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Abstract

We introduce a method to construct approximate identities on the 2–sphere which have
an optimal localization. This approach can be used to accelerate the calculations of approx-
imations on the 2–sphere essentially with a comparably small increase of the error. The
localization measure in the optimization problem includes a weight function which can be
chosen under some constraints. For each choice of weight function, existence and uniqueness
of the optimal kernel are proved as well as the generation of an approximate identity in
the bandlimited case. Moreover, the optimally localizing approximate identity for a certain
weight function is calculated and numerically tested.
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2 1 INTRODUCTION

1 Introduction

Approximate identities yield one popular way of constructing approximations on the 2–sphere
Ω (see, for example, [1, 2, 3]). This method is based on the calculation of spherical convolutions

(KJ ∗ F ) (ξ) :=

∫

Ω
KJ(ξ · η)F (η) dω(η), ξ ∈ Ω,

where F ∈ L2(Ω) is the function that has to be approximated and KJ ∈ L2[−1, 1] is a given
kernel or, in other words, radial basis function. Some known criteria tell us when a sequence of
such kernels (KJ)J∈N0 establishes an approximate identity, which means that

lim
J→∞

‖KJ ∗ F − F‖L2(Ω) = 0 for all F ∈ L2(Ω).

From the numerical point of view an approximate identity is connected to the implementation
of a spherical quadrature rule in the sense that the right–hand side of

(KJ ∗ F ) (ξ) =

∫

Ω
KJ(ξ · η)F (η) dω(η) ≈

N
∑

k=1

wkKJ (ξ · ηk)F (ηk)

is regarded as an approximation to F at the single point ξ ∈ Ω. Plotting the approximation
on the sphere, i.e. at a point grid {ξj}j=1,...,M , consequently requires M spherical numerical
integrations which is very expensive.
Earlier works already developed accelerations of several aspects of calculations on the sphere,
see, for example, [4, 5]. We will address here another aspect, namely there is a perspective
to accelerate the computations of the convolutions since the frequently used kernels KJ show
some localization behavior, i.e. the function Ω ∋ η 7→ KJ(ξ · η) has its maximum at η = ξ and
is almost zero if η is essentially distant to ξ. Therefore, each quadrature could be reduced to
the neighborhood of the corresponding ξ instead of always taking the whole integration grid
{ηk}k=1,...,N .
The localization of such radial basis functions varies from kernel to kernel. Several authors have
studied the construction of optimally localizing basis functions, in particular on the sphere, see
e.g. [6, 7, 8, 9, 10, 11, 12, 13]. Some of these works are based on an uncertainty principle on the
2–sphere (see [14] for an uncertainty principle). We will show in this paper that it is possible
to construct bandlimited approximate identities with optimal localization based on a modified
localization measure. Existence and uniqueness results are proved for the bandlimited as well as
the non–bandlimited case. Moreover, a convergence proof, i.e. the evidence for an approximate
identity, is given in the bandlimited case which is the relevant one for a numerical realization.
Afterwards, the results of numerical tests are analyzed. We observe that the new approximate
identity yields small approximation errors and shows at the same time a low sensitivity to the
reduction of the integration grid. The new kernels represent a trade–off between two popular
kernels (see, for example, [1]):

• the Shannon scaling function, which is an optimum in the sense that it yields a minimal
approximation error ‖KJ ∗F −F‖L2(Ω) under some constraints on bandlimitation, but has
a high sensitivity to the grid reduction,
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• the cp scaling function (where “cp” refers to the used cubic polynomial symbol), which
has a good localization and, thus, a low sensitivity to the omission of points but yields by
itself a much higher approximation error.

Hence, the new kernels should be considered as an alternative in future calculations.

2 Nomenclature

By R and N we denote the set of all real numbers and all positive integers, respectively, such
that N0 represents the set of all non–negative numbers. The standard Euclidean inner product
and its induced norm in R

3 are denoted by x · y and |x|, x, y ∈ R
3, respectively. Moreover, the

unit sphere in R
3 is denoted by Ω := {ξ ∈ R

3| |ξ| = 1}.
The system {Pn}n∈N0 that is determined uniquely by the requirements

1. Every Pn is a univariate polynomial of degree n,

2.
∫ 1
−1 Pn(t)Pm(t) dt = 0 for all n,m ∈ N0 with n 6= m,

3. Pn(1) = 1 for each degree n ∈ N0,

is called the sequence of Legendre polynomials. Their norm is given by

‖Pn‖L2[−1,1] =

√

2

2n+ 1
.

The properties of these functions are well investigated in the literature of orthogonal polynomials,
see e.g. [15].
Recall that the set B(D) of all bounded functions on a domain D is a Banach space if it is
equipped with the norm ‖f‖∞ := supx∈D |f(x)|, f ∈ B(D).

3 Approximate Identities on the 2–sphere

In this section we will briefly summarize known results on approximate identities on the 2–
sphere. For further details we refer, for example, to [1, 2, 3, 16]. We consider here kernels that
only depend on the spherical distance of the two arguments on the unit sphere Ω, i.e. functions
K ∈ L2[−1, 1] of the form

Ω2 ∋ (ξ, η) 7→ K(ξ · η).
Such kernels admit a representation in Legendre polynomials {Pn}n∈N0 by

K(t) =

∞
∑

n=0

2n+ 1

4π
K∧(n)Pn(t), t ∈ [−1, 1],

where the series converges in L2[−1, 1]–sense and K∧(n), n ∈ N0, which will be called here the
n–th Legendre coefficient of K, can be calculated by

K∧(n) = 2π

∫ 1

−1
K(t)Pn(t) dt.
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The tool for establishing approximate identities out of radial basis functions such as K is the
spherical convolution.

Definition 3.1 The spherical convolution of a kernel K ∈ L2[−1, 1] and a function F ∈ L2(Ω)
is defined by

(K ∗ F )(ξ) :=

∫

Ω
K(ξ · η)F (η) dω(η), ξ ∈ Ω.

It is easy to verify by means of the Hölder inequality that K ∗ F ∈ L2(Ω).

Definition 3.2 A sequence (KJ)J∈N0 of kernels in L2[−1, 1] is called an approximate identity
if

lim
J→∞

‖KJ ∗ F − F‖L2(Ω) = 0,

for all F ∈ L2(Ω).

We prove the following variation of known criteria for approximate identities (see also [2, 3, 17]).

Theorem 3.3 Let (KJ)J∈N0 ⊂ L2[−1, 1] be a given sequence such that there exists M ∈ R
+

satisfying |K∧

J (n)| ≤ M for all n, J ∈ N0. Then (KJ)J is an approximate identity if and only if

lim
J→∞

K∧

J (n) = 1 for all n ∈ N0. (1)

Proof. Let F ∈ L2(Ω) be arbitrary. It can be represented in terms of an orthonormal basis
{Yn,j}n∈N0; j=1,...,2n+1 of spherical harmonics (for further details see, e.g., [1, 18]) as

F =
∞
∑

n=0

2n+1
∑

j=1

〈F, Yn,j〉L2(Ω) Yn,j ,

which yields

KJ ∗ F =
∞
∑

n=0

2n+1
∑

j=1

K∧

J (n) 〈F, Yn,j〉L2(Ω) Yn,j ,

where each series converges in L2(Ω)–sense. Hence, the Parseval identity implies

‖KJ ∗ F − F‖2L2(Ω) =
∞
∑

n=0

2n+1
∑

j=1

(

K∧

J (n)− 1
)2 〈F, Yn,j〉2L2(Ω) . (2)

On the one hand, if (KJ)J is an approximate identity then choosing F = Ym,k (m ∈ N0,
k ∈ {1, ..., 2m+ 1} arbitrary but fixed) yields

0 = lim
J→∞

‖KJ ∗ F − F‖2L2(Ω) = lim
J→∞

(

K∧

J (m)− 1
)2

.

On the other hand, if (1) holds then we use the fact that

(

K∧

J (n)− 1
)2 〈F, Yn,j〉2L2(Ω) ≤ (M + 1)2 〈F, Yn,j〉2L2(Ω) ,

∞
∑

n=0

2n+1
∑

j=1

(M + 1)2 〈F, Yn,j〉2L2(Ω) = (M + 1)2‖F‖2L2(Ω)
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yields the uniform convergence of the series in (2) with respect to J ∈ N0 due to the Weierstraß
criterion. This implies

lim
J→∞

‖KJ ∗ F − F‖2L2(Ω) =
∞
∑

n=0

2n+1
∑

j=1

lim
J→∞

(

K∧

J (n)− 1
)2 〈F, Yn,j〉2L2(Ω)

= 0.

4 Optimal Localization

4.1 Quantifying Localization

The question is how to measure localization on a sphere. We present here an alternative approach
to those introduced in [6, 7, 8, 9, 13]. We choose a function w : [−1, 1] → R, which is bounded
and monotonically decreasing and satisfies w(t) > 0 for t < 1 and w(1) = 0, for example
w(t) =

√
1− t. The non–localization of K ∈ L2[−1, 1] is then measured by

L(K) :=

∫ 1

−1
w(t)(K(t))2 dt =

1

2π

∫

Ω
w(ξ · η)(K(ξ · η))2 dω(η),

ξ ∈ Ω arbitrary. The idea is that K ∗F as an approximation to F can numerically be calculated
by

(K ∗ F )(ξ) =

∫

Ω
K(ξ · η)F (η) dω(η) ≈

N
∑

k=1

wkK (ξ · ηk)F (ηk)

by an appropriate quadrature method such as in [1, Chapter 7], [19], and [20]. If ηk is sufficiently
far away from ξ then K(ξ · ηk) should be almost zero and, thus, negligible. The minimization
of L should produce a kernel K with such a property. If K(ξ · η) were large for η far away
from ξ, i.e. for ξ · η being much smaller than 1, then a large value w(ξ · η) would punish such a
structure. The advantages are a faster calculation with an acceptable inaccuracy and an easier
treatment of spherical data sets that only regionally change in time: The convolution only has
to be recalculated in a slightly extended version of the area of change.
However, numerical experiments show that optimal localization alone does not yield an approx-
imate identity in general. We, therefore, extend the functional L in the following way.

Definition 4.1 A function w : [−1, 1] → R is called an admissible weight function if it is
bounded and monotonically decreasing with w(t) > 0 for t < 1 and w(1) = 0. Moreover,
let µ = (µn) ⊂ R

+
0 with

∑

∞

n=0µn < +∞, i.e. µ ∈ l1, be a given sequence. The functional
Fw,µ : L2[−1, 1] → R is then defined by

Fw,µ(K) :=

∫ 1

−1
w(t)(K(t))2 dt+

∞
∑

n=0

µn

(

1−K∧(n)
)2

, K ∈ L2[−1, 1].
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In addition, let the operator Mµ : R∞ → R
∞ be defined by

Mµ : (an) 7→ (µnan) ,

where R
∞ := {(an)n∈N0 |an ∈ R} is the set of all real sequences.

Note that we will discuss restrictions of Mµ to subdomains later.
Whereas the first part of the functional punishes a bad localization, the second one punishes
a strong deviation from an approximate identity (cf. Theorem 3.3). Note that the sequence
(K∧(n))n∈N0 of the Legendre coefficients of a function K ∈ L2[−1, 1] necessarily has to tend to
0, such that a series

∑

∞

n=0(1 −K∧(n))2 would always be infinite. This is compensated by the
requirement that µ ∈ l1.
The coefficients µn can control a balance between both objectives. The larger µn, the stronger
the focus on the property of an approximate identity.

4.2 Bandlimited Kernels

Now we are able to prove the following existence and uniqueness result.

Theorem 4.2 Let w be an admissible weight function, N ∈ N, and µ ∈ l1 with µn = 0 for
n > N . Then we have: Within the set PolN [−1, 1] of all polynomials of degree ≤ N on R,
restricted to [−1, 1], the functional Fw,µ has a unique global minimizer

K∗ =
N
∑

n=0

(K∗)∧ (n)
2n+ 1

4π
Pn, (3)

where the coefficient vector k∗ := ((K∗)∧(n))n=0,...,N ∈ R
N+1 is the solution of the positive

definite system of linear equations

(p+Mµ) k
∗ = µ, (4)

where the entries pn,m (n,m = 0, ..., N) of the matrix p ∈ R
(N+1)×(N+1) are given by

p :=

(

(2n+ 1)(2m+ 1)

16π2

∫ 1

−1
w(t)Pn(t)Pm(t) dt

)

n,m=0,...,N

.

Note that in (4) the projection of µ to R
N+1 (i.e. (µ0, ..., µN )) and the restriction of the mapping

Mµ to R
N+1 → R

N+1 (represented by an (N + 1)× (N + 1)–matrix) are used.

Proof. Since the Legendre polynomials are orthogonal in L2[−1, 1] and, thus, {Pn}n=0,...,N is a
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basis of PolN [−1, 1] we can write for K ∈ PolN [−1, 1]

Fw,µ(K) = 〈wK,K〉L2[−1,1] +
N
∑

n=0

µn

(

1−K∧(n)
)2

=

N
∑

n=0

N
∑

m=0

2n+ 1

4π

2m+ 1

4π
K∧(n)K∧(m) 〈wPn, Pm〉L2[−1,1] +

N
∑

n=0

µn

(

1−K∧(n)
)2

=

N
∑

n=0

N
∑

m=0

K∧(n)K∧(m)pn,m +

N
∑

n=0

µn

(

1−K∧(n)
)2

= kTpk + (1− k)TMµ(1− k),

where we used the abbreviations k := (K∧(n))n=0,...,N ∈ R
N+1 and 1 := (1, ..., 1)T ∈ R

N+1.
Necessary for a minimum of Fw,µ is, thus,

2pk + 2Mµ(1− k) · (−1) = 0,

which is true if and only if
(p+Mµ) k = µ. (5)

Since the weighted L2–inner product

〈f, g〉L2
w[−1,1] :=

∫ 1

−1
f(t)g(t)w(t) dt

is still an inner product as w 6= 0 on [−1, 1[, the matrix p is a Gram matrix with the entries

pn,m =

〈

2n+ 1

4π
Pn,

2m+ 1

4π
Pm

〉

L2
w[−1,1]

.

Due to the linear independence of the Legendre polynomials, p is positive definite and, thus, so
is p+Mµ, since µn ≥ 0 for all n. Hence, (5) has one and only one solution k∗. Since the Hessian
2p+ 2Mµ is positive definite, the solution k∗ yields the only minimum.

It is clear that the values of µ may not be too small if one wants to obtain an approximate
identity. A more detailed result yields the following theorem.

Theorem 4.3 Let w be an admissible weight function and let (µ(J))J∈N0 ⊂ l1 be a sequence of

non–negative finite sequences µ(J) ∈ l1 with µ
(J)
n = 0 ⇔ n > NJ , where limJ→∞NJ = ∞. For

each J ∈ N0, let KJ be the unique minimizer of Fw,µ(J) in PolNJ
[−1, 1] given by Theorem 4.2.

If (µ(J))J satisfies

lim
J→∞

µ
(J)
n

(NJ + 1)2
= ∞ (6)

for all n ∈ N0 and

γ := sup
n∈N0

sup
J∈N0

with n≤NJ

(NJ + 1)2

µ
(J)
n

< ∞, (7)

then {KJ}J∈N0 is an approximate identity.
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Proof. We observe that choosing the so–called Shannon kernel ΦJ =
∑NJ

n=0
2n+1
4π Pn yields

Fw,µ(J) (ΦJ) =

∫ 1

−1
w(t)

(

NJ
∑

n=0

2n+ 1

4π
Pn(t)

)2

dt

≤ ‖w‖∞
∫ 1

−1

(

NJ
∑

n=0

2n+ 1

4π
Pn(t)

)2

dt

= ‖w‖∞
NJ
∑

n=0

(

2n+ 1

4π

)2

‖Pn‖2L2[−1,1]

= ‖w‖∞
NJ
∑

n=0

2n+ 1

8π2

= ‖w‖∞
(NJ + 1)2

8π2
.

Assume that K∧

J (ñ) does not converge to 1 as J → ∞ for one ñ ∈ N0, i.e. there exists ε > 0
such that for all J0 there is J(J0) ≥ J0 with

∣

∣

∣
K∧

J(J0)
(ñ)− 1

∣

∣

∣
> ε.

Due to condition (6) we find J1 such that for all J ≥ J1 we have

µ
(J)
ñ

(NJ + 1)2
≥ ‖w‖∞

8π2ε2
.

Without loss of generality we can assume that ñ ≤ NJ1 since limJ→∞NJ = ∞. Hence, for
J = J(J1) we obtain

Fw,µ(J) (KJ) > µ
(J)
ñ ε2 ≥ ‖w‖∞

8π2
(NJ + 1)2 ≥ Fw,µ(J) (ΦJ) ,

which contradicts the optimality of KJ . Thus, limJ→∞K∧

J (n) = 1 for all n ∈ N0.
Moreover, from the considerations above we know that for J ∈ N0 and all n ≤ NJ we have

µ(J)
n

(

1−K∧

J (n)
)2 ≤ Fw,µ(J) (KJ) ≤ ‖w‖∞

(NJ + 1)2

8π2

and, hence,
(

1−K∧

J (n)
)2 ≤ ‖w‖∞

8π2
· (NJ + 1)2

µ
(J)
n

.

Taking into account the bandlimitedness of the kernels and using

∣

∣K∧

J (n)
∣

∣ =
∣

∣−1 + 1−K∧

J (n)
∣

∣ ≤ 1 +
∣

∣1−K∧

J (n)
∣

∣
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we obtain
∣

∣K∧

J (n)
∣

∣ ≤ 1 +

√

‖w‖∞
2
√
2π

√
γ

for all n ∈ N0 and all J ∈ N0. Hence, Theorem 3.3 yields the desired result.

Note that (6) does not imply (7), as the following counterexample shows: If NJ = J and

µ
(J)
n = (J + 1)3n−2 for all n ≤ J , then

µ
(J)
n

(NJ + 1)2
=

J + 1

n2
−→ ∞ as J → ∞,

but

sup
n∈N0

sup
J∈N0

with n≤NJ

(NJ + 1)2

µ
(J)
n

= sup
n∈N0

sup
J∈N0

with n≤NJ

n2

J + 1
= sup

n∈N0

n2

n+ 1
= ∞.

4.3 Non–bandlimited Kernels

In the following, we will investigate the treatment of non–bandlimited kernels where the previous
matrices become operators between separable normed spaces. We will now assume that (µn) ⊂
R
+.

Definition 4.4 For α ∈ R the space l(α) is defined as the space of all sequences (an) with

‖(an)‖l(α) :=
∞
∑

n=0

(2n+ 1)α |an| < +∞.

In analogy to the classical lp spaces, 1 ≤ p ≤ ∞, one can show that all l(α) are Banach spaces.
Obviously, l(α) ⊂ l(β) for α > β and l(α) ⊂ l1 ⊂ lp ⊂ l∞ for α ≥ 0 and 1 ≤ p ≤ ∞.

Definition 4.5 Let w be an admissible weight function. We define the operator A : l(−1/2) →
l(−1/2− ε), for ε > 0 fixed, by

A (an) :=

(

∞
∑

m=0

am 〈Pn, Pm〉L2
w[−1,1]

)

n∈N0

.

The image of A is indeed a subspace of l(−1/2− ε) since
∣

∣

∣
〈Pn, Pm〉L2

w[−1,1]

∣

∣

∣
≤ ‖w‖∞ ‖Pn‖L2[−1,1] ‖Pm‖L2[−1,1]

= ‖w‖∞
2

√

(2n+ 1)(2m+ 1)

due to the Hölder inequality. Consequently,
∣

∣

∣

∣

∣

∞
∑

m=0

am 〈Pn, Pm〉L2
w[−1,1]

∣

∣

∣

∣

∣

≤
(

∞
∑

m=0

|am| 1√
2m+ 1

)

2√
2n+ 1

‖w‖∞

= ‖(am)‖l(−1/2)

2√
2n+ 1

‖w‖∞
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and, hence,

‖A (an)‖l(−1/2−ε) ≤
∞
∑

n=0

(2n+ 1)−
1
2
−ε 2√

2n+ 1
‖(am)‖l(−1/2) ‖w‖∞ < +∞.

Note that the last two inequalities imply that the sequence obtained by A(an) even converges
to 0 and that the linear operator A is bounded.
Furthermore, A may be applied to (2m+1

4π am), if (am) ∈ l(1/2), since ‖(am)‖l(1/2) = ‖((2m +
1)am)‖l(−1/2). Hence, we obtain for a sequence (am) ∈ l(1/2) the estimate

∣

∣

∣

∣

〈(

2n+ 1

4π
an

)

, A

(

2m+ 1

4π
am

)〉

l2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

n=0

2n+ 1

4π
an

∞
∑

m=0

2m+ 1

4π
am 〈Pn, Pm〉L2

w[−1,1]

∣

∣

∣

∣

∣

≤
∞
∑

n=0

2n+ 1

4π
|an|

2√
2n+ 1

‖w‖∞ ‖(am)‖l(1/2)
1

4π

= ‖(am)‖2l(1/2)
1

8π2
‖w‖∞ < +∞.

Note that the operator

T : l(α) → l(α− 1),

(an) 7→
(

2n+ 1

4π
an

)

is bijective. Moreover, for a = (an) ∈ l(1/2), we have due to the Beppo Levi theorem and the
Hölder inequality that

∥

∥

∥

∥

∥

∞
∑

n=N

an
2n+ 1

4π
Pn

∥

∥

∥

∥

∥

2

L2
w[−1,1]

≤
∞
∑

n=N

∞
∑

m=N

|anam| (2n+ 1)(2m+ 1)

16π2
‖w‖∞

2
√

(2n+ 1)(2m+ 1)

= ‖w‖∞
(

∞
∑

n=N

|an|
2n+ 1

4π

√

2

2n+ 1

)2

−→ 0 as N → ∞,

i.e. the Legendre series
∑

∞

n=0an
2n+1
4π Pn is strongly convergent in L2

w[−1, 1] sense and for anal-
ogous reasons also in ordinary L2[−1, 1] sense. Hence, the functional that has to be minimized
may be written as

Fw,µ(K) = 〈Tk,A(Tk)〉l2 + 〈(1− k),Mµ(1− k)〉l2 , (8)

with k := (K∧(n))n∈N0 ∈ l(1/2) and 1 := (1)n∈N0 . The last expression in (8) is always finite,
since

∞
∑

n=0

µn

(

1−K∧(n)
)2 ≤ max

m∈N0

(

1 +
∣

∣K∧(m)
∣

∣

)2
∞
∑

n=0

µn < +∞

and since every k ∈ l(1/2) is bounded. Note that the l2 inner product only serves here as
a formal abbreviation since, in general, A(Tk) may not be assumed to be in l2 whereas the
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occurring series nevertheless converges for that particular constellation.
We regard (8) as a functional depending on the sequence k ∈ l(1/2). For calculating its Fréchet
derivative we consider

〈T (k + h), AT (k + h)〉l2 − 〈Tk,ATk〉l2
= 〈T (k + h), AT (k + h)〉l2 − 〈Tk,AT (k + h)〉l2 + 〈Tk,AT (k + h)〉l2 − 〈Tk,ATk〉l2
= 〈Th,AT (k + h)〉l2 + 〈Tk,ATh〉l2

for h, k ∈ l(1/2) such that, consequently,

|〈T (k + h), AT (k + h)〉l2 − 〈Tk,ATk〉l2 − 〈Th,ATk〉l2 − 〈Tk,ATh〉l2 |
1

‖h‖l(1/2)
= |〈Th,ATh〉l2 |

1

‖h‖l(1/2)
≤ ‖h‖l(1/2)

1

8π2
‖w‖∞.

The mapping

l(1/2) ∋ h 7→ 〈Th,ATk〉l2 + 〈Tk,ATh〉l2

=
∞
∑

n=0

2n+ 1

4π
hn

∞
∑

m=0

2m+ 1

4π
K∧(m)〈Pn, Pm〉L2

w[−1,1]

+
∞
∑

n=0

2n+ 1

4π
K∧(n)

∞
∑

m=0

2m+ 1

4π
hm〈Pn, Pm〉L2

w[−1,1]

= 2〈Th,ATk〉l2

consequently, represents the Fréchet derivative of the first part of the functional in k ∈ l(1/2).
This mapping is indeed bounded, since

|〈Th,ATk〉l2 | ≤ ‖h‖l(1/2)‖k‖l(1/2)
1

8π2
‖w‖∞.

For the second part one can easily derive that

1

‖h‖l(1/2)

∣

∣

∣

∣

∣

∞
∑

n=0

µn

(

1−K∧(n)− hn
)2 −

∞
∑

n=0

µn

(

1−K∧(n)
)2 − 2

∞
∑

n=0

µnhn
(

K∧(n)− 1
)

∣

∣

∣

∣

∣

≤ 1

‖h‖l(1/2)

∞
∑

n=0

µnh
2
n

≤ 1

‖h‖l(1/2)
‖h‖∞ ‖µ‖∞

∞
∑

n=0

|hn|

≤ 2‖µ‖∞‖h‖l(1/2)
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since supm∈N0
|hm| ≤ 2‖h‖l1 ≤ 2‖h‖l(1/2). Note that the linear mapping l(1/2) ∋ h 7→ 〈Mµk −

µ, h〉l2 is bounded since

∣

∣〈Mµk − µ, h〉l2
∣

∣ =

∣

∣

∣

∣

∣

∞
∑

n=0

µnhn
(

K∧(n)− 1
)

∣

∣

∣

∣

∣

≤ ‖µ‖∞‖k − 1‖∞
∞
∑

n=0

|hn|

≤ ‖µ‖∞ (‖k‖∞ + 1) ‖h‖l(1/2).
The Fréchet derivative of the whole functional at k ∈ l(1/2) is now

l(1/2) ∋ h 7→ 2〈Th,ATk〉l2 + 2 〈Mµk − µ, h〉l2
= 2 〈h, TATk +Mµk − µ〉l2 .

A necessary condition for a minimum is, thus,

(TAT +Mµ)k = µ.

The second Fréchet derivative is obviously constant with respect to k and given by

(l(1/2))2 ∋ (h1, h2) 7→ 2 〈h1, TATh2 +Mµh2〉l2 .
Due to the properties of µ, the operator Mµ is strictly positive, i.e. 〈Mµa, a〉l2 > 0 for all
a ∈ l(1/2) \ {0}. Moreover, if a ∈ l(1/2), then

〈a, TATa〉l2 =
∞
∑

n=0

an
2n+ 1

4π

∞
∑

m=0

2m+ 1

4π
am〈Pn, Pm〉L2

w[−1,1].

Due to the strong convergence of the Legendre series we are allowed to conclude that

〈a, TATa〉l2 =

〈

∞
∑

n=0

2n+ 1

4π
anPn,

∞
∑

m=0

2m+ 1

4π
amPm

〉

L2
w[−1,1]

=

∥

∥

∥

∥

∥

∞
∑

n=0

2n+ 1

4π
anPn

∥

∥

∥

∥

∥

2

L2
w[−1,1]

.

Due to the linear independence of the Legendre polynomials this expression vanishes if and only
if a = 0. Consequently, TAT +Mµ is strictly positive and invertible on its image. Provided that
µ ∈ (TAT +Mµ)(l(1/2)), we have a unique solution

k = (TAT +Mµ)
−1 µ.

Since 〈h, TATh+Mµh〉l2 > 0 for all h ∈ l(1/2) \ {0} we have a minimum of the functional. We
have, thus, proved the following theorem.

Theorem 4.6 Let the operators T , A, and Mµ be defined as introduced above where l1 ∋ µ =
(µn) ⊂ R

+. If µ ∈ (TAT +Mµ)(l(1/2)) then Fw,µ has a unique global minimizer in the set of
all K ∈ L2[−1, 1] with k = (K∧(n))n∈N0 ∈ l(1/2). This is given by

k = (TAT +Mµ)
−1 µ.
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5 Numerical Results

5.1 Determination of Optimal Kernels

Based on the results derived above optimal bandlimited kernels of different degrees were com-
puted by solving the corresponding system of linear equations given by (4). The weight function
w(t) =

√
1− t was chosen based on preliminary numerical tests with various weight functions.

Note that the behavior of the root function already allows a high penalty at small distances. The
corresponding integrals 〈Pm, Pn〉L2

w[−1,1] were calculated numerically via the composite Newton–
Cotes formula of order 4 with 1,000,001 grid points (see Appendix A). It should be noted that
there also exists the following explicit representation in terms of hypergeometric functions (see
[21], p. 447).

∫ 1

−1

√
1− tPm(t)Pn(t) dt =

(

−1
2

)

n
(

3
2

)

n+1

23/24F3

(

−m,m+ 1,
3

2
,
3

2
; 1, n+

5

2
,
3

2
− n; 1

)

.

For degrees NJ = 2J , J ≥ 4, the spectral weights were defined as

µ(J)
n :=

{

10−4(log J) (NJ + 1)2 , n ≤ NJ

0 , n > NJ
=

{

10−4(log(log2NJ)) (NJ + 1)2 , n ≤ NJ

0 , n > NJ
,

where log = loge represents the natural logarithm. Note that the right-hand representation of
µ(J) also allows the use of arbitrary, i.e. not necessarily dyadic, degrees N ∈ N. The choice
of this sequence is based on preliminary numerical tests and on the idea that the condition
of an approximate identity should not be weighted much stronger than required by Theorem
4.3 to keep a good localization. In Figure 1, we represent the obtained kernels for certain
selected degrees. Note that the functions show a very good localization relative to their degree
and simultaneously tend to Legendre coefficients 1 with increasing scale J . The conditions of
the obtained matrices are shown in Table 1. All calculations presented here were done with
MATLAB.

degree condition

16 11.9348

32 6.8289

64 3.8448

128 2.3625

256 1.6514

Table 1: Condition of the Matrices p for selected total degrees

5.2 Application to a Test Example

We used the determined optimal kernels for spherical convolutions with the function f(x) =
sin (34x1) cos (59x2) sin (12x3), since it contains short, medium, and long wavelength parts. The
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Figure 1: Coefficients (left column) and plots (right column) of the calculated optimal kernels
for degrees NJ = 2J with J = 4 (top row), ..., 8 (bottom row)
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results are compared with those obtained for convolutions with the Shannon kernels ΦSh
J and

the cp–kernels Φcp
J whose coefficients are given by a cubic polynomial:

(

ΦSh
J

)

∧

(n) =

{

1, n ≤ NJ

0, n > NJ
,
(

Φcp
J

)

∧
(n) =

{
(

1− n
NJ

)2 (

1 + 2 n
NJ

)

, n ≤ NJ

0, n > NJ

.

Note that here NJ = 2J . The Shannon kernel is a kind of bandlimited optimum as approximate
identity since its coefficients are 1 up to the maximal degree, whereas its localization behavior
is known to be bad. On the other hand, the cp–kernel is very popular for approximations on
the sphere due to its nice behavior in space.

We investigate two kinds of errors. In Figure 2 we show the mean square error that is obtained
if one compares the original function f with its approximation ΦJ ∗ f for the different choices
of kernels ΦJ (optimal kernel KJ , Shannon kernel ΦSh

J , and cp–kernel Φcp
J ) relative to the

truncation of the quadrature grid, which is further explained below. All approximations ΦJ ∗ f
were calculated at an equiangular grid P ⊂ Ω of 126 × 126 points ξ ∈ Ω. For each value
(ΦJ ∗ f)(ξ), an equiangular integration grid (see the quadrature method by Driscoll and Healy
[19]) Q ⊂ Ω of 502× 502 points ηk was used to represent

∫

Ω
ΦJ(ξ · η)F (η) dω(η) ≈

5022
∑

k=1

wkΦJ (ξ · ηk)F (ηk) ,

which theoretically yields an exact integration of polynomials up to degree 501. For purposes
of acceleration, ΦJ was calculated via the Clenshaw algorithm (see [22]) at an equiangular
grid of 40,001 points on [−1, 1] and linearly interpolated in between. To test the advantage
of localization, we gradually omitted quadrature points ηk. More precisely, we constructed a
spherical rectangle Rξ,h which covers a spherical cap given by {η ∈ Ω|ξ · η ≥ h} at the fixed
point ξ ∈ Ω relative to a parameter h ∈ [−1, 1], see Figure 3 and Appendix B. This rectangle is
used to accelerate the numerical integration on the sphere as follows:

(ΦJ ∗ f) (ξ) =
∫

S2

ΦJ(ξ · η)f(η) dω(η) ≈
5022
∑

k=1
ηk∈Rξ,h

αkΦJ (ξ · ηk) f (ηk) , (9)

i.e. we always only use values from the neighborhood of ξ since ΦJ(ξ · η) should be almost 0 if η
is far away from ξ. The restriction of the integration grid essentially accelerates the calculations.
In Figure 4, the base 10 logarithm of the total number of used points relative to h is plotted.
This value

∑

ξ∈P

∑

η∈Q∩Rξ,h

1

is a measure for the calculation time, since it represents the total number of summands in (9).
We observe that the list of values for h used for our computations corresponds approximately to
an exponential decay of the calculation time. Figure 2 now shows that, as a general trend, the
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Figure 2: Root mean square error function - truncated convolution relative to h, note that
h = −1 means that there is no spatial truncation in the quadrature rule.
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restriction of the integration grid increases the approximation error, as one can expect. Obvi-
ously, the cp kernel produces the largest approximation error and the Shannon kernel generates
the smallest one. Compared to the exponential decay of the calculation time, the increase of
the error is relatively small. This holds, in particular, also for the new kernels.
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Figure 3: Illustration of the spherical cap and the larger spherical rectangle, defined via longitude
and latitude limits, for h = 0.95 (top row) and h = 0.99 (bottom row) including the special case
of caps including or near a pole (right column)

On the other hand, the approximation of a function by a convolution with kernels of different
degrees can be regarded as a multiresolution analysis in terms of low–pass filters. Hence, the
investigation of the convolution ΦJ ∗ f itself can yield additional information. Therefore, we
also investigate how close the restricted, i.e. accelerated, convolutions are to the function ΦJ ∗ f
of interest. In other words, we determine the pure truncation error, i.e. the difference between
ΦJ ∗ f obtained by always integrating over the whole sphere (h = −1) and its counterpart with
restricted area (h > −1). The result is shown in Figure 5. We clearly see that the Shannon
kernel shows the highest sensitivity with respect to the omission of quadrature points. The new
kernels are less sensitive due to their good localization. The lowest sensitivity is observed in
case of the cp kernels, which, however, yield an approximation which is most distant to f .
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Figure 4: Base 10 logarithm of the total number of used quadrature points relative to h

6 Conclusions

A method for constructing optimally localizing approximate identities on the 2–sphere was con-
structed. Existence, uniqueness and convergence results were proved. The obtained example
of kernels shows the desired trade-off of good approximation and fast calculations. The cal-
culated approximations of the used test function are almost as good as those obtained by the
Shannon scaling function and much better than for the cp–scaling function. Additionally, if this
approximation process is accelerated by merely taking into account quadrature points in the
neighborhood of the location of interest the new kernels show a smaller increase of the error
than the Shannon kernel does.
Thus, the optimal kernels allow a good compromise between the (kind of) extremal situations
of the Shannon kernel, which gives good approximations but reacts highly sensitive to a grid
reduction, and the cp–kernel, which shows a low sensitivity to the omission of grid points but
yields in general approximations with a higher error compared to the original function.
Therefore, the obtained kernels yield an interesting alternative to the presently known tools for
approximation on the 2–sphere. They, in particular, allow fast approximations with a relatively
low error.

7 Further Perspectives

Note that there are some interesting topics for further research. For instance, at least two theo-
retical problems remain. One is the construction of a corresponding sequence that can be proved
to be an approximate identity in the non–bandlimited case. This would promise a further im-
proved localization (see the uncertainty principle in [14]). And the second one is based on the ob-
servation that the numerically determined kernels of degrees 4, ..., 256, 300, 350, 400, 450, 500, 512
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Figure 5: Root mean square omission error convolution - truncated convolution relative to h,
note that h = −1 means that there is no spatial truncation in the quadrature rule.
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satisfy the property that

if K∧

N (n) 6= 0 then K∧

M (n) 6= 0 for all M > N, (10)

where here N corresponds to the degree of the kernel KN . This implies that the corresponding
scale spaces VN := {KN ∗F |F ∈ L2(Ω)} are nested. Hence, we have a multiresolution analysis.
A mathematical proof that (10) holds in general still has to be found.
Moreover, in [12] approximate identities with exponential decay were derived for intervals. A
combination with the spherical kernels obtained here can yield strongly localizing approximate
identities on the 3–dimensional ball, which will find applications e.g. in the geosciences and in
medical imaging.
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A Calculation of the Matrix p

For calculating the matrix entries we have to numerically integrate f := wPnPm on [−1, 1].
For this purpose, the composite Newton–Cotes formula of order 4 with 4N + 1 = 1, 000, 001
grid points was chosen. We investigate here the error of this procedure. According to [23], p.
357 the error of integrating F ∈ C(6)[a, b] with stepwidth h = b−a

4N is estimated from above by
2(b−a)
945 h6‖F (6)‖C[a,b]. We subdivide the integral here into two parts:

I1 :=

∫ 1

1−4h
w(x)Pn(x)Pm(x) dx,

I2 :=

∫ 1−4h

−1
w(x)Pn(x)Pm(x) dx.

We discuss now the case w(x) =
√
1− x and use the inequality |Pk(t)| ≤ 1 which holds for all

k ∈ N0 and all t ∈ [−1, 1]. Then the quadrature error for the first integral can be estimated as
follows:

∣

∣

∣

∣

I1 −
2h

45
(7(f(1− 4h) + f(1)) + 32(f(1− 3h) + f(1− h)) + 12f(1− 2h))

∣

∣

∣

∣

≤ |I1|+
2h

45
· 90 ‖f‖C[1−4h,1]

≤ (4 + 4)h ‖f‖C[1−4h,1]

≤ 8h
√
4h · 1 · 1

= 16h3/2

≈ 4.525 · 10−8.
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For the second integral the general error estimate above is useful. If w(x) =
√
1− x, the error

can be estimated from above by

2 · (2− 4h)

945
h6
∥

∥

∥
f (6)

∥

∥

∥

C[−1,1−4h]
≤ 4

945
h6
∥

∥

∥
f (6)

∥

∥

∥

C[−1,1−4h]
.

Without loss of generality we now assume that n ≥ m. We calculate the sixth derivative of f
as follows:

f (6)(x) =

(

d

dx

)6
(√

1− x (Pn(x)Pm(x))
)

=
6
∑

k=0

(

6

k

)(

d

dx

)k

(1− x)1/2
(

d

dx

)6−k

(PnPm) (x)

=
6
∑

k=0

(

6

k

)

2−k(−1)1−δ0,k(2k − 3)!!(1− x)(1−2k)/2 (PnPm)(6−k) (x),

where k!! := k · (k − 2)!! for k > 1 and k!! := 1 for k ≤ 1. Moreover, we find

(PnPm)(6−k) (x) =
6−k
∑

j=0

(

6− k

j

)

P (j)
n (x)P (6−k−j)

m (x).

According to [24], we have

∥

∥

∥
P (l)
n

∥

∥

∥

C[−1,1]
≤
∣

∣

∣
P (l)
n (1)

∣

∣

∣
≤
(

1

2

)l (n+ 1)2l

l!

for l ∈ N0. Hence, we can conclude that

∥

∥

∥
(PnPm)(6−k)

∥

∥

∥

C[−1,1]
≤

6−k
∑

j=0

(6− k)!

(j!(6− k − j)!)2
2−j−(6−k−j)(n+ 1)2j+2(6−k−j),

which implies that

∥

∥

∥
f (6)

∥

∥

∥

C[−1,1−4h]
≤

√
2 ·





6
∑

j=0

6!

(j!(6− j)!)2



 2−6(n+ 1)12

+
6
∑

k=1

(

6

k

)

2−k(2k − 3)!!(4h)(1−2k)/2





6−k
∑

j=0

(6− k)!

(j!(6− k − j)!)2



 2k−6(n+ 1)12−2k.

The obtained error bounds for the quadrature of I2 and the whole integral can be found in Table
2 for some selected values of n. Apparently, this accuracy is sufficient.
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n Error Bound for I2 total error bound

64 4.5139 · 10−8 9.0394 · 10−8

128 5.1388 · 10−8 9.6643 · 10−8

256 8.4336 · 10−8 1.2959 · 10−7

512 3.0013 · 10−6 3.0466 · 10−6

Table 2: Error Bound for the quadrature of the second integral and the total integral

B Construction of the Spherical Rectangle Rξ,h

Since the verification if an integration grid point is in the cap Cξ,h := {η ∈ Ω|ξ · η ≥ h}
is numerically expensive, we are looking for a covering spherical rectangle Rξ,h ⊃ Cξ,h which
is easy to determine. It should be given by bounds in polar coordinates ϕ

ξ,h
≤ ϕ ≤ ϕξ,h,

ϑξ,h ≤ ϑ ≤ ϑξ,h. This allows the implementation of two nested for–loops (with the given
bounds) per numerical integration in order to run through the remaining grid points on the
sphere. For this reason, the total number of actually used grid points is a direct measure for the
calculation time.
We use here the polar coordinate representation

ξ =





sinϑξ cosϕξ

sinϑξ sinϕξ

cosϑξ



 , η =





sinϑη cosϕη

sinϑη sinϕη

cosϑη



 ;

ϑξ, ϑη ∈ [0, π]; ϕξ ∈ [0, 2π[. The values of ϕη will be chosen below appropriately in the range
[−π, 3π]. The rectangle we are interested in should, thus, be representable by Rξ,h = {η ∈
Ω|ϕ

ξ,h
≤ ϕη ≤ ϕξ,h, ϑξ,h ≤ ϑη ≤ ϑξ,h}. With this nomenclature the criterion ξ · η ≥ h is

equivalent to

sinϑξ sinϑη cosϕξ cosϕη + sinϑξ sinϑη sinϕξ sinϕη + cosϑξ cosϑη ≥ h. (11)

If the longitudes of ξ and η coincide, i.e. ϕξ = ϕη, then this inequality can be simplified to

sinϑξ sinϑη + cosϑξ cosϑη ≥ h

⇔ cos (ϑξ − ϑη) ≥ h

⇔ |ϑξ − ϑη| ≤ arccosh.

Obviously, at different longitudes ϕη the cap covers a smaller range of latitudes, which leads us
to the following bounds

ϑξ,h := max (0, ϑξ − arccosh) ≤ ϑη ≤ min (π, ϑξ + arccosh) =: ϑξ,h

for the latitudes.
We now distinguish whether ξ is located at the northern or at the southern hemisphere, where
it does not make any difference among which part the equator is. In the northern case, we have
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a look at the lower (i.e. northwards located) bounding latitude ϑξ,h and consider ξ̃ with ϕξ̃ = ϕξ

and ϑξ̃ = ϑξ,h. For ϑη = ϑξ,h, Inequality (11) becomes (with ξ̃ instead of ξ):

sin2 ϑξ,h (cosϕξ cosϕη + sinϕξ sinϕη) + cos2 ϑξ,h ≥ h

⇔ sin2 ϑξ,h cos (ϕξ − ϕη) + cos2 ϑξ,h ≥ h.

Formally, we shifted the cap by the latitude ϑξ − ϑξ,h northwards to the new center ξ̃. The
idea is that the meridians get closer and closer towards the North pole. If we install a cap of
equal radius at the upper bounding circle of latitude, then the range of longitudes covered by
this cap at this circle of latitude must also cover the original cap. This also means, that the
spherical rectangle which we construct here will have bounding meridians which need not (and
will usually not) touch the boundary of the cap. However, we obtain a practical restriction of
the sphere for our purposes.
We observe now a special case which occurs if

sin2 ϑξ,h · (−1) + cos2 ϑξ,h ≥ h,

which is equivalent to cos(2ϑξ,h) ≥ h. If this holds true, then every choice of ϕη is admissible.
This occurs if cos2 ϑξ,h is close to 1, i.e. if ξ is close to a pole (which is here the North pole). In
this case, we set

ϕ
ξ,h

:= ϕξ − π ≤ ϕη ≤ ϕξ + π =: ϕξ,h.

Otherwise, we get

|ϕξ − ϕη| ≤ arccos

(

h− cos2 ϑξ,h

sin2 ϑξ,h

)

,

i.e.

ϕ
ξ,h

:= ϕξ − arccos

(

h− cos2 ϑξ,h

sin2 ϑξ,h

)

≤ ϕη ≤ ϕξ + arccos

(

h− cos2 ϑξ,h

sin2 ϑξ,h

)

=: ϕξ,h.

The considerations for the southern hemisphere are analogous with ϑξ,h instead of ϑξ,h.
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