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Abstract

To solve the inverse gravimetric problem, i.e. to reconstruct the Earth’s mass density
distribution by using the gravitational potential, we introduce a spline interpolation method for
the spheroidal Earth model. This problem is ill-posed in the sense of Hadamard as the solution
may not exist, it is not unique and it is not stable. Since the anharmonic part (orthogonal
complement) of the density function produces a zero potential, we restrict our attention only
to reconstruct the harmonic part of the density function by using the gravitational potential.
This spline interpolation method gives the existence and uniqueness of the unknown solution.
Moreover, this method represents a regularization, i.e. every spline continuously depends
on the given gravitational potential. These splines are also combined with a multiresolution
concept, i.e. we get closer and closer to the unknown solution by increasing the scale and
adding more and more data at each step.

Key Words: inverse gravimetric problem, ill-posed, regularization, scaling function, multiresolu-
tion analysis
MSC 2010 Classification: 45Q05, 65R30, 45B05, 41A15, 46E22, 86A22.

1 Introduction

The reconstruction of the Earth’s interior is one of the oldest problems in the history of mankind.
Fact is that only a few miles of the Earth are drilled down to find the answers about the inner
structures of the Earth, which is a very small distance inside the Earth as compared to the diameter
of the Earth if we consider it as a ball or to the semi-minor axis in case of a spheroidal Earth model.
Anyhow, we have some rough ideas to answer these questions. At present, we are familiar with two
methods for the determination of the Earth’s mass density distribution. The first method consists
of the analysis of seismic data such as travel times of waves and frequency shifts of normal modes.
The second method is based on the gravitational potential measurements on and outside the surface
of the Earth. Some of the references for the second method (which will be further investigated
within this paper) in chronological order are H. Moritz ([27]), W. A. Heiskanen and H. Moritz
([18]), H. Sünkel, C. C. Tscherning ([30]), N. C. Thong and E. W. Grafarend ([31]), L. Ballani, J.
Engels and E. W. Grafarend ([6]), E. W. Grafarend and A. A. Ardalan ([17]), V. Michel ([20]), A.
A. Ardalan and E. W. Grafarend ([4], [5]), V. Michel ([21]), W. Freeden and V. Michel ([15]), M.
J. Fengler, D. Michel and V. Michel ([12]) and the references herein.

1



According to Newton’s law of gravitation, the gravitational potential of the Earth is given by

V = k

∫
Earth

ρ (x)

|x− ·|dx (1)

where k is Newton’s gravitational constant and ρ is the mass density function. If we knew the mass
density distribution of the Earth, we could calculate the gravitational potential from Equation (1).
However, as we mentioned above, we have very little information about the Earth’s interior and so
about the mass density distribution. Because of the great importance of the gravitational potential
in the geosciences, several methods of measuring the gravitational potential have been developed.
Nowadays, high resolution models are available due to satellite missions such as CHAMP, GRACE,
and GOCE. So, now the problem is to find the mass density distribution by using the gravitational
potential given on and outside the surface of the Earth, which is known as the inverse gravimetric
problem. The inverse gravimetric problem is actually the inversion of Equation (1), which is a
Fredholm integral equation of the first kind involving Newton’s law of gravitation. This inverse
problem falls into the category of ill-posed problems because the Fredholm integral equation is
not solvable if the right-hand side is non-harmonic. Moreover, even if the right-hand side is
harmonic, there may not exist a solution. Also the inversion of the Fredholm integral equation
is discontinuous, i.e. small errors in the measurements of the gravitational potential can lead to
big changes in the solution. Lastly, we have the problem with the uniqueness of the solution.
Since for every arbitrary density distribution there exists an infinite-dimensional set of different
density distributions which produce exactly the same potential, we cannot find the solution by
a simple inversion of the integral equation given above. Because of this, we need to develop an
approximation method to deal such an ill-posed inverse problem.
In this paper, we extend the theory of an existing spline based regularization method to the case
of a spheroidal surface of the Earth, since an (oblate) spheroid, i.e. an ellipsoid of revolution, is a
better approximation to the surface of the Earth than a sphere (for further details, see, for example,
S. Chandrasekhar [10]). For this purpose, spheroidal harmonic spline functions are introduced by
the use of reproducing kernel functions (with respect to the spheroidal inner harmonics). The
space used in this context is a reproducing kernel Sobolev space. Since spline functions are used to
interpolate prescribed data, a spheroidal harmonic spline interpolation problem is explained into
which we transform the inverse spheroidal gravimetric problem. Here, the concept of reproducing
kernel based spline approximation for a sphere, introduced by W. Freeden in [13] and [14], and for
the interior of a ball developed by M. J. Fengler, D. Michel and V. Michel ([12]), V. Michel and K.
Wolf ([24]), A. Amirbekyan ([2]), A. Amirbekyan and V. Michel ([3]), P. Berkel and V. Michel ([9]),
P. Berkel ([7]), V. Michel ([22]), as well as P. Berkel, D. Fischer and V. Michel ([8]) is extended
to the interior of a spheroid. Some interesting properties of spheroidal harmonic splines such
as smoothness and best approximation (first and second minimum property) are also discussed.
Moreover, the method is equipped with the features of a multiresolution analysis. The proof of a
convergence theorem is also given which assures that the interpolating spheroidal harmonic splines
converge to the unknown function, which in our case is the harmonic density function.

2 Basic Fundamentals

The set of positive integers, non-negative integers and integers will be represented, respectively,
by the letters N, N0 and Z. The letters R, R+, R0 stand for the set of all real numbers, the set of
all positive real numbers and the set of all non-negative real numbers, respectively. Rn, n ∈ N will
denote the n-dimensional space of real (column) vectors.
Let D ⊂ R

n and W ⊂ R
m, n,m ∈ N0. Then by C(k) (D,W ), we denote the set of all continuous

functions F : D −→ W such that every derivative of F of order ≤ k exists on the interior intD
of D and is continuous. Let D ⊂ R

n be an arbitrary measurable set, p with 1 ≤ p < ∞ be a
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given number and ω : D −→ R
+ be a positive measurable weight function then the space L2 (D,ω)

equipped with the inner product

(F,G)L2(D,ω) :=

∫
D

F (x)G (x)ω (x) dx,

is a Hilbert space if almost everywhere identical functions are identified with each other (as it is
usual for Lp- spaces).
In terms of the Jacobi ellipsoidal coordinates (u, λ, ϕ) (following, for example, [4]), a point in space
can be located as the intersection of the following family of surfaces:

1. the family of confocal (oblate) ellipsoids of revolution

E
2√
u2+ε2,u

:=

{
(x, y, z) ∈ R

3

∣∣∣∣x2 + y2

u2 + ε2
+

z2

u2
= 1

}
, u ∈ (0,∞) , ε2 := a2 − b2,

2. the family of half planes

P
2
cosλ,sin λ :=

{
(x, y, z) ∈ R

3 |y = x tanλ
}
, λ ∈ [0, 2π] ,

3. the family of confocal half hyperboloids (oblate) ellipsoids of revolution

H
2
ε cosϕ,ε sinϕ :=

{
(x, y, z) ∈ R

3

∣∣∣∣ x2 + y2

ε2 cos2 ϕ
− z2

ε2 sin2 ϕ
= 1

}
, ϕ ∈

[
−π

2
,
π

2

]
, ϕ �= 0.

The relation between the Cartesian and the (Jacobi) ellipsoidal coordinates is given by

x =
√
u2 + ε2 cosϕ cosλ, y =

√
u2 + ε2 cosϕ sinλ, z = u sinϕ,

where ϕ ∈
[−π

2 , π
2

]
is the reduced latitude, λ ∈ [0, 2π] is the geocentric longitude, u is the semi-

minor axis and ε :=
√
a2 − b2 is the absolute linear eccentricity of the ellipsoid of revolution

E, which will be called a spheroid throughout this paper. We will use a = 6378136.59 metres,
b = 6356751.94 metres and ε =

√
a2 − b2 = 521853.56 metres for the standard reference ellipsoid

used for the Earth model. If ε → 0 in the above coordinate system then it becomes the spherical
coordinate system.
Let us set Eint := Eint∪E, where Eint and E stand, respectively, for the interior and for the surface
of (the Earth)Eint. In the same fashion, Eext will represent the exterior of Eint andEext := Eext∪E.

Now let us define the mapping τ : R+
0 × [0, 2π] ×

[−π
2 , π

2

]
−→ R

3 by (u, λ, ϕ) 
−→ (x, y, z)
T
. The

Jacobian matrix of the transformation from the Jacobi ellipsoidal coordinates into the Cartesian
coordinates is given by

τ ′ =

⎛
⎝ xu xλ xϕ

yu yλ yϕ
zu zλ zϕ

⎞
⎠

=

⎛
⎜⎝

u√
u2+ε2

cosϕ cosλ −
√
u2 + ε2 cosϕ sinλ −

√
u2 + ε2 sinϕ cosλ

u√
u2+ε2

cosϕ sinλ
√
u2 + ε2 cosϕ cosλ −

√
u2 + ε2 sinϕ sinλ

sinϕ 0 u cosϕ

⎞
⎟⎠ .

The determinant of the Jacobian matrix is calculated as det τ ′ =
(
u2 + ε2 sin2 ϕ

)
cosϕ. Let an

element on the surface E of the spheroid Eint, with u = b and a =
√
b2 + ε2, be given and denoted

by

ξ :=
(√

b2 + ε2 cosϕ cosλ,
√
b2 + ε2 cosϕ sinλ, b sinϕ

)T
.
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Then the surface element dω (ξ) is given by

dω (ξ) =
√
KF −G2dϕdλ = a

√
b2 + ε2 sin2 ϕ cosϕdϕdλ (2)

where K := (ξλ)
T ξλ, F := (ξϕ)

T ξϕ, G := (ξλ)
T ξϕ.

The references for Definition 1 are, for example, [16], [18], [25] and [26].

Definition 1. Let D ⊂ R
3 be a connected set. A function F ∈ C(2) (D) is called harmonic

iff ΔxF (x) = 0 for all x ∈ intD. The set of all harmonic functions in C(2) (D) is denoted by
Harm(D).

Note that every harmonic function H ∈ Harm(Eint) is separable in the coordinate system (u, λ, ϕ)
and the Laplace operator in the Jacobi ellipsoidal coordinates (for a reference, see, for example, [4])
is given by

Δ =
1(

u2 + ε2 sin2 ϕ
)

×
(
2u

∂

∂u
+
(
u2 + ε2

) ∂2

∂u2
− tanϕ

∂

∂ϕ
+

∂2

∂ϕ2
+

u2 + ε2 sin2 ϕ

(u2 + ε2) cos2 ϕ

∂2

∂λ2

)
.

For the following investigations, we will need the system of associated Legendre functions. Their
definition can be found in [19]. The following theorem is an example of known properties of these
functions. For further details, see any standard book on orthogonal polynomials.

Theorem 2. The associated Legendre functions {Pn,j}n∈N0,j∈{0,...,n} given by

Pn,j (t) :=
1

2nn!

(
1− t2

) j
2
dn+j

dtn+j

(
t2 − 1

)n
, t ∈ [−1, 1] (3)

are not orthogonal in general. Some important relations are given in the following:∫ 1

−1

Pn,j (t)Pm,j (t) dt = 0, n �= m, m ∈ N0, j ≤ min (n,m) , (4)

∫ 1

−1

(Pn,j (t))
2 dt =

2 (n+ j)!

(2n+ 1) (n− j)!
, (5)

and ∫ 1

−1

Pn,j (t)Pn,j+2 (t) dt =
−2 (n+ j)!

(2n+ 1) (n− j − 2)!

with n ≥ 2, j ≤ n− 2.

Moreover, the (real-valued) Legendre functions of the first kind and of the second kind in terms of
u
ε are given, respectively, by

P̃n,j

(u
ε

)
:=

(n+ j)!

n!π

∫ π

0

(
u

ε
+

√(u
ε

)2
+ 1 cos v

)n

cos (jv) dv (6)

with 0 ≤ u ≤ b and

Q̃n,|j|
(u
ε

)
(7)

:= (−1)
|j| 2n (n+ |j|)!n!

(n− |j|)! (2|j|)!

(
1 +
(u
ε

)2) |j|
2
∫ ∞

0

sinh2|j| v(
u
ε +

√(
u
ε

)2
+ 1 cosh v

)n+|j|+1
dv
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with b ≤ u < ∞, see [4].
Following for example, [4], [29] and [31], we know that the associated Legendre functions of the
second kind are not numerically stable if we calculate them through their recurrence formulae,
hence we adopt here the recursive relations for these functions given in [4], where these functions
enjoy the numerical stability. These recursive relations are given through the following expressions

Q̃n,|j|
(u
ε

)
=

kmax∑
k=0

Q̃n,|j|,k (u) , kmax ∈ N0,

Q̃n,|j|,k (u) =
ε2 (1− n− |j| − 2k) (n+ |j|+ 2k)

2k (2n+ 2k + 1)u2
Q̃n,|j|,k−1 (u) for all k ≥ 1,

Q̃n,|j|,0 (u) =
(
u2 + ε2

) |j|
2

(a
u

)n+1

, n ∈ N0, j ∈ {−n, ..., n} .

The summation is continued until we get the required accuracy limit σ, i.e.

Q̃n,|j|,kmax
(u)− Q̃n,|j|,kmax−1 (u) < σ.

For double precision, σ may be taken equal to 10−16.

3 Construction of the Complete Orthonormal System in(
Harm

(
Eint

)
, (·, ·)L2(Eint)

)
For the construction of a reproducing kernel, we need an orthonormal system in L2

(
Eint

)
. The

details of the construction of such a basis are explained in this section. Note that we treat the
non-uniqueness of the problem (see [23] for further details) by using the constraint of a harmonic
solution.
Following [18], we describe here the Dirichlet problem or the first boundary-value problem of
potential theory in terms of an ellipsoid of revolution E: Given an arbitrary function on the
surface E, determine a function H which is harmonic either inside or outside E and which assumes
on E the values of the prescribed function.
Let n ∈ N0, j ∈ {−n, ..., n}. Then, following, [18], a solution of the Laplace equation

ΔH (x (u, λ, ϕ)) = 0

is given by

H (x (u, λ, ϕ)) = Pn,|j|
(
i
u

ε

)
Pn,|j| (sinϕ)

{
cos jλ, if 0 ≤ j ≤ n
sin |j|λ, if −n ≤ j ≤ −1,

(8)

with 0 ≤ u ≤ b, and

H (x (u, λ, ϕ)) = Qn,|j|
(
i
u

ε

)
Pn,|j| (sinϕ)

{
cos jλ, if 0 ≤ j ≤ n
sin |j|λ, if −n ≤ j ≤ −1,

(9)

with b ≤ u < ∞ where Pn,|j|, Qn,|j| are, respectively, the associated Legendre functions of the first
kind and of the second kind of degree n and order |j|.
Since, Pn,|j|

(
i bε
)
and Qn,|j|

(
i bε
)
are non-zero constants (see [4], [18]), the division of Equation (8)

by Pn,|j|
(
i bε
)
and of Equation (9) by Qn,|j|

(
i bε
)
is possible.

If we set

Hi,n,j (x (u, λ, ϕ)) :=
Pn,|j|

(
iuε
)

Pn,|j|
(
i bε
)Pn,|j| (sinϕ)

{
cos jλ, if 0 ≤ j ≤ n
sin |j|λ, if −n ≤ j ≤ −1,

(10)
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with 0 ≤ u ≤ b, then all Hi,n,j are harmonic in Eint and are called spheroidal inner harmonics,
while

He,n,j (x (u, λ, ϕ)) :=
Qn,|j|

(
iuε
)

Qn,|j|
(
i bε
)Pn,|j| (sinϕ)

{
cos jλ, if 0 ≤ j ≤ n
sin |j|λ, if −n ≤ j ≤ −1,

(11)

with b ≤ u < ∞ are harmonic in Eext and are known as spheroidal outer harmonics. Moreover, at
u = b, Equations (10) and (11) are equal i.e.

Hi,n,j (x (b, λ, ϕ)) = He,n,j (x (b, λ, ϕ)) = Pn,|j| (sinϕ)
{

cos jλ, if 0 ≤ j ≤ n
sin |j|λ, if −n ≤ j ≤ −1.

For the computational simplicity, we make Pn,|j| and Qn,|j| real-valued functions, i.e. we set

P̃n,|j|
(u
ε

)
:= i−nPn,|j|

(
i
u

ε

)
and Q̃n,|j|

(u
ε

)
:= in+1Qn,|j|

(
i
u

ε

)
(12)

respectively. Let

en,j (ξ (λ, ϕ)) := Pn,|j| (sinϕ)
{

cos jλ, if 0 ≤ j ≤ n
sin |j|λ, if −n ≤ j ≤ −1

represent the surface spheroidal harmonics. These harmonics are linearly independent but are not
orthogonal in the Hilbert space L2 (E). The simple scalar product of the function space L2 (E)
can be defined by

(g, h)L2(E) :=

∫
E

g (ξ)h (ξ) dω (ξ)

where dω (ξ) is the surface element and following Equation (2), its value is given as follows

dω (ξ) = a

√
b2 + ε2 sin2 ϕ cosϕdϕdλ.

Let the weight function be denoted and defined by

w (ξ (λ, ϕ)) :=
1

4π

1

a
√
b2 + ε2 sin2 ϕ

.

Then the inner product of the elements of the weighted Hilbert space L2 (E,ω) is introduced by

(g, h)L2(E,w) :=

∫
E

w (ξ) g (ξ)h (ξ) dω (ξ)

=
1

4π

∫ 2π

0

∫ π
2

−π
2

g (ξ (λ, ϕ))h (ξ (λ, ϕ)) cosϕdϕdλ.

We know that, if n,m are integers, then we get due to Theorem 2,

(en,j, em,k)L2(E,w) =
1

4π

∫ 2π

0

∫ π
2

−π
2

en,j (ξ (λ, ϕ)) em,k (ξ (λ, ϕ)) cosϕdϕdλ

=
(n+ |j|)!

(2− δj,0) (2n+ 1) (n− |j|)!δnmδjk. (13)

Now we will normalize the surface spheroidal harmonics. For this purpose, we set

Yn,j (ξ) :=

√
(2− δj0) (2n+ 1) (n− |j|)!

(n+ |j|)! en,j (ξ) , ξ ∈ E. (14)
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Using Equations (13) and (14), we obtain the orthonormality of the spheroidal surface harmonics
as follows

(Yn,j , Ym,k)L2(E,w) =

∫
E

w (ξ)Yn,j (ξ)Ym,k (ξ) dω (ξ) = δnmδjk. (15)

By setting

P ∗
n,j (sinϕ) :=

√
(2− δj0) (2n+ 1) (n− |j|)!

(n+ |j|)! Pn,|j| (sinϕ) , −n ≤ j ≤ n,

Equation (14) can be rewritten as

Yn,j (ξ (λ, ϕ)) = P ∗
n,j (sinϕ)

{
cos jλ, if 0 ≤ j ≤ n
sin |j|λ, if −n ≤ j ≤ −1.

(16)

The spheroidal inner and outer harmonics are now defined and denoted by

Hn,j (x (u, λ, ϕ)) :=
P̃n,|j|

(
u
ε

)
P̃n,|j|

(
b
ε

)Yn,j (ξ (λ, ϕ)) (17)

and

Vn,j (y (u, λ, ϕ)) :=
Q̃n,|j|

(
u
ε

)
Q̃n,|j|

(
b
ε

)Yn,j (ξ (λ, ϕ)) . (18)

For n,m ∈ N0, j ∈ {−n, ..., n}, k ∈ {−m, ...,m}, we have the following observations

∫ 2π

0

cos jλ cos kλ dλ = δjk (1 + δj0)π, j, k ∈ Z, (19)

∫ 2π

0

sin jλ sin kλ dλ = δjkπ, j, k ∈ Z \ {0}, (20)

∫ 2π

0

sin jλ cos kλ dλ = 0, j, k ∈ Z. (21)

By using Equations (19) − (21), we will prove that the inner harmonics are not even completely
orthogonal in the inner product sense as is shown below in Equations (25), (34) and (36). The
inner product of inner harmonics is given by

(Hn,j , Hm,k)L2(Eint)

=
1

4π

∫ b

0

∫ 2π

0

∫ π
2

−π
2

P̃n,|j|
(
u
ε

)
P̃n,|j|

(
b
ε

) P̃m,|k|
(
u
ε

)
P̃m,|k|

(
b
ε

)Yn,j (ξ (λ, ϕ))Ym,k (ξ (λ, ϕ))

×
(
u2 + ε2 sin2 ϕ

)
cosϕdϕdλdu

=
1

P̃n,|j|
(
b
ε

)
P̃m,|k|

(
b
ε

)
(∫ b

0

u2P̃n,|j|
(u
ε

)
P̃m,|k|

(u
ε

)
du

× 1

4π

∫ 2π

0

∫ π
2

−π
2

Yn,j (ξ (λ, ϕ))Ym,k (ξ (λ, ϕ)) cosϕdϕdλ

+

∫ b

0

P̃n,|j|
(u
ε

)
P̃m,|k|

(u
ε

)
du (22)

× ε2

4π

∫ 2π

0

∫ π
2

−π
2

Yn,j (ξ (λ, ϕ))Ym,k (ξ (λ, ϕ)) sin
2 ϕ cosϕdϕdλ

)
.

7



Since from Equation (15), we obtain

1

4π

∫ 2π

0

∫ π
2

−π
2

Yn,j (ξ (λ, ϕ))Ym,k (ξ (λ, ϕ)) cosϕdϕdλ = δnmδjk (23)

and following Equation (21), we get∫ 2π

0

∫ π
2

−π
2

Yn,j (ξ (λ, ϕ))Ym,k (ξ (λ, ϕ)) sin
2 ϕ cosϕdϕdλ = 0 for all j �= k, (24)

where n,m ∈ N0, j ∈ {−n, ..., n}, k ∈ {−m, ...,m}, therefore

(Hn,j , Hm,k)L2(Eint) = 0 for all j �= k. (25)

Next we want to calculate the value of the inner products (Hn,j , Hm,j)L2(Eint) if n ≥ m and |j| ≤ m.

Thus, first considering j = k, n > m, |j| ≤ m and using Equation (23) in Equation (22), we get

(Hn,j , Hm,j)L2(Eint) =
1

P̃n,|j|
(
b
ε

)
P̃m,|j|

(
b
ε

)
(∫ b

0

P̃n,|j|
(u
ε

)
P̃m,|j|

(u
ε

)
du (26)

× ε2

4π

∫ 2π

0

∫ π
2

−π
2

Yn,j (ξ (λ, ϕ))Ym,j (ξ (λ, ϕ)) sin
2 ϕ cosϕdϕdλ

)
.

Let

A (n, j) :=

√
(2− δj0) (2n+ 1) (n− |j|)!

(n+ |j|)! for all n ∈ N0, j ∈ {−n, ..., n} (27)

and αj := 1 + δj0 which gives that

(2− δj0)αj = 2 for all j ∈ Z. (28)

Let t := sinϕ, ϕ ∈
[−π

2 , π
2

]
, where

t2 =
2

3

(
1

2

(
3t2 − 1

)
+

1

2

)
=

2

3

(
P2,0 (t) +

1

2

)
=

2

3
P2,0 (t) +

1

3
. (29)

For j = k, n ≥ m, |j| ≤ m, we get, using Equations (19)− (21) in Equation (24),∫ 2π

0

∫ π
2

−π
2

Yn,j (ξ (λ, ϕ))Ym,j (ξ (λ, ϕ)) sin
2 ϕ cosϕdϕdλ

= αjπ

∫ π
2

−π
2

P ∗
n,j (sinϕ)P

∗
m,j (sinϕ) sin

2 ϕ cosϕdϕ

= A (n, j)A (m, j)αjπ

∫ π
2

−π
2

Pn,|j| (sinϕ)Pm,|j| (sinϕ) sin2 ϕ cosϕdϕ

t=sinϕ
= A (n, j)A (m, j)αjπ

∫ 1

−1

Pn,|j| (t)Pm,|j| (t) t2dt

(29)
= A (n, j)A (m, j)αjπ

∫ 1

−1

Pn,|j| (t)Pm,|j| (t)
(
2

3
P2,0 (t) +

1

3

)
dt

=
2

3
A (n, j)A (m, j)αjπ

∫ 1

−1

Pn,|j| (t)Pm,|j| (t)P2,0 (t) dt

+
1

3
A (n, j)A (m, j)αjπ

∫ 1

−1

Pn,|j| (t)Pm,|j| (t) dt. (30)

8



For n ≥ m, |j| ≤ m, we get, following Equations (4)− (5) and (28),

A (n, j)A (m, j)αj

∫ 1

−1

Pn,|j| (t)Pm,|j| (t) dt = 4δn,m. (31)

For n > m, |j| ≤ m and following Equation (31), Equation (30) reduces to∫ 2π

0

∫ π
2

−π
2

Yn,j (ξ (λ, ϕ))Ym,j (ξ (λ, ϕ)) sin
2 ϕ cosϕdϕdλ

=
2

3
A (n, j)A (m, j)αjπ

∫ 1

−1

Pn,|j| (t)Pm,|j| (t)P2,0 (t) dt. (32)

Following [1], we know that

∫ 1

−1

Pn,|j| (t)Pm,|j| (t)P2,0 (t) dt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

12(m+2)!(2m)!(m+2+|j|)!
(m)!(5+2m)!(m−|j|)! , if n−m = 2

−8(m+|j|)!(m+1)!
(2m+3)(2m+2)(2m+1)(2m)

× (3|j|2−m(m+1))
(m−|j|)!(m−1)!(2m−1) , if n = m �= 0

0, else

(33)

Taking into account Equations (32) and (33), Equation (26) has the value

(Hn,j , Hm,j)L2(Eint) = 0, for n > m, n−m �= 2, |j| ≤ m. (34)

Now, for n > m with n −m = 2 and |j| ≤ m, following Equations (32) and (33), Equation (26)
reduces to

(Hm+2,j , Hm,j)L2(Eint) = 2αjε
2A (m, j)A (m+ 2, j)

(m+ 2)! (2m)! (m+ 2 + |j|)!
m! (5 + 2m)! (m− |j|)!

× 1

P̃m,|j|
(
b
ε

)
P̃m+2,|j|

(
b
ε

) ∫ b

0

P̃m,|j|
(u
ε

)
P̃m+2,|j|

(u
ε

)
du, (35)

where

2αjε
2A (m, j)A (m+ 2, j)

(m+ 2)! (2m)! (m+ 2 + |j|)!
m! (5 + 2m)! (m− |j|)!

(27)
= 2αjε

2

√
(2− δj0) (2m+ 1) (m− |j|)!

(m+ |j|)!

×

√
(2− δj0) (2m+ 5) (m+ 2− |j|)!

(m+ 2 + |j|)!
(m+ 2)! (2m)! (m+ 2 + |j|)!

m! (5 + 2m)! (m− |j|)!

(28)
= 4ε2

(m+ 2)! (2m)!

m! (5 + 2m)!

√
(2m+ 1) (2m+ 5) (m+ 2 + |j|)! (m+ 2− |j|)!

(m+ |j|)! (m− |j|)!

= ε2

√√√√
(
(m+ 2)

2 − |j|2
)(

(m+ 1)
2 − |j|2

)
(2m+ 5) (2m+ 3)

2
(2m+ 1)

.

Thus, Equation (35) with |j| ≤ m, n > m, n−m = 2, has the value

(Hm+2,j , Hm,j)L2(Eint) = ε2

√√√√
(
(m+ 2)

2 − |j|2
)(

(m+ 1)
2 − |j|2

)
(2m+ 5) (2m+ 3)2 (2m+ 1)

(36)

× 1

P̃m,|j|
(
b
ε

)
P̃m+2,|j|

(
b
ε

) ∫ b

0

P̃m,|j|
(u
ε

)
P̃m+2,|j|

(u
ε

)
du.
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Hence, not all pairs of functions in the system {Hm,j}m∈N0,j∈{−m,...,m} are orthogonal in L2
(
Eint

)
.

For this reason, we construct a new system {H ′
m,j}m∈N0,j∈{−m,...,m} by setting

H ′
m,j := Hm,j if |j| = m,m− 1 (37)

and

H ′
m,j := H ′

m−2,j −

∥∥H ′
m−2,j

∥∥2
L2(Eint)(

H ′
m−2,j, Hm,j

)
L2(Eint)

Hm,j (38)

for m ≥ 2, |j| ≤ m− 2.

Theorem 3. The system {H ′
n,j}n∈N0, j∈{−n,...,n} forms an orthogonal system in the inner product

space
(
Harm

(
Eint

)
, (·, ·)L2(Eint)

)
.

Proof. The proof requires lengthy but elementary calculations and the distinction of several cases.
For further details, see [1].

For n ∈ N0, j ∈ {−n, ..., n}, we set

Un,j :=
H ′

n,j∥∥H ′
n,j

∥∥
L2(Eint)

. (39)

Corollary 4. The system {Un,j}n∈N0, j∈{−n,...,n}, defined in (39), is orthonormal in the inner

product space
(
Harm

(
Eint

)
, (·, ·)L2(Eint)

)
.

Proof. This corollary is an immediate consequence of Theorem 3.

4 Calculation of the Kernel Function

We investigate now the integral kernel of the Fredholm integral equation in (1). For n ∈ N0, j ∈
{−n, ..., n} , let us first set

cn,j :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
(H′

n−2,j ,Hn,j)
L2(Eint)

‖H′
n,j‖L2(Eint)

‖H′
n−2,j‖2

L2(Eint)

, if n ≥ 2, |j| ≤ n− 2∥∥H ′
n,j

∥∥
L2(Eint)

, if |j| = n− 1, n

0, if |j| > n

(40)

and

dn,j :=

⎧⎨
⎩

(H′
n−2,j ,Hn,j)

L2(Eint)

‖H′
n−2,j‖L2(Eint)

, if n ≥ 2, |j| ≤ n− 2

0, else.

(41)

Following Equation (38), we know that for n ≥ 2, |j| ≤ n− 2,

H ′
n,j (x (u, λ, ϕ)) = H ′

n−2,j (x (u, λ, ϕ))−

∥∥H ′
n−2,j

∥∥2
L2(Eint)(

H ′
n−2,j , Hn,j

)
L2(Eint)

Hn,j (x (u, λ, ϕ))

10



which can be rewritten as

Hn,j (x (u, λ, ϕ))

=

(
H ′

n−2,j , Hn,j

)
L2(Eint)∥∥H ′

n−2,j

∥∥2
L2(Eint)

(
−H ′

n,j (x (u, λ, ϕ)) +H ′
n−2,j (x (u, λ, ϕ))

)

(39)
=

(
H ′

n−2,j , Hn,j

)
L2(Eint)∥∥H ′

n−2,j

∥∥2
L2(Eint)

×
(
−
∥∥H ′

n,j

∥∥
L2(Eint)

Un,j (x (u, λ, ϕ)) +
∥∥H ′

n−2,j

∥∥
L2(Eint)

Un−2,j (x (u, λ, ϕ))

)
(40),(41)

= cn,jUn,j (x (u, λ, ϕ)) + dn,jUn−2,j (x (u, λ, ϕ)) . (42)

For n ≥ 0, |j| = n− 1, n and using Equations (37) , (39) , (40) and (41), we obtain

Hn,j (x (u, λ, ϕ)) = H ′
n,j (x (u, λ, ϕ))

=
∥∥H ′

n,j

∥∥
L2(Eint)

Un,j (x (u, λ, ϕ))

= cn,jUn,j (x (u, λ, ϕ)) + dn,jUn−2,j (x (u, λ, ϕ)) (43)

with the following assumption: Un,j (x (u, λ, ϕ)) = 0, if |j| > n.
Thus, following Equations (42) and (43), we obtain

Hn,j (x (u, λ, ϕ)) = cn,jUn,j (x (u, λ, ϕ)) + dn,jUn−2,j (x (u, λ, ϕ)) (44)

for all n ∈ N0, j ∈ {−n, ..., n}. Next, let x := x (u, λ, ϕ) , y := y (u′, λ′, ϕ′) be arbitrary but fixed
inner and outer points of the spheroid E, respectively. Let L := |x− y|. Then, for example, from
[30], we know that

ε

L
= i

∞∑
n=0

(2n+ 1)

[
Qn,0

(
i
u′

ε

)
Pn,0

(
i
u

ε

)
Pn,0 (sinϕ

′)Pn,0 (sinϕ)

+2

n∑
j=1

(−1)
j

(
(n− j)!

(n+ j)!

)2

Qn,j

(
i
u′

ε

)
Pn,j

(
i
u

ε

)

×Pn,j (sinϕ
′)Pn,j (sinϕ) cos [j (λ− λ′)]

]
, (45)

where Pn,j and Qn,j are, respectively, the associated Legendre functions of the first kind and of the
second kind in terms of u

ε as given in Equations (6) and (7) and Pn,j are the associated Legendre
functions of the first kind on [−1, 1] as given in Equation (3).
From Equation (12), we know that

P̃n,|j|
(u
ε

)
= i−nPn,|j|

(
i
u

ε

)
, Q̃n,|j|

(
u′

ε

)
= in+1Qn,|j|

(
i
u′

ε

)
,

11



therefore, with i−n · in+1 = i, we consider the second part of Equation (45)

2
n∑

j=1

(−1)j
(
(n− j)!

(n+ j)!

)2

Qn,j

(
i
u′

ε

)
Pn,j

(
i
u

ε

)
Pn,j (sinϕ

′)Pn,j (sinϕ)

× cos [j (λ− λ′)]

=
2

i

n∑
j=1

(−1)
j

(
(n− j)!

(n+ j)!

)2

Q̃n,j

(
u′

ε

)
P̃n,j

(u
ε

)
Pn,j (sinϕ

′)Pn,j (sinϕ)

× cos [j (λ− λ′)]

=
2

i

n∑
j=1

(−1)
j

(
(n− j)!

(n+ j)!

)2

Q̃n,j

(
u′

ε

)
P̃n,j

(u
ε

)
Pn,j (sinϕ

′)Pn,j (sinϕ)

× cos jλ cos jλ′

+
2

i

−1∑
j=−n

(−1)
|j|
(
(n− |j|)!
(n+ |j|)!

)2

Q̃n,|j|

(
u′

ε

)
P̃n,|j|

(u
ε

)
Pn,|j| (sinϕ′)

×Pn,|j| (sinϕ) sin |j|λ sin |j|λ′. (46)

Hence, using Equation (46), we can rewrite Equation (45) as follows:

ε

L
=

∞∑
n=0

n∑
j=−n

(2n+ 1) (2− δj0) (−1)
|j|
(
(n− |j|)!
(n+ |j|)!

)2

Q̃n,|j|

(
u′

ε

)
P̃n,|j|

(u
ε

)

×Pn,|j| (sinϕ′)Pn,|j| (sinϕ)
{

cos jλ cos jλ′, if 0 ≤ j ≤ n
sin |j|λ sin |j|λ′, if − n ≤ j ≤ −1.

(47)

With Equations (16), (17) and (27), we know that

Hn,j (x (u, λ, ϕ)) =
P̃n,|j|

(
u
ε

)
P̃n,|j|

(
b
ε

)P ∗
n,j (sinϕ)

{
cos jλ, if 0 ≤ j ≤ n
sin |j|λ, if − n ≤ j ≤ −1

=
P̃n,|j|

(
u
ε

)
P̃n,|j|

(
b
ε

)A (n, j)Pn,|j| (sinϕ)
{

cos jλ, if 0 ≤ j ≤ n
sin |j|λ, if − n ≤ j ≤ −1

which gives that

P̃n,|j|
(
b
ε

)
A (n, j)

Hn,j (x (u, λ, ϕ)) = P̃n,|j|
(u
ε

)
Pn,|j| (sinϕ)

{
cos jλ, if 0 ≤ j ≤ n
sin |j|λ, if − n ≤ j ≤ −1.

(48)

Also, from Equations (16) and (18), we know that

Vn,j (y (u
′, λ′, ϕ′)) =

Q̃n,|j|
(

u′
ε

)
Q̃n,|j|

(
b
ε

) P ∗
n,j (sinϕ

′)
{

cos jλ′, if 0 ≤ j ≤ n
sin |j|λ′, if − n ≤ j ≤ −1

=
Q̃n,|j|

(
u′
ε

)
Q̃n,|j|

(
b
ε

) A (n, j)Pn,|j| (sinϕ′)
{

cos jλ′, if 0 ≤ j ≤ n
sin |j|λ′, if − n ≤ j ≤ −1

which gives that

Q̃n,|j|
(
b
ε

)
A (n, j)

Vn,j (y (u
′, λ′, ϕ′))=Q̃n,|j|

(
u′

ε

)
Pn,|j| (sinϕ′)

{
cos jλ′, if 0 ≤ j ≤ n
sin |j|λ′, if − n ≤ j ≤ −1.

(49)
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Using the definition of A (n, j) and substituting Equations (48) and (49) in Equation (47), we
obtain the following form

ε

L
=

∞∑
n=0

n∑
j=−n

(−1)
|j|

(A (n, j))
2 (n− |j|)!
(n+ |j|)! Q̃n,|j|

(
u′

ε

)
P̃n,|j|

(u
ε

)

×Pn,|j| (sinϕ′)Pn,|j| (sinϕ)
{

cos jλ cos jλ′, if 0 ≤ j ≤ n
sin |j|λ sin |j|λ′, if − n ≤ j ≤ −1

=

∞∑
n=0

n∑
j=−n

(−1)
|j|

(A (n, j))
2 (n− |j|)!
(n+ |j|)!

×
P̃n,|j|

(
b
ε

)
A (n, j)

Q̃n,|j|
(
b
ε

)
A (n, j)

Hn,j (x (u, λ, ϕ))Vn,j (y (u
′, λ′, ϕ′))

=
∞∑
n=0

n∑
j=−n

(−1)|j|
(n− |j|)!
(n+ |j|)!

×P̃n,|j|

(
b

ε

)
Q̃n,|j|

(
b

ε

)
Hn,j (x (u, λ, ϕ))Vn,j (y (u

′, λ′, ϕ′))

(44)
=

∞∑
n=0

n∑
j=−n

(−1)
|j| (n− |j|)!

(n+ |j|)! P̃n,|j|

(
b

ε

)
Q̃n,|j|

(
b

ε

)

× (cn,jUn,j (x (u, λ, ϕ)) + dn,jUn−2,j (x (u, λ, ϕ)))Vn,j (y (u
′, λ′, ϕ′)) (50)

=

∞∑
n=0

n∑
j=−n

(Kn,jUn,j (x (u, λ, ϕ)) + Ln,jUn−2,j (x (u, λ, ϕ)))Vn,j (y (u
′, λ′, ϕ′))

where we use the abbreviations

Kn,j := (−1)
|j|

cn,jP̃n,|j|

(
b

ε

)
Q̃n,|j|

(
b

ε

)
(n− |j|)!
(n+ |j|)!

and

Ln,j := (−1)
|j|

dn,jP̃n,|j|

(
b

ε

)
Q̃n,|j|

(
b

ε

)
(n− |j|)!
(n+ |j|)! .

Following Equations (40) and (41), we note that for |j| ≤ n− 2, n ≥ 2,

Kn,j = (−1)|j|+1 P̃n,|j|

(
b

ε

)
Q̃n,|j|

(
b

ε

)

×

(
H ′

n−2,j , Hn,j

)
L2(Eint)

∥∥H ′
n,j

∥∥
L2(Eint)∥∥H ′

n−2,j

∥∥2
L2(Eint)

(n− |j|)!
(n+ |j|)! ,

Ln,j = (−1)|j| P̃n,|j|

(
b

ε

)
Q̃n,|j|

(
b

ε

) (H ′
n−2,j, Hn,j

)
L2(Eint)∥∥H ′

n−2,j

∥∥
L2(Eint)

(n− |j|)!
(n+ |j|)!

and for |j| = n− 1, n,

Kn,j = (−1)
|j|+1 P̃n,|j|

(
b

ε

)
Q̃n,|j|

(
b

ε

)∥∥H ′
n,j

∥∥
L2(Eint)

(n− |j|)!
(n+ |j|)! , Ln,j = 0.

Now, for F ∈ L2
(
Eint

)
, choose y (= y (u′, λ′, ϕ′)) ∈ E or y ∈ Eext fixed and following Equation

(50), we can write that

ε

| · −y| =
∞∑

n=0

n∑
j=−n

(Kn,jUn,j (·) + Ln,jUn−2,j (·))Vn,j (y) .
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Now, the operator T : L2
(
Eint

)
−→ T

(
L2
(
Eint

))
given by

(TF ) (y) :=

∫
Eint

F (x)

|x− y|dx, y ∈ Eext

takes the following form

(TF ) (y) =

(
1

| · −y| , F
)

L2(Eint)
=

1

ε

(
ε

| · −y| , F
)

L2(Eint)

=
1

ε

⎛
⎝ ∞∑

n=0

n∑
j=−n

(Kn,jUn,j (·) + Ln,jUn−2,j (·))Vn,j (y) , F

⎞
⎠

L2(Eint)

=
1

ε

∫
Eint

⎛
⎝ ∞∑

n=0

n∑
j=−n

(Kn,jUn,j (x) + Ln,jUn−2,j (x))Vn,j (y)

⎞
⎠F (x) dx. (51)

Since following, for example [17], [19] and [28], we know that for x = x (u, λ, ϕ) ∈ Eint with fixed
y = y (u′, λ′, ϕ′) ∈ Eext, an expansion of the form

ε

|x− y| =

∞∑
n=0

n∑
j=−n

(−1)
|j|

(A (n, j))
2 (n− |j|)!
(n+ |j|)! Q̃n,|j|

(
u′

ε

)
P̃n,|j|

(u
ε

)

×Pn,|j| (sinϕ′)Pn,|j| (sinϕ)
{

cos jλ cos jλ′, if 0 ≤ j ≤ n
sin |j|λ sin |j|λ′, if − n ≤ j ≤ −1

is uniformly convergent, following (50), we conclude that

1

|x− y| =
∞∑
n=0

n∑
j=−n

(Kn,jUn,j (x) + Ln,jUn−2,j (x))Vn,j (y)

is uniformly convergent for x ∈ Eint with fixed y ∈ Eext. For this reason, the summation and
integration in Equation (51) can be interchanged. We obtain

(TF ) (y) =
1

ε

∞∑
n=0

n∑
j=−n

∫
Eint

(Kn,jUn,j (x) + Ln,jUn−2,j (x))Vn,j (y)F (x) dx

=
1

ε

∞∑
n=0

n∑
j=−n

(Kn,jUn,j (·) + Ln,jUn−2,j (·) , F )L2(Eint) Vn,j (y) .

If F = Um,j then
(TUm,j) (y) = Km,jVm,j (y) + Lm+2,jVm+2,j (y) . (52)

5 Spheroidal Harmonic Spline Approximation

This section deals with the construction of a regularization technique and a multiresolution analysis
based on spheroidal harmonic splines. The appropriate space used for this purpose is a reproducing
kernel Sobolev space which determines the (unique) interpolant with the smallest possible norm.
The harmonic spline based multiresolution method satisfies the usual smoothing and best approx-
imating properties. The theory and the proofs of the results presented here are motivated by, for
example, [2], [3], [7], [8], [9], [12], [13], [14], [15], [24], where, however, a sphere or a ball is the
treated domain.
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Definition 5. Let {An}n∈N0
be an arbitrary sequence of real numbers. We denote the space of all

functions F ∈ Harm
(
Eint

)
which satisfy the following conditions:

1. (F,Un,j)L2(Eint) = 0 for all n ∈ N0 with An = 0,

2.
∞∑
n=0

An �=0

A−2
n (F,Un,j)

2
L2(Eint) < +∞,

by χ := χ
(
{An} ;Eint

)
.

For F,G ∈ χ we introduce the inner product

(F,G)H({An};Eint) :=

∞∑
n=0

An �=0

A−2
n (F,Un,j)L2(Eint) (G,Un,j)L2(Eint) . (53)

The associated norm is then given by ‖F‖H({An};Eint) =
√
(F, F )H({An};Eint)

.

From these facts, we come to the following definition.

Definition 6. The Sobolev space H := H
(
{An} ;Eint

)
is defined to be the completion of the space

χ = χ
(
{An} ;Eint

)
with respect to the inner product (·, ·)H({An};Eint).

Clearly, H
(
{An} ;Eint

)
equipped with the inner product (53) is a Hilbert space. From now on, if

no confusion is likely to arise, we will simply write H instead of writing H
(
{An} ;Eint

)
.

In Lemma 8, we will prove that under certain conditions, the elements of the Sobolev space H
can be interpreted as uniformly convergent Fourier series in terms of inner spheroidal harmonics
{Un,j}n∈N0, j∈{−n,...,n}. For this, we need to define the summable sequences.

Definition 7. A sequence of real numbers {An}n∈N0
is called summable if

∞∑
n=0

n∑
j=−n

A2
n ‖Un,j‖2∞ < ∞ (54)

i.e. the series is convergent. The norm ‖·‖∞ stands for the supremum norm.

In the sequel, we will always assume that the sequence {An}n∈N0
is summable.

Using Definition 6, we formulate in the following the Sobolev Lemma.

Lemma 8 (Sobolev Lemma). Every F ∈ H corresponds to a continuous function on Eint. More-
over, F is also harmonic on Eint and the Fourier series

F (x) =

∞∑
n=0

n∑
j=−n

(F,Un,j)L2(Eint) Un,j (x) , x ∈ Eint

is uniformly convergent on Eint.
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Proof. For F ∈ H, N ∈ N0, the application of the Cauchy-Schwarz inequality yields the estimate

∣∣∣∣∣∣
∞∑

n=N

n∑
j=−n

(F,Un,j)L2(Eint) Un,j (x)

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

∞∑
n=N
An �=0

n∑
j=−n

(F,Un,j)L2(Eint)A
−1
n AnUn,j (x)

∣∣∣∣∣∣∣
≤

⎛
⎜⎝ ∞∑

n=N
An �=0

n∑
j=−n

A−2
n (F,Un,j)

2
L2(Eint)

⎞
⎟⎠

1
2 ⎛
⎝ ∞∑

n=N

n∑
j=−n

A2
n (Un,j (x))

2

⎞
⎠

1
2

≤ ‖F‖H({An};Eint)

⎛
⎝ ∞∑

n=N

n∑
j=−n

A2
n ‖Un,j‖2∞

⎞
⎠

1
2

−→
N→∞

0, (55)

where the right hand side converges uniformly with respect to x ∈ Eint as N approaches to infinity
and this is because of the summability condition given in Equation (54). Since the functions Un,j

are continuous on Eint, the uniform convergence of the series (55) implies that F itself is continuous
on Eint. Moreover, since Harm

(
Eint

)
is a closed subspace of L2

(
Eint

)
(see also [15, Theorem 6.4]),

F is also harmonic.

Corollary 9. From the proof of Lemma 8, we can immediately deduce that

‖F‖∞ ≤ ‖F‖H

⎛
⎝ ∞∑

n=0

n∑
j=−n

A2
n ‖Un,j‖2∞

⎞
⎠

1
2

for all F ∈ H.

The summability of the real sequence {An}n∈N0
guarantees the existence of the reproducing kernel

which is essential for the construction of the harmonic splines discussed in this section. For a
general theory on reproducing kernels, see, for example, [11].

Definition 10. A function KH : Eint ×Eint −→ R is called a reproducing kernel of the space H if
the following two conditions are satisfied

1. KH (x, ·) ∈ H for all x ∈ Eint,

2. (F (·) ,KH (x, ·))H = F (x) for all F ∈ H and for all x ∈ Eint.

Following functional analysis, we know that, if a Hilbert space has a reproducing kernel, it is
unique. Moreover, due to Aronszajn’s Theorem and Corollary 9, a reproducing kernel of H exists
due to the summability condition. Furthermore, since {AnUn,j}n,j is an orthonormal basis of H
and

∑∞
n=0

∑n
j=−n (AnUn,j (x))

2
< +∞ for all x ∈ Eint due to the summability condition, Theorem

19 in [22] implies the following representation of the reproducing kernel.

Theorem 11. H has a unique reproducing kernel KH : Eint × Eint −→ R and, furthermore, its
representation is given by

KH (x, y) =

∞∑
n=0

n∑
j=−n

A2
nUn,j (x)Un,j (y) , x, y ∈ Eint. (56)

Corollary 12. One can easily deduce from Equation (56) that KH is symmetric, i.e. KH (x, y) =
KH (y, x) for all x, y ∈ Eint.
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Theorem 13. Let F be an arbitrary bounded linear functional on H. Then the function y 
→
FxKH (x, y) belongs to H and

F (F ) = (F,FxKH (x, ·))H for all F ∈ H.

For a proof, see [11, Theorem 12.6.6].
We will see now that reproducing kernel representations may be used as a basis system in re-
producing Sobolev spaces. In this context, we transform the inverse gravimetric problem into
a harmonic spline interpolation problem to get a reasonably good approximation of the Earth‘s
density distribution (under the constraint of harmonicity). To achieve this, we first define in the
following harmonic splines as particular elements of the Sobolev space H and later, we will discuss
some important theorems and properties corresponding to this spline. In this section, we will take
FN := {Fn}n=1,...,N , N ∈ N as a linearly independent system of bounded linear functionals from
H into R.

Definition 14 (Spheroidal Harmonic Spline). Let FN := {Fn}n=1,...,N , N ∈ N be a system of
linearly independent bounded linear functionals on H. Then a function S ∈ H given by

S (x) :=

N∑
k=1

akFkKH (·, x) , x ∈ Eint, (57)

with a = (a1, ..., aN)
T ∈ R

N is called a (spheroidal harmonic) spline in H relative to FN . The
corresponding linear space of all such spline functions is denoted by Spline

(
{An} ;FN

)
. The scalars

a1, ..., aN are known as the coefficients of the spline S.

Since this space is generated by N ∈ N linearly independent functionals, its dimension is N and
Spline

(
{An} ;FN

)
⊂ H. Now keeping in mind the solution of the inverse gravimetric problem, we

assume that FN = {Fn}n=1,...,N , N ∈ N is a given system of linearly independent bounded linear

functionals on H and y = (y1, ..., yN )
T ∈ R

N is a given vector of values for which we have to find
the Spline S ∈ Spline

(
{An} ;FN

)
such that

FiS = yi for all i = 1, ..., N. (58)

These values yi are, for example, 0th, 1st or 2nd order derivatives of the gravitational potential of
the Earth.
Substituting the expression of S from Equation (57) into Equation (58), we get

Fi

(
N∑

k=1

akFkKH (·, ·)
)

= yi for all i = 1, ..., N

or
N∑

k=1

akFiFkKH (·, ·) = yi for all i = 1, ..., N

which gives an equivalent formulation of the problem:
Determine a = (a1, ..., aN)

T ∈ R
N such that the last equation holds, which gives rise to a system

of linear equations with the matrix

MN := (FiFkKH (·, ·))i,k=1,...,N . (59)

When we solve the system of linear equations given in (59), it is useful to know that MN is positive
definite.
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Lemma 15 (H-Spline Formula). Let S ∈ Spline
(
{Ak} ;FN

)
, i.e.

S (x) =

N∑
k=1

akFkKH (·, x) , x ∈ Eint.

Then, for arbitrary F ∈ H, the following holds true:

(F, S)H =

N∑
k=1

akFkF.

Proof. This lemma is an immediate consequence of Theorem 13.

Theorem 16. Let FN = {Fn}n=1,...,N , N ∈ N be a system of bounded linear functionals on H.
This system is linearly independent iff the matrix MN in (59) is positive definite.

Proof. Note that Theorem 13 yields

(Fi)x (Fk)y KH (x, y) =
(
(Fk)y KH (·, y) , (Fi)x KH (x, ·)

)
H
, i, k = 1, 2, ..., N.

Consequently, the matrix MN = (FiFkKH (·, ·))i,k=1,...,N is a Gramian matrix and is positive
definite if and only if the system {(Fi)xKH (x, ·)}i=1,...,N is linearly independent. Furthermore,

the system {(Fi)xKH (x, ·)}i=1,...,N is linearly independent if and only if the identity

G (y) :=

N∑
k=1

ak (Fk)x KH (y, x) = 0 for all y ∈ Eint

is equivalent to ak = 0 for all k = 1, ..., N . Hence, (due to Lemma 15) the Gramian matrix is
positive definite iff the following holds true:

(F,G)H =

N∑
k=1

akFkF = 0 for all F ∈ H iff ak = 0 for all k = 1, ..., N,

which gives the linear independence of the system {Fi}i=1,...,N .

From Theorem 16, we can conclude that the spline interpolation problem is uniquely solvable.
The following theorem is advantageous if much time can be spent in the preprocessing and fast
solutions are required as soon as the data are available.

Theorem 17 (Shannon Sampling Theorem). Any arbitrary spline function S ∈ Spline
(
{Ak} ;FN

)
can be represented by its “samples” FiS in the following way

S (x) =

N∑
k=1

(FkS)Lk (x) , x ∈ Eint (60)

with

Lk (x) =

N∑
j=1

a
(k)
j FjKH (x, ·) , x ∈ Eint (61)

where a
(k)
j are the solutions of the following systems of linear equations

N∑
j=1

a
(k)
j FiFjKH (·, ·) = δik for all i, k = 1, ..., N. (62)
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Proof. From Equations (61) and (62), we get FiLk = δik, i, k = 1, ..., N . If we apply Fi on the
right-hand side of Equation (60) then

Fi

(
N∑

k=1

(FkS)Lk

)
=

N∑
k=1

FkSFiLk = FiS.

From the uniqueness of the interpolating spline, we conclude that

S (x) =

N∑
k=1

(FkS)Lk (x) , x ∈ Eint.

In practice, by a spline, we mean a function that minimizes a certain non-smoothness measure
among all interpolating functions. In the following, we observe that the spheroidal harmonic spline
minimizes the Sobolev norm among all interpolating functions which satisfy the interpolation
conditions corresponding to the data set y1, ..., yN .

Theorem 18 (First Minimum Property). Let y ∈ R
N be given and FN = {F1, ...,FN} be a linearly

independent system of linear continuous functionals on H. If S∗ =
∑N

i=1 ai
∗ (Fi)x KH (·, x) is the

unique spline satisfying FiS
∗ = yi for all i = 1, ..., N , then S∗ is the unique minimizer of

‖S∗‖H = min {‖F‖H |F ∈ H,FiF = yi, i = 1, ..., N } .

Theorem 19 (Second Minimum Property). Let y ∈ R
N be given and FN = {F1, ...,FN} be a

linearly independent system of linear continuous functionals on H. If S∗ =
∑N

i=1 a
∗
i (Fi)x KH (·, x)

with (a∗1, ..., a∗N)
T ∈ R

N is the unique spline which satisfies FiS
∗ = FiF where F ∈ H is given and

i = 1, ..., N , then S∗ is the unique minimizer of

‖F − S∗‖H = min
{
‖F − S‖H

∣∣S ∈ Spline
(
{Ak} ;FN

)}
.

From this theorem, we conclude that S∗ is the best approximating spline among all splines in
Spline

(
{Ak} ;FN

)
.

The proofs of Theorems 18 and 19 are analogues for the proofs of their counterparts on the sphere
and ball.

6 Spline Scaling Functions and Multiresolution Analysis

In the following, we briefly describe the concept of the construction of a spline based multiresolution
analysis. The principal ideas are the same as for the ball, (see [7], [8], [12]), see also [1] for the
spheroid.

Definition 20. Let F = {F1,F2, ...} be a given countable system of bounded linear function-
als on H. Further, we denote linearly independent subsystems of these functionals by FNJ :=
{F1, ...,FNJ} and y(J) ∈ R

NJ stands for a given vector for every J ∈ N0 where (NJ)J∈N0
is a

monotonically increasing sequence of positive integers. We will continue to use these notations in
the sequel.

Definition 21. If the family of sequences {Φ∧
J (n)}n∈N0

, J ∈ N0 satisfies the following conditions:

1. 0 ≤ Φ∧
J (n) ≤ Φ∧

J+1(n) ≤ 1 for all n, J ∈ N0,
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2. {Φ∧
J (n)}n∈N0

is summable for all J ∈ N0,

3. for every fixed n ∈ N0, the sequence {Φ∧
J (n)}J∈N0

is not identical to 0, i.e. there exists a
positive integer jn such that Φ∧

J (n) > 0 for all J ≥ jn,

then the elements of the space VJ := Spline
(
{Φ∧

J (n)} ;FNJ
)
are called spline-scaling functions.

Sequences {Φ∧
J (n)}n∈N0

, J ∈ N0 are divided into two categories.

1. band-limited sequences,

2. non-band-limited sequences.

Definition 22. Let J ∈ N0 be fixed, then the sequence {Φ∧
J (n)}n∈N0

is called band-limited if only
a finite number of its elements is different from zero, otherwise it is known as a non-band-limited
sequence.

Example 23. Some examples of band-limited and non-band-limited sequences are given here (see
also [14]).
The Shannon sequences and the sequences generated by cubic polynomials fall in the band-limited
category of the sequences and are given in the following:
Shannon Sequence

Φ∧
J (n) =

{
1, for 0 ≤ n < 2J ,
0, for n ≥ 2J .

Sequence Generated by a Cubic Polynomial

Φ∧
J (n) =

{ (
1− 2−Jn

)2 (
1 + 2−J+1n

)
, for 0 ≤ n < 2J ,

0, for n ≥ 2J .

Here, we also give some examples of non-band-limited sequences such as the Abel-Poisson sequence
and the Gauß-Weierstraß sequence.
Abel-Poisson Sequence

Φ∧
J (n) = e−R2−Jn, R > 0.

Gauß-Weierstraß Sequence

Φ∧
J (n) = e−R2−Jn(2−Jn+1), R > 0.

Note that the verification of the summability of the non-band-limited examples is still an open
problem. In case of the spherical analogues, it is known to be satisfied.
The plots of these four sequences are given in Figure 1, where each symbol is plotted from scale
J = 1 to J = 7 (for continuous values n).

The Sobolev spaces HJ := H
(
{Φ∧

J (n)} ;Eint

)
represent a multiresolution analysis.

Theorem 24. Let {Φ∧
J (n)}n∈N0

, J ∈ N0 satisfy the conditions given in Definition 21, then the

Sobolev spaces HJ = H
(
{Φ∧

J (n)} ;Eint

)
satisfy the following properties:

1. HJ ⊂ HJ+1 ⊂ H
(
{φ(n)} ;Eint

)
=: H∞ for all J ∈ N0,

2. H∞ =
⋃

J∈N0
HJ

‖.‖H({φ(n)};Eint) ,

where φ (n) = lim
J→∞

Φ∧
J (n).
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(a) Shannon sequence (b) Sequence generated by a cubic polynomial
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(c) Abel-Poisson sequence (d) Gauß-Weierstraß sequence

Figure 1: Plot of the different sequences {Φ∧
J (n)}n∈N0

, each calculated for the scales J = 1 to
J = 7.

The statement of this theorem means that we can obtain a sequence of approxi-mating splines
SJ ∈ VJ where each spline SJ is the smoothest function of the corresponding Sobolev spaceHJ and

satisfies the equations FnSJ = y
(J)
n , n = 1, ..., NJ . Considering Figure 2, where the reproducing

kernel is calculated from scale J = 2 to J = 7, one can observe that the kernel becomes more and
more localized as the symbol Φ∧

J (n) increases step by step with the increase of J ∈ N0. Hence, it
is expected that the resolution will increase with the increase of J , and more data then have to be
taken into account (NJ < NJ+1).
In our case, where

FiF =

∫
Eint

F (y)

|xi − y|dy, F ∈ L2
(
Eint

)
,

for a fixed xi ∈ Eext, following Equation (52), the spline basis functions are given by

FiKHJ (y, ·) =

∞∑
n=0

n∑
j=−n

(Φ∧
J (n))

2
Un,j (y)FiUn,j (·)

=

∞∑
n=0

n∑
j=−n

(Φ∧
J (n))

2
Un,j (y) (Kn,jVn,j (xi) + Ln+2,jVn+2,j (xi)) ,

where {Un,j}n∈N0, j∈{−n,...,n} and {Vn,j}n∈N0, j∈{−n,...,n} represent the orthonormalized inner har-
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(a) Reproducing kernel calculated at scale J = 2 (b) Reproducing kernel calculated at scale J = 3

(c) Reproducing kernel calculated at scale J = 4 (d) Reproducing kernel calculated at scale J = 5

(e) Reproducing kernel calculated at scale J = 6 (f) Reproducing kernel calculated at scale J = 7

Figure 2: Plots of the reproducing kernel KHJ , calculated by the sequence generated by a cubic
polynomial for the scales J = 2 to J = 7, where one argument is kept fixed.

monics (see Section 3) and the outer harmonics (see Equation (18)), respectively. It is also clear that
on imposing the condition of lim

J→∞
Φ∧

J (n) = 1 on the multiresolution analysis (see Theorem 24), we

get the “limit space” H
(
{ϕ(n)} ;Eint

)
= H

(
{1} ;Eint

)
= Harm

(
Eint

)
, i.e. with this condition we

get the set of all harmonic functions on Eint.
Now at scale J ∈ N0, we can calculate the approximating harmonic spline by solving the system
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of linear equations given by

NJ∑
k=1

a
(J)
k FlFkKHJ (·, ·) = y

(J)
l ; l = 1, ..., NJ

and the corresponding spline has the following expression:

SJ (x) =

NJ∑
k=1

a
(J)
k FkKHJ (·, x) .

Note that the difference SJ+1−SJ can be interpreted as a spline-wavelet and the described method
represents a regularization of the ill-posed problem due to the finite dimension of the spline spaces.

Theorem 25. Let SJ ∈ HJ be the unique spline satisfying the conditions FkSJ = y
(J)
k ; k =

1, ..., NJ . Then the spline depends continuously on the given data.

7 Convergence Theorem

In this section, we formulate a convergence theorem which tells us that by adding more and more
data and decreasing the hat-width of the basis functions at the same time, we can obtain a sequence
of approximating splines. This sequence converges to the unknown function of our problem. The
proof is again analogous to the case on the ball, see also [1] for the spheroid.
Let H∗

J stand for the space of bounded linear functionals T : HJ −→ R. The space H∗
J is known

as the dual space.

Theorem 26 (Convergence Theorem). Let F ∈ ∪J∈N0HJ be a given function and F = {Fi}i∈N
be

a linearly independent system of linear and continuous functionals in H∗
∞ such that span {Fi}i∈N

is dense in H∗
∞. Let there exist subsystems FNJ = {F1, ...,FNJ} ⊂ F , J ∈ N0, with NJ ≤ NJ+1

for all J ∈ N0 and lim
J→∞

NJ = ∞. Moreover, let the sequence of spline-scaling functions (SJ )J∈N0

be given by

SJ ∈ VJ = Spline
(
{Φ∧

J (n)} ;FNJ
)
,

FiSJ = FiF for all i = 1, ..., NJ .

Then lim
J→∞

‖SJ − F‖H∞ = 0.

8 Conclusions and Outlook

The main aim of this work was to develop the theory of a reproducing kernel based spline method
for the regularization of the spheroidal inverse gravimetric problem. This problem is mathe-
matically given by a Fredholm integral equation of the first kind (see Equation (1)). Analogous
methods proved to be useful for such tomographic problems in geophysics in case of a spheri-
cal Earth model. To develop this method we first constructed an orthonormal basis system in(
Harm

(
Eint

)
,L2
(
Eint

))
, which is one of the main results of this paper.

The constructed spline interpolation method represents a regularization, i.e. every spline contin-
uously depends on the given gravitational data set. Each spline function satisfies the first and
second minimum properties which means that each spline is the smoothest among all the elements
of the (reproducing kernel) Sobolev space which fit to the given data, i.e. which generate the same
gravitational potential at given data points, and the interpolating spline is the best approximation
in the spline space.
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Moreover, Sobolev spaces defined by particular symbols which are monotonically increasing with
respect to the scale J ∈ N0 represent a multiresolution analysis, i.e. we get a sequence of ap-
proximating splines which get closer and closer to the unknown density function as the scale J
increases (see Theorem 24). Finally, a convergence theorem is proved which actually assures that
the approximating splines converge to the underlying unknown harmonic density function.

In future research, a numerical implementation of the developed method will be necessary. In
this context, also practical problems such as the choice of an appropriate gravitational field model
have to be solved. Moreover, the search for efficient numerical algorithms for the calculation of
the spline basis functions and the matrix of the corresponding equation system still represents a
challenge (also for the spherical case).

Moreover, we know that the solution of the Fredholm integral equation given in (1) consists of
a harmonic and an anharmonic part. In this paper, we have developed a spline interpolation
theory to reconstruct the harmonic part only of this solution. Although we find rare publications
(such as [6], [20] and [21]) which discuss the anharmonic part, it is an interesting topic for further
research to study the combined determination of the harmonic part and the anharmonic part of
the solution by means of constructive approximation to get a better approximation to the density
function (see also the approaches in [7], [8] and [9], where seismic data are used to constrain the
anharmonic part). Moreover, anharmonic basis functions for the spheroidal case still have to be
constructed. An important initial step in this respect was done in [6].
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