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Abstract

The basic inverse problems for the functional imaging techniques of
Electroencephalography (EEG) and Magnetoencephalography (MEG) con-
sist of estimating the neuronal current in the brain from the measurement
of the electric potential on the scalp and of the magnetic field outside the
head. Here we present a rigorous derivation of the relevant formulae for
a three-shell spherical model in the case of independent as well as simul-
taneous MEG and EEG measurements. Furthermore, we introduce an
explicit and stable technique for the numerical implementation of these
formulae. Numerical examples are presented using the locations and the
normal unit vectors of the real 102 magnetometers and 70 electrodes of
the Elekta Neuromag (R) system.

1 Introduction

For the study of real time brain processes, among the most important imag-
ing techniques are electroencephalography (EEG) and magnetoencephalography
(MEG) — for early works see, for example, [1, 2]. Taking into consideration that
the language of mind is electrical signaling, it follows that EEG and MEG allow,
in some sense, the recording in real time of “brain conversations”. In order to
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produce images of brain activation using either EEG or MEG it is necessary to
solve certain mathematical inverse problems. Indeed, the neuronal current (the
so-called primary current) creates an electric potential which can be measured
on the scalp, as well as a magnetic field which can be measured outside the head.
The relevant inverse problems for EEG and MEG involve the calculation of the
neuronal current from the knowledge of the electric potential and the magnetic
field respectively. However, as it was already known to Helmholtz since 1853,
the solutions of these problems are non-unique.
For MEG, a complete answer to the non-uniqueness question for a homogeneous
spherical model was presented in [3] and [4] where it was shown that: (a) The
only part of a continuously distributed current that can be reconstructed via
MEG consists of certain moments of one of the two functions specifying the
tangential component of the current (the other function specifying the tangential
component, as well as the radial component of the current are “invisible” in
the spherical model of MEG). (b) It is possible to reconstruct uniquely the
current that minimizes the L2-norm. Some of these results were extended,
from a spherical to a star-shape geometry in [5]. The mathematical notion
of complementarity of MEG and EEG for a spherical geometry was introduced
in [6] where it was shown that the component of a continuously distributed
neuronal current which generates the electric potential (and hence measured by
EEG) lives in the orthogonal complement of the component of the current which
generates the magnetic potential (which is measured by MEG).
A straightforward approach for the solution of the inverse problems associated
with simultaneous EEG and MEG measurements was introduced in [7]. This
approach yields a complete answer to the non-uniqueness question even in the
case of an arbitrary geometry. Furthermore, in the particular cases of spherical
and ellipsoidal geometries it yields effective formulae for the “visible” component
of the current.
In this paper: (a) We present the rigorous solution of the inverse problems
associated with the spherical three-shell model in the case of independent as well
as simultaneous EEG and MEG measurements. In the case of independent MEG
measurements, the formula is identical to the one in [3], [4], but the derivation
is much simpler. (b) We introduce an effective numerical implementation of
the associated formulae for MEG and EEG, both for independent as well as
simultaneous EEG and MEG measurements.
The spherical three-shell model consists of a sphere Ωc modeling the space occu-
pied by the cerebrum, surrounded by three concentric shells Ωf ,Ωb,Ωd, modeling
the spaces occupied by the cerebrospinal fluid, the skull and the skin. These
compartments are distinguished by their different values of electric conductivity,
which will be denoted respectively by σc, σf , σb, σd. The domains Ωc, Ωf ,Ωb,Ωd

are defined as follows:

Ωc : 0 ≤ r < c1,Ωf : c1 < r < f1,Ωb : f1 < r < b1,

Ωd : b1 < r < d1.
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Also, Ωe will denote the space defined by r > d1. Moreover, Ω represents the
unit sphere.
In the following, vectors are denoted by bold-face letters such as r, τ , Q, and
J, whereas their Euclidean norms are denoted by their corresponding non-bold-
face counterparts, for example, r and τ . Moreover, the associated unit vectors
are denoted by r̂ := r−1r, τ̂ := τ−1τ , etc.

2 A Simple Derivation of the Result of [4] and
its EEG Analogue

2.1 MEG

Proposition 2.1 Let Q(τ ) be the moment of a dipole at the point τ with τ <
d1. Then, the corresponding magnetic potential UD(r, τ ) at the exterior Ωe

satisfies

4πr
∂UD

∂r
(r, τ ) = −(Q(τ )× τ ) · ∇τ

1

|r− τ | , r ∈ Ωe, τ < d1. (1)

Proof. Recall that

−4π

μ
r ·BD(r) = r ·

(
Q×∇r

1

|r− τ |
)
. (2)

Since τ < d1, B
D is obviously in C(∞)(Ωe). Using the definition of UD (note

that the Maxwell equations imply the existence of UD), i.e.

BD = μ∇rU
D,

as well as the identity

∇r
1

|r− τ | = −∇τ
1

|r− τ | ,

equation (2) becomes

4πr · ∇rU
D = r ·Q ×∇τ

1

|r− τ | . (3)

But the RHS of this equation equals

r ·Q× (r− τ )

|r− τ |3 = τ ·Q× (r− τ )

|r− τ |3 = τ ·Q×∇τ
1

|r− τ | ,

which equals the RHS of equation (1). Also

r · ∇rU
D = r

∂UD

∂r
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and hence equation (3) becomes equation (1).

Note that, in the following, JP denotes the primary current which is derived
from the integration of terms including the dipole moment Q. In a sense, it
is the continuous analogue of the discrete dipole moment. Correspondingly,
whereas UD represents the magnetic potential of a single dipole, we will write
U for the continuous version, i.e.

U(r) :=

∫
Ωc

UD(r, τ ) dV(τ ).

Proposition 2.2 Let JP(τ ) be supported in Ωc and assume that it has sufficient
smoothness so that Gauss’s theorem can be applied. Then

4πU(r) = −
∫
Ωc

{[∇τ · (JP(τ )× τ )
] ∞∑
n=0

τn

rn+1(n+ 1)
Pn(r̂ · τ̂ )

}
dV(τ ), r ∈ Ωe,

(4)
where Pn represents the Legendre polynomial of degree n.

Proof. Using the basic identity

1

|r− τ | =
∞∑

n=0

τn

rn+1
Pn(r̂ · τ̂ ), r > τ, (5)

in equation (1), dividing the resulting equation by r, integrating the result with
respect to r and using the fact that UD vanishes as r → ∞, equation (1) yields

4πUD(r, τ ) = (Q(τ ) × τ ) · ∇τ

∞∑
n=0

τn

rn+1(n+ 1)
Pn(r̂ · τ̂ ), r ∈ Ωe. (6)

The above derivation involves interchanging integration with respect to dr with
∇τ

∑∞
n=0. This can be justified as follows: We investigate the series

∞∑
n=0

(
τ̂
∂

∂τ
+

1

τ
∇∗

τ̂

)
τn

rn+2
Pn (r̂ · τ̂ )

=

∞∑
n=1

(
n
τn−1

rn+2
Pn (r̂ · τ̂ ) τ̂ +

τn−1

rn+2
P ′
n (r̂ · τ̂ ) (r̂− (τ̂ · r̂) τ̂ )

)
,

where ∇τ = τ̂ ∂
∂τ + 1

τ ∇∗
τ̂ is the usual decomposition of the gradient operator in

its radial and angular parts. The series is, for fixed τ ∈ Ωc, uniformly convergent
with respect to r ∈ Ωe, since it is dominated by

∞∑
n=1

(
n
τn−1

rn+2
+
τn−1

rn+2

n(n+ 1)

2
· 2

)
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(see [8], p. 39 for the estimates of Pn and P ′
n). Thus,

∇τ

∞∑
n=0

τn

rn+2
Pn (r̂ · τ̂ )

=

∞∑
n=1

(
n
τn−1

rn+2
Pn (r̂ · τ̂ ) τ̂ +

τn−1

rn+2
P ′
n (r̂ · τ̂ ) (r̂− (τ̂ · r̂) τ̂ )

)
.

Furthermore, for similar reasons the series

∞∑
n=1

∫ ∞

�

∣∣∣∣n τn−1

rn+2
Pn (r̂ · τ̂ ) τ̂ +

τn−1

rn+2
P ′
n (r̂ · τ̂ ) (r̂− (τ̂ · r̂) τ̂ )

∣∣∣∣ dr
∣∣∣∣
�=r

≤
∞∑
n=1

(
n

n+ 1
· τ

n−1

rn+1
+
τn−1

rn+1
· 1

n+ 1
n(n+ 1)

)

is convergent for all r ∈ Ωe. Consequently, the interchanging of the integration
with the gradient operator and the summation is allowed.
Integrating (6) with respect to τ (which represents the passing from the discrete
case of a single dipole to the continuous case) and using Gauss’s theorem yields
the following:

4πU(r) =

∫
∂Ωc

n · (JP(τ )× τ )

∞∑
n=0

τn

rn+1(n+ 1)
Pn(r̂ · τ̂ ) dS(τ )

−
∫
Ωc

{[∇τ · (JP(τ )× τ )
] ∞∑
n=0

τn

(n+ 1)rn+1
Pn(r̂ · τ̂ )

}
dV(τ ).

But JP(τ ) vanishes on ∂Ωc and thus equation (4) follows.

Remark 2.1 Equation (6) shows that the component of JP(τ ) in the τ̂ direc-
tion does not contribute to the magnetic field generated by a single dipole. Thus,
measurements of U yield the two components (JP)θ and (JP)ϕ. On the other
hand, equation (4) shows that for a continuously distributed current, the mea-
surement of U yields information only about the single function ∇τ ·(JP(τ )×τ ).
Hence, we “lose information”, i.e. we go from two functions to a single function,
as a result of Gauss’s theorem!

Proposition 2.3 Let τ̂ , θ̂, ϕ̂ denote the unit vectors in the spherical directions
of the point τ , i.e.

τ̂ = (sin θ cosϕ, sin θ sinϕ, cos θ),

θ̂ = (cos θ cosϕ, cos θ sinϕ,− sin θ),

ϕ̂ = (− sinϕ, cosϕ, 0).

Let (Jτ , Jθ, Jϕ) be the spherical components of JP, i.e.,

JP = Jτ τ̂ + Jθθ̂ + Jϕϕ̂. (7)

5



Then
JP × τ = τ

(
Jϕθ̂ − Jθϕ̂

)
.

If Jθ and Jϕ are represented in the form

Jθ =
1

τ

(
Gθ − 1

sin θ
Fϕ

)
, Jϕ =

1

τ

(
1

sin θ
Gϕ + Fθ

)
, (8)

where F,G ∈ C(2)(Ωc) and the subscripts θ, ϕ refer to derivatives, then

∇τ · (JP × τ ) =
1

τ
Δθ,ϕF, Δθ,ϕ � 1

sin θ

[
∂θ sin θ∂θ +

1

sin θ
∂2ϕ

]
. (9)

Proof.

∇τ · (JP × τ ) =
1

τ2 sin θ

{
τ(τ sin θJϕ)θ + τ(−τJθ)ϕ

}
=

1

sin θ

{
(sin θJϕ)θ − (Jθ)ϕ

}
=

1

τ sin θ

[
(sin θFθ)θ +

1

sin θ
Fϕϕ

]
.

Theorem 2.1 Let JP be expanded in the form (7), (8). Then

4πU(r) = −
∫
Ωc

{
[Δθ,ϕF (τ, θ, ϕ)]

∞∑
n=0

τn−1

rn+1(n+ 1)
Pn(r̂ · τ̂ )

}
dV(τ ). (10)

Furthermore, if F (τ, ·, ·) is expressed in terms of spherical harmonics Y m
n as

F (τ, θ, ϕ) =

∞∑
n=0

n∑
m=−n

fm
n (τ)Y m

n (θ, ϕ), (11)

where ∞∑
n=0

n∑
m=−n

|fm
n (τ)| n3+ε < +∞ (12)

for some ε > 0 and for all τ ∈ [0, c1], then

U(r) =

∞∑
n=0

n∑
m=−n

Y m
n (Θ,Φ)

rn+1

n

2n+ 1

∫ c1

0

τn+1fm
n (τ) dτ , r ∈ Ωe, (13)

where (r,Θ,Φ) denote the spherical coordinates of r.

Proof. Note that the summability condition (12) implies that

∞∑
n=0

n∑
m=−n

(fm
n (τ))

2
n6+2ε < +∞,
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which corresponds to the following embedding in Sobolev spaces:

F (τ, ·, ·) ∈ H3+ε(Ω) ⊂ C(2)(Ω) for all τ ∈ [0, c1],

where Ω represents the unit sphere in R
3. For further details we refer to [8], pp.

81-89. Moreover, due to condition (12) it is allowed to interchange Δθ,ϕ with
the limit of the Fourier series, since∣∣∣∣∣

∞∑
n=0

n∑
m=−n

fm
n (τ)Δθ,ϕY

m
n (θ, ϕ)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
n=0

n∑
m=−n

fm
n (τ)[−n(n + 1)]Y m

n (θ, ϕ)

∣∣∣∣∣
≤

∞∑
n=0

n∑
m=−n

|fm
n (τ)| n(n+ 1)

√
2n+ 1

4π

is uniformly convergent on Ω for every τ ∈ [0, c1].
Furthermore, using dV = τ2 sin θ dτ dθ dϕ and∫ 2π

0

∫ π

0

Y m
n (τ̂ )Pn′(τ̂ · r̂) sin θ dθ dϕ =

4π

2n+ 1
Y m
n (r̂)δnn′ (14)

equation (10) immediately becomes equation (13).

Remark 2.2 (Relation between (13) and the result of [4]) In [4] the prob-
lem was first mapped to a harmonic problem. This appears to be an unnecessary
complication. In any case, it is straightforward to obtain the analogous result:
Equation (1) yields

4πUD(r, τ ) = (Q(τ )× τ ) · ∇τ

(
1

τ
∂−1
τ

1

|r− τ |
)
. (15)

Indeed,

4πUD(r, τ ) = (Q(τ )× τ ) · ∇τ

(
−∂−1

r

1

r|r − τ |
)

and it can be verified (using for example equation (5)) that

−∂−1
r

1

r|r − τ | =
1

τ
∂−1
τ

1

|r− τ | .

Integrating the RHS of equation (15) w.r.t. τ and using Gauss’s theorem we
find

−
∫ 2π

0

∫ π

0

∫ c1

0

1

τ
(Δθ,ϕF )

1

τ
∂−1
τ

1

|r− τ | τ
2 sin θ dτ dθ dϕ.

Then integrating by parts w.r.t. τ , we obtain

−
∫ 2π

0

∫ π

0

[
∂−1
τ (Δθ,ϕF (τ, θ, ϕ))

] (
∂−1
τ

1

|r− τ |
)∣∣∣∣τ=c1

τ=0

sin θ dθ dϕ

+

∫ 2π

0

∫ π

0

∫ c1

0

[
∂−1
τ (Δθ,ϕF (τ, θ, ϕ))

] 1

|r− τ | sin θ dτ dθ dϕ.
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We have (
∂−1
τ

1

|r− τ |
)∣∣∣∣

τ=0

=

( ∞∑
n=0

1

n+ 1

τn+1

rn+1
Pn (r̂ · τ̂ )

)∣∣∣∣∣
τ=0

= 0.

Using

∂−1
τ (Δθ,ϕF (τ

′, θ, ϕ)) = −
∫ c1

τ

Δθ,ϕF (τ
′, θ, ϕ) dτ ′,

we get

4πU(r) = −
∫
Ωc

1

|r− τ |
(

1

τ2

∫ c1

τ

(Δθ,ϕF )(τ
′, θ, ϕ) dτ ′

)
dV(τ ). (16)

Remark 2.3 (Relation with the minimization of [4]) Let

U(r) =
∞∑

n=0

n∑
m=−n

cmn
rn+1

Y m
n (r̂).

In [4], starting with equation (16) it was shown that the constants cmn are given
by

cmn =
n

2n+ 1

∫ c1

0

τn+1fm
n (τ) dτ . (17)

The derivation of (17) was based on the following: If h is defined by

h(τ, θ, ϕ) =
1

τ2

∫ c1

τ

Δθ,ϕF (τ
′, θ, ϕ) dτ ′ =

∞∑
n=0

n∑
m=−n

hmn (τ)Y m
n (θ, ϕ),

then

hmn (τ) = −n(n+ 1)

τ2

∫ c1

τ

fm
n (τ ′) dτ ′. (18)

Furthermore,

cmn = − 1

1 + 2n

∫ c1

0

τn+2hmn (τ) dτ . (19)

Substituting (18) into (19) and using integration by parts we find equation (17).
The advantage of the new derivation is that it yields directly (17) (see equation
(13)).

2.2 EEG

Proposition 2.4 Let Q(τ ) be the moment of a dipole at the point τ . Then,
the corresponding electric potential at the scalp is given by

uDs (r, τ ) =
1

4π
Q(τ ) · ∇τ

∞∑
n=0

snτ
nPn(τ̂ · r̂), r = d1, τ < d1, (20)

where the constant sn depends on the conductivities and the geometric charac-
teristics.
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Proof. See [18].

In analogy to the MEG case, we will write us for the continuous analogue of u
D
s .

Theorem 2.2 Let

JP(τ ) = ∇τΨ(τ ) +∇τ ×A(τ ), ∇τ ·A(τ ) = 0, (21)

with Ψ ∈ C(2)(Ωc,R) ∩ C(1)(Ωc,R) and A ∈ C(2)(Ωc,R
3) ∩ C(1)(Ωc,R

3). Then
the electric potential at the scalp is given by

us(r) = − 1

4π

∫
Ωc

(ΔΨ(τ ))

∞∑
n=0

snτ
nPn(τ̂ · r̂) dV(τ ), r = d1. (22)

Furthermore, if Ψ is expanded in the form

Ψ(τ ) =

∞∑
n=1

n∑
m=−n

ψm
n (τ)Y m

n (τ̂ ), (23)

where {ψm
n (τ)}n=1,2,...;m=−n,...,n satisfies the summability condition (12), then

us(r) = −
∞∑
n=1

n∑
m=−n

sn
2n+ 1

cn+1
1

[
c1ψ̇

m
n (c1)− nψm

n (c1)
]
Y m
n (r̂), r = d1. (24)

Proof. Integrating (20) with respect to dV(τ ) over Ωc, using Gauss’s theorem
for the RHS, and noting that

∇ · JP = ∇ · (∇Ψ +∇×A) = ΔΨ,

equation (20) becomes equation (22).
Replacing in (22) Ψ by the RHS of (23) and using the identity

τ2Δψn
m(τ)Y m

n (τ̂ ) =

[
d

dτ

(
τ2

d

dτ
ψm
n (τ)

)
− n(n+ 1)ψm

n (τ)

]
Y m
n (τ̂ ),

as well as the orthogonality relation (14), equation (22) yields

us(r) = (25)

−
∞∑
n=1

n∑
m=−n

sn
2n+ 1

{∫ c1

0

[
d

dτ

(
τ2

d

dτ
ψm
n (τ)

)
− n(n+ 1)ψn

n(τ)

]
τn dτ

}
Y m
n (r̂).

Note that the application of Δ to (23) was considered here in analogy to the
proof of Theorem 2.1. Integration by parts yields∫ c1

0

[
d

dτ

(
τ2

d

dτ
ψm
n (τ)

)]
τn dτ =

cn+1
1

[
c1ψ̇

m
n (c1)− nψm

n (c1)
]
+ n(n+ 1)

∫ c1

0

ψm
n (τ)τn dτ,

hence equation (25) becomes equation (24).

9



Remark 2.4 (Relation with the harmonic kernel) In the case of the ho-
mogeneous sphere, it is straightforward (but again unnecessary) to rewrite equa-
tion (22) in terms of the harmonic kernel. Indeed, for the homogeneous case
the constant sn is given by

sn =
1

σdn+1
1

2n+ 1

n+ 1
=

1

σdn+1
1

[
2− 1

n+ 1

]
.

Thus, the term snτ
n gives the two terms

2

σ

τn

dn+1
1

, − 1

σ

τn

dn+1
1 (n+ 1)

(26)

and since ∞∑
n=0

τn

dn+1
1

Pn(r̂ · τ̂ ) = 1

|r− τ |
∣∣
r=d1

,

the first of the terms (26) yields immediately the harmonic kernel. Regarding
the second term we note that∫ c1

0

τn(ΔΨ(τ ))τ2
dτ

n+ 1
=

∫ c1

0

τn+1

n+ 1
(τΔΨ(τ )) dτ

=

∫ c1

0

τn
{∫ c1

τ

τ ′(ΔΨ(τ ′)) dτ ′
}

dτ .

Hence, equation (22) can be rewritten in terms of the following harmonic kernel:

us(r) = − 1

4πσ

∫
Ωc

[
2(ΔΨ)(τ, θ, ϕ)− 1

τ2

∫ c1

τ

τ ′(ΔΨ)(τ ′, θ, ϕ) dτ ′
]
dV(τ )

|r− τ | ,
(27)

r = d1.

2.3 Simultaneous MEG and EEG Measurements

The case of simultaneous MEG and EEG measurements is analyzed in [7]. In
this case the basic formulae for EEG are the same, i.e. equations (21), (23) and
(24) are still valid. However, for MEG instead of equations (7), (8), (11) and
(13), the basic formulae are equations (21) and the following expressions:

4π

μ
r ·B(r) = −

∞∑
n=1

n∑
m=−n

cn+2
1

2n+ 1
[c1ȧ

m
n (c1)− (n− 1)amn (c1)]

Y m
n (r̂)

rn+1
, r > d1,

(28)

Aτ (τ ) =

∞∑
n=1

n∑
m=−n

amn (τ)Y m
n (τ̂ ), 0 < τ < c1. (29)

The reason for this difference is that now the EEG measurements impose the
expansion (21) for the current, thus the expansions (7), (8) are inappropriate.
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3 Numerical Implementation

3.1 Description of the Spline Method

For magnetometer measurements, the following data are given

bk = νk ·B(rk), k = 1, 2, ...,M, (30)

where both rk and the unit vector νk = ν(rk) (which is normal to the surface
of the device at the point rk) are known and M is the number of sensors. Our
goal is to reconstruct the maximum possible information for the current from
the above data. For this purpose, we will use the novel technique of [9, 10] (see
also the historical references there), which we now describe. This method (more
precisely a version of this method adapted in each case) has already been suc-
cessfully applied to similar inverse problems in seismic tomography (see [9, 10])
and in inverse gravimetry (see [11, 12]). An enhanced version was used for a
combined inversion of seismic and gravitational data (see [13, 14, 15]).

The unique determination of either the function fm
n (τ) in equation (11) or the

function amn (τ) of (29) requires some a-priori assumption about the current, such
as the assumption that Aτ (τ ) is biharmonic. Thus, we will represent either of
these functions in the form αm

n Gn(τ), where Gn(τ) is assumed to be known (in
the case of the harmonicity assumption Gn(τ) is given by τn). Hence

Aτ (τ ) =

∞∑
n=1

n∑
j=−n

αj
nGn(τ)Y

j
n (τ̂ ), 0 < τ < c1, (31)

and similarly for F . This motivates the introduction of the following orthonor-
mal set in L2(Ωc):

Hj
n(τ ) = γ

− 1
2

n Gn(τ)Y
j
n (τ̂ ), γn =

∫ c1

0

s2G2
n(s) ds, n ∈ N, j = −n, ..., n.

(32)
The main idea is to expand Aτ (τ ) in terms of appropriate reproducing kernels
K [9, 10], instead of spherical harmonics: Let K(τ , r) be defined by

K(τ , r) =
∞∑

n=1

n∑
j=−n

A−2
n Hj

n(τ )H
j
n(r)

=

∞∑
n=1

n∑
j=−n

A−2
n γ−1

n Gn(τ)Y
j
n (τ̂ )Gn(r)Y

j
n (r̂) , (33)

where the sequence (An) has to satisfy a certain summability condition (see
[9, 10] for further details).
Let Fk, k = 1, . . . ,M , represent the functionals which map Aτ (or F ) to the
corresponding data bk = νk · B(rk). In the following we assume that each Fk
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is linear and continuous. We use these functionals to construct basis functions
for the expansion of Aτ :

Aτ (τ ) =

M∑
k=1

akFk
rK(τ , r). (34)

Here, Fk
rK(τ , r) means that τ is kept fixed and Fk is applied to the function

r 	→ K(τ , r).
In this way we obtain the linear system

bm =

M∑
k=1

akFm
τ Fk

rK(τ , r), (35)

for the constants ak, k = 1, ...,M .
Mathematical considerations (see [9, 10] and the references therein) show that
the reproducing kernel corresponds to a Hilbert space H((An)) ⊂ L2(Ωc). This
space is equipped with the inner product

〈F,G〉H((An)) :=

∞∑
n=1

n∑
j=−n

A2
n

〈
F,Hj

n

〉
L2(Ωc)

〈
G,Hj

n

〉
L2(Ωc)

and its induced norm ‖ · ‖H((An)). Note that the sequence (A−1
n ) is typically

chosen to be monotonically decreasing and converging to zero. Thus, this norm
provides a kind of non-smoothness measure, since it weights high-degree parts
stronger than low-degree parts. Within this context, the following essential
features of the method can be established (see [9, 10] and the references therein
for proofs):

• If the linear and continuous functionals Fk, k = 1, ...,M , are linearly
independent, then the linear system (35) is uniquely solvable, i.e. the
expansion (34) is unique.

• Among all solutions F ∈ H((An)) satisfying FmF = bm, m = 1, ...,M ,
the solution of the form (34) uniquely minimizes the norm ‖ · ‖H((An)).
Hence, it is the “smoothest” interpolant. This result motivates the name
“spline”.

• Among all functions of the form (34), the solution given by (35) is closest
(in the ‖ · ‖H((An))-sense) to the unknown function (best approximation
property).

Two further features of the spline method are of particular importance for the
numerical implementation.

• The linear system (35) can be regularized by adding a positive constant λ
to the diagonal of the matrix. The corresponding spline (34) is then the
minimizer of

M∑
k=1

(FkAτ − bk
)2

+ λ ‖Aτ‖2H((An))
.
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An increased value of λ emphasises the smoothing of the function in re-
lation to the accuracy of the interpolation. Often in practice, a pure
interpolation (λ = 0) is not adequate for a numerical implementation due
to the occurence of ill-conditioned matrices (although, for the particular
numerical example in this paper, the spline method itself is already a suf-
ficient regularisation of the inverse MEG problem, since the inversion of
the unregularised linear system (35) is stable (see Section 3.6); whereas a
regularisation of the linear system (35) was necessary for the EEG data).

• The spline (34) can also be represented in terms of a Lagrange basis by

Aτ (τ ) =
M∑
k=1

bk Lk(τ ), (36)

where the Lagrange basis

Lk(τ ) =

M∑
j=1

l
(k)
j F j

rK(τ , r), k = 1, . . . ,M,

is obtained from the linear systems

M∑
j=1

l
(k)
j Fm

τ F j
rK(τ , r) = δmk, m = 1, . . . ,M, k = 1, . . .M. (37)

Note that (37) consists of M linear systems, which all have the same
matrix as (35). Equation (37) requires that FmLk = δmk such that in (36)
FmAτ = bm, m = 1, . . . ,M . This representation in a Lagrange basis is an
essential advantage in the case that a time series {bm(ti)}m=1,...,M, i=1,...,N

has to be analyzed; indeed, in this case the Lagrange basis is calculated
only once and then is stored in the computer. Note that this includes the
inversion of the matrix (Fm

τ F j
rK(τ , r))m,j=1,...,M . The spline can then

be calculated almost in real time after the determination of the data bm,
m = 1, . . . ,M .

3.2 Details of the Implementation

The implementation of the above scheme using the real magnetometer and elec-
trode information of Elekta Neuromag (R) is discussed below. In this context,
we will focus on the determination of F in (11) in terms of B for the inverse
MEG problem.

3.3 The Data Situation

In the following, we assume that the measured magnetic field B and its potential
U are represented in terms of (scalar respectively vector) spherical harmonics
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by

U(r) =

∞∑
n=1

n∑
j=−n

cjn r
−n−1Y j

n (r̂) ,

B(r) = μ

∞∑
n=1

n∑
j=−n

r−n−2 cjn

[
(−n− 1)yj,1

n (r̂) +
√
n(n+ 1)yj,2

n (r̂)
]
,

|r| > 1, where

yj,1
n (r̂) := r̂Y j

n (r̂) ,

yj,2
n (r̂) := (n(n+ 1))−1/2 ∇∗

r̂Y
j
n (r̂) .

For further details on the vector spherical harmonics yj,i
n we refer to [8], pp.

321-344. Moreover,

F (τ ) =

∞∑
n=1

n∑
j=−n

F j
n Gn(τ)Y

j
n (τ̂ ). (38)

Here, we know due to (13) and (17) that

cjn =
n

2n+ 1

∫ c1

0

τn+1F j
nGn(τ) dτ .

Based on a-priori conditions, we expect to have a known relation

F j
n = σnc

j
n; n ∈ N, j = −n, ..., n,

with σn = 0 for all n ∈ N. Note that this is a further restriction to the
previous assumptions, since we require invertibility (σn = 0 for all n), whereas
the isotropy (σn is independent of j) already follows from the modelling above.
The data (see (30)) can then be represented as

(FkF =
)
νk ·B(rk) = μ

∞∑
n=1

n∑
j=−n

σ−1
n F j

n r
−n−2
k

[
(−n− 1)νk · yj,1

n (r̂k)

+
√
n(n+ 1)νk · yj,2

n (r̂k)
]
, (39)

where k = 1, . . . , 102. Note that M = 102 sensors occur in the case of the
considered device.
The considerations for EEG are analogous (see below).

3.4 Spline Basis

We now investigate the practical calculation of the spline basis functions

τ 	→ Fk
rK(τ , r), k = 1, ..., 102.
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The use of (39) requires the knowledge of the expansion coefficients F j
n in (38)

if F (r) = K(τ , r) for fixed τ . By comparing (33) and (38) we get F j
n =

A−2
n γ−1

n Gn(τ)Y
j
n (τ̂ ). Hence,

Fk
rK(τ , r) = μ

∞∑
n=1

n∑
j=−n

σ−1
n A−2

n γ−1
n Gn(τ)Y

j
n (τ̂ ) r−n−2

k

×
[
(−n− 1)νk · yj,1

n (r̂k) +
√
n(n+ 1)νk · yj,2

n (r̂k)
]

= μ

∞∑
n=1

σ−1
n A−2

n γ−1
n Gn(τ)r

−n−2
k

2n+ 1

4π

× [(−n− 1)νk · r̂kPn (τ̂ · r̂k) + νk · (τ̂ − (τ̂ · r̂k) r̂k)P ′
n (τ̂ · r̂k)] ,

where the last equation follows from the addition theorem for spherical harmon-
ics.

3.5 Matrix Entries

Before the spline coefficients are available, the system of linear equations has to
be solved. For this purpose, the matrix with entries of the form

Fm
τ Fk

rK(τ , r), m, k ∈ {1, . . . , 102}, (40)

has to be computed. They can be calculated as follows:

Fm
τ Fk

rK(τ , r) = μ2
∞∑
n=1

n∑
j=−n

σ−2
n A−2

n γ−1
n r−n−2

k r−n−2
m

×
[
(−n− 1)νk · yj,1

n (r̂k) +
√
n(n+ 1)νk · yj,2

n (r̂k)
]

×
[
(−n− 1)νm · yj,1

n (r̂m) +
√
n(n+ 1)νm · yj,2

n (r̂m)
]

= μ2
∞∑

n=1

σ−2
n A−2

n γ−1
n (rkrm)

−n−2 2n+ 1

4π

×
[
(−n− 1)2 (νk · r̂k) (νm · r̂m)Pn (r̂k · r̂m)

+(−n− 1)
(
(νm · r̂m)νk · ∇∗

ξ + (νk · r̂k)νm · ∇∗
η

)
Pn(ξ · η)∣∣

ξ=r̂k,η=r̂m

+ νT
k

(∇∗
ξ ⊗∇∗

ηPn(ξ · η))νm

∣∣
ξ=r̂k,η=r̂m

]
= μ2

∞∑
n=1

σ−2
n A−2

n γ−1
n (rkrm)−n−2 2n+ 1

4π

× [
(−n− 1)2 (νk · r̂k) (νm · r̂m)Pn (r̂k · r̂m)

+(−n− 1) ((νm · r̂m) (νk · f (r̂k, r̂m))
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+ (νk · r̂k) (νm · f (r̂m, r̂k)))P ′
n (r̂k · r̂m)

+ (νk · f (r̂k, r̂m)) (f (r̂m, r̂k) · νm)P ′′
n (r̂k · r̂m)

+ νT
k g (r̂k, r̂m)νmP

′
n (r̂k · r̂m)

]
,

where f(ξ,η) := ∇∗
ξ(ξ · η) = η − (ξ · η)ξ for ξ,η ∈ Ω,

g(ξ,η) := ∇∗
ξ ⊗ (ξ − (η · ξ)η) = 1− ξ ⊗ ξ − (η − (ξ · η)ξ)⊗ η,

1 is the 3 × 3 - identity matrix and ∇∗ is the surface gradient with respect to
the unit sphere Ω. The derived expansion in Legendre polynomials can (in a
truncated form) be numerically evaluated by the use of the Clenshaw algorithm
(see [16]).

3.6 A Numerical Example for MEG

We will study here the case where F is restricted to a spherical shell given by
0 < a ≤ τ ≤ 1 < c1. Moreover, we assume that the density F has a vanishing
zeroth moment (i.e. its zeroth degree coefficient vanishes) and only depends on
the angular variables but not on the radial one. For this purpose we can easily
derive a spectral relation between U , F , and B by using the results above.

Theorem 3.1 Let 0 < a < 1 < c1 be a given real number. Furthermore, let
F : Ωc → R be a given function which is square–integrable and satisfies (11),
(12) and the following conditions:∫

Ω

F (τ ) dS (τ̂ ) = 0 for all τ ∈ [0, c1], (41)

F (τ ) = 0 if τ /∈ [a, 1], (42)

F (τ ) = F (r) if τ̂ = r̂ and τ, r ∈ [a, 1]. (43)

Then the corresponding function U ∈ L2(Ωe) is given by

U(r) =

∞∑
n=1

n∑
m=−n

cmn r
−n−1Y m

n (r̂) , r ∈ Ωe. (44)

with

fm
n (τ) =

n+ 2

1− an+2

2n+ 1

n︸ ︷︷ ︸
=σn

cmn , τ ∈ [a, 1]

The convergence of the series in (44) has to be understood in the sense of L2(Ωc).

Proof. From Theorem 2.1 we know that F ∈ L2(Ωc) with

F (τ ) =

∞∑
n=1

n∑
m=−n

fm
n (τ)Y m

n (τ̂ )

16



and (12) (note that condition (41) implies that the coefficient for n = 0 vanishes)
is related to U by∫ c1

0

τn+1fm
n (τ)dτ =

2n+ 1

n
cmn ; n = 1, 2, ...; m = −n, ..., n.

Due to the assumptions (42) and (43) on F , i.e. fm
n (τ) = Fm

n if τ ∈ [a, 1] and
= 0 else, we conclude that∫ 1

a

τn+1 dτ Fm
n =

2n+ 1

n
cmn

⇔ Fm
n =

n+ 2

1− an+2

2n+ 1

n
cmn .

Hence, in this particular case we have

σn =
n+ 2

1− an+2

2n+ 1

n
,

Gn(τ) = χ[a,1](τ), (45)

γn =

∫ c1

0

s2G2
n(s) ds =

∫ 1

a

s2 ds =
1

3

(
1− a3

)
.

Note that the associated functionals Fk (see (39)) are obviously linear. More-
over, the norm of F is given by

‖F‖2L2(Ωc)
=

∞∑
n=1

n∑
j=−n

(
F j
n

)2
γn

and the triangle inequality as well as the Cauchy–Schwarz inequality yield the
following estimate:

∣∣FkF
∣∣ ≤ μ

∞∑
n=1

n∑
j=−n

σ−1
n

∣∣F j
n

∣∣ r−n−2
k

[
(n+ 1)

√
2n+ 1

4π
+

√
n(n+ 1)

√
2n+ 1

4π

]

≤ μ√
4π

⎛
⎝ ∞∑

n=1

n∑
j=−n

(
F j
n

)2
γn

⎞
⎠1/2

×
⎛
⎝ ∞∑

n=1

n∑
j=−n

γ−1
n σ−2

n r−2n−4
k 4(n+ 1)2(2n+ 1)

⎞
⎠1/2

≤ μ√
π
‖F‖L2(Ωc)

⎛
⎝ ∞∑

n=1

n∑
j=−n

γ−1
n σ−2

n r−2n−4
k (2n+ 1)3

⎞
⎠1/2

.

Hence, each functional Fk is continuous, since the latter series converges (note
that |rk| > 1).
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In the numerical test, we use the following example: F is the sum of two kernels
of the following form:

τ 	→ κ
1

4π

1− h2

(1 + h2 − 2h (η · τ̂ ))3/2
− 1

4π
= κ

∞∑
l=1

2l+ 1

4π
hlPl (η · τ̂ ) ,

where κ ∈ R, h ∈] − 1, 1[, and η ∈ Ω are fixed. Here, we choose κ1 = 0.029,
h1 = 0.7, and η(1) = (1, 1, 1)/

√
3 for the first kernel and κ2 = 0.0047, h2 = 0.8,

and η(2) = (−1, 0, 1)/
√
2 for the second one.

In other words, we have

F j
n =

2∑
i=1

κi h
n
i Y

j
n

(
η(i)

)
(46)

in (38). Figure 1 shows F on the upper hemisphere.
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Figure 1: Exact solution F of the numerical MEG test

By inserting (46) in (39) we obtain

νk ·B (rk) = μ
2∑

i=1

κi

∞∑
n=1

σ−1
n hni r

−n−2
k

2n+ 1

4π

[
(−n− 1)νk · r̂k Pn

(
η(i) · r̂k

)

+νk ·
(
η(i) −

(
r̂k · η(i)

)
r̂k

)
P ′
n

(
η(i) · r̂k

)]
Since a closed representation of this series is unknown to us, we truncate the
summation at degree 1000 and use this approximation for the given data (we,
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correspondingly, also truncate the exact solution at this degree), where a = 0.9.
Moreover, we used the real sensor positions rk and normal vectors νk of Elekta
Neuromag (R), where the radii rk of the sensor positions rk range from 1.0635
to 1.4571.
The Lagrange basis (with An = 0.75−n/2 in the reproducing kernel and trunca-
tion of the corresponding series at degree 100) was calculated where the inversion
of the matrix was stable enough such that no regularisation was necessary. Fig-
ure 2 shows the matrix.
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Figure 2: Matrix for the determination of the Lagrange basis

Figure 3 shows the resulting spline and the errors with respect to F for different
noise levels. Note that the colorbars for the exact solution and the splines are
set in the same way for reasons of a better comparison. With respect to a point
grid {xi}i=1,...,14,400 on the upper hemisphere (the grid used for the plotting in
Figure 3) the RMS error⎛

⎝ 1

14, 400

14,400∑
i=1

(
102∑
k=1

νk ·B (rk) Lk (xi)− F (xi)

)2
⎞
⎠

1
2

is shown in Table 1. Note that max1≤i≤14,400 |F (xi)| ≈ 0.041. The results
show that a close and stable approximation can be obtained via the described
numerical method.

We compare the results with the solution obtained via a spherical harmonics
expansion. For this purpose, we use the ansatz (38) with the parameters (45).
The corresponding system of linear equations is represented by (39). For the
numerical implementation, the fully normalized spherical harmonics were used.
For calculating the vector spherical harmonics, well known formulae for the
derivatives of the associated Legendre functions were used (see [17, pp 79-82]
for further details).
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Figure 3: Spline (left hand column) and absolute error (right hand column) for
different levels of noise: Each data νk ·B(rk) was disturbed by a random number
in the range [−p%, p%] ·maxk(νk ·B(rk)) for p = 0 (1st row), p = 1 (2nd row)
and p = 5 (3rd row).
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Level of noise RMS error spline RMS error spherical harmonics
0 0.00032771 0.0024803
1 0.00033934 0.0024919
5 0.0011438 0.0025557

Table 1: RMS error with respect to the level of noise (in % of the maximum
data value νk · B (rk)) in case of the spline approximation (2nd column) and
the spherical harmonics approximation (3rd column) for the synthetic MEG
example

We use the maximal degree 9 such that the number of unknowns, which is
in the case of this choice 99, does not exceed the number of equations, which
is here 102. Due to the non-quadratic system “Ax = b”, we use the normal
equation “ATAx = ATb”. Since the matrix ATA is numerically singular, we
add a regularisation parameter to the diagonal and this parameter was chosen
based on the L-curve method (see Figure 4). The results are illustrated in Figure
5. The corresponding RMS errors are listed in Table 1.
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Figure 4: L-curve for the normal equation: the norm of the approximate solution

“‖x‖”is plotted against the residual “‖Ax−b‖”. The parameters λk = 10−4+k−1
8 ·

maxi,j |ai,j | were compared. The L-curves for the considered noise levels all look
rather similar such that only the curve for 1% noise is shown here. In each case,
λ17 was chosen. The numbers in the graph refer to the index k of λk.

The results show that the error is obviously smaller for the spline approximation
in comparison to the spherical harmonics expansion. On the other hand, the
error is more sensitive to the noise in the case of the spline. However, the error
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Figure 5: Spherical harmonics based approximation (left-hand column) and
absolute error (right-hand column) for different levels of noise. The same data
as in Figure 3 were used. The noise levels again range from 0% (top) to 5%
(bottom).
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for the spline in the case of 5% noise is still significantly smaller than the error
for the spherical harmonics expansion.

3.7 A Numerical Example for EEG

Here, the radii of the 70 data points vary from 0.8702 to 1.5247. The approx-
imating spline is shown at a hemisphere with the radius 0.6. A minimal norm
solution was chosen as a uniqueness constraint. The corresponding formulae are
as follows: Based on (25), us(r) is representable as

us(r) =

∞∑
n=1

n∑
m=−n

umn

(
d1
r

)n+1

Y m
n (r̂) , (47)

where the unknown function is

Ψ(τ ) =

∞∑
n=1

n∑
m=−n

umn
sn

(
ln τ − 1

n

)
τnY m

n (τ̂ )

(see [19]). In the notation of Sections 3.1 and 3.3, we have

Gn(τ) =

(
ln τ − 1

n

)
τn,

γn =

∫ c1

0

s2
(
ln s− 1

n

)2

s2n ds

=
c2n+3
1

2n+ 3

(
ln2 c1 − 2 ln c1

2n+ 3
+

2

(2n+ 3)2
− 2 ln c1

n
+

2

n(2n+ 3)
+

1

n2

)
cmn = umn d

n+1
1 ,

Fm
n =

umn
sn
,

σn =
1

snd
n+1
1

.

For the numerical implementation, the constants sn were obtained via the sys-
tem of linear equations (26)-(32) in [18] with c1 = 0.71 dm, f1 = 0.72 dm,
b1 = 0.79 dm, d1 = 0.85 dm, σc = 0.033 S

dm , σf = 0.1 S
dm , σb = 0.0042 S

dm , and

σd = 0.033 S
dm . The corresponding matrix was regularized by adding 10% of

the absolutely maximal entry to the diagonal (the value 10% is a trial-and-error
value).
The given data have the form

us (rk) , k = 1, . . . , N.
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The corresponding spline basis functions are, consequently,

Fk
rK(τ , r) =

∞∑
n=1
sn �=0

n∑
j=−n

σ−1
n A−2

n γ−1
n Gn(τ)r

−n−1
k Y j

n (τ̂ )Y
j
n (r̂k)

=

∞∑
n=1
sn �=0

σ−1
n A−2

n γ−1
n Gn(τ)r

−n−1
k

2n+ 1

4π
Pn (τ̂ · r̂k)

and the associated matrix entries are

Fm
τ Fk

rK(τ , r) =

∞∑
n=1
sn �=0

n∑
j=−n

σ−2
n A−2

n γ−1
n r−n−1

k Y j
n (r̂k)r

−n−1
m Y j

n (r̂m)

=
∞∑
n=1
sn �=0

σ−2
n A−2

n γ−1
n (rkrm)−n−1 2n+ 1

4π
Pn (r̂k · r̂m) .

The chosen sequence is An = hn(n+1)/2 with h = 0.99.
It turns out that the matrix is numerically singular but already very small values
added to the diagonal yield a satisfactory regularisation. The corresponding L-
curve (see Figure 6) does not provide us with a proper “L”. We chose λ ≈
1.78 · 10−13 multiplied with the absolute maximum of the matrix entries as the
regularisation parameter.
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Figure 6: L-curve for the matrix inversion corresponding to the Lagrange basis
for EEG: the norm of the inverse matrix “‖A−1‖”is plotted against the residual

“‖A−1A−I‖”, where I is the identity matrix. The parameters λk = 10−14+k−1
8 ·

maxi,j |ai,j | were compared and λ11 was chosen. The numbers in the graph refer
to the index k of λk.
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For a synthetic verification test, we use

Ψ(τ ) =

2∑
i=1

κi

1000∑
l=1

hli

(
τ

d1

)l (
ln τ − 1

l

)
2l+ 1

4π
Pl

(
η(i) · τ̂

)

as the unknown (time-independent) function and A ≡ 0. This corresponds to
the given electric potential

us(r) =
2∑

i=1

κi

1000∑
n=1

sn

(
hi
d1

)n (
d1
r

)n+1
2n+ 1

4π
Pn

(
η(i) · r̂

)
.

We chose κ1 = 0.029, κ2 = 0.015, h1 = 0.8, h2 = 0.9, η(1) = (1, 1, 1)/
√
3, and

η(2) = (−1, 0, 1)/
√
2 (see Figure 7 for the exact solution). Again (as it was

the case for MEG), the real sensor positions were used for the synthetic data.
Figure 8 and Table 2 show the results of a spline reconstruction. Note that
the colorbars for the exact solution and the spline are set in the same way for
reasons of a better comparison.
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Figure 7: Exact solution Ψ of the synthetic EEG example

RMS error spline RMS error spherical harmonics
0.00034411 0.59852

Table 2: RMS error in case of the spline approximation and the spherical har-
monics approximation for the synthetic EEG example
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Figure 8: Spline (left-hand) and absolute error for the synthetic EEG example
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Figure 9: L-curve (norm of the solution vector in comparison to the norm of
the residual) for the spherical harmonics approach in case of the EEG inversion:

The parameters λk = 10−4+k−1
8 ·maxi,j |ai,j | were compared and λ11 was chosen.

The numbers in the graph refer to the index k of λk.

The more serious instability of the EEG inversion also influences the results
for a spherical harmonics approach. We use (47) to determine the expansion
coefficients umn . This yields a system of linear equations with the potential data
as the given right-hand side. The regularisation parameter is chosen via the
L-curve method (see Figure 9). The maximal degree is 7 such that 63 expan-
sion coefficients are determined. The obtained results (Figure 10 and Table 2)
show that spherical harmonics are not appropriate for this kind of problem. The
instability of the problem in combination with the inhomogeneity of the point
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Figure 10: Spherical harmonics approximation (left-hand) and absolute error
for the synthetic EEG example

grid probably cause this effect.

These results show that the use of the described spline method appears to be a
reasonable alternative to present approaches for both inverse MEG and inverse
EEG.

4 Conclusions

The basic inverse problems for the functional imaging techniques of MEG and
EEG consist of estimating the neuronal current JP(τ ), τ ∈ Ωc in terms of the
electric potential us(r), r ∈ ∂Ωd, and of the quantity ν ·B(r), r ∈ Ωe, respec-
tively, where Ωc denotes the space occupied by the cerebrum, ∂Ωd denotes the
scalp, Ωe denotes the space exterior to the head, B(r) denotes the magnetic
field and ν is a certain unit vector. For the three-shell spherical model, an ex-
plicit formula for JP in the case of simultaneous MEG and EEG measurements
was derived in [7]. Here, we have presented the rigorous derivation of JP in
terms of us(r) and of ν ·B(r), for the case of independent as well as simulta-
neous EEG and MEG measurements. Furthermore, we have presented a novel
numerical implementation of the analytical formulae based on the reproducing
kernel technique of [10] and [11].
In the case of independent MEG measurements the relevant formula is identical
to that derived in [3] and [18], but now the derivation is both rigorous and
simpler. The formulae (13) and (24) show that MEG and EEG measurements
yield information about two of the three scalar functions specifying the neuronal
current. In particular, it is possible to determine the angular parts of these two
functions as well as to obtain explicit constraints satisfied by their radial parts.
The complete determination of the radial parts of these two functions, as well
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as the determination of the third scalar function specifying the current, requires
some additional a priori assumptions about the current. One such assumption
is that the current minimises the L2−norm. In this case for independent MEG
and EEG measurements, the radial parts of the functions fm

n (τ) and ψm
n (τ) are

proportional to τm+1 and (ln τ − 1
n )τ

n respectively (see [19]). The derivation of
the corresponding formulae in the case of simultaneous MEG and EEG data is
presented in [19].
Our plan in the future is to compare our approach with commercial software
using anthropomorphic data. We will use independent as well as simultaneous
MEG and EEG measurements and also, in order to obtain a unique current, we
will use L2−minimization, as well as other types of constraints.
Regarding other approaches to reconstructing the neuronal current, we note
that existing strategies can be divided into two broad categories [20]: those
based on dipole models and those based on continuously distributed models.
Our approach assumes a continuously distributed current, thus in what follows
we discuss only the latter models. The most well known such approach is the
minimum norm solution which assumes that the three-dimensional current dis-
tributions should have minimum L2−norm (see [21, 22]). This approach differs
from our approach since we first identify the part of the current that can be de-
termined from the measurements, and then we minimize the relevant L2−norm.
This yields an explicit analytic formula. Similar remarks are valid for the other
weighted minimum norm approaches used in the literature, such as FOCUSS
[23] and RWMN [24], as well as for the Laplacian weighted minimum norm
approach called LORETA [25].
In the case of independent EEG measurements, our approach provides the ana-
lytical solution, as well as the numerical implementation, of the so-called ELEC-
TRA model [26]; the advantage of this model is that it can be compared with
intracranial recordings.
It appears that the main advantages of our approach are the following: (a) it can
indentify precisely the part of the neuronal current that can be determined from
the given measurements; (b) it has the flexibility to be supplemented with any
regularisation strategy such as L2−minimization and the minimizations used in
FOCUSS, RWMN and LORETA; (c) it can be numerically implemented in an
effective, stable way. However, it should be emphasised that until the method
is applied to real data and is compared with commercial software, the above
advantages are purely speculative.
An important limitation of our approach is the assumption of a spherical model.
We envision to overcome this limitation as follows: (a) to attempt the numerical
implementation of the formulae of [7] associated with the three-shell ellipsoidal
model; (b) to implement the overlapping sphere head model, proposed in [27];
(c) to implement the spherical head model with anatomical constraints [28].
Progress in this direction will be reported in future publications.
Finally, we note that Elekta Neuromag (R) in addition to measuring ν(r)·B(r),
it also measures∇r̂(ν(r)·B(r)). These latter data can also be handled using the
numerical technique of Section 3. The question of extracting further information
for the current from these additional data is under investigation.
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