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Abstract
Sparse regularization has recently experienced high popularity in the inverse
problems community. In this paper, we show that a sparse regularization
technique can also be developed for linear geophysical tomography problems.
For this purpose, we adapt a known matching pursuit algorithm. The main
theoretical features (existence, stability, and convergence) of the new method
are given. We also show further properties of some trial functions which we
use. Moreover, the algorithm is applied to a static and a monthly varying
gravitational field of South America which yields spatial and temporal
variations in the mass distribution. The new approach represents essential
progress in comparison to a corresponding wavelet method, which is not flexible
enough for the use of heterogeneous data, and a respective spline method,
where the resolution cannot exceed approximately 104 basis functions due to
experienced numerical problems with the ill-conditioned and dense matrix. The
novel sparse regularization technique does not require homogeneous data and
is not limited in the number of basis functions due to its iterative algorithm.

(Some figures may appear in colour only in the online journal)

1. Introduction

Every new satellite mission concerned with the gravitational potential of the Earth allows us to
construct more precise models of, e.g., the mass density distribution of the Earth. Missions like
the Gravity Recovery and Climate Experiment (GRACE) (see [42]) allow us to reconstruct
temporal variations of the mass density distribution as well. Thus, it is possible to get a
more global overview over climate changes than with conventional Earth-bound methods.
Nonetheless, satellite missions only measure the gravitational potential and not the density
distribution itself. Newton’s law states the link between the gravitational potential V and the
density distribution ρ as

V (x) = γ

∫
B

ρ(y)

|x − y| dy, x ∈ R
3 \ B, (1.1)

0266-5611/12/065012+34$33.00 © 2012 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/0266-5611/28/6/065012
mailto:fischer@mathematik.uni-siegen.de
mailto:michel@mathematik.uni-siegen.de
http://stacks.iop.org/IP/28/065012


Inverse Problems 28 (2012) 065012 D Fischer and V Michel

where B is a ball representing the Earth and γ is the gravitational constant. This problem is
known as the inverse gravimetric problem and the corresponding data can be represented as
the values of a functional applied to the target function (see, e.g., [9]).

Note that the solution to this problem is not unique. In this work, we will use a harmonicity
constraint to obtain a unique solution, i.e. we require the Laplace equation �ρ = 0. Such an
a priori condition lacks a physical interpretation but can be motivated by some mathematical
arguments. At present, no uniqueness constraint with a satisfactory physical interpretation is
known. For further details, see the survey [53].

Needless to say, the inverse gravimetric problem has been solved with a wide variety of
methods. Among them are classical methods such as a truncated singular value decomposition
(see, e.g., [71, 73]), domain subdivisions in block-like structures (see, e.g., [45, 72]), and
an approximation by point-masses (see, e.g., [39, 64]). Within the last decade, advanced
approximation methods for this problem have been developed. These are spline methods (see,
e.g., [32, 54]) and wavelet methods (see, e.g., [48, 50, 51]). However, most of these methods
only allow us to use one kind of predefined trial function on a point grid that is determined
by the given data and, thus, mostly equidistributed. Furthermore, the number of points that
can be used as data is limited by most methods. In this paper, we want to remedy both these
restrictions. We present a new method that allows us to use all different kinds of trial functions
imaginable and many more data points than commonly used up to now. Furthermore, the
solution generated by our new algorithm will be additionally adapted to the structure of the
signal instead of the data structure only.

Note that our novel technique is an essentially different algorithmic approach in
comparison to free-positioned point mass modelling (see [6, 7]). The latter method positions
point-masses shortly below the surface of the Earth stepwise to best match the gravitational
potential given by the data, as well. However, it shows several disadvantages such as numerical
instabilities (see [16]).

Research in sparse regularization is concerned with solving under-determined or ill-
conditioned systems of linear equations with respect to the sparsity of the solution. Of course,
there exists a rather large number of different approaches. The main research areas seem to be
combinatorial algorithms (see, e.g., [37, 38]) and convex relaxation (see, e.g., [11, 15, 20, 44]),
to name a few. However, these methods either need a very large number of measurements or
they are very slow. Iterative greedy algorithms (see, e.g., [19, 25, 47, 57]) seem to be efficient
with respect to the computational effort as well as the number of measurements needed
(see [57]).

However, most of these methods require prior knowledge of the sparsity of the solution. In
our case, as well as in most applications, we do not possess this knowledge. Furthermore, the
trial functions on the ball, such as orthogonal polynomials or scaling functions, have different
properties than their Euclidean counterparts. As a consequence, the existing methods and
algorithms cannot be used directly to solve our problem. In this paper, we introduce a new
approach that allows us to exploit the advantages of iterative greedy algorithms on the ball
without prior knowledge of the sparsity.

For further details on the general Hilbert space setting as well as sparsity with respect to
inverse problems, we refer to, e.g., [5, 18, 21, 24, 70].

Another feature of a matching pursuit is the possibility to combine trial functions of
different characters. In our case of approximating a solution on the ball, we combine global
basis functions (orthogonal polynomials), which have known pros and cons, with localized trial
functions. The latter are based on spline and wavelet methods, which have been developed by
the Geomathematics Groups at the University of Kaiserslautern and the University of Siegen.
They allow us to minimize the effects of data gaps or differences in the data density. In this
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work, we exploit the localizing character of these functions to reconstruct the detail structure
of the density distribution of the Earth. We also fill a previous gap in the theory by proving for
some system that it forms a basis as well. For further theoretical details of these trial functions
and their applications mostly to geophysical problems, we refer to [4, 9, 31, 32, 34–36, 43,
48, 54, 58].

Certainly, further localized trial functions could be considered here. For example, Slepian
functions are a locally and globally orthogonal system of functions on the sphere that is
optimally suited for a local reconstruction in areas of interest to minimize the effects of data
gaps (see [1, 55, 66–68] for theoretical results and applications). However, this concept is, up
to now, limited to the sphere, i.e. the surface of a ball.

We also observe another feature of the new method. It allows us to initially use a much
denser grid for the centres of the localized kernel functions, where only significant ones are
chosen out of this grid by the algorithm. This corresponds to the sparsity of the solution.

The outline of this paper is as follows.
In section 2, we summarize a few important but well-known notations and fundamentals.

Furthermore, we explain the global and localized trial functions that we use in the numerical
tests later on. We also prove that the chosen localized functions represent a basis system.

In section 3, we give an overview over the inverse gravimetric problem and a representation
of the data as the values of functionals applied to the target function. Section 4 is concerned
with the development of the functional matching pursuit (FMP) as well as some theoretical
results regarding the convergence of the algorithm and its convergence rate. We, hereby,
develop an adaptive and iterative greedy algorithm to solve approximation problems where
the data is given directly by a linear and continuous operator. The novelties of this method, in
comparison to the matching pursuit in [47], are its applicability to inverse problems and the
practical studies for functions on the ball. We also study aspects of computational optimization
and parallelization of the numerical implementation.

Since the inverse gravimetric problem is an ill-posed problem, we need to enhance this
algorithm to become a regularization method. This process is explained in section 5, where the
regularized FMP (RFMP) is developed and theoretical results are given. Moreover, the main
requirements for a regularization method, i.e. the existence and stability of the solution and
the convergence, are addressed there as well.

In section 6, we demonstrate the power of the novel method on some numerical
applications. First of all, we reconstruct the mass density variations of South America. As
data input, we use the Earth Gravitational Model 2008 (EGM2008, [59]) developed by the
National Geospatial Intelligence Agency (NGA). Note that we are now able to use much more
data points than in comparable works. After an extensive case study, we compare our new
method to some previously developed methods in inverse gravimetry viz splines and wavelets.

Secondly, we concern ourselves with the reconstruction of the mass transport in the
Amazon area in the year 2008. Here, we use the monthly solutions which were collected by
the GRACE satellite mission and preprocessed by the Jet Propulsion Laboratory (JPL, see
[42]).

Finally, in section 7, we summarize the results gathered in this work and give an outlook
for further research opportunities.

2. Preliminaries

In this paper, N represents the set of all positive integers, where N0 := N ∪ {0}. Moreover, R

is the set of all real numbers. Furthermore, the closed ball with radius a > 0 is denoted by
B := {x ∈ R

3| |x| � a}.
3
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There are two known complete orthonormal systems in the space L2(B) denoted by GI
m,n, j

and GII
m,n, j (see, e.g., [52] and the references therein). Here, GI

m,n, j is used, which is given by

GI
m,n, j(x) :=

√
4m + 2n + 3

a3
P(0,n+1/2)

m

(
2
|x|2
a2

− 1

) ( |x|
a

)n

Yn, j

(
x

|x|
)

, (2.1)

where m, n ∈ N0, j = 1, . . . , 2n + 1 and x ∈ B. Here, P(α,β)
m , m ∈ N0, α, β > −1, are

Jacobi polynomials and Yn, j, n ∈ N0, j = 1, . . . , 2n + 1, are elements of the orthonormal
L2(�)-basis system of real spherical harmonics [56] where � is the unit sphere in R

3. The
system {GI

m,n, j}m,n∈N0, j=1,...,2n+1 can be divided into a harmonic and an anharmonic part, where
the basis functions with m = 0 correspond to the harmonic part, i.e. the functions GI

m,n, j with
m > 0 represent a basis for the orthogonal complement of the subspace of all harmonic
functions in L2(B) viz the space of anharmonic functions. Note that every function is a
polynomial of cartesian coordinates x1, x2, and x3, which is well defined in x = 0.

Furthermore, we use localized kernel functions in L2(B × B) based on [2, 8, 10, 52] to
reconstruct detail structures of the target function. They are reproducing kernels of Sobolev
spaces and can be used to generate an L2(B)-basis as we prove in this section.

Definition 2.1. Let the given (non-trivial) sequence (K∧(m, n))m,n∈N0 be I-summable:
∞∑

m=0

∞∑
n=0

[K∧(m, n)]2n(2m + n)

(
n + m + 1

2

)2m

(m!)2
< ∞. (2.2)

The function F is an element of the Hilbert (Sobolev) space H = H((K∧(m, n)),B) if F is a
function in L2(B) with

(i)
〈
F, GI

m,n, j

〉
L2(B)

= 0 for all m, n ∈ N0 and j = 1, . . . , 2n + 1 with K∧(m, n) = 0 and

(ii)
∑∞

m,n=0
K∧ (m,n)�=0

[K∧(m, n)]−2 ∑2n+1
j=1

〈
F, GI

m,n, j

〉2
L2(B)

< ∞.

The scalar product is for F1, F2 ∈ H defined as

〈F1, F2〉H :=
∞∑

m,n=0
K∧(m,n)�=0

[K∧(m, n)]−2
2n+1∑
j=1

〈
F1, GI

m,n, j

〉
L2(B)

〈
F2, GI

m,n, j

〉
L2(B)

. (2.3)

In accordance to the spherical case, every element of the Hilbert space H can be related to a
continuous bounded function.

Theorem 2.2 (Sobolev lemma). Every space H in definition 2.1 is a subspace of C(B).

As a result of the proof to this theorem, we obtain for F ∈ H the estimate

‖F‖2
C(B) �

( ∞∑
m=0

∞∑
n=0

[K∧(m, n)]2 (2n + 1)(4m + 2n + 3)

4πa3

(
m + n + 1

2

m

)2)
‖F‖2

H, (2.4)

where the norm on C(B) is the supremum norm. Moreover, it is known that the summability
condition implies the convergence of the series.

Let us now introduce reproducing kernels. For further details on reproducing kernels
in general we refer to [22]. For details on the setting of a three-dimensional ball see,
e.g., [2, 3, 8].

Definition 2.3 (Reproducing kernel). Let H be a Hilbert space of real functions on the subset
X ⊂ R

n. KH : X × X → R is a reproducing kernel of H if

(a) KH (x, ·) ∈ H for all x ∈ X and
(b) 〈KH (x, ·), F〉H = F(x) for all x ∈ X and all F ∈ H.
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Theorem 2.4 (Reproducing kernel of H). Every H((K∧(m, n)),B) in definition 2.1 is a
reproducing kernel Hilbert space. The corresponding reproducing kernel is the product series
associated with the sequence ((K∧(m, n))2)m,n∈N0 :

KI
H(x, y) =

∞∑
m=0

∞∑
n=0

2n+1∑
j=1

[K∧(m, n)]2GI
m,n, j(x)GI

m,n, j(y) (2.5)

for x, y ∈ B.

These reproducing kernels can be used to construct basis systems for functions on B,
as we show in the following new results, where we refer to a reproducing kernel Hilbert
space H = H((K∧(m, n)),B) as it was defined in definition 2.1. Note that the kernels have
previously been used as scaling functions or as generators of spline bases. The ideas of the
following proofs are based on those of the spherical setting.

Theorem 2.5 (Closed system in H). Let X ⊂ B be countable and dense. Then the system
{KI

H(x, ·) | x ∈ X} is closed (in the sense of the approximation theory) in (H, ‖ · ‖H), i.e.

span{KI
H(x, ·) | x ∈ X}‖·‖H = H. (2.6)

Proof. We know that span
{
KI
H(x, ·) | x ∈ X

}‖·‖H
is a closed subset of H. Thus, we can

decompose the space H as follows:

H = span
{
KI
H(x, ·) | x ∈ X

}‖·‖H ⊕ (
span

{
KI
H(x, ·) | x ∈ X

}‖·‖H)⊥H
, (2.7)

where ⊥H refers to the orthogonal complement. Let us start with an arbitrary function

F ∈ (
span

{
KI
H(x, ·) | x ∈ X

}‖·‖H)⊥H ⊂ H ⊂ C(B). (2.8)

Obviously, we obtain for all functions G ∈ span
{
KI
H(x, ·) | x ∈ X

}‖·‖H
that the scalar product

vanishes, i.e. 〈F, G〉H = 0. In particular, it follows that
〈
F, KI

H(x, ·)〉H = 0 for all x ∈ X . Since
KI
H is a reproducing kernel, we conclude that F(x) = 0 for all x ∈ X .

Since F is a continuous function and X is a dense subset of B, it follows that F is identical

to 0. Hence, H = span
{
KI
H(x, ·) | x ∈ X

}‖·‖H
. �

Note that the concept of ‘closed’ in the sense of approximation theory differs from the concept
of ‘closed’ in the topological sense.

Theorem 2.6 (Closed system in C(B)). Let X ⊂ B be countable and dense and let
K∧(m, n) �= 0 for all m, n ∈ N0. Then the system

{
KI
H(x, ·) | x ∈ X

}
is closed (in the

sense of the approximation theory) in (C(B), ‖ · ‖C(B)).

Proof. First of all, we know that
{
GI

m,n, j

}
m,n∈N0, j=1,...,2n+1 ⊂ H ⊂ C(B), since K∧(m, n) �= 0

for all m, n ∈ N0.
Secondly, {GI

m,n, j}m,n∈N0, j=1,...,2n+1 is a basis of the space of all polynomials on B
(see [48] for the anharmonic part, where the results for the harmonic part can be shown
analogously). With the help of the Weierstraß approximation theorem we conclude that

span
{
GI

m,n, j

}
m,n∈N0, j=1,...,2n+1

‖·‖C(B) = C(B) and, thus, H‖·‖C(B) = C(B). Now, we conclude
for F ∈ C(B) and ε > 0 that there exists a function G ∈ H such that ‖F − G‖C(B) < ε

2 .

5
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From theorem 2.5, we know that there exists a function H ∈ span{KI
H(x, ·) | x ∈ X} such

that

‖G − H‖H (2.9a)

<
ε

2

( ∞∑
m=0

∞∑
n=0

[
K∧(m, n)

]2 (2n + 1)(4m + 2n + 3)

4πa3

(
m + n + 1

2

m

)2)−1/2

. (2.9b)

With the Sobolev lemma and (2.4), we conclude that

‖G − H‖C(B) (2.10a)

�
( ∞∑

m=0

∞∑
n=0

[
K∧(m, n)

]2 (2n + 1)(4m + 2n + 3)

4πa3

(
m + n + 1

2

m

)2)1/2

‖G − H‖H (2.10b)

<
ε

2
. (2.10c)

Let us summarize these results:

‖F − H‖C(B) � ‖F − G‖C(B) + ‖G − H‖C(B) < ε. (2.11)

Thus, the system {KI
H(x, ·) | x ∈ X} is closed in (C(B), ‖ · ‖C(B)). �

Theorem 2.7 (Closed system in L2(B)). Let X ⊂ B be countable and dense and let
K∧(m, n) �= 0 for all m, n ∈ N0. Then the system

{
KI
H(x, ·) | x ∈ X

}
is closed (in the

sense of the approximation theory) in (L2(B), ‖ · ‖L2(B)).

Proof. First, let us prove that C(B)
‖·‖L2 (B) = L2(B): Let B′ be an open ball that includes

B. All continuous functions F defined on B can be extended continuously into B′, e.g. by
F(rξ ) := F(aξ ) for all r > a and unit vectors ξ ∈ R

3. Theorem 3.2.2 of [75] yields that
{ϕ ∈ C∞(B′) | supp ϕ ⊂ B′ is compact} ⊂ C(B′) is dense in L2(B′). Thus, C(B′)|B is dense
in L2(B), too, where C(B′)|B := {F|B | F ∈ C(B′)}. Since any continuous function on B′ is
continuous on the subset B, we conclude that C(B) is dense in L2(B).

For all F ∈ C(B), we obtain that ‖F‖L2(B) �
√

4πa3

3 ‖F‖C(B). Let F ∈ L2(B) and ε > 0.

Since C(B) is dense in L2(B), there exists a function G ∈ C(B) such that ‖F − G‖L2(B) < ε
2 .

With theorem 2.6 we obtain that there exists a function H ∈ span{KI
H(x, ·) | x ∈ X} such that

‖G − H‖C(B) < ε
2

√
3

4πa3 . As a summary of the above estimates, we conclude that

‖F − H‖L2(B) � ‖F − G‖L2(B) + ‖G − H‖L2(B) (2.12a)

� ‖F − G‖L2(B) +
√

4πa3

3
‖G − H‖C(B) (2.12b)

< ε (2.12c)

and, thus, we have a basis system of L2(B) constructed out of a reproducing kernel
function. �

As a particular case for our numerical applications, we use certain parameter-dependent
kernels, i.e. we set

K̃I
h(x, y) :=

∞∑
m=0

∞∑
n=0

2n+1∑
j=1

(
Ah

m,n

)2
GI

m,n, j(x)GI
m,n, j(y), (2.13)

6



Inverse Problems 28 (2012) 065012 D Fischer and V Michel

Figure 1. Kernel function KI
h(·, x) on the surface of the ball B with h = 0.5 (left), 0.8 (middle)

and 0.9 (right).

Figure 2. Equatorial cut throughB (left) and kernel function KI
h(·, x) on this cut at x = (0, 0.5, 0)Ta

with h = 0.5 (middle left), 0.8 (middle right) and 0.9 (right).

where x, y ∈ B and every fixed h ∈]0, 1[ yields one reproducing kernel for one Sobolev space
H. Note that we change the notation of the kernel here.

In this paper, we only need the harmonic localized kernel functions where m = 0. Note
that, for numerical reasons, we have to truncate the series at some En ∈ N. The parameter-
dependent symbol Ah

m,n which we have used here is given by

Ah
m,n := δm0

{
hn/2, n � En

0, otherwise
(2.14)

for m, n ∈ N0 and for fixed h ∈]0, 1[, where δm0 is the Kronecker delta. Thus, h is a parameter
to influence the localizing character of the kernel function. The hat-width decreases for h
getting closer to 1 (see figures 1 and 2). The peak of y �→ K̃h(x, y) is centred at x.

Now the localized kernel function can be represented as

K̃I
h(x, y) =

En∑
n=0

2n+1∑
j=1

hnGI
0,n, j(x)GI

0,n, j(y). (2.15)

Let us compute the norm of K̃I
h(·, x). The Parseval identity yields

∥∥K̃I
h(·, x)

∥∥2
L2(B)

=
∫
B

[
K̃I

h(y, x)
]2

dy =
En∑

n=0

2n+1∑
j=1

h2n
[
GI

0,n, j(x)
]2

(2.16a)

=
En∑

n=0

2n+1∑
j=1

h2n 2n + 3

a3

[
Yn, j

(
x

|x|
)]2 ( |x|

a

)2n

, (2.16b)

7
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since P(0,n+1/2)

0 ≡ 1. If we now use the addition theorem for spherical harmonics, we obtain
the identity

∥∥K̃I
h(·, x)

∥∥2
L2(B)

=
En∑

n=0

h2n 2n + 3

a3

2n + 1

4π

( |x|
a

)2n

. (2.17)

Note that the norm depends on h and the radial distance |x| only.
In the following, we always consider normalized kernel functions and denote them with

KI
h(·, x) := K̃I

h(·, x)∥∥K̃I
h(·, x)

∥∥
L2(B)

, x ∈ B. (2.18)

3. The inverse gravimetric problem

It is well known that Newton’s law of gravitation

V (x) = γ

∫
B

ρ(y)

|x − y| dy, x ∈ R
3 \ B, (3.1)

where γ is the gravitational constant, represents the relation between the gravitational potential
V and the mass density distribution ρ. Note that we can only reconstruct the harmonic part of
ρ from the gravitational potential, since the operator T : L2(B) → T (L2(B)), where

(T F )(x) :=
∫
B

F(y)

|x − y| dy, x ∈ R
3 \ B, (3.2)

has the anharmonic subspace of L2(B) as its null-space (see [27, 46, 60, 61, 76]). Furthermore,
the determination of a (harmonic) solution F from given T F is instable, such that this inverse
problem is ill-posed.

Let us consider the functionals F k
G, where the subscript G stands for gravitation, that map

the density to the gravitational potential

F k
Gρ :=

∫
B

ρ(y)

|xk − y| dy (3.3)

where ρ ∈ L2(B) is mapped to R and xk ∈ R
3 \ B. In [49], the series representation

F k
G ρ =

∞∑
n=0

2n+1∑
j=1

4π

2n + 1

√
a3

2n + 3

〈
ρ, GI

0,n, j

〉
L2(B)

(
a

|xk|
)n 1

|xk| Yn, j

(
xk

|xk|
)

(3.4)

is derived.
Since there already exist approximate models of the mass density distribution of the

Earth—for example PREM (see [28])—it is useful to apply the functionals to the deviation
δρ which is the difference of the mass density and the density of a reference model, i.e.
δρ = ρ − ρM. This means that we need to calculate the gravitational potential Vδ associated
to this deviation. For instance, in a radially symmetric model, we have

Vδ (x) = γ

∫
B

δρ(y)

|x − y| dy = γ

∫
B

ρ(y) − ρM(|y|)
|x − y| dy (3.5a)

= V (x) − γ
4π

|x|
∫ a

0
r2ρM(r) dr (3.5b)

for all x ∈ R
3 \B. For PREM as a reference model, we obtain Vδ (x) = V (x)−γ 4πa3

3|x| 5.5134 g
cm3

(see [48]).

8
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At last, let us apply the functional F k
G to the two kinds of dictionary functions that we want

to use in our numerical applications, i.e. the L2(B)-basis functions {GI
m,n, j}m,n∈N0, j=1,...,2n+1

and the normalized and localized kernel functions {KI
h(·, x) | h ∈]0, 1[, x ∈ B}. For the

L2(B)-basis, we obtain

F k
GGI

m,n, j = δm0
4π

2n + 1

√
a3

2n + 3

(
a

|xk|
)n 1

|xk| Yn, j

(
xk

|xk|
)

. (3.6)

Note that we use the harmonic basis functions G0,n, j only, since the other functions are elements
of the null-space of F k

G.
Since F k

G is a linear functional, we obtain

F k
GKI

h(·, x) = F k
GK̃I

h(·, x)∥∥K̃I
h(·, x)

∥∥
L2(B)

. (3.7)

With the same argument as before, we only use the kernel functions corresponding to the
harmonic basis functions GI

0,n, j, n ∈ N0, j = 1, . . . , 2n + 1. Subsequently, we obtain for
x ∈ B with the help of the addition theorem for spherical harmonics

F k
GK̃I

h(·, x) =
En∑

n=0

2n+1∑
j=1

hn F k
G

(
GI

0,n, j

)
GI

0,n, j(x) (3.8a)

=
En∑

n=0

2n+1∑
j=1

hn 4π

2n + 1

√
a3

2n + 3

(
a

|xk|
)n

√
2n + 3

a3

( |x|
a

)n

× 1

|xk| Yn, j

(
xk

|xk|
)

Yn, j

(
x

|x|
)

(3.8b)

=
En∑

n=0

hn

( |x|
|xk|

)n 1

|xk| Pn

(
xk

|xk| · x

|x|
)

, (3.8c)

where Pn is the Legendre polynomial of degree n.

4. Functional matching pursuit

The idea to develop a solution adaptively and iteratively is not a new one. A corresponding
algorithm was introduced as a matching pursuit in [47]. An enhanced version was constructed
in [74], where kernel functions were introduced into the setting. The hitherto existing matching
pursuits intrinsically require that the unknown function F is given in terms of grid-based data
F(xi), i = 1, . . . , l. For instance, in [47], the projection of F on every single trial function is
calculated out of the data. However, this is not applicable if an inverse problem is to be solved.

In section 4.1, we enhance the present concept for our purposes in order to include the
resolution of inverse problems. Furthermore, we give results in regard to the convergence of
the algorithm and its convergence rate in section 4.2.

4.1. The algorithm

The type of problem that we want to solve is as follows:
Let l (noisy) observations y1, . . . , yl ∈ R of linear and continuous functionals F1, . . . ,F l

applied to the target function F ∈ L2(B) be given:

yi = F iF, i = 1, . . . , l. (4.1)

We want to find an approximation to F .

9
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Furthermore, let a dictionary D ⊂ {d ∈ L2(B) | ‖d‖L2(B) = 1} be chosen beforehand.
Note that we do not put any further restrictions on the elements of this dictionary. Even
the restriction to normalized functions is not necessary and merely simplifies a step in the
(regularized) algorithm.

The basic strategy of our algorithm (as of every matching pursuit) is to look for
an approximation to the target function F as a linear combination of selected dictionary
elements Fn = ∑n

k=1 αkdk, where n is the number of dictionary functions in the expansion,
d1, . . . , dn ∈ D are the chosen dictionary functions and α1, . . . , αn ∈ R are the corresponding
coefficients.

We use the notation FF := (F1F, . . . ,F lF ) ∈ R
l , F ∈ L2(B). Note that F k : L2(B) →

R, k = 1, . . . , l, are linear and continuous functionals while F : L2(B) → R
l is a linear

operator with functionals as components. We call the difference between the actual data
y ∈ R

l and the data corresponding to the approximation the residual Rn := y − FFn ∈ R
l .

Here we are looking for a function as a solution to our problem instead of a vector as
usual in sparse regularization. Furthermore, the data (here in R

l) and the target function (here
in L2(B)) may exist in different spaces. Nonetheless, we use the idea of the matching pursuit,
i.e. we choose expansion functions d1, . . . , dn ∈ D and coefficients α1, . . . , αn ∈ R stepwise
such that they minimize the norm of the residual

‖Rn‖2
Rl = ‖y − FFn‖2

Rl =
l∑

i=1

(yi − F iFn)
2, Fn =

n∑
k=1

αkdk. (4.2)

We present an iterative method starting with F0 = 0, where the algorithm independently
appends dictionary elements to the initially empty set while trying to reduce the residual
at each stage. Note that no initial information about the solution will be introduced into the
algorithm apart from the choice of the dictionary (which involves, for instance, the harmonicity
constraint).

Let us develop the method for the step from n to n + 1 chosen expansion functions.
We assume that Fn is given. Since Fn+1 = Fn + αn+1dn+1 and the operator F is linear, we
need to look for a combination α ∈ R and d ∈ D that minimizes ‖y − F (Fn + αd)‖2

Rl =
‖y − FFn − αFd‖2

Rl = ‖Rn − αFd‖2
Rl , i.e.

(dn+1, αn+1) = argmind∈D,α∈R
‖Rn − αFd‖2

Rl . (4.3)

For each choice of d ∈ D, the corresponding minimizing α has to satisfy

0 = ∂‖Rn − αFd‖2
Rl

∂α
= −2〈Rn,Fd〉Rl + 2α‖Fd‖2

Rl (4.4)

and, thus,

α = 〈Rn,Fd〉Rl

‖Fd‖2
Rl

. (4.5)

Let us insert this into ‖Rn − αFd‖2
Rl :

‖Rn − αFd‖2
Rl = ‖Rn‖2

Rl − 2α〈Rn,Fd〉Rl + α2‖Fd‖2
Rl (4.6a)

= ‖Rn‖2
Rl − 2

〈Rn,Fd〉Rl

‖Fd‖2
Rl

〈Rn,Fd〉Rl +
(

〈Rn,Fd〉Rl

‖Fd‖2
Rl

)2

‖Fd‖2
Rl (4.6b)

= ‖Rn‖2
Rl −

( 〈Rn,Fd〉Rl

‖Fd‖Rl

)2

. (4.6c)

10
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As a consequence, a dictionary element d minimizes ‖Rn − αFd‖2
Rl if and only if it

maximizes
∣∣∣ 〈Rn,Fd〉

Rl

‖Fd‖
Rl

∣∣∣. Furthermore, we only need to update the residual at every step, since
we obtain that

Rn+1 = y − FFn+1 = y − FFn − αn+1Fdn+1 = Rn − αn+1Fdn+1 (4.7)

due to the linearity of the operator F .
Let us state the whole algorithm.

Algorithm 4.1 (Basic FMP).
Start with F0 = 0 and R0 = y.
Given Fn.
Build Fn+1 = Fn + αn+1dn+1 such that

dn+1 maximizes

∣∣∣∣ 〈Rn,Fd〉Rl

‖Fd‖Rl

∣∣∣∣ and αn+1 = 〈Rn,Fdn+1〉Rl

‖Fdn+1‖2
Rl

.

Set Rn+1 = Rn − αn+1Fdn+1.
Note that the same dictionary element may be chosen at different steps of the algorithm.

Moreover, this algorithm does not provide us with the best match to the target function F .
Since we determine the expansion functions and the corresponding coefficients stepwise,
the expansion with n elements is possibly not optimal at step n + 1. To remedy this inaccuracy
we can do a back-projection in analogy to [23]. That means we choose the function dn+1 as in
the original algorithm but recompute the optimal set of coefficients in each step:(

αn+1
1 , . . . , αn+1

n+1

) = argmin(α1,...,αn+1)∈Rn+1‖y − FFn+1‖2
Rl . (4.8)

This extension of the algorithm gives us a better approximation while the computation time is
increased. To obtain an even more accurate result we may use pre-fitting, again in analogy to
[23], where we directly optimize(

dn+1, α
n+1
1 , . . . , αn+1

n+1

) = argmin(d,α1,...,αn+1)∈D×Rn+1‖y − FFn+1‖2
Rl . (4.9)

It can easily be seen that this is the most time-consuming version of the three but it gives
the best-fitting solution as well. Nonetheless, in this work we only use the original version of
algorithm 4.1 (FMP) to reduce the computational effort.

Let us now consider algorithm 4.1 (FMP) from a computational point of view. We may
compute Fd and ‖Fd‖Rl beforehand for all d ∈ D and store them. This is an essential part of
the algorithm that can be parallelized to reduce the computation time. All in all, in step n + 1,
we just need to search for the optimal dictionary element dn+1 and update the residual Rn+1.

4.2. Theoretical results

Although most proofs may be adapted from [47], we lose some properties by considering
inverse problems instead of the setting pursued therein. We, therefore, show here how the
convergence of the FMP can be proved.

To treat theoretical questions, let us first rewrite the expression for the residual Rn. For
n = 0, we obtain R0 = y = FF . For n > 0, we obtain due to (4.7) that

Rn = Rn+1 + αn+1Fdn+1 = Rn+1 + 〈Rn,Fdn+1〉Rl

‖Fdn+1‖2
Rl

Fdn+1. (4.10)

Furthermore, in step n + 1, we are looking for a dictionary element dn+1 such that
|〈Rn,Fdn+1〉Rl |

‖Fdn+1‖Rl

� sup
d∈D

|〈Rn,Fd〉Rl |
‖Fd‖Rl

. (4.11)

Let us derive some important properties of the residual Rn to prove the convergence of the
algorithm later on.
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Lemma 4.2 (Convergence of (‖Rn‖Rl )n). Let F : L2(B) → R
l be a linear operator. If the

dictionary functions and the corresponding coefficients are chosen according to algorithm 4.1
(FMP) then the R

l -norm of the residual (‖Rn‖Rl )n, where the residual Rn is given in (4.10),
converges for n tending to infinity. Furthermore, the following equalities hold:

‖Rn‖2
Rl = ‖Rn+1‖2

Rl + 〈Rn,Fdn+1〉2
Rl

‖Fdn+1‖2
Rl

(4.12)

0 = 〈Rn+1,Fdn+1〉Rl . (4.13)

Proof. The proof is analogous to a corresponding proof in [47]. �

Lemma 4.3. Let F : L2(B) → R
l be a linear operator and let all dictionary functions and

the corresponding coefficients be chosen according to algorithm 4.1 (FMP). Then

lim
n→∞

〈Rn,Fdn+1〉2
Rl

‖Fdn+1‖2
Rl

= 0. (4.14)

Proof. Let us display the norm of R0 by means of a telescoping sum. Due to lemma 4.2, we
obtain

‖R0‖2
Rl =

m−1∑
n=0

(‖Rn‖2
Rl − ‖Rn+1‖2

Rl

) + ‖Rm‖2
Rl (4.15a)

=
m−1∑
n=0

〈Rn,Fdn+1〉2
Rl

‖Fdn+1‖2
Rl

+ ‖Rm‖2
Rl . (4.15b)

For m tending to infinity, we obtain with the convergence of ‖Rm‖Rl (see lemma 4.2) that

lim
n→∞

〈Rn,Fdn+1〉2
Rl

‖Fdn+1‖2
Rl

= 0. (4.16)

�
With lemmas 4.2 and 4.3, we are now able to prove that algorithm 4.1 (FMP) provides us

with the right solution, i.e that the residual in itself tends to 0.

Theorem 4.4 (Convergence of algorithm 4.1 (FMP)). LetF : L2(B) → R
l be a linear operator

and let the dictionaryD be large enough such that span {Fd | d ∈ D} = R
l . Furthermore, let all

dictionary functions and the corresponding coefficients be chosen according to algorithm 4.1
(FMP). Then the residual Rn converges to 0 for n tending to infinity.

Proof. We already know from lemma 4.2 that the sequence of the norm of the residuals
(‖Rn‖Rl )n converges. Thus, the sequence of residuals (Rn)n is bounded. Hence, there exists a
convergent subsequence (Rnj ) j in R

l with limit R∞ for j tending to infinity.
Due to lemma 4.3, we already know that

lim
n→∞

〈Rn,Fdn+1〉2
Rl

‖Fdn+1‖2
Rl

= 0 (4.17)

and, consequently,

lim
j→∞

〈Rnj ,Fdnj+1〉Rl

‖Fdnj+1‖Rl

= 0. (4.18)

12
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In combination with (4.11), we conclude for all dictionary elements d ∈ D that

lim
j→∞

〈Rnj ,Fd〉Rl

‖Fd‖Rl

= 0. (4.19)

Putting the limit into the scalar product we obtain for all d ∈ D that

0 = 〈lim j→∞ Rnj ,Fd〉Rl

‖Fd‖Rl

= 〈R∞,Fd〉Rl

‖Fd‖Rl

(4.20)

and, since we chose the dictionary D large enough such that span {Fd | d ∈ D} = R
l , we

conclude that R∞ = 0. Now we know that the subsequence of the residual (Rnj ) j tends to 0
for j tending to infinity. Due to the monotonicity of (‖Rn‖Rl )n, see (4.12), we obtain

lim
n→∞ ‖Rn‖Rl = 0. (4.21)

�

To prove that the sequence (Fn)n converges, we need a particular condition on the
dictionary.

Theorem 4.5. Let F : L2(B) → R
l be a linear and continuous operator and let y ∈ R

l be the
given data. Moreover, let the dictionary satisfy the following properties:

(1) span {Fd | d ∈ D} = R
l

(2) ‘semi-frame condition’:
There exists a constant c > 0 such that for all expansions H = ∑∞

k=0 βkdk, βk ∈ R, dk ∈
D (not necessarily pairwise distinct), where no dictionary element is chosen infinitely
often, the following inequality holds:

c‖H‖2
L2(B)

�
∞∑

k=0

β2
k . (4.22)

(3) C := inf
d∈D

‖Fd‖Rl > 0

Let all dictionary elements and the corresponding coefficients be chosen according to
algorithm 4.1 (FMP), where no dictionary element is chosen infinitely often. Then the sequence
(Fn)n of the algorithm converges to a function F ∈ L2(B) with FF = y.

Proof. Due to algorithm 4.1 (FMP), (4.12) and theorem 4.4, we obtain
∞∑

k=N

α2
k � 1

C2

∞∑
k=N

(‖Rk−1‖2
Rl − ‖Rk‖2

Rl

)
(4.23a)

= 1

C2

(
‖RN−1‖2

Rl − lim
k→∞

‖Rk‖2
Rl

)
(4.23b)

= 1

C2
‖RN−1‖2

Rl
N→∞−→ 0. (4.23c)

Hence, the conditions on the dictionary imply that

lim
N→∞

‖F − FN−1‖L2(B) = lim
N→∞

∥∥∥∥∥
∞∑

k=N

αkdk

∥∥∥∥∥
L2(B)

= 0. (4.24)

Since F is continuous, we finally obtain FF = lim
n→∞FFn = y from theorem 4.4. �
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Note that condition (1) means that all possible combinations of real data y1, . . . , yl

can be achieved by taking appropriate linear combinations of dictionary elements. In other
words, for given y ∈ R

l , an algorithm could (theoretically) find a finite linear combination
Fn = ∑n

k=1 αkdk, where n = l is possible, such that FFn = y.
Lastly, the norm of the residuals decays exponentially as shown in [47]. The decay of

the norm of the residuals depends on the correlation between the residual and the dictionary
elements. We denote the correlation ratio of a vector v ∈ R

l \ {0} with respect to the dictionary
D with

τ (v) = sup
d∈D
Fd �=0

|〈v,Fd〉Rl |
‖v‖Rl ‖Fd‖Rl

. (4.25)

Because of the Cauchy–Schwarz inequality, τ (v) cannot exceed 1. The maximal value 1 is
obtained, for instance, if there exists a sequence (dk)k ⊂ D such that Fdk converges to a
vector in R

l which is collinear with respect to v. Thus, τ (v) describes how well the data v can
be matched by the dictionary D. Remember the criterion for selecting the optimal dictionary
element in algorithm 4.1 (FMP). Clearly, the dictionary element that yields the supremum in
the definition of τ (Rn) is chosen.

Furthermore, to quantify the ‘worst case’, we denote the infimum of the correlation ratio
with

I(τ ) = inf
v∈Rl\{0}

τ (v). (4.26)

Let us guarantee that the norm of the residuals decays exponentially with a rate proportional
to I2(τ ).

Theorem 4.6 (Exponential decay of ‖Rn‖Rl ). Let F ∈ L2(B) with FF = y ∈ R
l , where

F : L2(B) → R
l is a linear operator. Furthermore, let all dictionary elements and the

corresponding coefficients be chosen according to algorithm 4.1 (FMP). Then, for all m ∈ N,

‖Rm‖Rl � ‖y‖Rl [1 − I2(τ )]m/2. (4.27)

If the dictionary D is additionally large enough such that span {Fd | d ∈ D} = R
l , then τ (v)

is larger than a strictly positive constant for any v ∈ R
l \ {0}, i.e. I(τ ) > 0.

Proof. The theorem can be proven in analogy to [47]. �
Note that the decay rate decreases if the correlation ratio τ (v) decreases. Moreover, if the data
includes coherent structures with respect to Fd, d ∈ D, then τ (Rn) is large for all n, i.e. we
get a faster decay of the norm of the residuals. Thus, it is an important step in the preprocessing
to choose a well-matched dictionary with respect to the structure of the solution. If we have
some idea about the structure of the target function we may impose this information on the
choice of the dictionary. Otherwise, we recommend to use a dictionary with more general
functions of different kinds to get a faster convergence of the algorithm.

5. Regularized functional matching pursuit

The ill-posedness of the inverse gravimetric problem requires the use of a regularization
technique. In this work, we use a Tikhonov regularization, i.e. we try to achieve a trade-off
between fitting the data and reducing the norm of the solution. The regularization parameter
λ correlates both terms.

In section 5.1, we introduce a regularized version of algorithm 4.1 (FMP) where the
penalty term is concerned with the smoothness of the solution, i.e. its L2(B)-norm. Although
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the use of, e.g., the L1(B)-norm is closer to the usual setting in sparse regularization, our
approach is due to the Hilbert space structure of L2(B) advantageous in the implementation
and yields, in contrast to the L1-version, an analytical expression for the coefficient α.

In section 5.2, we address the main requirements for regularization methods, i.e. we give
results about the existence and stability of the solution as well as the convergence of the
regularized solution in the limit for the regularization parameter for both exact and noisy given
data.

5.1. The algorithm

Using a Tikhonov regularization, we need to find (dn+1, αn+1) ∈ D×R such that they minimize

‖Rn − αFd‖2
Rl + λ‖Fn + αd‖2

L2(B)
(5.1)

in the step from n to n + 1 chosen expansion functions, where λ > 0 is the regularization
parameter. We derive the optimal dictionary element dn+1 and the corresponding coefficient
αn+1 with the same technique as before.

The minimizing α fulfils

0 = ∂

∂α

(‖Rn − αFd‖2
Rl + λ‖Fn + αd‖2

L2(B)

)
(5.2a)

= −2 〈Rn,Fd〉Rl + 2α‖Fd‖2
Rl + λ

(
2〈Fn, d〉L2(B) + 2α‖d‖2

L2(B)

)
(5.2b)

and, thus,

α = 〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)

‖Fd‖2
Rl + λ‖d‖2

L2(B)

. (5.3)

Again, we insert this into the target function of the optimization:

‖Rn − αFd‖2
Rl + λ‖Fn + αd‖2

L2(B)

= ‖Rn‖2
Rl + λ‖Fn‖2

L2(B)
+ 2α

(−〈Rn,Fd〉Rl + λ〈Fn, d〉L2(B)

)
+ α2

(‖Fd‖2
Rl + λ‖d‖2

L2(B)

)
(5.4a)

= ‖Rn‖2
Rl + λ‖Fn‖2

L2(B)

+ 2
〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)

‖Fd‖2
Rl + λ‖d‖2

L2(B)

(−〈Rn,Fd〉Rl + λ〈Fn, d〉L2(B)

)

+
(

〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)

‖Fd‖2
Rl + λ‖d‖2

L2(B)

)2 (‖Fd‖2
Rl + λ‖d‖2

L2(B)

)
(5.4b)

= ‖Rn‖2
Rl + λ‖Fn‖2

L2(B)
−

(〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)

)2

‖Fd‖2
Rl + λ‖d‖2

L2(B)

. (5.4c)

And, consequently, a dictionary element d minimizes ‖Rn − αFd‖2
Rl + λ‖Fn + αd‖2

L2(B)

if and only if it maximizes∣∣∣∣∣∣
〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)√

‖Fd‖2
Rl + λ‖d‖2

L2(B)

∣∣∣∣∣∣ .
Thus, we get the following algorithm for the regularized version of algorithm 4.1 (FMP).
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Algorithm 5.1 (RFMP).
Start with F0 = 0 and R0 = y.
Given Fn.
Build Fn+1 = Fn + αn+1dn+1 such that

dn+1 maximizes

∣∣∣∣∣∣
〈Rn,Fd〉Rl − λ〈Fn, d〉L2(B)√

‖Fd‖2
Rl + λ‖d‖2

L2(B)

∣∣∣∣∣∣ and

αn+1 = 〈Rn,Fdn+1〉Rl − λ〈Fn, dn+1〉L2(B)

‖Fdn+1‖2
Rl + λ‖dn+1‖2

L2(B)

.

Set Rn+1 = Rn − αn+1Fdn+1.

Here, too, we may improve the approximation quality of the method at the expense of the
computation time by introducing back-projection or pre-fitting. Furthermore, we can use the
same ideas on preprocessing and parallelization to reduce the computational costs as in the
unregularized version (see the end of section 4.1).

Note that, in this work, ‖d‖L2(B) = 1 for all d ∈ D due to our choice of the dictionary.
This property reduces the computational costs.

5.2. Theoretical results

Let, in this section,F : L2(B) ⊃ D(F ) → R
l be an arbitrary operator and let D(F ) ⊂ span D,

where D(F ) denotes the domain of F .
We give results on all three important topics when dealing with regularization methods—

the existence and the stability of the solution as well as the convergence with respect to the
regularization parameter. The results follow the ideas of [29, 30, 62, 65].

Let us denote the expression that is to be minimized by

Jλ(F, y) := ‖FF − y‖2
Rl + λ‖F‖2

L2(B)
, (5.5)

where λ > 0 is the regularization parameter. Here, F is a series expansion in dictionary
elements, i.e. F = ∑∞

k=1 αkdk. Of course, regularization techniques are mostly used to deal
with data from measurements, i.e. noisy data yε, where ‖y − yε‖Rl � ε, if the data y ∈ R

l is
given exactly.

We first give a result concerned with the existence of a solution of the regularized
optimization problem, where noisy data is considered.

Theorem 5.2 (Existence of a solution). Let the operator F be weakly sequentially closed.
Furthermore, let the noisy data yε ∈ R

l be given. Then, there always exists a solution
Fλ,ε ∈ D(F ) such that

Jλ(F
λ,ε, yε ) = min

F∈D(F )
Jλ(F, yε ), where Fλ,ε =

∞∑
k=1

αλ,ε
k dλ,ε

k .

Proof. See, e.g., [62] and the references therein for the proof. �
We know that a linear and continuous operator that maps into a space with finite dimensions

is compact, i.e. the operator considered in this paper is compact as well. Since every linear
and compact operator is strongly continuous (confer, e.g., [77]), we conclude that the operator
corresponding to our application is strongly continuous, too, and therefore weakly sequentially
closed. Thus, it fulfils the condition imposed in theorem 5.2. Note that this is the only serious
restriction occurring in our theoretical considerations.

16



Inverse Problems 28 (2012) 065012 D Fischer and V Michel

Now we know that there exists a solution Fλ of the regularization problem which fulfils

Jλ(F
λ, y) = min

F∈D(F )
Jλ(F, y). (5.6)

Let us consider the sequence(‖FFn − y‖2
Rl + λ‖Fn‖2

L2(B)

)
n = (‖Rn‖2

Rl + λ‖Fn‖2
L2(B)

)
n (5.7)

and prove its convergence. Note that

Rn = Rn+1 + 〈Rn,Fdn+1〉Rl − λ〈Fn, dn+1〉L2(B)

‖Fdn+1‖2
Rl + λ‖dn+1‖2

L2(B)

Fdn+1 (5.8)

and

Fn+1 = Fn + 〈Rn,Fdn+1〉Rl − λ〈Fn, dn+1〉L2(B)

‖Fdn+1‖2
Rl + λ‖dn+1‖2

L2(B)

dn+1. (5.9)

Theorem 5.3. Let F be a linear and continuous operator and let all dictionary elements
and the corresponding coefficients be chosen according to algorithm 5.1 (RFMP). Then
(‖Rn‖2

Rl + λ‖Fn‖2
L2(B)

)n, where the residual Rn is defined as Rn := yε − FFn and Fn is given
in (5.9), converges for n tending to infinity.

Proof. Let us consider the sequence element Fn+1. With (5.4c) we obtain

‖Rn+1‖2
Rl + λ‖Fn+1‖2

L2(B)

= ‖Rn‖2
Rl + λ‖Fn‖2

L2(B)
−

(〈Rn,Fdn+1〉Rl − λ〈Fn, dn+1〉L2(B)

)2

‖Fdn+1‖2
Rl + λ‖dn+1‖2

L2(B)

(5.10a)

� ‖Rn‖2
Rl + λ‖Fn‖2

L2(B)
. (5.10b)

Obviously, the sequence (‖Rn‖2
Rl + λ‖Fn‖2

L2(B)
)n is monotonically decreasing. Since it is

bounded from below by 0, we conclude that it is convergent as well. �

Theorem 5.4 (Stability of the regularized solution). Let the operator F be weakly sequentially
closed and let yε ∈ R

l be given noisy data. Furthermore, let (yεk )k ⊂ R
l be a sequence that

converges to yε for k tending to infinity. Let (Fλ,εk )k be a corresponding sequence of minimizing
elements of Jλ(·, yεk ). Then there exists at least one convergent subsequence of (Fλ,εk )k and
every convergent subsequence converges to a minimizing element Fλ,ε of Jλ(·, yε ).

Moreover, if Fλ,ε is unique then (Fλ,εk )k converges to Fλ,ε for k tending to infinity.

Proof. See, e.g., [62] and the references therein for the proof. �
For noisy data we denote the regularization with (Rη

λ(ε)
)λ(ε)>0, where

Rη

λ(ε)
: R

l → L2(B), yε �→ Fλ(ε),ε,η

and Fλ(ε),ε,η is chosen such that

Jλ(ε)(F
λ(ε),ε,η, yε ) � min

F∈D(F )
Jλ(ε)(F, yε ) + η. (5.11)

Note that the regularization parameter λ was replaced by the function λ that depends on the data
error ε. We use η = η(λ(ε)) to describe the error that arises when minimizing numerically.
With theorem 5.2, we already know that there exists a solution Fλ(ε),ε,η of the regularized
problem with noisy data input.
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Theorem 5.5 (Convergence of the regularization). Let the operator F be weakly sequentially
closed and let y in the range of F be exactly given data. Furthermore, let F+ be a minimum-
norm solution of FF = y. Let the family (yε )ε>0 fulfil ‖y − yε‖Rl � ε. Let us choose
λ :]0,∞[→]0,∞[ such that λ(ε) and ε2

λ(ε)
tend to 0 for ε tending to 0 from above. Let the

error satisfy η(λ(ε)) = o(λ(ε)) for ε tending to 0 from above, where o is a Landau symbol.
Then the family (Rη(λ(ε))

λ(ε)
(yε ))ε>0 has at least one convergent subsequence (for ε tending

to 0 from above) and the limit of each of these subsequences is a minimum-norm solution of
FF = y.

If the minimum-norm solution F+ is additionally unique, then the regularization converges
to F+ in its norm for ε tending to 0 from above:

lim
ε→0+

∥∥Rη(λ(ε))

λ(ε)
(yε ) − F+∥∥

L2(B)
= 0. (5.12)

Proof. See, e.g., [62] and the references therein for the proof. �
Note that there is a link between algorithm 5.1 (RFMP) presented here and algorithm 4.1

(FMP) as well as the commonly known matching pursuit discussed in [47]. If one chooses Y :=
R

l ×L2(B) as the (artificial) data space and sets 〈(x, F ), (y, G)〉Y := 〈x, y〉Rl +λ〈F, G〉L2(B), the
problem of solving the (unsolvable) equation GF = (y, 0) with GF = (FF, F ), F ∈ L2(B),
leads to an algorithm which is analogous to algorithm 5.1 (RFMP). However, e.g., the
convergence results in theorem 4.4 can nevertheless not be transferred to algorithm 5.1 (RFMP),
since the proof requires the existence of a solution (which means here a solution of GF = (y, 0)

and not of FF = y).

6. Numerical applications

In times of sea-level rise, rapid mass loss in the polar regions, and other climate changes of
global impact, the processing of data that is collected by the various satellite missions rapidly
gains importance. Satellite missions allow a global or supra-regional overview over events that
may not be distinguishable from a local point of view or even from the surface of the Earth
itself.

In section 6.1, we recover the mass density variation of South America out of the Earth
Gravitational Model 2008 (EGM2008, [59]) developed by the National Geospatial Intelligence
Agency (NGA). The model is given in spherical harmonics coefficients up to degree 2190 and
order 2159. Thus, right now, it is the gravity model with the highest resolution available. In
our applications, we use the EGM2008 model from degree 3 up to degree 2190.

In section 6.2, we examine the mass transport in the Amazon area for the year 2008. The
satellite mission Gravity Recovery and Climate Experiment (GRACE) has provided us with
monthly solutions of the gravitational potential since the mid of 2003, again in the form of
spherical harmonics coefficients. These solutions are preprocessed and published by different
research groups. We use the solutions provided by the Jet Propulsion Laboratory (JPL, see
[42]). Since GRACE solutions provide a monthly global coverage of the gravitational potential
they are predestined to be used to reflect temporal changes caused by large changes of ground
water levels or the deglaciation.

6.1. Reconstructing the mass density distribution of the Earth

Since it is well known that the harmonicity constraint in particular and gravitational data in
general are only appropriate for the determination of mass anomalies in the uppermost layer
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Figure 3. Adapted L-curve where the approximation error ‖R100‖2
Rl is plotted for different

regularization parameters λ (given at the corresponding point) against the penalty term ‖F100‖2
L2(B)

.

of the Earth (see [53]), we only reconstruct the density close to the surface. Here, a case study
for South America is presented.

The solution of algorithm 5.1 (RFMP)

In this section, we use the dictionary

D = {
KI

h(·, x)
∣∣ h ∈ {0.95, 0.97, 0.99}, x ∈ grid(B)

}
∪ {

GI
0,n, j

∣∣ n = 3, . . . , 8, j = 1, . . . , 2n + 1
}
, (6.1)

where grid(B) is a nearly quadratic grid which is equiangular each in longitude and latitude.
After restriction to a spherical rectangle covering South America we are left with 39 800 grid
points. Furthermore, we will stop the summation in the kernel functions at degree 2190 in
accordance with the degree of the spherical harmonics coefficients used to compute the data.
This dictionary suits our needs, since we may reconstruct global trends with the basis elements
GI

0,n, j while the localized kernel functions KI
h(·, x) are a very good choice to recover detail

structures of the target function.
If not denoted otherwise, the data will be given at 25 440 points on an equiangular grid,

which is similar to grid(B) and is located slightly above the Earth’s surface at 7 km height. The
method will be stopped after 20 000 iterations, i.e. 20 000 (not necessarily pairwise distinct)
dictionary functions will be chosen to reconstruct the solution.

Since the inverse gravimetric problem is ill-posed, we use the regularized algorithm 5.1
(RFMP) and need to choose an appropriate regularization parameter λ. However, our
computations are too time consuming to use common methods to determine λ. Thus, we adapt
the well-known L-curve method to our purpose. After 100 steps, the weighted approximation
error ‖R100‖2

Rl /‖y‖2
Rl is already very small. Thus, we compute an L-curve for different

regularization parameters after 100 steps instead of at the end of the computations. This
strategy, certainly, has to be regarded critically, since it is far from optimal. However, later
considerations with respect to the regularization parameter (see figure 9) show that our choice
yields an acceptable balance between noise and smoothing.

We compute the adapted L-curve for parameters λi = 10−2+4i/30, i = 0, . . . , 30, i.e.
λ = 0.01, . . . , 100 (see figure 3, zoomed in on the knickpoint). This does not yield a proper
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Figure 4. Reconstructed density deviation (left) and centre points x of the chosen expansion
functions KI

h(·, x) (right) computed out of 25 440 data points with expansion functions chosen
from dictionary (6.1) in 20 000 iterations (i.e. F20 000 is shown), λ = 4.6416.

Figure 5. Data input EGM2008 (left), potential generated by the solution F20 000 for λ = 4.6416
(middle) and difference of both (right) for 25 440 data points.

‘L’. However, there is an easy to identify knickpoint, which corresponds to λ = 4.6416. We,
consequently, choose this value as our regularization parameter.

Using this regularization parameter, we obtain the solution F20 000 displayed on the left-
hand side of figure 4. We clearly see the outline of the continent and the main topographic
structures, i.e. the Andes and the Caribbean. On the right-hand side of figure 4, we display
the centre points x of the chosen kernel functions KI

h(·, x). Note that we artificially include
the coast lines of South America in blue as an orientation. Obviously, the localized dictionary
functions are chosen mainly in areas where the detail structure needs to be more accurate, i.e.
in the Andes or the Caribbean. Thus, algorithm 5.1 (RFMP) clearly recovers a solution that is
adapted to the structure of the target function.

In figure 5, we display the potential given by the model EGM2008 at 25 440 data points
(left), the approximation of the potential by the solution F20 000 (i.e. FF20 000) at the same points
(middle) and the difference between both (i.e. the residual R20 000). Clearly, the main structures
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Figure 6. Influence of the expansion functions of the solution F20 000 (right) on the point
x = (0.3784,−0.8661,−0.3267)Ta (red dot) located in the Andes (left).

of the potential are approximated well enough while some of the detail structures remain as
an error. However, the values of the error are mostly far below 10% of the original data.

Now imagine a data grid that is as large as the one chosen in this application, i.e. 25 440
data points. A spline method would not be able to handle this data grid, since the corresponding
(ill-conditioned and dense) matrix is much too large to be handled in the computations. In
spline methods, the chosen data points and the centre points x of the basis functions KI

h(·, x)

used to expand the solution are directly connected. Thus, it is not possible to obtain a resolution
as high as in the Andes with a spline method. We will study a comparison of the novel method
to previous approaches in further detail later in this paper.

The localized character of the solution

In figure 6, we examine the influence of the solution F20 000 as displayed in figure 4, i.e. the
influence of the expansion elements, on exactly one point

x = (0.3784,−0.8661,−0.3267)Ta (6.2)

situated in the Andes. We mark this point in the left plot of figure 6 with a red dot. On the
right-hand side of figure 6 we display the influence of the expansion functions of the solution
F20 000 on the value at the point x with a logarithmic colourbar, i.e. we display log |αkdk(x)| for
all expansion elements.

For a localized expansion function, we display log |αkKI
hk

(x, xk)| as a value at the point
xk. The influence of an expansion function GI

0,nk, jk
is included as an additive at all points in the

plot. Since we use a logarithmic colourbar, the blue colour denotes a very small impact while
the red colour denotes a large impact on the value at the point x. Obviously, the value at x is
mostly controlled by localized expansion functions. Furthermore, we clearly observe that the
influence of the localized expansion functions increases when the distance between x and the
centre xk decreases. This behaviour was expected.
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Figure 7. Evolution of the weighted approximation error when reconstructing the density deviation
out of 25 440 data points for n = 1, . . . , 100 (top) and n = 100, . . . , 10 000 (bottom) in the case
of the solution computed with algorithm 4.1 (FMP), i.e. with regularization parameter λ = 0 (red),
and the solutions computed with algorithm 5.1 (RFMP) with regularization parameters λ = 4.6416
(blue) and λ = 100 (green). Note that the evolution of all three is very similar in the upper plot.
The lines are hardly distinguishable.

The iterative character of the method

We require the method to be adaptive and iterative. Thus, we may expect that the solution
improves when we choose more dictionary functions for the expansion of the solution. First
of all, let us consider the trend of the weighted approximation error:

‖Rn‖2
Rl

‖R0‖2
Rl

= ‖Rn‖2
Rl

‖y‖2
Rl

. (6.3)

In figure 7, we display the evolution of the residual for the first 100 steps as well as the
development from step 100 to 10 000 for λ = 4.6416 in a logarithmic scale for the weighted
approximation error.
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Clearly, the residual decreases rapidly in the beginning. After choosing only 100 expansion
functions, the weighted approximation error is already reduced to less than 1% of the initial
error. Furthermore, the weighted approximation error can be reduced to less than 0.5% after
about 500 steps and after approximately 10 000 steps we obtain a weighted approximation
error of 0.09% for our choice of the regularization parameter λ = 4.6416. Let us remark
that the approximation error is only reduced slightly anymore in the steps from 10 000 to
20 000 iterations. These results are not unexpected. Remember the regularization functional
‖Rn‖2

Rl +λ‖Fn‖2
L2(B)

that is to be minimized. We may expect that, for large n, the penalty term
becomes more important in comparison to the residual. Thus, its influence in the choice of
the next dictionary function increases as well. We expect the algorithm to concentrate on the
reduction of the approximation error in the beginning and shift its focus to the penalty term,
i.e. the smoothness of the solution, as the iteration proceeds (depending on the choice of the
regularization parameter).

Let us consider the solution after 3000 and 10 000 steps in comparison to the solution
after 20 000 steps (see the left-hand column of figure 8). Clearly, the solution improves if we
choose 10 000 dictionary functions instead of only 3000. At first sight, we do not see the same
kind of improvement if we increase the number of chosen expansion functions from 10 000
to 20 000. However, this is not surprising, since the main structures were obviously already
reconstructed after choosing 10 000 expansion functions. The additional 10 000 expansion
functions in F20 000 refine the resolution of the details as can be observed, e.g., at the western
boundary of the Andes where the edges are not as rough anymore. Note that these observations
match remarkably well with our findings from the approximation error. Considering the centre
points x of the chosen kernel functions KI

h(·, x) again for F3000, F10 000 and F20 000, as displayed
in the right column of figure 8, reinforces these findings.

The influence of the regularization parameter λ

In figure 7, we display the weighted residuals for the unregularized solution (λ = 0 in red) as
well as for the regularized solutions for λ = 4.6416 (in blue) and λ = 100 (in green). In later
steps, the effects of the choice of the regularization parameter are more obvious. Choosing
the regularization parameter λ = 0, i.e. a reconstruction with no regard for the smoothness
of the solution, provides us, as expected, with the smallest weighted approximation error of
about 0.06% after 10 000 iterations. With increasing regularization parameter the importance
of the penalty term which forces the smoothness of the solution increases as well, and, thus,
the focus shifts from finding the solution with the lowest residual to finding a solution that is
smooth, too. As a consequence, the approximation error of the smoothest solution (λ = 100
in green and see figure 9) is with a value of about 0.2% the largest one.

In figure 9, we compare the solution of the unregularized method (algorithm 4.1 (FMP))
with the solution of the regularized method (algorithm 5.1 (RFMP)) for our regularization
parameter λ = 4.6416 and the larger parameter λ = 100. In each case, we reconstruct the
density deviation out of 25 440 data points by selecting 10 000 expansion functions out of the
dictionary (6.1). The left column of figure 9 represents the solutions with the original colourbar
while the colourbars of the same solutions in the right column are adapted for comparison to
the range of the solution regularized with λ = 4.6416.

Regarding the plots with adapted colourbar, we clearly see the characteristics of
a regularization. With increasing regularization parameter, the influence of the penalty
term increases as well. In our case, the penalty term is concerned with the smoothness
of the solution, i.e. the solution becomes smoother when we increase the regularization
parameter.
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Figure 8. Reconstructed density deviation (left column) and centre points x of the chosen dictionary
functions KI

h(·, x) (right column) computed out of 25 440 data points in the case of 3000 (bottom),
10 000 (middle) and 20 000 (top) iterations, λ = 4.6416.

If we consider the range of the recovered values for the density deviation we observe
another trait of a regularization. Smoothening oftentimes manifests as a change in magnitude
of the solution when we have only comparably small variations in the surrounding
regions.
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Figure 9. Reconstructed density deviation computed out of 25 440 data points with expansion
functions chosen from dictionary (6.1) in 10 000 iterations (i.e. F10 000 is shown) for λ = 0
(bottom), 4.6416 (middle) and 100 (top) with original (left) and adapted (right) colourbar.
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Figure 10. Irregular data grid with 19 800 points (left), reconstructed density deviation F20 000
(middle) and centre points (right) of the chosen localized expansion functions computed out of
these data points for λ = 10, where algorithm 5.1 (RFMP) was stopped after 20 000 iterations.

Anyway, all these considerations demonstrate that algorithm 5.1 (RFMP) is, indeed, a
regularization method as was proven in section 5.2.

Reconstruction on an irregular data grid

Let us consider now a data grid that is not equidistributed, i.e. a grid as in the left plot of
figure 10. After 20 000 iterations, algorithm 5.1 (RFMP) generates the solution and the centre
points as displayed in the middle and right plot of figure 10, respectively.

Although the higher density of data points in the north-west of South America influences
the choices of the algorithm, the solution still mostly fits the detail structures of the target
function. Clearly, the novel method is as independent of the data grid as can be expected.

Refinement

The iterative character of our method allows us to re-use results from previous computations
to, e.g., zoom in on certain parts of the solution. We investigate this property by refining
Central America and the Caribbean.

In the refinement, we want to improve the approximation in a certain area only. Thus, it is
reasonable to consider a dictionary that consists of functions with a local character exclusively,
e.g., the dictionary

D = {
KI

h(·, x)
∣∣ h ∈ {0.95, 0.97, 0.99}, x ∈ grid(B)

}
, (6.4)

where grid(B) is an equiangular grid, which is similar to the previous one and restricted to a
spherical rectangle covering the area of Central America and the Caribbean with 39 800 grid
points. Furthermore, we use 25 440 data points on a grid, which is similar to the previous
ones and located slightly above the Earth’s surface at 7 km height for this same area of the
refinement. We choose the regularization parameter λ = 10.

As a starting point for the iterations we use the approximate solution F3 000 for Central and
South America, which we already computed before (see the left-hand side of figure 11 and
figure 8, bottom left). In the middle of figure 11, we display the result after the refinement with
3000 additionally chosen (not necessarily pairwise distinct) expansion functions in the North-
West. Remember that dictionary (6.4) consists of localized functions only. When comparing
the solution without the refinement (left plot) and the solution including the refinement (middle
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Figure 11. Reconstructed density deviation F3 000 computed out of 25 440 data points, where the
expansion functions were selected from dictionary (6.1) for λ = 4.6416 (left), refined in the North-
West for a new set of 25 440 data points located in the North-West and the dictionary (6.4) after
additional 3 000 iterations for λ = 10 (middle), and the centre points x of the chosen localized
expansion functions (right), where the centres corresponding to dictionary (6.4) are green.

plot) we clearly see that the resolution of Central America and the Caribbean is by far improved.
If we consider the centre points of the chosen expansion functions (right plot), we observe
that they are mostly centred in these regions, i.e. Central America and the Caribbean, as well.
However, we observe some minor boundary effects. Note that we give some ideas to control
these boundary effects in [33].

These results are, of course, expected behaviour as we investigated these properties before.
However, it is quite remarkable how well the refinement process works. It allows us to do
a coarse investigation of a certain area first. And then, with these results in mind, we may
decide where we want to refine this solution. Furthermore, this property allows us to save
computational effort when refining.

Dealing with noise

In this section, we want to examine the behaviour of the regularizing algorithm 5.1 (RFMP)
when applied to noisy data yε. Here ε denotes the noise level where a value ε = 0.1 corresponds
to a data input that is disturbed with 10% random noise relative to the exact data y:

yε
i = yi + ε randi yi, i = 1, . . . , l, (6.5)

where randi is a random number in the interval [0, 1]. In figure 12, we consider the reconstructed
density deviations out of 25 440 data points, where dictionary (6.1) was used and algorithm 5.1
(RFMP) with regularization parameter λ = 10 was stopped after 20 000 iterations.

In comparison to figure 4, where the same setup was considered for exact data and a
regularization parameter λ = 4.6416, we clearly observe that the introduction of noise does
not have an overly negative influence on the reconstruction quality of the algorithm, since the
main structures are still identified.

Comparison to other methods

Let us compare our new method numerically to previously developed localized methods in
inverse gravimetry viz spline and wavelet methods. First we briefly describe the methods
used. For a more detailed discussion (in particular, for readers who are not familiar with these
techniques), we refer to [8, 9] for the used spline method and to [49, 51, 53] for the used
wavelet method.
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Figure 12. Reconstructed density deviation F20 000 (left) and centre points (right) of the chosen
localized expansion functions computed out of 25 440 data points for λ = 10 out of data with 10%
noise (ε = 0.1).

In our setting, a spline S ∈ H relative to FG is defined as

S(x) =
l∑

k=1

akF k
GKh(·, x), x ∈ B, a = (a1, . . . , al )

T ∈ R
l . (6.6)

We now have to determine that spline S which fulfills

F i
GS =

l∑
k=1

akF i
GF k

GKh(·, ·) = yi, i = 1, . . . , l, (6.7)

i.e. we solve a system of linear equations with the matrix
(
F i

GF k
GKh(·, ·)

)
i,k=1,...,l which is

positive definite. Solving this interpolation problem yields the interpolating function with
minimal Sobolev norm. Moreover, in comparison to all other functions of the form (6.6),
the spline is the best approximation to the target function. Note that the choice of the kernel
function used for the spline is fixed. In this work, we use the kernel K̃h with parameter h = 0.99.
Furthermore, we may regularize the linear equation system of the spline method by adding a
constant value to the diagonal elements of the spline matrix, where the constant may depend
on the maximal absolute value M of all entries of that matrix. Here we use the regularization
parameter 0.1M.

When using a wavelet method, we compute the integral∫
�

�J(·, y)V (y) dy (6.8)

numerically, where the kernel function �J is of degree 2J −1. In our case, the cubic polynomial
scaling function �J at scale J = 8 was chosen (see [53] for its definition and characteristics)
and the potential V is of degree 2 190. Thus, to gain the accurate solution, we have two options:
Either we use a quadrature formula up to degree 2 445, i.e. when using a Driscoll–Healy grid
we would need more than 2 4452 = 5978 025 data points for accuracy and use the Driscoll–
Healy weights (see [26]), or we use a global equidistributed point set which is restricted to
South America and weight all points with 4π/N where N is the number of grid points on the
sphere (see, for example, [17]). In our case, the second option is much more attractive, since
it is more time-efficient with an acceptably low inaccuracy of the quadrature. Note that there
exist more sophisticated quadrature tools on the sphere or subdomains of it (see, e.g., [40]).
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Figure 13. Reconstructed density deviation with the spline method out of 9 900 equidistributed
data points regularized with 10% of the absolutely maximal entry of the corresponding matrix (left)
and with the wavelet method on a grid of 25 440 data points on an equidistributed grid (middle)
and an irregular grid (right).

Note that neither splines nor wavelets (as they were constructed for inverse gravimetry)
are able to combine different kernel functions as well as irregular grids to reconstruct a
function—in contrast to our novel method.

In figure 13, we compare the best results that may be achieved with the spline and wavelet
method, left-hand side and middle respectively, to the result given by our novel method (see
figure 4). For the spline method we use a data grid with 9900 data points which is close to the
numerical limit for this problem. However, the resolution and detail structure of the solution
is obviously worse than with our novel method. The wavelet method applied to the same
equidistributed data grid with 25 440 data points as in the case of our method gives a very
good result as well. However, it strongly depends on the choice of the data grid as we display
in the right-hand side of figure 13, where we use the same irregular data grid as displayed
in figure 10. Here we can clearly see artefacts similar to the Gibbs phenomenon at the edges
of the denser part of the data grid. This data grid did not pose a problem for algorithm 5.1
(RFMP).

6.2. Reconstructing the mass transport in the Amazon area by using GRACE-Data

The satellite mission Gravity Recovery and Climate Experiment (GRACE) was started in 2002
to gain more information about the Earth’s gravitational potential which allows us to detect
climate phenomena like water mass transports in the gravitational field (see [12]). The GRACE
mission provides us with a monthly global coverage of the gravitational potential such that
we are able to investigate temporal variations as well. In this subsection, we will concentrate
on detecting the monthly mass transport, i.e. seasonal changes of ground and surface water
levels, in the Amazon area for the year 2008. It is very important to observe the mass transport
in the Amazon area regularly, since it is one of the largest watersheds on Earth. Thus, it has
been observed by other research groups using different techniques and observation periods
(see, e.g., [13, 14, 31, 69]).

We use the monthly data provided by the Jet Propulsion Laboratory (JPL, see [42], Release
04). The data, i.e. the spherical harmonics coefficients, are given up to degree and order 120.
To analyse the temporal variations, we subtract a mean potential from the monthly solutions
and use this difference as an input to our algorithm. We use the available coefficients from
July 2004 to June 2009 to compute the mean potential.
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Figure 14. Density deviations for the year 2008 (top left: January, top right: March) computed out
of 11 990 data points after 10 000 iterations, λ = 8.7128.

However, the higher degrees and orders contain noise that needs to be removed from
the input with some kind of smoothing. As explained before, smoothing also attenuates the
real signal such that we have to expect a change in magnitudes. We use spherical wavelets to
analyse variations in the gravitational potential of the Earth as suggested in [31]. The cubic
polynomial wavelet filter depends upon a scale J which controls up to which degree and to
what extent the spherical harmonics coefficients are considered. An increasing scale J admits
more detail information. However, it bears the risk to include errors or artefacts like satellite
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tracks as well. Thus, it has to be investigated carefully which filter yields a realistic and useful
input.

In [31], the problem of choosing the right scale was already considered. As a result, it
was proposed to use scale J = 4, since scale J = 5 already includes errors. At scale J = 4,
all spherical harmonics coefficients up to degree 31 are considered, while at scale J = 5
the degree of considered coefficients is increased up to 63. To get a better input to recover
the seasonal changes in the Amazon area we choose a filter where all spherical harmonics
coefficients up to degree 49 are considered, i.e. J = ln 25

ln 2 . Now we expect that there are enough
details included to recover the desired effects where the contained noise is still suppressed
sufficiently.

We use dictionary (6.1), where the series in the kernel functions is terminated at degree
100. Moreover, we stop algorithm 5.1 (RFMP) after 10 000 iterations. As input we use 11 990
data points given on an equiangular grid as before computed 7 km above the Earth’s surface.
We regularize with λ = 8.7128 for all months to keep comparability.

In figure 14, we display the resulting density deviations for the year 2008. The colour blue
denotes that the humidity is higher than in the mean, i.e. the surface and ground water levels
are higher than in the mean, while red denotes that the humidity is lower than in the mean.

Considering, e.g., April 2008 (left-hand side of the second row in figure 14), we conclude
that we have a rainy season north of the equator and a dry season south of the equator. These
findings conform with meteorological and hydrological observations (see Global Land Data
Assimilation System (GLDAS) [41, 63]). In comparison to September 2008 (right-hand side
of the third row in figure 14), we clearly see the seasonal changes, since now there is a dry
region north of the equator and a wet region south of the equator.

We observe a clear separation of the Amazon watershed and the Orinoco watershed,
situated north of the Amazon area, which is a very important feature to be reconstructed, since
we do not only have a meteorological separation by the equator but a topographic separation
by the Guiana highlands as well.

Overall, the displayed results conform to empiric data from a temporal perspective as well
as from a spatial one, i.e. the changes appear in accordance to the seasons in the Amazon area
and the equator seems to be a natural interface for the change of conditions.

7. Conclusions and outlook

In this work, we presented a new regularization method to solve the inverse gravimetric
problem by using the idea of a sparse regularization based on a matching pursuit. We were
able to show theoretical results about the convergence of the developed algorithms as well as
the main properties of a regularization method, i.e. the existence and stability of a solution and
the convergence of the regularization.

One main feature of this new method is that it provides us with a solution that is primarily
matched to the structure of the target function and not only the data structure, which is
very advantageous in comparison to the usual wavelet and spline methods. Since the proposed
method is iterative, we may directly control the sparsity of the solution and re-use earlier results
as an initial solution for refinement or zooming-in. Another advantage is that we may collect
all different kinds of functions in a so-called dictionary to reconstruct different structures in
the solution, accordingly. In this work, we collected functions with global and local character
in our dictionary and demonstrated the power of the new method by reconstructing the density
distribution of South America as well as examining the mass transport in the Amazon area.

However, the presented method also allows us to combine different data types. Our main
goal is to recover a model of the density distribution of the interior of the Earth as is done
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in [9]. Gravitational data only gives information about the harmonic part of the density. The
anharmonic part can be partially recovered from seismic data such as normal mode splitting
or travel times. Detailed studies of the combined inversion with this new method are currently
being investigated and will be published in a forthcoming work. However, first results may be
found in [33].
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