∣∣∣
(
∇xGδ

0(x, y)× f(y)
)

2

∣∣∣ =

∣∣∣∣∣
(x3 − y3)F1(y)− (x1 − y1)F3(y)

4π (|x− y|2 + δ)
3
2

∣∣∣∣∣

≤
∣∣∣∣
(x3 − y3)F1(y)− (x1 − y1)F3(y)

4π|x− y|3
∣∣∣∣

= | (∇xG0(x, y)× f(y))2 | (15)

∣∣∣
(
∇xGδ

0(x, y)× f(y)
)

3

∣∣∣ =

∣∣∣∣∣
(x1 − y1)F2(y)− (x2 − y2)F1(y)

4π (|x− y|2 + δ)
3
2

∣∣∣∣∣

≤
∣∣∣∣
(x1 − y1)F2(y)− (x2 − y2)F1(y)

4π|x− y|3
∣∣∣∣

= | (∇xG0(x, y)× f(y))3 | (16)

for y 6= x. Let for i =1,2,3

hx,i(y) :=
{ | (∇xG0(x, y)× f(y))i | for y 6= x

0 for y = x.

These hx,i are integrable because hx,i is equal to | (∇xG0(x, y)× f(y))i | almost
everywhere and | (∇xG0(x, y)× f(y))i | is integrable. Furthermore,

∣∣∣
(
∇xGδ

0(x, y)× f(y)
)

i

∣∣∣ ≤ hx,i(y) (17)

for all δ > 0 and for all y ∈ V with y 6= x.
Hence, the real families

((
∇xGδ

0(x, y)× f(y)
)

i

)
for i = 1, 2, 3

satisfy all the requirements of Lebesgue’s Dominated Convergence Theorem, so we
have for i = 1, 2, 3

lim
δ→0+

∫

V

(
∇xGδ

0(x, y)× f(y)
)

i
dy =

∫

V
lim
δ→0

(
∇xGδ

0(x, y)× f(y)
)

i
dy

=
∫

V
(∇xG0(x, y)× f(y))i dy.
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Finally, we have

lim
δ→0+

∫

V
∇xGδ

0(x, y)× f(y)dy =
∫

V
lim
δ→0

∇xGδ
0(x, y)× f(y)dy

=
∫

V
∇xG0(x, y)× f(y)dy = Λ(x)

which proves the result.

Corollary 3.3 Let f be a vector-valued function which is defined in the domain
V such that f is continuous on V and has continuous first order derivatives in V .
Then f = −∇ρ +∇× Λ with

(i)
ρ = lim

δ→0+
ρδ in L1(V ),

where
ρδ(x) :=

∫

V
∇xGδ

0(x, y) · f(y) dy

for all x ∈ V and

(ii)
Λ = lim

δ→0+
Λδ in L1(V ),

where
Λδ(x) :=

∫

V
∇xGδ

0(x, y)× f(y) dy

for all x ∈ V , where Gδ
0 is the regularised Green’s function for −∇2 on R3.

Proof.In Theorem 3.1, we can say that ρ is also a continuous function of x. In
Theorem 3.2, we proved that ρδ(x) → ρ(x) as δ → 0+ for all x ∈ V , where

|ρδ(x)| =
∣∣∣∣
∫

V
∇xGδ

0(x, y) · f(y)dy

∣∣∣∣

≤
∫

V

∣∣∣∇xGδ
0(x, y) · f(y)

∣∣∣ dy

≤
∫

V
|∇xG0(x, y)| · |f(y)| dy =: H(x). (18)

Now, we show that H is integrable on V as follows
∫

V
H(x)dx =

∫

V

∫

V
|∇xG0(x, y)| · |f(y)| dydx

≤ ‖f‖C(V )

∫

V

∫

V
|∇xG0(x, y)| dydx,
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because f is continuous. We can easily see that

|∇xG0(x, y)| ≤ 1
4π|x− y|2 .

Therefore, using the inequality given above we have
∫

V
H(x)dx ≤

∫

V

∫

V

1
4π|x− y|2 dydx.

Due to Inequality (7) on page 159 in [13], we get

∫

V
H(x)dx ≤

∫

V

π
1
2 R

Γ(3
2)

dx

=
4π

3
2 R4

3Γ(3
2)

< ∞.

From the discussion given above, we can conclude that
{
ρδ

}
δ>0

is a family of uni-
formly integrable functions and ρδ(x) → ρ(x) as δ → 0+ almost everywhere on
V . Therefore, using Vitali’s convergence theorem (see [14], p. 133), we can say
ρδ → ρ as δ → 0+ in L1(V ).

For part (ii), let Λδ
1, Λ

δ
2 and Λδ

3 be the real components of the vector-valued func-
tion Λδ and Λ1, Λ2 and Λ3 be the components of Λ. From Equation (14), we
get

∣∣∣Λδ
1(x)

∣∣∣ =
∣∣∣∣
∫

V

(
∇xGδ

0(x, y)× f(y)
)

1
dy

∣∣∣∣

≤
∫

V

∣∣∣
(
∇xGδ

0(x, y)× f(y)
)

1

∣∣∣ dy

≤
∫

V
|(∇xG0(x, y)× f(y))1| dy =: H1(x) (19)

Now, we show that H1 is integrable on V as follows
∫

V
H1(x)dx =

∫

V

∫

V
|(∇xG0(x, y)× f(y))1| dydx.

From Equation (13), we have

∫

V
|(∇xG0(x, y)× f(y))1| dy ≤

2‖f‖C(V )π
1
2 R

Γ(3
2)

,
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therefore, we have
∫

V
H1(x)dx ≤

2‖f‖C(V )π
1
2 R

Γ(3
2)

∫

V
dx

=
4‖f‖C(V )π

3
2 R4

3Γ(3
2)

< ∞.

This gives that Λδ
1 is a family of uniformly integrable functions in V . We have

proved in Theorem 3.2 that Λδ
1(x) → Λ1(x) as δ → 0+, for all x in V , therefore

using Vitali’s theorem (see [14], p. 133), we get Λδ
1 → Λ1 as δ → 0+ in L1(V).

Similarly, we can prove that Λδ
2 → Λ2 as δ → 0+ in L1(V) and Λδ

3 → Λ3 as δ → 0+
in L1(V). Hence, combining these components we can say that Λδ → Λ as δ → 0+
in L1(V).

Corollary 3.4 Let f be a vector-valued function which is defined in the domain
V such that f is continuous on V and has continuous first order derivatives in V .
Then f = −∇ρ +∇× Λ with

(i)
ρ = lim

δ→0+
ρδ in D ′(V )

with
ρδ(x) =

∫

V
∇xGδ

0(x, y) · f(y) dy

(ii)
Λ = lim

δ→0+
Λδ in D ′(V ),

with
Λδ(x) =

∫

V
∇xGδ

0(x, y)× f(y) dy

for all x ∈ V , where Gδ
0 is the regularised Green’s function for −∇2 on R3 and

D ′(V ) denotes the space of all distributions corresponding to the domain V .

Proof. From Theorem 3.2 and the proof of Corollary 3.3, we can see that ρ and the
components of Λ satisfy all the requirements of Theorem 1.5.1 of [11]. Therefore,
by applying Theorem 1.5.1 of [11], we get the required result.

Remark 3.5 When we say a sequence of functions (fk) converges to a function
f in D ′(V ) it means that the distribution Tfk

of fk defined by

Tfk
(φ) =

∫

V
fk(x)φ(x)dx, φ ∈ D(V ),

converges to the distribution Tf of f defined in a similar way (see [2]).
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4 Applications

4.1 The Electromagnetic Field

In this section, we show how the electric potential ρ of an electric field E and the
magnetic potential Λ of a magnetic field B can be approximated using Theorem
3.2 and Maxwell’s equations in a static case.
Due to Theorem 3.2, a vector field f defined on V can be decomposed as

f = −∇ρ +∇× Λ (20)

with

ρ(x) = lim
δ→0+

ρδ(x) = lim
δ→0+

∫

V
∇xGδ

0(x, y) · f(y) dy (21)

and

Λ(x) = lim
δ→0+

Λδ(x) = lim
δ→0+

∫

V
∇xGδ

0(x, y)× f(y) dy. (22)

If we use the fact that ∇xGδ
0(x, y) = −∇yG

δ
0(x, y) in Equation (21), we get

ρδ(x) = −
∫

V
∇yG

δ
0(x, y) · f(y) dy

=
∫

S
Gδ

0(x, y)f(y) · n̂(y) dy −
∫

V
(∇yG

δ
0(x, y)) · f(y) dy

−
∫

S
Gδ

0(x, y)f(y) · n̂(y) dy.

(23)

Now applying Gauß’s Divergence Theorem on the first term of Equation (23), we
get

ρδ(x) =
∫

V
∇y ·

(
Gδ

0(x, y)f(y)
)

dy −
∫

V
(∇yG

δ
0(x, y)) · f(y) dy

−
∫

S
Gδ

0(x, y)f(y) · n̂(y) dy.

Now combining the first two terms of the equation given above and using Equation
(6) we obtain

ρδ(x) =
∫

V
Gδ

0(x, y)∇y · f(y) dy −
∫

S
Gδ

0(x, y)f(y) · n̂(y) dy.

(24)
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In a similar way if we use the fact ∇xGδ
0(x, y) = −∇yG

δ
0(x, y) in Equation (22),

we get

Λδ(x) =
∫

V
−∇yG

δ
0(x, y)× f(y) dy

= −
∫

V
∇y ×

(
Gδ

0(x, y)f(y)
)

dy +
∫

V
Gδ

0(x, y)∇y × f(y) dy

=
∫

S
Gδ

0(x, y)f(y)× n̂(y) dy +
∫

V
Gδ

0(x, y)∇y × f(y) dy. (25)

We combine Equations (24) and (25) and their ability to provide approximate solu-
tions with Maxwell’s equations in a vacuum; again classically we view the charge
density and the current density as further vector fields, which are continuously
differentiable. Below are the Maxwell’s equations.

∇× E = −∂tB (26)
∇ ·E = %/ε0 (27)
∇×B = µ0(J + ε0∂tE) (28)
∇ ·B = 0 (29)

where E is the electric field, B is the magnetic field, % is the charge density in
the volume V , J is the current density, µ0 is the vacuum permeability and ε0 is
the vacuum capacitivity. Many phenomena of geomagnetism take place on a long
time scale and we might imagine the static approximation would be a good one.
Therefore, the Maxwell equations in the static case have the form

∇× E = 0 (30)
∇ · E = %/ε0 (31)
∇×B = µ0J (32)
∇ ·B = 0. (33)

From the Maxwell equation (30), the curl of the electric field vanishes. Hence,
the electric field may be written simply as the gradient of some scalar, ρ, which
of course is the electric potential: E = −∇ρ. From the Maxwell equation (31) it
follows that −∇2ρ = %/ε0. Further, if we take

σ = −E · n (34)
Γ = B × n (35)

with, for example, σ taken as a surface charge density and Γ taken as a surface
current density then by combining all this together with (24), we obtain

13



ρ(x) = lim
δ→0+

ρδ(x) = lim
δ→0+

(
1
ε0

∫

V
Gδ

0(x, y)%(y) dy (36)

+
∫

S
Gδ

0(x, y)σ(y) dy

)
.

(37)

For the magnetic field, it follows from the Maxwell equation (33), due to the Mie
decomposition (see [3, 4, 5]), that the magnetic field may be written as the curl of
some vector, Λ i.e. B = ∇ × Λ. The vector field Λ is called the magnetic vector
potential. Then using equation (25), Maxwell equation (32) and equation (35), we
get

Λ(x) = lim
δ→0+

Λδ(x) = lim
δ→0+

(
µ0

∫

V
Gδ

0(x, y)J(y) dy

+
∫

S
Gδ

0(x, y)Γ(y) dy

)
.

(38)

4.2 Reconstruction of the Decomposition Parts of a Vector-valued
Function

In this section, we present some numerical tests in which we reconstruct the decom-
positions ρ and Λ of a synthetic vectorial function f by using the kernels given in
Theorem 3.2 for different parameters δ = 0.01, δ = 0.001, δ = 0.0001, δ = 0.00001
and δ = 0.000001. We have also calculated the rooted mean square error for these
values of δ which are given in Table 1. For all values of the parameter δ we used
200× 256× 256 grid points for the integration on B1(0) = V .
To compute our convolution on B1(0), we use the standard separation of an inte-
gral on B1(0)

∫

B1(0)
F (x)dx =

∫ 1

0
r2

∫

∂B1(0)
F (rη)dω(η)dr.

(39)

For the integral over the sphere, the most commonly used sampling measures have
support on either an equiangular grid or a Gaussian grid. We use an equiangular
grid and the quadrature theorem given in [9] and for the line integral we use the
composite Simpson’s rule. Our vectorial synthetic function and its analytically
calculated decompositions ρ and Λ using Theorem 3.1 are given by

f(y) = f(rη) = r3ηY3,2 (η) , (40)
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Table 1: Rooted mean square error in the reconstruction of the decompositions ρ
and Λ of the synthetic vectorial function f for different values of the parameter δ.

δ
Rooted mean square Rooted mean square
error in ρ error in |Λ|

10−2 0.0023 0.0015
10−3 5.8856 · 10−04 2.7607 · 10−04

10−4 1.3743 · 10−04 4.1590 · 10−05

10−5 4.4364 · 10−05 1.7110 · 10−04

10−6 4.2001 · 10−04 2.7607 · 10−04

where r = |y| and η = y
|y| for y ∈ B1(0) and

ρ(x) = ρ(sξ) =
(−5s4

8
+

4s3

7

)
Y3,2 (ξ) , (41)

Λ(x) = Λ(sξ) =
(

s4

8
− s3

7

)
L?Y3,2(ξ), (42)

where s = |x| and ξ = x
|x| for x ∈ B1(0). Y3,2 is a spherical harmonic of degree

3 and order 2 and L? represents the surface curl gradient (see [10]). Analysing
the graphs in Figures 3 to 8 and the errors in Table 1, we can say that we get
a very good approximation of the scalar potential ρ and the vector potential Λ
of the vectorial function f . However, we observe that the optimal values of the
parameter δ for the scalar potential ρ and for the vector potential Λ are not the
same. We also observe that when the parameter δ becomes close to the singularity
the rooted mean square error may increase, this indicates why the regularisation
of the Green’s function was necessary.
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Figure 2: (a) is the graph of the analytically calculated scalar potential ρ of the
function f defined in Equation (40) plotted in the y1 = 0 plane and (b) is the
graph of the absolute values of the analytically calculated vector potential Λ of
the function f defined in Equation (40) plotted in the y1 = 0 plane.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.02

−0.01

0

0.01

0.02

(a)

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−5

0

5

x 10
−3

(b)

Figure 3: (a) is the graph of the reconstructed scalar potential ρ using the kernel of
Theorem 3.2 (i) with the parameter δ = 0.001 and (b) is the graph of the difference
of the analytically calculated scalar potential ρ and the numerically calculated
scalar potential ρ, using the kernel of Theorem 3.2 (i), with the parameter δ =
0.001. In both cases, the function is plotted in the y1 = 0 plane.
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Figure 4: (a) is the graph of the reconstructed scalar potential ρ using the kernel
of Theorem 3.2 (i) with the parameter δ = 0.0001 and (b) is the graph of the
difference of the analytically calculated scalar potential ρ and the numerically cal-
culated scalar potential ρ, using the kernel of Theorem 3.2 (i), with the parameter
δ = 0.0001. In both cases, the function is plotted in the y1 = 0 plane.
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Figure 5: (a) is the graph of the reconstructed scalar potential ρ using the kernel
of Theorem 3.2 (i) with the parameter δ = 0.00001 and (b) is the graph of the
difference of the analytically calculated scalar potential ρ and the numerically cal-
culated scalar potential ρ, using the kernel of Theorem 3.2 (i), with the parameter
δ = 0.00001. In both cases, the function is plotted in the y1 = 0 plane.
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Figure 6: (a) is the graph of the absolute values of the reconstructed vector poten-
tial Λ using the kernel of Theorem 3.2 (ii) with the parameter δ = 0.001 and (b)
is the graph of the difference of the absolute values of the analytically calculated
vector potential Λ and the absolute values of the numerically calculated vector
potential Λ, using the kernel of Theorem 3.2 (ii), with the parameter δ = 0.001.
In both cases, the function is plotted in the y1 = 0 plane.
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Figure 7: (a) is the graph of the absolute values of the reconstructed vector poten-
tial Λ using the kernel of Theorem 3.2 (ii) with the parameter δ = 0.0001 and (b)
is the graph of the difference of the absolute values of the analytically calculated
vector potential Λ and the absolute values of the numerically calculated vector
potential Λ, using the kernel of Theorem 3.2 (ii), with the parameter δ = 0.0001.
In both cases, the function is plotted in the y1 = 0 plane.
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Figure 8: (a) is the graph of the absolute values of the reconstructed vector poten-
tial Λ using the kernel of Theorem 3.2 (ii) with the parameter δ = 0.00001 and (b)
is the graph of the difference of the absolute values of the analytically calculated
vector potential Λ and the absolute values of the numerically calculated vector
potential Λ, using the kernel of Theorem 3.2 (ii), with the parameter δ = 0.00001.
In both cases, the function is plotted in the y1 = 0 plane.
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