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Abstract

In geophysics, one is oftentimes confronted with the choice of the best system of trial
functions to solve a problem. This choice is crucial for the quality of the approximation and
the computing time, which are very important topics with respect to today’s achievements in
data accuracy and abundance. However, mostly this choice is not an obvious one. Here, we
present a new method – called the Regularized Functional Matching Pursuit (RFMP) – that
constructs the best basis out of an arbitrary collection of different systems of trial functions.
We show the potential of the RFMP on inverting the gravitational potential EGM2008 for
the density distribution in the area of the Himalayas and India. To compute and represent
the solution in this case, the RFMP chooses autonomously the best basis out of a collection
of four different types of trial functions, where one has a global character and the other three
are localized ones with different degrees of localization.

keywords: best basis; spherical harmonics; spline; wavelet; inverse gravimetry; regional gravity
field; sparse regularization; Himalayas; EGM2008

1 Introduction

A common approach for the approximation on the sphere is to use an expansion in terms of spher-
ical harmonics, which form an orthogonal basis system, to represent the data continuously on the
whole sphere. However, because of the global character of these functions, small local changes of
the data lead to changes in all spherical harmonic coefficients. Furthermore, spherical harmonics
are strongly limited by heterogeneous data grids. An analogous problem occurs on the ball, where
orthogonal polynomials are known, too, but are connected to the same limitations.
Different groups proposed localized basis systems to remedy the disadvantages of spherical har-
monics. Slepian functions, for example, are a locally and globally orthogonal system of functions
on the sphere that is optimally suited for a local reconstruction in areas of interest to minimize
the effects of data gaps (see [1, 2, 25, 28, 29, 30] for theoretical results and applications). However,
this concept is, up to now, limited to the sphere.
The Geomathematics Groups at the University of Kaiserslautern and the University of Siegen de-
veloped space localizing kernel functions on the sphere as well as the ball for spline and wavelet
methods. These trial functions also allow us to minimize the effects of data gaps or differences
in the data density. In this work, we will exploit the localizing character of these functions for a
regional reconstruction of the detail structure of the density distribution of the Earth. For further
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theoretical aspects of these trial functions and their applications mostly to geophysical problems,
we refer to [4, 5, 6, 7, 13, 16, 18, 20, 21, 22, 23, 24].
The choice of the right type of trial functions is very important in regard to the quality of the
solution as well as the computing effort. However, mostly it is not an obvious one. Here, we
present a method which constructs the best basis out of an arbitrary collection of different systems
of trial functions. The main idea is as follows: In every step, the best basis is supplemented by
another trial function which is chosen to minimize the remaining data misfit. This yields a more
accurate approximation in comparison to the previous iteration step. As a consequence, a solution
is generated that is adapted to the local detail structure of the target function as well as the data
structure. Note that we do not require initial values for, e.g., the position of a localized basis
function.
The ideas for such a method stem from the field of sparse regularization where one is concerned
with solving under-determined or ill-conditioned systems of linear equations with respect to the
sparsity of the solution (see, e.g., [9, 11, 17, 26]). However, the new method is additionally appli-
cable to inverse problems and also allows the treatment of the ball as a domain. Furthermore, we
enhanced this algorithm by including a regularization term to treat ill-posed problems such as the
inverse gravimetric problem.
We call this new method the Regularized Functional Matching Pursuit (RFMP). It can be divided
into a preprocessing part, which has already been parallelized in our implementation, and the main
part where, in every step, we just need to search for the optimal trial function to best match the
data structure. This main part can be parallelized as well.

Preliminaries:
The Euclidean space Rl is equipped with the usual dot product

〈x, y〉Rl :=

l∑
j=1

xjyj , x, y ∈ Rl,

and its induced norm

||x||Rl :=
√
〈x, x〉Rl .

The closed ball with radius a > 0 is denoted by B := {x ∈ R3| |x| ≤ a}. L2(B) denotes the space
of all square-integrable scalar functions on B, i.e. all F : B → R with

||F ||L2(B) :=

(∫
B
[F (x)]2dx

)1/2

< ∞.

The inner product for L2(B) is defined by

〈F,G〉L2(B) :=

∫
B
F (x)G(x)dx, F,G ∈ L2(B).

2 Regularized Functional Matching Pursuit (RFMP)

The idea to develop a solution adaptively and iteratively is not a new one. A corresponding
algorithm was introduced as a Matching Pursuit in [17]. An enhanced version was constructed
in [32], where kernel functions were introduced into the setting. The hitherto existing Matching
Pursuits intrinsically require that the unknown function F is given in terms of grid-based data
yi = F (xi), i = 1, . . . , l. For instance, in [17], the projection of F on every single trial function is
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calculated out of the data. However, this is not applicable if an inverse problem is to be solved, i.e.
if the data is given in terms of a (linear) functional F i applied to the target function yi = F iF ,
i = 1, . . . , l. For instance, F iF could be the gravitational potential which corresponds to the mass
density function F and is measured at a particular point xi outside the Earth. We enhance the
present concept for our purposes in order to include the resolution of inverse problems.
Note that an essentially different approach to the construction of wavelets (based on a cubed
sphere) for tomographic problems, which also includes aspects of sparsity, is presented in [31].
We propose here an alternative technique. The disadvantages and advantages of both have to be
investigated further in the future.
Let us denote the collection of all available trial functions as the dictionary D. Furthermore, we
collect all functionals in the operator FF := (F1F, . . . ,F lF ). Now in every step, the iterative
method chooses that trial function d out of D and the corresponding coefficient α ∈ R that fits
the data best, where we measure the fit by the norm of the residual, i.e. the difference between
approximation and data. Thus, we get as a first step F1 = α1d1 consisting of a trial function
d1 ∈ D and a coefficient α1 ∈ R which are chosen such that the data misfit

∑l
i=1(yi −F i(α1d1))

2

is minimal. Then d2 and α2 are selected such that the residual is further minimized, i.e.

l∑
i=1

[(yi −F i(α1d1))−F i(α2d2)]
2 = min

α∈R,d∈D

l∑
i=1

[(yi −F i(α1d1))−F i(αd)]2.

Generally, in step n+ 1 the algorithm chooses dn+1 and αn+1 such that the norm of the residual

||Rn+1||2Rl = ||y −FFn+1||2Rl =

l∑
i=1

(yi −F iFn+1)
2 = ||Rn − αn+1Fdn+1||2Rl

is minimized, where Fn+1 =
∑n+1

k=1 αkdk.
The ill-posedness of the inverse gravimetric problem requires the use of a regularization technique.
In this work, we use a Tikhonov regularization, i.e. we try to achieve a trade-off between fitting the
data and reducing the norm of the solution. The regularization parameter λ correlates both terms.
Note that other regularization terms such as an l1-norm have been used for Matching Pursuits as
well. However, e.g., in [8] was shown that such a choice is not appropriate for ill-posed problems,
whereas a Tikhonov regularization is more successful in this case.
For this reason, we introduce a regularized version called the Regularized Functional Matching
Pursuit (RFMP) where the penalty term is concerned with the (non-)smoothness of the solution,
i.e. its L2(B)-norm. In addition to the known advantages of this regularization, this choice is also
more practicable in the implementation and yields, in contrast to the L1-version, an analytical
expression for the coefficient α.
Using a Tikhonov regularization, in step n + 1, we need to find the trial function dn+1 and the
corresponding coefficient αn+1 such that they minimize

||Rn − αn+1Fdn+1||2Rl + λ||Fn + αn+1dn+1||2L2(B),

where λ > 0 is the regularization parameter.
The Regularized Functional Matching Pursuit (RFMP) starts with F0 = 0 (or some model), where
the algorithm iteratively appends trial functions to the initially empty set while trying to reduce
the residual combined with some penalty term at each stage.
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Algorithm 2.1 (RFMP)
Start with F0 := 0 (or some model) and R0 := y.
Given Fn.
Build Fn+1 := Fn + αn+1dn+1 such that

dn+1 maximizes

∣∣∣∣∣∣ 〈R
n,Fd〉Rl − λ〈Fn, d〉L2(B)√
||Fd||2Rl + λ||d||2L2(B)

∣∣∣∣∣∣ and

αn+1 :=
〈Rn,Fdn+1〉Rl − λ〈Fn, dn+1〉L2(B)

||Fdn+1||2Rl + λ||dn+1||2L2(B)

.

Set Rn+1 := Rn − αn+1Fdn+1.

This algorithm can be derived from the ansatz described above. For further details, see [14, 15].
Note that this algorithm does not necessarily provide us with the theoretically best match to the
target function F . Since we determine the expansion functions and the corresponding coefficients
stepwise, the expansion with n elements is possibly not optimal at step n + 1. To remedy this
inaccuracy, we can do a back-projection in analogy to [10]. That means we choose the function
dn+1 as in the original algorithm but recompute the optimal set of coefficients α1, . . . , αn+1 in each
step. This extension of the algorithm gives us a better approximation while the computation time
is increased. To get an even more accurate result, we may use pre-fitting, again in analogy to [10],
where we directly optimize for the function dn+1 and the optimal coefficients α1, . . . , αn+1 jointly.
Although this is the most time-consuming version of the three, it will give the best-fitting solution
as well. Nonetheless, in this work we will only use the original version of algorithm 2.1 (RFMP)
to reduce the computing effort.
Code optimization and parallelization now allow a fast and competitive inversion of the data (see
the numerical part for details). Moreover, if the data includes coherent structures with respect
to Fd, where d is a trial function from the dictionary, then we get a faster decay of the norm
of the residuals. Thus, it is an important step in the preprocessing to choose a well-matched
dictionary with respect to the structure of the solution. If we have some idea about the structure
of the target function, we may impose this information on the choice of the dictionary. Otherwise,
we recommend to use a dictionary with more general functions of different kinds to get a faster
convergence of the algorithm.
We refer to [14] and [15] for further details on the theoretical properties of the method, i.e. the
existence of the solution, the stability of the method and the convergence of the regularization.

3 Numerical Application: The Inverse Gravimetric Prob-
lem

As a numerical example to demonstrate the power of the novel method, we invert the gravitational
potential given by the Earth Gravitational Model 2008 (EGM2008, [27]) developed by the National
Geospatial Intelligence Agency (NGA) in the area of the Himalayas and India. Further numerical
tests including the advantages of the RFMP over spline and wavelet methods are shown in [15].
It is well-known that Newton’s Law of Gravitation

(TF )(x) := γ

∫
B

F (y)

|x− y|
dy, x ∈ R3 \ B,
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where γ is the gravitational constant, represents the relation between the gravitational potential
TF = V , where V is given, and the mass density distribution F . However, the determination of a
(harmonic) solution F from given TF is instable such that this inverse problem is ill-posed.
Note that we use here a harmonicity constraint for the solution F to guarantee its uniqueness,
though there is only a mathematical but not a physical justification for this constraint. However,
there is no known constraint with an appropriate physical interpretation that yields a unique
solution of the inverse gravimetric problem (see the survey article [23]).
Let us consider the functionals that map the density F ∈ L2(B) to the gravitational potential

Fk
G F := γ

∫
B

F (y)

|xk − y|
dy,

where xk ∈ R3 \B is a point outside the Earth where the potential is given (see [19, 20] for a series
representation of Fk

G F ).
There already exist approximate models FM of the mass density distribution of the Earth - for
example PREM (see [12]). Thus, it is useful to apply the functionals to the deviation δF := F−FM

which is the difference of the mass density and the density of a reference model. For PREM as a

reference model, we get Vδ(x) := V (x)− γ 4πa3

3|x| 5.5134 g
cm3 (see e.g. [18]).

Since it is well-known that the harmonicity constraint in particular and gravitational data in gen-
eral are only appropriate for the determination of mass anomalies in the uppermost layer of the
Earth (see [23]), we only reconstruct the density close to the surface. Here we recover the mass
density variation of the Himalayas and India out of EGM2008 from degree 3 up to degree 1 500.
The algorithm may choose between four different types of trial functions: It may reconstruct global
trends with the polynomials GI

0,n,j while the localized trial functions (wavelet-based scaling func-

tions) KI
h(·, x) for three different parameters h are a very good choice to recover detail structures

of the target function.
There are two known systems of global orthonormal basis functions on B, namely GI

m,n,j and

GII
m,n,j (see, e.g., [21] and the references therein). Since we only aim to recover the harmonic part

of the density distribution, we decided to use the inner harmonics

GI
0,n,j(x) :=

√
2n+ 3

a3

(
|x|
a

)n

Yn,j

(
x

|x|

)
, x ∈ B,

as global trial functions, where n ∈ N0, j = 1, . . . , 2n + 1 and Yn,j , n ∈ N0, j = 1, . . . , 2n + 1, are
the (fully normalized) real spherical harmonics.
Furthermore, we use the normalized and localized kernel functions KI

h ∈ L2(B × B) based on
[3, 5, 7, 13, 21] which are spline basis functions or scaling functions on the ball. For our numerical
applications, we use certain parameter-dependent kernels, i.e.

K̃I
h(x, y) :=

En∑
n=0

2n+1∑
j=1

hnGI
0,n,j(x)G

I
0,n,j(y), x, y ∈ B,

where every fixed h ∈]0, 1[ yields one particular kernel. Note that h is a parameter to influence the
localizing character of the kernel function. The hat-width decreases for h getting closer to 1 (see
figure 1). The peak of y 7→ K̃h(y, x) is centred at x.
In the following, we will always consider normalized kernel functions and denote them withKI

h(·, x),
i.e.

KI
h(·, x) :=

K̃I
h(·, x)

||K̃I
h(·, x)||L2(B)

.
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Figure 1: Kernel function KI
h(·, x) on the surface of the ball B with h = 0.5 (left-hand), 0.8 (right-hand)

Explicitly, the dictionary is now given as

D :=
{
KI

h(·, x)
∣∣ h ∈ {0.97, 0.98, 0.99}, x ∈ grid(B)

}
(1)

∪
{
GI

0,n,j

∣∣ n = 3, . . . , 50, j = 1, . . . , 2n+ 1
}
,

where grid(B) is a nearly quadratic grid, which is equiangular each in longitude and latitude. After
the restriction to a spherical rectangle covering the target area we are left with 39 800 grid points.
Furthermore, we will stop the summation in the kernel functions at the degree of the spherical
harmonics coefficients used to compute the data, i.e. we set En := 1 500. This dictionary now
contains approximately 120 000 elements of four different types.
We can use well-known formulae for the data corresponding to the trial functions:

Fk
GG

I
m,n,j = δm0 γ 4π

2n+1

√
a3

2n+3

(
a

|xk|

)n
1

|xk| Yn,j

(
xk

|xk|

)
and

Fk
GK

I
h(·, x) =

1

||K̃I
h(·, x)||L2(B)

Fk
GK̃

I
h(·, x)

Fk
GK̃

I
h(·, x) = γ

En∑
n=0

hn

(
|x|
|xk|

)n
1

|xk|
Pn

(
x

|x|
· xk

|xk|

)

||K̃I
h(·, x)||L2(B) =

En∑
n=0

h2n 2n+ 3

a3
2n+ 1

4π

(
|x|
a

)2n

.

Note that δm0 denotes the Kronecker delta, which equals 1 if m = 0 and vanishes otherwise.
If not stated differently, the data will be given at 25 440 points on an equiangular grid in analogy
to grid(B) which is located slightly above the Earth’s surface at 7 km height. The method will be
stopped after 20 000 iterations, i.e. 20 000 (not necessarily pairwise distinct) dictionary functions
will be chosen out of dictionary (1), which contains approximately 120 000 elements.
We use algorithm 2.1 (RFMP) with the regularization parameter λ = 500, where this choice of λ
is based on some numerical experiments.
These parameter choices yield the solution F20 000 displayed in the left-hand side of figure 2. Note
that the regularization parameter yields an acceptable balance between noise and smoothing, since
the solution is smooth enough without a too strong attenuation of the signal. We clearly see
the continental boundary between the Indian plate and the Eurasian plate and the dominating
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structures of the Himalayas as well as the beginning of the Java trench in Indonesia. In the right-
hand side of figure 2, we display the centre points x of the chosen kernel functions KI

h(·, x), where
we artificially included the coast lines of Asia in blue as an orientation. Obviously, the localized
dictionary functions are chosen mainly in areas where the detail structure of the solution is more
complicated such as the Himalayas. Thus, algorithm 2.1 (RFMP) clearly recovers a solution that is
adapted to the structure of the target function, i.e. the density of the basis functions is correlated
to the data density in a region.

  60 ° E 
  75° E   90° E  105

° E 
  0°   

 15° N 

 30° N 

 45° N 

Figure 2: We used algorithm 2.1 (RFMP) with λ = 500 and dictionary (1) to reconstruct the density
deviation (left-hand) out of the potential given at 25 440 data points, where we stopped after 20 000
iterations (i.e. F20 000 is shown). In addition, we display the centre points x of the (not necessarily
pairwise distinct) chosen expansion functions KI

h(·, x) (right-hand).

We report the following computational performance of our algorithm: The computation of the
scalar products and norms as well as all updates were parallelized with OpenMP. On a compute
server with 16 cores and 48 GB RAM, the computing effort of this (relatively large) example is
about 11 hours of time and about 15% of the RAM, where about 1 hour is used for preprocessing
and the rest is used for the search of the best basis and the evaluation of the solution on an arbi-
trary grid. We plan to use a cluster for the computations such that the search can be parallelized
as well with the help of MPI. Thus, there is still capacity to decrease the computing time much
further.
In figure 3, we display the data in form of the potential given by EGM2008 at 25 440 data points
(top left-hand), the approximation of the potential by the solution F20 000 (i.e. FF20 000) at the
same points (top right-hand) and the absolute values of the difference between both (i.e. the ab-
solute values of the residual |R20 000|, bottom). Clearly, the main structures of the potential are
approximated well enough while some of the detail structures remain as an error. However, the
values of the error are mostly far below 10% of the original data.
These results are competitive to other methods such as splines and wavelets. However, in com-
parison, the novel method allows a larger data density on irregular grids as well. Note that the
advantages of the novel method over previous approaches such as spline and wavelet methods were
studied in [15] in further detail.
In the top of figure 4, we display the choice of trial functions with respect to the parameter h,
that controls the localization of the trial function, for F20 000, where the choice of a GI

0,n,j is de-
noted with 1 on the vertical axis. Out of the 20 000 expansion functions of F20 000, 766 were inner
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Figure 3: We compare the data input EGM2008 (top left-hand) and the potential generated by the solution
F20 000 for λ = 500 (top right-hand) and display the absolute values of the difference of both (bottom) for
25 440 data points.
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harmonics GI
0,n,j , i.e. trial functions with a global character. Moreover, there were 1 323, 2 831

and 15 263 functions corresponding to localized trial functions with the parameters h = 0.97, 0.98
and 0.99, respectively. They were chosen throughout the whole process to approximate the detail
structures.
On the bottom of figure 4, we display only the first appearance of a dictionary element. Overall,
only 4 522 different dictionary elements are used in this expansion of 20 000 elements. Thus, a
back-projection or pre-fitting can be expected to increase the sparsity of the solution further.
Moreover, we observe that localized trial functions with lower localization (smaller h) are more
often chosen in the beginning than later on, where smaller details are primarily added with kernels
corresponding to h = 0.99 (where these trial functions are used throughout the process).
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Figure 4: We compare the choice of trial functions for F20 000 with respect to the localization parameter
h = 0.97, 0.98, 0.99, where the choice of a function GI

0,n,j is denoted with 1 on the vertical axis. In the two
diagrams, we display all expansion functions (top) and only the first appearance of a dictionary element
(bottom), respectively.

The stability of the solution

As a stability test, we use the approximation FF20 000 to the gravitational potential given by
the solution F20 000 for λ = 500 as a data input (see the top left-hand side of figure 2 for the
solution F20 000 and the top right-hand side of figure 3 for its approximation to the gravitational
potential FF20 000). Note that the data is now given in terms of inner harmonics as well as localized
kernel functions. Moreover, it is given exactly such that we may use the (faster) unregularized
algorithm with λ = 0. Apart from that, we use the same parameters as before for the dictionary
and the data grid.
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In the top left-hand side of figure 5 we display the solution of this stability test. Plotting the abso-
lute values of the difference to F20 000 gives us some deviations from the original as displayed in the
top right-hand side of figure 5. These deviations are mostly far below 10% of the original value and
can be explained by the iterative character of the method. As we noted before, back-projection or
pre-fitting would probably increase the stability and accuracy of the method. If we consider the
quality of the approximation with respect to the gravitational potential, i.e. the absolute value of
the difference of the potential generated by this solution to FF20 000 as displayed in the bottom
of figure 5, we observe that the error is even mostly far below 5% of the original values. The
lower error on the data side underlines the ill-posedness of the inverse gravimetric problem, which
certainly also contributes to the obtained error.
In total, however, the error in this stability test can be considered to be acceptably low.

Figure 5: We used algorithm 2.1 (RFMP) and dictionary (1) to reconstruct the density deviation (top
left-hand) out of the potential FF20 000 (given at 25 440 data points) for λ = 0 and stopped the method
after 20 000 iterations. We display the absolute values of the difference to F20 000 (top right-hand) and the
absolute values of the difference of the here generated potential to FF20 000 (bottom)

The localized character of the solution

Since we use localized trial functions in our dictionary, we can expect our solution to depend
at each point only on data from the neighbourhood. This is, indeed, the case, as we will demon-
strate here.
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Figure 6: We display the influence of the choice of the expansion functions in solution F20 000 (right-
hand) on the solution at point x = (0.153525, 0.870648, 0.467296)Ta (red dot) located in the Himalayas
(left-hand).

On the bottom of figure 6, we examine the influence of the chosen trial functions of solution F20 000

on exactly one point (marked with a red dot in the left-hand plot of figure 6)

x = (0.153525, 0.870648, 0.467296)Ta

situated in the Himalayas. Note that F20 000(x) is a sum of 20 000 summands connected to the
chosen trial functions d1, . . . , d20 000. For this reason, we display (the logarithm of) the contribu-
tion log |αkdk(x)| of each expansion element dk to F20 000(x). We have to distinguish whether each
dk is a localized trial function or a global trial function: log |αkK

I
hk
(x, xk)| is given as its value

at the point xk while log |αkG
I
0,nk,jk

| is included as an additive at all points in the plot. As a
consequence, the blue color denotes a very small impact while the red color denotes a large impact
on the value at the point x. Obviously, the value at x is mostly controlled by localized expansion
functions. Furthermore, we clearly observe that the influence of the localized expansion functions
increases when the distance between x and the centre xk decreases. Hence, local irregularities of
all kinds only have a local influence on the computed approximation.

Dealing with noise

Let us examine the behaviour of algorithm 2.1 (RFMP) when applied to noisy data yε, where
ε denotes the noise level. For example, a value ε = 0.05 corresponds to a data input yε that is
disturbed with 5% uniformly distributed random noise relative to the exact data y, i.e.

yεi = yi + ε randi yi, i = 1, . . . , l,

where randi is a random number in the interval [−1, 1]. In figure 7, we consider the reconstructed
density deviations out of l = 25 440 noisy data of the kind above, where we use dictionary (1) and
stop algorithm 2.1 (RFMP) with regularization parameter λ = 600 after 20 000 iterations.
Obviously, the main structures are recognized in spite of the noise. Furthermore, in comparison to
figure 2, where the same setup was considered for undisturbed data and a regularization parameter
λ = 500, we clearly observe that the introduction of noise does not have an overly negative influence
on the reconstruction quality of the algorithm. The absolute values of the difference between the
solutions is mostly below 10 % (see the bottom of figure 7 as well). However, we hardly see
structural differences between the original and the reconstruction out of noisy data. Moreover,
the algorithm still positions the chosen dictionary elements according to the detail structures of
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the solution as displayed in the top right-hand side of figure 7. Thus, the chosen regularization,
indeed, works in the sense that noise only has a small influence on the inversion and the sparsity
(i.e. the detail structure based choise of the localized trial functions) is not substantially influenced
by noise.

  60 ° E 
  75° E   90° E  105
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Figure 7: We used algorithm 2.1 (RFMP) to reconstruct the density deviation (top left-hand) out of the
potential given at 25 440 data points with 5% noise (ε = 0.05) for λ = 600, where we stopped the iteration
after 20 000 iterations. We display the centre points (top right-hand) of the (not necessarily pairwise
distinct) chosen localized expansion functions and the absolute difference to F20 000 in figure 2 (bottom).

4 Conclusions and Outlook

We presented a novel method – called the Regularized Functional Matching Pursuit (RFMP) –
that constructs the best basis out of an arbitrary collection of different systems of trial functions
to approximate the solution of an inverse problem.
We emphasized the potential of the RFMP on inverting the gravitational potential EGM2008 for
the density distribution in the area of the Himalayas and India, where we allowed the RFMP to
choose a set of trial functions out of a collection of four different types - some of them with a global
character, others localized ones. The less localized trial functions are chosen to reconstruct the
main structures of the solution, while the more localized ones are used for the details.
Moreover, when we inverted the EGM2008 potential, which is based on spherical harmonics, the
algorithm chose a large number of spherical harmonics (more precisely, inner harmonics) as well.
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However, inverting the potential FF20 000, which is generated out of a combination of spherical
harmonics and localized functions, we gained a better approximation quality. For this reason, we
expect our method to perform even better if data sets are used which have not been generated out
of a model with global trial functions. For example, grid-based data could yield further improved
results.
Note also that it is a particular feature of the presented method that it allows us to combine differ-
ent data types, where much more data than previously may be used. Our main goal is to recover
a model of the density distribution of the interior of the Earth as is done with a spline method
in [6]. Gravitational data only gives information about the harmonic part of the density (and,
consequently, about the uppermost layer of the Earth). The anharmonic part (and, in particular,
deeper structures of the Earth) can be partially recovered from seismic data, e.g., normal mode
splitting or travel times. However, the dimension of present data sets, e.g., in gravimetry, is beyond
the numerical limitation of the spline method. We hope that our novel technique will overcome
these problems, while the features of localized approaches are saved. Detailed studies of the com-
bined inversion with this new method are currently being investigated and will be published in a
forthcoming work. However, first results can be found in [14].
In addition, further improvements of the algorithm will be investigated in the near future. This
includes a more accurate determination of the optimum, i.e. the inclusion of techniques such as
a back-projection and a pre-fitting, and a more sophisticated choice of the regularization parameter.
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