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Abstract Based on the Regularized Functional Matching Pursuit (RFMP) algorithm for
linear inverse problems, we present an analogous iterative greedy algorithm for nonlinear
inverse problems, called RFMP_NL. In comparison to established methods for nonlinear
inverse problems, the algorithm is able to combine very diverse types of basis functions,
for example, localized and global functions. This is important, in particular, in geoscientific
applications, where global structures have to be distinguished from local anomalies. Further-
more, in contrast to other methods, the algorithm does not require the solution of large linear
systems. We apply the RFMP_NL to the nonlinear inverse problem of gravimetry, where
gravitational data are inverted for the shape of the surface or inner layer boundaries of plan-
etary bodies. This inverse problem is described by a nonlinear integral operator, for which
we additionally provide the Fréchet derivative. Finally, we present two synthetic numerical
examples to show that it is beneficial to apply the presented method to inverse gravimetric
problems.
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1 Introduction

Nonlinear inverse problems arise in many fields, for example, in geosciences, medical imag-
ing, or industrial applications. In this paper, we are particularly interested in the nonlinear
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inverse gravimetric problem, which can be represented by a nonlinear integral equation in-
volving a function on the sphere. The work at hand is based on the PhD thesis (Kontak 2018)
by the first author.

We will provide a novel iterative algorithm for the solution of nonlinear inverse problems
of the following form.

Problem 1 (Nonlinear inverse problem) Let X ,Y be Hilbert spaces and let the operator
S : X → Y be Fréchet differentiable and possibly nonlinear. For given data g ∈ Y , find
f ∗ ∈X such that

S[ f ∗] = g.

We will derive an algorithm that is called the Regularized Functional Matching Pursuit for
nonlinear inverse problems (RFMP_NL). It is based on the Regularized Functional Match-
ing Pursuit (RFMP), which has been presented and analyzed in (Berkel et al. 2011; Fischer
and Michel 2012, 2013a,b; Gutting et al. 2017; Kontak and Michel 2018; Michel 2015;
Michel and Orzlowski 2017; Michel and Telschow 2014). The RFMP is a greedy-type al-
gorithm for linear inverse problems T f ∗ = g, where T : X → Y is a linear and bounded
operator between Hilbert spaces X ,Y , and g ∈ Y represents given data.

The idea behind this greedy algorithm is the following: we prescribe a so-called dictio-
nary D ⊆X , which can consist of an arbitrary collection of elements from X . Starting with
an initial approximation f0 ∈X of the solution f ∗ ∈X , for k = 0,1,2, . . ., we iteratively
choose the pair (αk+1,dk+1) ∈ R×D that minimizes the Tikhonov functional

‖g−T fk−αk+1T dk+1‖2
Y +λ ‖ fk +αk+1dk+1‖2

X (1)

for the given previous iteration fk ∈X and a prescribed regularization parameter λ > 0.
Since the dictionary D does not need to form a basis, the algorithm is able to combine

very diverse types of elements from the Hilbert space X , for example, both global and local-
ized functions if X is a function space. The numerical results in the previously mentioned
references show that this property of the RFMP makes it beneficial in comparison to other
methods for linear inverse problems. These are often more easy to formulate in the Hilbert
space setting, but when it comes to the implementation one has to stick to one specific basis
system.

Based on the RFMP, two other algorithms for linear inverse problems have previously
been developed. The Regularized Orthogonal Functional Matching Pursuit (ROFMP) (see
Michel and Telschow 2016; Telschow 2014) overcomes the difficulty that the RFMP may
choose a single dictionary element multiple times, which is not optimal, by an orthogonal-
ization procedure in every iteration step. Numerical results show that the ROFMP is very
suitable, in particular, for those geoscientific inverse problems, where only very scattered
data are given. The Regularized Weak Functional Matching Pursuit (RWFMP) (see Kontak
2018; Kontak and Michel 2018) removes several open problems in the theoretical analysis
of the RFMP, for example, a convergence rate for the regularized case could be derived and
the convergence in arbitrary Hilbert spaces was proved. Additionally, numerical examples
show that the RWFMP accelerates the iteration of the RFMP by several factors by using a
specific search strategy to find the next pair (αk+1,dk+1).

Other iterative methods for nonlinear inverse problems are, for example, the Levenberg-
Marquardt method (see Levenberg 1944; Marquardt 1963) and the iteratively regularized
Gauß-Newton method (see Bakushinsky 1992), and many more. In most of these methods,
one has to solve large linear systems in every iteration, which is not the case for the newly
presented algorithm. Additionally, one has to stick to one single specific basis system in the
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implementation to ensure the regularity of the arising matrices, which is not necessary for
the RFMP_NL. A detailed comparison of the new greedy algorithm to existing methods for
nonlinear inverse problems will be given in Section 5 of this paper.

As we have already mentioned, the nonlinear inverse problem, which we will deal with,
is the nonlinear inverse gravimetric problem. In contrast to the linear inverse gravimetric
problem, which is concerned with the inversion of the gravitational potential for the mass
density distribution inside a given body of mass, the nonlinear problem is the inversion of
the potential for the shape of the body of mass given a mass density model. Nowadays, the
gravitational field of the Earth is measured by satellite missions like CHAMP (see Reigber
et al. 1999), GRACE (see Tapley et al. 2004), GOCE (see Drinkwater et al. 2003), as well as
the upcoming GRACE follow-on mission (see Flechtner et al. 2014). The nonlinear inverse
gravimetric problem can be used to determine the shape of the Earth from these satellite
measurements. Since this can be done with a (likely) higher precision by radar technology,
it is more important that gravity inversion also enables us to study the boundaries between
different layers of the Earth, for example, the Mohorovičić discontinuity, which is the bound-
ary between the crust and the mantle (see, for example, Clauser 2014, Section 1.5). Satellite
missions to the Moon (GRAIL, see Zuber et al. 2013) and Jupiter (Juno, see Bolton et al.
2017; Matousek 2007) also allow for the study of the interior of these celestial bodies.

The paper is structured as follows. In Section 2, we will provide the necessary basics of
the notation and of spherical geometry that we will need in the paper. Section 3 is dedicated
to inverse gravimetry. We will present both the linear and nonlinear inverse gravimetric
problem and for the latter, we will provide the Fréchet derivative of the associated operator.
In Section 4, we will derive the RFMP_NL, which we will compare to other methods for
nonlinear inverse problems in Section 5. Section 6 consists of two numerical examples for
the application of the RFMP_NL to the nonlinear inverse gravimetric problem. We finally
give a conclusion and an outlook in Section 7.

2 Basics

In this section, we will briefly summarize the basic notation that we will need in this paper,
in particular, the basics of spherical geometry.

By

S2 :=
{

x ∈ R3 ∣∣ |x|= 1
}

we denote the unit sphere in R3, where |·| represents the usual Euclidean norm. It is well-
known that every point x ∈ R3 can be described by the polar coordinates

x(r,ϕ, t) =

r
√

1− t2 cosϕ

r
√

1− t2 sinϕ

r t

 ,

where r ∈ [0,∞), ϕ ∈ [0,2π), and t ∈ [−1,1]. Analogously, every point ξ ∈ S2 can be de-
scribed by

ξ (ϕ, t) =

√1− t2 cosϕ√
1− t2 sinϕ

t

 ,
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where ϕ ∈ [0,2π) and t ∈ [−1,1].
Both on subsets U ⊆ R3 and the sphere S2, we define the spaces of real-valued contin-

uous functions C(M) and of k-times continuously differentiable functions C(k)(M), where
M ∈

{
U,S2

}
with the corresponding norms ‖·‖C(M) and ‖·‖C(k)(M), respectively.

For measurable functions f : U → R, g : S2→ R the integrals∫
U

f (x)dx,
∫
S2

g(ξ )dω(ξ ),

denote the integral of f with respect to the Lebesgue measure on U and the integral of g
with respect to the surface measure on S2, respectively. Using polar coordinates, we can
decompose any integral over the space R3 into a radial and a spherical part such that∫

R3
f (x)dx =

∫
S2

∫
∞

0
f (rξ )r2 dr dω(ξ )

for f : R3→ R.
Using these integrals, we can define the norms

‖ f‖L2(U) :=
(∫

U
| f (x)|2 dx

)1/2

,

‖g‖L2(S2) :=
(∫

S2
|g(ξ )|2 dω(ξ )

)1/2

,

for measurable functions f : U → R, g : S2→ R. The L2(U)- and L2(S2)-spaces are conse-
quently given as

L2(U) :=
{

f : U → R
∣∣∣ f is measurable and ‖ f‖L2(U) < ∞

}
.

L2(S2) :=
{

g : S2→ R
∣∣∣ g is measurable and ‖g‖L2(S2) < ∞

}
,

where we, as usual, formally identify functions with each other, which are equal almost
everywhere.

It is well-known that L2(U) and L2(S2) are Hilbert spaces with the corresponding inner
product

〈 f1, f2〉L2(U) :=
∫

U
f1(x) f2(x)dx,

〈g1,g2〉L2(S2) :=
∫
S2

g1(ξ )g2(ξ )dω(ξ ),

where f1, f2 ∈ L2(U) and g1,g2 ∈ L2(S2).
The system of (fully normalized) spherical harmonics is given by{

Yn, j
∣∣ n ∈ N0, j =−n, . . . ,n

}
,

where

Yn, j(ξ (ϕ, t)) :=

√
(2n+1)(n−| j|)!(2−δ j0)

4π(n+ | j|)!
Pn,| j|(t)

×

{
sin( jϕ), j = 1, . . . ,n,
cos( jϕ), j =−n, . . . ,0,
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and for n ∈ N0, m = 0, . . . ,n,

Pn,m(t) :=
(
1− t2)m/2 dm

dtm Pn(t), t ∈ [−1,1],

are the associated Legendre functions with the Legendre polynomials Pn,0 = Pn. It is well-
known that this system is a complete orthonormal system in L2(S2). Furthermore, it is
known that all spherical harmonics are not localized on any subset of the sphere such that
they are an ideal choice for the approximation of functions with global structures on the
sphere.

Moreover, we define the function Qh : [−1,1]→ R, h ∈ (0,1),

Qh(t) :=
1

4π

1−h2

(1+h2−2ht)3/2 ,

such that the kernel S2×S2 3 (ξ ,η) 7→ Qh(ξ ·η) is called the Abel-Poisson kernel.
The Abel-Poisson kernel is a zonal function, that is, for fixed ξ ∈ S2 the function

Qh,ξ (η) := Qh(ξ ·η) does only depend on the distance (or angle) between ξ and η . Further-
more, it can be shown that for h↗ 1, the latter function is more and more concentrated at
the point ξ ∈ S2, which makes it predestined for the local approximation of functions.

In our numerical examples for a nonlinear inverse problem, we will combine both spher-
ical harmonics and Abel-Poisson kernels to account for both global and local structures in
the solution.

3 Nonlinear inverse gravimetry

Inverse gravimetry is concerned with the gathering of information about the shape E ⊆ R3

and the mass density ρ : E → R3 from the gravitational potential UE ,ρ(y) : R3 \E → R,

UE ,ρ(y) :=
∫
E

ρ(x)
|x− y|

dx, (2)

where, for simplicity, we omit the gravitational constant. We assume that E is a bounded
open domain in R3 with a piecewise smooth boundary and that the mass density function ρ

is measurable and bounded. Note that we allow negative values of the mass density function,
which is not reasonable from the physical perspective. However, it turns out that the relation
between anomalies of the mass density and those of the gravitational potential can also be
described by the integral in (2) such that, in this case, negative values for ρ may occur.

Under these presumptions, it is well known that the gravitational potential is harmonic
outside the set E (see Mikhlin 1970, Theorem 11.6.2). Additionally, it satisfies the Poisson
equation in E if ρ is Lipschitz continuous (see Mikhlin 1970, Theorem 11.6.3).

In the functional analytic approach in Hilbert spaces, one often does not know whether
ρ is bounded. Instead, one assumes ρ ∈ L2(E), which does not imply (essential) bounded-
ness of ρ . The theory of Fredholm integral equations yields the following theorem (see, for
example, Yosida 1980, Example 1 in Section VII.3, Example 2 in Section X.2).

Theorem 2 Let ρ ∈ L2(E) and a regular surface S be given such that E ⊆ Sint. Then we
have UE ,ρ |S ∈ L2(S).

Furthermore, for fixed E , the operator TE : L2(E)→ L2(S), ρ 7→UE ,ρ |S is a compact
linear operator.
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E , ρ

S

Figure 1: Two-dimensional sketch of the general inverse gravimetric problem: the body E is
filled with mass of density ρ (purple). The gravitational potential is measured (for example
by a satellite) on a regular surface S (blue).

Here, sticking to Freeden and Michel (2004, Section 3.1.1), we call a surface Σ ⊆ R3 a
regular surface if it satisfies:

1. the space R3 is divided into a bounded region Σ int and an unbounded region Σ ext such
that

Σ
ext = R3 \Σ int, Σ = Σ int∩Σ ext, Σ

int∩Σ
ext = /0,

2. Σ int contains the origin,
3. Σ is a closed and compact surface, which is free of double points,
4. Σ has a continuously differentiable outer unit normal field ν : Σ → R3.

In consequence, Green’s identities and Gauß’ law are valid in Σ int.
We will consider the inverse problem of gravimetry in the following form.

Problem 3 (General inverse gravimetric problem) Let S ⊆ R3 be a regular surface and
g ∈ L2(S) be a given function. Find E ⊆ Sint and ρ ∈ L2(E) such that

UE ,ρ |S = g.

The situation is sketched in Figure 1. It is well-known that the gravitational potential of
two balls of radii R1,R2 > 0 is the same in all points y ∈ R3 with |y| > max{R1,R2 } if
the balls possess equal total masses. Thus, the determination of both E and ρ uniquely from
gravitational data fails already in a very elementary setting incorporating simple geometries.

Consequently, in most of the literature on inverse gravimetry it is assumed that either
the domain E or the mass density function ρ is known and the inverse problem is to find
the respective other unknown, which leads to the linear and the nonlinear inverse problem,
respectively. In the following, we will first briefly summarize some results about the linear
inverse gravimetric problem, in particular, its difficulties regarding the uniqueness of a so-
lution. Afterwards, we will derive the nonlinear inverse gravimetric problem, where there is
no problem with a non-uniqueness of the solution.
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3.1 Linear inverse gravimetric problem

We obtain the linear inverse gravimetric problem from the general inverse gravimetric prob-
lem by assuming that the shape E of the Earth is known. This results in the following prob-
lem.

Problem 4 (Linear inverse gravimetric problem) Let S ⊆ R3 be a regular surface, let E
be a bounded open domain such that E ⊆ Sint, and let a function g ∈ L2(S) be given.

Find ρ ∈ L2(E) such that

UE ,ρ |S = g.

The operator that maps ρ ∈ L2(E) to UE ,ρ |S for fixed E is denoted by TE : L2(E)→ L2(S)
and the operator equation

TE(ρ) = g (3)

is called the linear inverse gravimetric problem.

In the following, we will discuss the ill-posedness of the inverse problem in (3), that is,
the existence, uniqueness, and stability of a solution of (3). We start with the following well-
known result about the non-uniqueness of the solution, which was given in the following
form in Weck (1972).

Theorem 5 (cf. Weck 1972, Lemma 1) The null space of the operator TE is given by

nullTE =
{

∆ f
∣∣ f ∈ H2

0(E)
}
,

where H2
0(E) is the completion of the space of arbitrarily often differentiable functions with

compact support in E with respect to the well-known H2(E)-Sobolev norm. Furthermore,
the orthogonal complement of the null space is given by

(nullTE)⊥ = null∆ :=
{

f ∈ C(∞)(E)
∣∣∣ ∆ f = 0

}
, (4)

that is, it consists of all harmonic functions.

Note that Weyl’s Lemma (cf. Freeden and Gerhards 2013, Section 4.1.2) states that every
harmonic distribution can be represented by a function, which leads to the use of the space
C(∞)(E) in (4). Note furthermore that the result in (4) had been proved before, see Lauricella
(1912); Pizzetti (1909, 1910).

In consequence, one can obtain a unique solution of the linear inverse gravimetric prob-
lem if one imposes a harmonicity condition on ρ . Unfortunately, this condition on the den-
sity function lacks a physical interpretation (cf. Michel and Fokas 2008), since the maximum
principle for harmonic functions states that the density would have to attain its maximum
at the Earth’s surface. This is not reasonable, at least, if the complete density distribution is
to be determined, since the density inside the Earth arguably increases towards the center.
However, for the investigation of density anomalies, for example, due to short-period tempo-
ral variations, which basically occur on the surface only, such a constraint can be justified.
In Michel and Fokas (2008), several other conditions on the density are presented, which
also yield a unique solution. These considerations are generalized in Leweke et al. (2018)
to a certain class of integral equations. This also includes the physically relevant case of a
surface density.



8 Max Kontak, Volker Michel

Concerning the existence and the stability, we can refer to the theory of compact opera-
tors. Since TE is compact, there exists a singular system (σ j, f j,g j) j∈N0 and in terms of this
singular system a necessary and sufficient condition for the existence of a solution of (3) for
given data g ∈ L2(S) is the Picard condition

∞

∑
j=1

1
σ2

j

∣∣〈g,g j
〉∣∣2 < ∞

(see, for example, Engl et al. 1996, Theorem 2.8). It is also well-known that every compact
operator in infinite-dimensional spaces has an unbounded inverse (see, for example, Rieder
2003, Satz 2.2.8(e)) such that we obtain the instability of the inverse problem.

Currently, the linear inverse gravimetric problem is relevant, in particular, where time-
dependent GRACE data are used to search for (climate-induced) mass transports at the
Earth’s surface. The nonlinear version is geophysically relevant for determining boundary
layers, which are important for the understanding of geodynamic processes. We will see that
it was proved that the solution of the nonlinear problem is both unique and stable.

3.2 Nonlinear inverse gravimetric problem

We have derived Problem 4 in the previous section by assuming that the shape of the Earth
E is known in Problem 3. To obtain the nonlinear inverse gravimetric problem, we proceed
the other way round. We assume that a model for the mass density function is available (for
example, we could use PREM, see Dziewonski and Anderson 1981) such that we are con-
cerned with the determination of the shape of the Earth. The corresponding inverse problem
looks as follows.

Problem 6 (Nonlinear inverse gravimetric problem) Let S⊆R3 be a regular surface, let
ρ ∈ L2(Sint) be a mass density model, and let a function g ∈ L2(S) be given. Find E such
that E ⊆ Sint and

UE ,ρ |S = g.

The operator that maps E ⊆ Sint to UE ,ρ |S for fixed ρ is denoted by S̃ρ and the operator
equation

S̃ρ [E ] = g

is called the nonlinear inverse gravimetric problem.

Since the operator S̃ρ should be formally defined on a space of subsets of Sint, which is
quite difficult to handle, a popular approach in the literature is the restriction to star-shaped
sets with respect to the origin. This, consequently, yields the following problem.

Problem 7 (Nonlinear inverse gravimetric problem, star-shaped) Let S⊆R3 be a regu-
lar surface, let ρ ∈ L2(Sint) be a mass density model, and let a function g ∈ L2(S) be given.

Find a function σ : S2→ (0,∞) such that E = Σ int, where the regular surface Σ ⊆ Sint

is given by

Σ :=
{

rξ ∈ R3 ∣∣ ξ ∈ S2,r = σ(ξ )
}
, (5)
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ξ

S2

Σ int
σ(ξ )

Figure 2: Geometrical representation of the situation in Problem 7 (two-dimensional slice):
the boundary Σ of the star-shaped body of mass Σ int is parametrized by a function σ on S2.

and

U
Σ int,ρ |S = g.

The operator that maps the function σ to U
Σ int,ρ |S for fixed ρ is denoted by Sρ and the

operator equation

Sρ [σ ] = g

is called the nonlinear inverse gravimetric problem (with a star-shaped domain).

Note that, using polar coordinates, the nonlinear integral operator has the expression

Sρ [σ ] (y) =U
Σ int,ρ(y)

=
∫

Σ int

ρ(x)
|x− y|

dx

=
∫
S2

∫
σ(ξ )

0

ρ(r ξ )

|r ξ − y|
r2 dr dω(ξ ). (6)

A sketch of the setting for Problem 7 can be found in Figure 2.
The most extensive analysis of the uniqueness and stability of the nonlinear inverse

gravimetric problem was accomplished in Isakov (1990), although there is a long list of
references for earlier results on the topic (for example, Novikov 1938; Weck 1972). We only
cite the uniqueness and stability result for constant density ρ ≡ 1 and refer the reader to the
book Isakov (1990) for more general results. We start with the uniqueness result.

Theorem 8 (cf. Isakov 1990, Theorem 2.2.1) Let S ⊆ R3 be a regular surface. Suppose
that Σ1,Σ2 ⊆ Sint are regular surfaces such that Σ int

1 ,Σ int
2 are star-shaped.

If

U
Σ int

1 ,1|Sext =U
Σ int

2 ,1|Sext ,

then Σ1 = Σ2.
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Furthermore, we have the following stability estimate, where we restricted ourselves to
the particular case of S = S2.

Theorem 9 (cf. Isakov 1990, Theorem 3.6.1) Let S=S2 and two regular surfaces Σ1,Σ2⊆
Sint be given, which are parametrized by functions σ1,σ2 : S2 → (0,1) in the sense of (5)
such that Σ int

1 ,Σ int
2 are star-shaped. Additionally, it is required that there exists a constant

h > 0 such that σ1(ξ ),σ2(ξ ) ∈ (h,1−h) for all ξ ∈ S2 and that σ1,σ2 ∈ C(2)(S2).
Then, there is a constant C > 0 such that if∣∣∣∣∣∣∣∣∇U

Σ int
1 ,1(y)

∣∣∣− ∣∣∣∇U
Σ int

2 ,1(y)
∣∣∣∣∣∣∣∣< ε, for all y ∈ S,

then,

|σ1(ξ )−σ2(ξ )|<C |logε|−1/C, for all ξ ∈ S2.

Clearly, this is a stability estimate for the nonlinear inverse gravimetric problem, since it
shows that the solution depends continuously on the data.

Unfortunately, the stability of the inverse problem can be described as being weak (cf.
Isakov 2006, Section 1.1) due to the logarithmic nature of the estimate, which leads to
“numerical difficulties” (Isakov 2006). This is the reason why, in practice, one still needs
to apply a regularization technique although the nonlinear inverse gravimetric problem is
stable in theory.

In conclusion, by addressing the nonlinear inverse problem of gravimetry instead of the
linear one, the problem gets more difficult because of the nonlinearity. On the other hand,
the solution of the nonlinear problem is both unique and stable (at least in theory), which is
advantageous and beneficial for the numerical solution of the inverse problem.

We want to mention that one can also formulate the nonlinear inverse gravimetric prob-
lem as an inverse source problem for a partial differential equation, namely, the Poisson
equation. This was, for example, done by Hettlich and Rundell (1996). Other inverse source
problems of this type are related to the heat equation (see, for example, Hettlich and Run-
dell 1997) and the Helmholtz equation (see, for example, Elschner and Yamamoto 2006;
Hettlich and Rundell 2000).

3.3 The Gâteaux and Fréchet derivative of the nonlinear operator

Most algorithms for nonlinear inverse problems use either the Fréchet or Gâteaux derivative
of the involved operator. Therefore, we will first compute the Gâteaux derivative of the
operator Sρ both as an operator C(S2)→ C(S) and L2(S2)→ L2(S), where S is a regular
surface.

To compute the Gâteaux derivative, we will use the following special case of Leibniz’
rule for differentiation of integrals (cf. Holmes 2009, Theorem 6.2).

Lemma 10 Let f ,g : R→ R be sufficiently smooth. Then

d
dt

∫ g(t)

0
f (x)dx = f (g(t))g′(t).
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The Gâteaux derivative S ′ρ [σ ](τ) : C(S2) → C(S) at σ ∈ C(S2) in the direction τ ∈
C(S2) can now be obtained by an application of the preceding lemma to the expression in
(6):

S ′ρ [σ ](τ)(y) =
d

dε
Sρ [σ + ετ] (y)

∣∣∣∣
ε=0

∼
∫
S2

d
dε

∫
σ(ξ )+ετ(ξ )

0

ρ(r ξ )

|r ξ − y|
r2 dr

∣∣∣∣
ε=0

dω(ξ )

=
∫
S2

ρ((σ(ξ )+ ετ(ξ ))ξ )

|(σ(ξ )+ ετ(ξ ))ξ − y|
(σ(ξ )+ ετ(ξ ))2

τ(ξ )

∣∣∣∣
ε=0

dω(ξ )

=
∫
S2

ρ(σ(ξ )ξ )

|σ(ξ )ξ − y|
(σ(ξ ))2

τ(ξ )dω(ξ ) (7)

for all y ∈ S. The symbol ∼ in the second line should indicate that we assumed that the
interchanging of differentiation and integration is possible. Of course, this would have to be
proved. Since we prove in the following that the term in (7) is not only the Gâteaux, but also
the Fréchet derivative under certain assumptions, we can omit this proof, since the Fréchet
derivative is always also the Gâteaux derivative.

Theorem 11 Let ρ ∈ C(1)(Sint). Then, the Fréchet derivative of the operator Sρ : C(S2)→
C(S) is given as

S ′ρ [σ ](τ)(y) =
∫
S2

ρ(σ(ξ )ξ )

|σ(ξ )ξ − y|
(σ(ξ ))2

τ(ξ )dω(ξ )

for all σ ,τ ∈ C(S2) and y ∈ S, assuming there exists C > 0 such that |σ(ξ )ξ − y| > C for
all ξ ∈ S2 and y ∈ S (i. e., Σ ⊆ Sint).

Proof For the sake of brevity, we define

k(x,y) :=
ρ(x)
|x− y|

|x|2

such that

Sρ [σ ] (y) =
∫
S2

∫
σ(ξ )

0
k(rξ ,y)dr dω(ξ ).

Note that

∇xk(x,y) =
|x|2

|x− y|
∇xρ(x)+2

ρ(x)
|x− y|

x−ρ(x)|x|2 x− y

|x− y|3

and

|∇xk(x,y)| ≤
R2

Sint

C
‖ρ‖C(1)(Sint∗ )+2

‖ρ‖C(Sint∗ )

C
RSint +‖ρ‖C(Sint∗ )R

2
Sint

1
C2 < ∞ (8)

for all x ∈ Sint
∗ and y ∈ S, where

Sint
∗ :=

{
x ∈ Sint

∣∣∣ |x− y|>C for all y ∈ S
}
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and RSint := maxy∈S|y|. Consequently,

‖k(·,y)‖C(1)(Sint∗ ) < ∞

and since the right-hand side of (8) does not depend on y, we even have

sup
y∈S
‖k(·,y)‖C(1)(Sint∗ ) < ∞. (9)

Let y ∈ S be fixed. Then, if we consider the term that arises from the definition of the
Fréchet derivative, we obtain for sufficiently small τ ∈ C(S2) that∣∣∣∣∫S2

∫
σ(ξ )+τ(ξ )

0
k(rξ ,y)dr dω(ξ )−

∫
S2

∫
σ(ξ )

0
k(rξ ,y)dr dω(ξ )

−
∫
S2

k(σ(ξ )ξ ,y)τ(ξ )dω(ξ )

∣∣∣∣ (10)

=

∣∣∣∣∫S2

∫
σ(ξ )+τ(ξ )

σ(ξ )
k(rξ ,y)dr dω(ξ )−

∫
S2

k(σ(ξ )ξ ,y)τ(ξ )dω(ξ )

∣∣∣∣
=

∣∣∣∣∫S2

∫
σ(ξ )+τ(ξ )

σ(ξ )
k(rξ ,y)dr− k(σ(ξ )ξ ,y)τ(ξ )dω(ξ )

∣∣∣∣
≤
∫
S2

∣∣∣∣∫ σ(ξ )+τ(ξ )

σ(ξ )
k(rξ ,y)dr− k(σ(ξ )ξ ,y)τ(ξ )

∣∣∣∣dω(ξ ) (11)

=
∫
S2

∣∣∣∣∫ τ(ξ )

0
k((σ(ξ )+ r)ξ ,y)dr− k(σ(ξ )ξ ,y)τ(ξ )

∣∣∣∣dω(ξ ) (12)

=
∫
S2
|k((σ(ξ )+ r)ξ ,y)τ(ξ )− k(σ(ξ )ξ ,y)τ(ξ )|dω(ξ ) (13)

=
∫
S2
|k((σ(ξ )+ r)ξ ,y)− k(σ(ξ )ξ ,y)||τ(ξ )|dω(ξ )

=
∫
S2

∣∣∣∣r[ ∂

∂ r
k((σ(ξ )+ r)ξ ,y)

]
r=r̂

∣∣∣∣|τ(ξ )|dω(ξ ) (14)

≤ ‖k(·,y)‖C(1)(Sint∗ )‖τ‖
2
L2(S2) (15)

≤ 4π‖k(·,y)‖C(1)(Sint∗ )‖τ‖
2
C(S2), (16)

where we used the triangle inequality in (11), a substitution in (12), the existence of r ∈
[0,τ(ξ )] such that the equality in (13) holds due to the intermediate value theorem for in-
tegrals, and the existence of r̂ ∈ [0,r], such that the identity holds due to the intermediate
value theorem for differentiation in (14). Furthermore, we employed r̄ ≤ |τ(ξ )| and (8) in
(15) and the relation between the norms in L2(S2) and C(S2) in (16). Note that we have to
require τ to be sufficiently small such that |(σ(ξ )+ τ(ξ ))ξ − y|>C holds, implying a finite
C(1)(Sint

∗ )-norm of k.
It follows that

sup
y∈S

∣∣∣∣∫S2

∫
σ(ξ )+τ(ξ )

0
k(rξ ,y)dr dω(ξ )−

∫
S2

∫
σ(ξ )

0
k(rξ ,y)dr dω(ξ )

−
∫
S2

k(σ(ξ )ξ ,y)τ(ξ )dω(ξ )

∣∣∣∣
≤ 4π sup

y∈S
‖k(·,y)‖C(1)(Sint∗ )‖τ‖

2
C(S2),
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which proves the assertion since the latter term tends to 0 even if it is divided by ‖τ‖C(S2)

and the term in (10) is exactly the linearization term that arises in the definition of a Fréchet
derivative.

Often, one would like to apply Hilbert space techniques in the analysis and numerical
solution of inverse problems. Up to now, we have only considered the operator Sρ as an
operator C(S2)→ C(S). To consider it as an operator L2(S2)→ L2(S), we have to ensure
the existence of the integrals in the definition of the operator. Furthermore, we can prove
that the image is an L2(S)-function.

Theorem 12 Let ρ ∈ L∞(Sint) and let σ ∈ L2(S2) such that |σ(ξ )ξ − y|>C for almost all
ξ ∈ S2 and some constant C > 0. Then, we have for almost all y ∈ S that

∫
S2

∫
σ(ξ )

0

ρ(r ξ )

|r ξ − y|
r2 dr dω(ξ )< ∞.

Furthermore, Sρ [σ ] ∈ L2(S).

Proof Let k, Sint
∗ , and RSint be defined as in the proof of the previous theorem. Then, we have

|k(x,y)|= |ρ(x)||x− y|
|x|2 ≤

‖ρ‖L∞(Sint)

C
R2

Sint < ∞ (17)

for almost all (x,y) ∈ Sint
∗ ×S such that

‖k(·,y)‖L∞(Sint∗ ) < ∞.

Thus, ∣∣∣∣∫S2

∫
σ(ξ )

0
k(rξ ,y)dr dω(ξ )

∣∣∣∣≤ ∫S2
‖k(·,y)‖L∞(Sint∗ )

∣∣∣∣∫ σ(ξ )

0
dr
∣∣∣∣dω(ξ )

≤ ‖k(·,y)‖L∞(Sint∗ )‖σ‖L1(S2)

≤
√

4π‖k(·,y)‖L∞(Sint∗ )‖σ‖L2(S2) < ∞,

for almost all y ∈ S, which proves the first assertion.
Since the penultimate term in (17) does not depend on y, we observe that∫

S

(
Sρ [σ ] (y)

)2 dω(y)≤ 4π‖σ‖2
L2(S2)

∫
S

(
‖k(·,y)‖L∞(Sint∗ )

)2
dω(y)

≤ 4π‖σ‖2
L2(S2)

∫
S

‖ρ‖2
L∞(Sint)

C2 R4
Sint dω(y)

= 4π‖σ‖2
L2(S2)ω(S)

‖ρ‖2
L∞(Sint)

C2 R4
Sint < ∞,

where ω(S) is the surface measure of the regular surface S. This yields Sρ [σ ] ∈ L2(S).

Using the same technique as in Theorem 11, we can prove the Fréchet differentiability
of the operator Sρ : L2(S2)→ L2(S).
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Theorem 13 Let ρ ∈C(1)(Sint). Then, the Fréchet derivative of the operator Sρ : L2(S2)→
L2(S) is given as

S ′ρ [σ ](τ)(y) =
∫
S2

ρ(σ(ξ )ξ )

|σ(ξ )ξ − y|
(σ(ξ ))2

τ(ξ )dω(ξ )

for all σ ,τ ∈ L2(S2) and y ∈ S, assuming there exists C > 0 such that |σ(ξ )ξ − y| >C for
almost all ξ ∈ S2 and y ∈ S.

Proof Define k, Sint
∗ , and RSint as in the proof of Theorem 11. From (9), we obtain that∫
S
‖k(·,y)‖2

C(1)(Sint∗ )
dω(y)≤ ω(S)sup

y∈S
‖k(·,y)‖2

C(1)(Sint∗ )
< ∞. (18)

The inequalities in (10)–(15) are still true such that∣∣∣∣∫S2

∫
σ(ξ )+τ(ξ )

0
k(rξ ,y)dr dω(ξ )−

∫
S2

∫
σ(ξ )

0
k(rξ ,y)dr dω(ξ )

−
∫
S2

k(σ(ξ )ξ ,y)τ(ξ )dω(ξ )

∣∣∣∣
≤ ‖k(·,y)‖C(1)(Sint∗ )‖τ‖

2
L2(S2)

for almost all y ∈ S. An application of (18) proves the assertion.

4 Derivation of the algorithm

We base our considerations on the algorithms of Gauß-Newton type, which are popular
methods for the solution of Problem 1, where we restrict ourselves to the case Y = R`,
which arises in practice. Examples of these methods are the Levenberg-Marquardt method
and the iteratively regularized Gauß-Newton method (cf. Kaltenbacher et al. 2008, Chap-
ter 4). The idea of these methods is the iterative minimization of the linearized Tikhonov
functional ∥∥g−S[ fk]−S ′[ fk]( fk+1− fk)

∥∥2
R` +λk+1‖ fk+1− f ◦k ‖

2
X , (19)

for fk+1 ∈X , given g ∈ R`, fk, f ◦k ∈X , and λk+1 > 0. Here, S ′[ f ] : X → R` denotes the
Fréchet derivative of S at f ∈X .

For a linear operator T , by choosing f ◦k = 0, λk+1 = λ for all k, and bearing in mind
that T ′[ f ](h) = T (h), one obtains the same Tikhonov functional that has been used in the
derivation of the FMP and the RFMP (see (1)). For nonlinear problems, the term f ◦k in the
penalty term takes into account that the zero element in X plays no special role, in contrast
to linear inverse problems, where T (0) = 0 if T is linear.

The already mentioned Gauß-Newton methods solve the minimization of the functional
in (19) by solving the corresponding (regularized) normal equation. This, consequently,
yields the iterative scheme(

S ′[ fk]
∗S ′[ fk]+λI

)
( fk+1− fk) = S ′[ fk]

∗
(g−S[ fk])+λk+1( f ◦k − fk).

Here, the Levenberg-Marquardt method and the iteratively regularized Gauß-Newton method
correspond to f ◦k = fk and f ◦k = f0, respectively.
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We will now use the idea of iteratively minimizing the functional in (19) to obtain a
greedy algorithm for nonlinear inverse problems. In analogy to the RFMP, we choose a
dictionary D ⊆ X , a fixed regularization parameter λ > 0, and an initial approximation
f0 ∈X . We then iteratively define a sequence ( fk)k∈N0

of approximations to the solution f ∗

by
fk+1 := fk +αk+1dk+1.

We will now determine how αk+1 ∈ R and dk+1 ∈ D have to be chosen to minimize the
linearized Tikhonov functional

Ãλ [g, fk, f ◦k ,d,α] =
∥∥g−S[ fk]−αS ′[ fk](d)

∥∥2
R` +λ‖( fk− f ◦k )+αd‖2

X ,

for given g ∈R`, λ > 0, and fk, f ◦k ∈X . Using the technique of the derivation of the RFMP
from Fischer (2011); Fischer and Michel (2012); Michel (2015), we first observe that

Ãλ [g, fk, f ◦k ,d,α] = ‖rk‖2
Y −2α

〈
rk,S ′[ fk](d)

〉
Y

+α
2∥∥S ′[ fk](d)

∥∥2
Y

+λ

(
‖ fk− f ◦k ‖

2
X +2α〈 fk− f ◦k ,d〉X +α

2‖d‖2
X

)
=
(
‖rk‖2

Y +λ‖ fk− f ◦k ‖
2
X

)
−2α

(〈
rk,S ′[ fk](d)

〉
Y
−λ 〈 fk− f ◦k ,d〉X

)
+α

2
(∥∥S ′[ fk](d)

∥∥2
Y

+λ‖d‖2
X

)
, (20)

where rk := g−S[ fk]. For fixed d ∈D , a necessary condition for the minimization of Ãλ is

0 =
∂

∂α
Ãλ [g, fk, f ◦k ,d,α]

=−2
(〈

rk,S ′[ fk](d)
〉
Y
−λ 〈 fk− f ◦k ,d〉X

)
+2α

(∥∥S ′[ fk](d)
∥∥2

Y
+λ‖d‖2

X

)
, (21)

which, for the minimizer α = αk+1, is equivalent to

αk+1 =
〈rk,S ′[ fk](d)〉Y −λ

〈
fk− f ◦k ,d

〉
X

‖S ′[ fk](d)‖2
Y +λ‖d‖2

X

. (22)

Note that Ãλ is convex with respect to α , since it can be seen in (20) that it corresponds to
a quadratic polynomial with a positive leading coefficient. Thus, the condition in (21) is not
only necessary but also sufficient for the minimization of Ãλ .

Inserting (22) into (20) yields

Ãλ [g, fk, f ◦k ,d,αk+1] =
(
‖rk‖2

Y +λ‖ fk− f ◦k ‖
2
X

)
−2

(
〈rk,S ′[ fk](d)〉Y −λ

〈
fk− f ◦k ,d

〉
X

)2

‖S ′[ fk](d)‖2
Y +λ‖d‖2

X

+

(
〈rk,S ′[ fk](d)〉Y −λ

〈
fk− f ◦k ,d

〉
X

)2

‖S ′[ fk](d)‖2
Y +λ‖d‖2

X

=
(
‖rk‖2

Y +λ‖ fk− f ◦k ‖
2
X

)
−
(
〈rk,S ′[ fk](d)〉Y −λ

〈
fk− f ◦k ,d

〉
X

)2

‖S ′[ fk](d)‖2
Y +λ‖d‖2

X

.
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We observe that the first term does not depend on d. Thus, the pair (αk+1,dk+1) ∈ R×D is
a minimizer of Ãλ

[
g, fk, f ◦k , ·, ·

]
if and only if

dk+1 = argmax
d∈D

(
〈rk,S ′[ fk](d)〉Y −λ

〈
fk− f ◦k ,d

〉
X

)2

‖S ′[ fk](d)‖2
Y +λ‖d‖2

X

,

αk+1 =
〈rk,S ′[ fk](dk+1)〉Y −λ

〈
fk− f ◦k ,dk+1

〉
X

‖S ′[ fk](dk+1)‖2
Y +λ‖dk+1‖2

X

holds if we assume that a maximizer exists in the first equation. These two identities will be
the key ingredient of the following algorithm.

Algorithm 14 (RFMP for Nonlinear Problems, RFMP_NL) Let S : X → R` and g ∈
Rd be given as in Problem 1. Choose a dictionary D ⊆X \{0}, an initial approximation
f0 ∈X , and a regularization parameter λ > 0. Furthermore, specify the type of regulariza-
tion by choosing the sequence f ◦k ∈X , for example, as one of the options stated above.

1. Set k := 0, define the residual r0 := g−S[ f0] and choose a stopping criterion.
2. Find

dk+1 = argmax
d∈D

(
〈rk,S ′[ fk](d)〉Y −λ

〈
fk− f ◦k ,d

〉
X

)2

‖S ′[ fk](d)‖2
Y +λ‖d‖2

X

and set

αk+1 :=
〈rk,S ′[ fk](dk+1)〉Y −λ

〈
fk− f ◦k ,dk+1

〉
X

‖S ′[ fk](dk+1)‖2
Y +λ‖dk+1‖2

X

,

as well as fk+1 := fk +αk+1dk+1 and rk+1 := g−S[ fk+1].
3. If the stopping criterion is satisfied, then fk+1 is the output. Otherwise, increase k by 1

and return to step 2.

5 Comparison to other methods

Most methods for nonlinear inverse problems are iterative (for an overview, see, for exam-
ple, the book Kaltenbacher et al. 2008). Examples are the already mentioned Gauß-Newton
methods, where a linearized Tikhonov functional (therefore Newton) is minimized by solv-
ing a normal equation (therefore Gauß). The linearized Tikhonov functional itself is ob-
tained by applying a Tikhonov regularization to the linearized equation that would be solved
by a pure Newton method. Representatives of this category of methods are the Levenberg-
Marquardt method (see Levenberg 1944; Marquardt 1963) and the iteratively regularized
Gauß-Newton method (see Bakushinsky 1992). A substantially different classical category
of methods for nonlinear inverse problems are gradient-type methods, in particular, the
Landweber method, which can be applied to linear (see Landweber 1951) and nonlinear
inverse problems (see Hanke et al. 1995). Furthermore, (direct) Tikhonov regularization
methods (see Tikhonov and Glasko 1965), multilevel methods (see Kaltenbacher et al. 2008,
Chapter 5), and sequential subspace optimization methods (see Wald and Schuster 2017)
have been developed for nonlinear inverse problems. Especially, we want to mention level
set methods (see, for example, the survey by Burger and Osher 2005), since these are meth-
ods that are often used for problems like the nonlinear inverse gravimetric problem, where
a domain is the unknown. Although the latter possess several advantageous properties, for
example, one is able to recover domains that are not star-shaped or even unconnected, one
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does not directly get an explicit representation of the surface of the unknown domain (al-
though one can try to obtain such a representation in a post-processing step). In contrast,
we directly obtain such a representation in spherical coordinates, which is desirable from
the geophysical perspective. Furthermore, the assumptions that the Earth’s interior (and also
the part of the Earth that is inside a boundary layer like the Mohorovičić discontinuity) is
connected or even star-shaped is a good model of the reality.

In the following, we want to compare the newly developed RFMP_NL with existing
methods for nonlinear problems from the algorithmic point of view. First, there are several
similarities between all of the methods. The RFMP_NL is an iterative method, like most of
the established methods. Even if these are not iterative by themselves, like Tikhonov regu-
larization, often iterative optimization algorithms have to be used inside these algorithms.
As stated above, the derivation of the RFMP_NL was actually motivated by Gauß-Newton
methods, which shows the clear similarity to these methods.

Secondly, there are also several differences to other methods, both advantages and dis-
advantages. A disadvantage of the RFMP_NL is the fact that we currently do not have an
accurate theoretical analysis of the method, that is, no convergence or regularization result.
These results have already been very elaborate to obtain in the case of greedy algorithms
(RFMP, ROFMP, RWFMP) for linear inverse problems (see the considerations in Fischer
2011; Kontak 2018; Kontak and Michel 2018; Michel 2015; Michel and Orzlowski 2017;
Michel and Telschow 2016; Telschow 2014), and we expect it to be much more difficult
in the nonlinear case. Moreover, since the dictionary does not need to form a basis of the
underlying Hilbert space, the linear combination of the approximation that is provided by
the RFMP_NL may not be optimal, since the approximation has no unique representation
with respect to the dictionary. Nevertheless, the RFMP_NL also has several advantages
in comparison to the existing methods. Most of these other methods are given in a pure,
infinite-dimensional, Hilbert (or Banach) space formulation. Naturally, it is not possible to
implement these methods directly on a computer. Thus, one has to choose a specific basis
system in order to implement the method. It is necessary that this system is a basis to en-
sure the regularity of the arising linear systems, for example, in the Levenberg-Marquardt
method and using ansatz functions for the solution that are linearly dependent may lead to
singular matrices. In contrast, the RFMP_NL can handle very diverse types of basis func-
tions (for example, global and localized functions) and will choose those functions that are
best adapted to the structure of the solution. This is especially important in those applica-
tions, for example, in geophysics, where global structures like the Earth’s ellipticity must
be distinguished from local structures like mountains. Furthermore, there even is no need
at all to solve linear systems, like in most of the other methods. Thus, one does not need
to care about the condition of arising matrices, which may require a stabilization, and there
is also no need to apply iterative solvers for the arising linear systems, which is often the
most efficient way when implementing the other methods. Furthermore, an additional ad-
vantage of the RFMP_NL is that there is no need to know the adjoint operator of the Fréchet
derivative. The operator itself even does not need to be Fréchet differentiable. Since the
linearization of operators (like in the linearized Tikhonov functional) is also possible using
the Gâteaux derivative (see, for example, Cea 1978, Section 1.2), Gâteaux differentiability
would actually be enough in this context.



18 Max Kontak, Volker Michel

6 Application to the nonlinear inverse gravimetric problem

Here, we will apply the RFMP_NL, which was derived in Section 4, to the nonlinear inverse
gravimetric problem, which was presented in Section 3.

First, we will give some details about the implementation of the algorithm. Then, we
will present numerical results for two synthetic scenarios, where we use a variation of dic-
tionaries and prescribed solutions.

6.1 Details of the implementation

The algorithm was implemented in the C Programming Language (see Kerningham and
Ritchie 1988) using the GNU Scientific Library (see Galassi et al. 2009), and a paralleliza-
tion with OpenMP (see Dagum and Menon 1998; OpenMP Architecture Review Board
2013).

Besides the implementation of the algorithm itself, which we will discuss later in this
section, we need an implementation of the nonlinear operator that is associated to the non-
linear inverse gravimetric problem as well as its derivative.

Remember that the operator Sρ of the nonlinear inverse gravimetric problem is given as

Sρ [σ ] (y) =
∫
S2

∫
σ(ξ )

0

ρ(r ξ )

|r ξ − y|
r2 dr dω(ξ ), y ∈ S,

and its Fréchet and Gâteaux derivatives possess the form

S ′ρ [σ ](τ)(y) =
∫
S2

ρ(σ(ξ )ξ )

|σ(ξ )ξ − y|
(σ(ξ ))2

τ(ξ )dω(ξ ), y ∈ S.

We will restrict ourselves to constant density ρ ≡ 1 in all of the numerical examples. For the
sake of readability, as in the proof of Theorem 11, we define the function k : Sint×S→ R,

k(x,y) :=
1
|x− y|

|x|2

such that

Sρ [σ ] (y) =
∫
S2

∫
σ(ξ )

0
k(rξ ,y)dr dω(ξ ), (23)

S ′ρ [σ ](τ)(y) =
∫
S2

k(σ(ξ )ξ ,y)τ(ξ )dω(ξ ). (24)

We first deal with a numerical integration method on S2, since it is needed in both (23)
and (24). The method, which we will use, was developed in Driscoll and Healy (1994) and
is based on the following point grid.

Definition 15 (cf. Michel 2013, Theorem 7.33) Let m∈N. Let the points ηp,q =η(ϕq, tp)∈
S2 be defined by the polar coordinates

ϕq =
2πq

m+1
, q = 0, . . . ,m,

tp = cos
(

π p
m+1

)
, p = 0, . . . ,m.

Then,
{

ηp,q
∣∣ p,q = 0, . . . ,m

}
is called the Driscoll-Healy grid.
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For spherical harmonics up to degree m, there exists an exact integration formula using
the Driscoll-Healy grid.

Theorem 16 (cf. Michel 2013, Theorem 7.33) Let f ∈ Harm0...m
(
S2
)

for an odd number
m∈N and let

{
ηp,q

∣∣ p,q = 0, . . . ,m
}

be the Driscoll-Healy grid. Let the integration weights
a0, . . . ,am ∈ R be defined as

ap :=
4

m+1
sin
(

π p
m+1

) (m+1)/2−1

∑
s=0

1
2s+1

sin
(
(2s+1)

π p
m+1

)
for p = 0, . . . ,m.

Then, ∫
S2

f (η)dω(η) =
2π

m+1

m

∑
p=0

ap

m

∑
q=0

F(ηp,q).

For all of the arising integrals over the sphere, we use exactly this method with parameter
m = 99. It remains to choose an integration method for the radial integral in (23). We apply
a simple partitioned trapezoidal rule with 100 points.

An alternative for the numerical calculation of the integral in (23) is to transform the
integral to the ball B1 such that∫

S2

∫
σ(ξ )

0
k(rξ ,y)dr dω(ξ ) =

∫
S2

∫ 1

0
k(tσ(ξ )ξ ,y)σ(ξ )dt dω(ξ )

=
∫
B1

k
(
|x|σ

(
x
|x|

)
x
|x|

,y
)

σ

(
x
|x|

)
1

|x|2
dx

and apply an integration method for the ball, as for example derived by Amna and Michel
(2017), but for the simplicity of the implementation, we do not pursue this approach.

The general procedure for the presented numerical experiments will be as follows.

1. Prescribe a solution σsol : S2 → (0,∞) and use numerical integration to compute syn-
thetic data g j := S1[σsol] (y j), j = 1, . . . ,J, where (y j) j=1,...,J ⊆ S are points on a sphere
with radius R, S := S2

R :=
{

x ∈ R3
∣∣ |x|= R

}
. Ensure that R > supξ∈S2 σsol(ξ ).

2. Apply 1% of noise to g j.
3. Choose a function space X (S2)⊆ L2(S2) and a dictionary D ⊆X (S2)\{0}.
4. Define a set (λs)s=1,...,S of regularization parameters and define the sequence ( f ◦k )k of

functions, which determines the type of regularization.
5. For each regularization parameter, run the RFMP_NL using the noisy data and the pre-

defined dictionary.
6. Choose the regularization parameter, which yields the lowest approximation error.

Note that, in practice, one should ensure that the condition R > supξ∈S2 σsol(ξ ) is also
true for R−ε instead of R for some sufficiently large ε > 0, since noisy data and inaccuracies
in the calculation of the approximate solution could cause larger values of σ in comparison
to the exact solution. In our numerical examples, the sphere where the data are given is,
indeed, at a sufficiently high altitude which is larger than the maximum of the recovered
solution.

In general, we will look at two different scenarios. The first one will use a contrived
solution with purely global structures and a dictionary of spherical harmonics for a specific
combination of the regularization term and the function space. The second one will combine
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Figure 3: Prescribed solution in Example 1: describes an ellipsoid of revolution with aspect
ratio 0.8

both global and local features in the prescribed solution and correspondingly, the dictionary
will consist of spherical harmonics and Abel-Poisson kernels. For the second scenario, we
will compare the different alternatives for the regularization term and the function space. For
the combination that yields the lowest approximation error we will present concrete results
for the two different prescribed solutions.

6.2 Example 1: ellipsoid of revolution

We prescribe the solution

f (ξ ) := σsol(ξ ) :=
1√

ξ 2
1 +ξ 2

2 +
(

ξ3
0.8

)2
,

such that it can easily be seen that

Σ
int =

{
rξ ∈ R3 ∣∣ ξ ∈ S2,r < σ(ξ )

}
represents an ellipsoid of revolution with aspect ratio 0.8. The solution is depicted in Fig-
ure 3 in spherical coordinates. We evaluated the gravitational potential in 10000 points on a
Driscoll-Healy grid with m = 99 on a sphere of radius 1.1.

The prescribed solution consists only of global structures. Consequently, we chose a dic-
tionary that consists of global functions, namely, spherical harmonics, only. The dictionary

D :=
{

Yn, j
∣∣ n = 0, . . . ,25; j =−n, . . . ,n

}
consists of all spherical harmonics up to degree and order 25 such that #D = 676. We chose
the function space X (S2) = L2(S2) and set f ◦k := f0 for k ∈ N0 such that the regulariza-
tion term corresponds to the term that is also used in the iteratively regularized Gauß-
Newton method. As the initial approximation, we chose f0 ≡ 0.8, corresponding to the
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sphere with radius 0.8. We performed 200 iterations of the RFMP_NL. As already men-
tioned, we chose the regularization parameter by executing the algorithm for a sequence of
regularization parameters and obtained λ = 1.585×10−2 as the regularization parameter,
which minimizes the approximation error. The development of the relative residual, that
is, ‖g−S[ fk]‖Y /‖g‖Y , and the relative approximation error, that is, ‖ f − fk‖X /‖ f‖X ,
during the iteration can be found in Figure 4A. The approximation after 200 iterations is
depicted in Figure 4B. Moreover, the pointwise difference of the approximation after 200
iterations and the solution is shown in Figure 4C.

In the analysis of Figure 4A, we first consider the residual. We observe that the relative
residual drops rapidly below 1% in the first few iterations. Since we used a noise level of 1%
in the data space, this is what we would expect. This also shows that the algorithm works
as it should, since (ignoring the regularization) it was derived as a minimization algorithm
for the (linearized) residual. Considering the relative approximation error, we observe that
the final value after 200 iterations is approximately 1.4%. Due to the ill-posedness and the
nonlinearity of the inverse problem, it is not surprising that the approximation error is larger
than the residual and the noise level. Indeed, a factor of 1.4 between the approximation error
and the noise level is a good result for an algorithm for ill-posed inverse problems. Unfor-
tunately, we also observe that the error is even lower in several of the earlier iterations. It
would, consequently, be even more efficient to stop the algorithm, when the error is mini-
mal. Since, in general, we do not know the solution, this cannot be achieved. Looking at the
results that we obtained by the RFMP_NL for all of the other regularization parameters (not
shown here), we can say that for these parameters the difference between the minimal error
and the error after 200 iterations is even larger such that, currently, the results presented
in Figure 4 are the best we could achieve. Of course, one could also think about stopping
the iteration earlier, for example, using a discrepancy principle, which is a common pro-
cedure for iterative regularization methods. From methods like the Levenberg-Marquardt
algorithm, it is known that one would have to choose a different regularization parameter
in every iteration, which is even more difficult. This is why we postpone this subject to our
future research.

The approximation itself and the approximation error as a function in spherical coordi-
nates are shown in Figures 4B and 4C, respectively. In addition to the plot of the approxima-
tion error in spherical coordinates in Figure 4C, we also provide a three-dimensional plot on
the sphere in Figure 5 to account for the misperception of structures around the poles that
might arise due to the cartographic projection. It can be seen that the error is very small ev-
erywhere on the sphere. Its absolute value is nowhere larger than 0.01, where the surface of
the body of mass is between 0.8 and 1 units away from the center. We find that there are sev-
eral small artefacts in the approximation error distributed over the whole sphere. From the
application of the RFMP (and other regularization methods) to linear inverse problems, we
know that such artefacts normally arise if the regularization parameter is chosen too low. As
already said, we observed larger approximation errors for larger values of the regularization
parameter such that we do not believe that the artefacts arise from under-regularization.

Nevertheless, we can say that, for this example, the approximations generated by the
RFMP_NL after 200 iterations are very good, since the relative approximation error is only
1.4% for a noise level of 1%.
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(a) Development of the relative residual (purple) and the relative approximation error (blue) during the itera-
tion of the RFMP_NL.
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(b) Approximation generated by the RFMP_NL.
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(c) Difference of the solution and the approximation generated by the RFMP_NL.

Figure 4: Results from the application of the RFMP_NL in Example 1.
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Figure 5: Three-dimensional plot of the approximation error after 200 iterations of the
RFMP_NL in Example 1 as a function on the sphere.

6.3 Example 2: ellipsoid and added Abel-Poisson kernels

In the introduction, we stressed that the RFMP for linear inverse problems proved to be able
to combine different types of basis functions. Therefore, in this section we will discuss an
example, which will show that this is also true in practice for the RFMP_NL.

In this case, we will first compare different possibilities for the chosen function spaces
and the regularization term. Afterwards, we will consider the numerical results of the com-
bination of a function space and a regularization term that yielded the smallest error.

We chose a dictionary D that consists of spherical harmonics up to degree 9 and Abel-
Poisson kernels with parameter h = 0.7, which are centered on a Driscoll-Healy grid with
parameter m = 25, yielding 100 spherical harmonics and 652 Abel-Poisson kernels to obtain
#D = 752 in total. The prescribed solution consisted of a sum of the function used in the
first example corresponding to an ellipsoid of revolution and two Abel-Poisson kernels with
parameter h = 0.7, which are centered at 41◦N, 96◦W and 41◦S, 96◦E. The solution is
depicted in Figure 6.

To obtain data for this second synthetic example, we evaluated the gravitational potential
at 10000 points on a Driscoll-Healy grid on the sphere with radius 1.2.

In Table 1, we gather the approximation errors for two different types of regulariza-
tion terms and three different function spaces X (S2). For every combination, we executed
200 iterations of the RFMP_NL with several regularization parameters. The values in the
table are the lowest approximation errors that we obtained among all of the regularization
parameters. As already mentioned before, choosing f ◦k = f0 in the RFMP_NL is analo-
gous to the iteratively regularized Gauß-Newton method, and f ◦k = fk is analogous to the
Levenberg-Marquardt method. This is the reason why we compare these two choices for the
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Figure 6: Prescribed solution in Example 2: the sum of an ellipsoid of revolution and two
Abel-Poisson kernels.

Table 1: Approximation errors for different choices of the regularization term and the func-
tion spaces in Example 2. The minimum approximation error is set in bold font.

Function space f ◦k = f0 f ◦k = fk

L2(S2) 3.10% 3.20%
H1(S2) 3.26% 3.23%
H2(S2) 3.30% 3.22%

regularization term. Apart from the space L2(S2), we also considered the inverse problem
in the Sobolev spaces H1(S2) and H2(S2) (for a definition see, for example, Freeden et al.
1998, Section 5.1).

We observe that the combination of f ◦k = f0 and the space L2(S2) yields the best results,
although all of the other results have the same order of magnitude. We, consequently, stick
to this combination in the further analysis of the results. This also has the advantage that
L2(S2)-norms of the functions in the dictionary, in general, can be more easily computed
compared to the Sobolev norms. There, one has to compute a truncated Legendre series,
which is much more expensive from the computational point of view.

In Figure 7, we present the results after 200 iterations of the RFMP_NL for this combi-
nation for the optimal regularization parameter. This figure is analogous to Figure 4, which
we presented for the first numerical example.

Considering the development of the approximation error and the residual throughout the
iteration in Figure 7A, we observe again that the relative residual drops rapidly in the first
few iterations to a value of 0.7%, which is below the noise level. The relative approximation
error attains a value of 3.10% after 200 iterations. This is again a very good result if one
considered that the data were equipped with a noise level of 1%.

The approximation itself in Figure 7B and the approximation error in Figure 7C are
larger in those areas, where the local structures of the solution can be found. In particular,
the maximal error is located in the centers of the Abel-Poisson kernels that are present in the
prescribed solution. Interestingly, in contrast to the first example, we do not see such a big
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(a) Development of the relative residual (purple) and the relative approximation error (blue) during the itera-
tion of the RFMP_NL.
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(b) Approximation generated by the RFMP_NL.
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(c) Difference of the solution and the approximation generated by the RFMP_NL.

Figure 7: Results from the application of the RFMP_NL in Example 2.



26 Max Kontak, Volker Michel

-90

-72

-54

-36

-18

0

18

36

54

72

90

-180 -144 -108 -72 -36 0 36 72 108 144 180

la
tit

ud
e/
◦

longitude/◦

Figure 8: Plot of the centers of the Abel-Poisson kernels that are present in the solution
(blue) and the approximation (purple).

amount of artefacts in the error. A look at the absolute values of the pointwise approxima-
tion error again shows that the obtained results are very good, since it never exceeds 0.02,
whereas the surface of the body of mass is between 0.8 and 1.1 units away from the center.

If one considers the dictionary elements that were chosen by the RFMP_NL, we observe
that the algorithm chose spherical harmonics in 187 of the iterations and Abel-Poisson ker-
nels in only 13 iterations. The algorithm can choose functions from the dictionary multiple
times such that the solution consisted of only 89 distinct spherical harmonics and 13 distinct
Abel-Poisson kernels. We displayed the centers of these Abel-Poisson kernels in Figure 8
alongside the centers of the kernels that are present in the solution. We observe that 8 of
the 13 chosen kernels have their centers near to the kernels of the solution. One of the two
kernels in the solution is even chosen itself. Due to the use of noisy data, also some kernels
are chosen that are centered where there is no kernel in the solution.

In conclusion, we can say that also in this example, the RFMP_NL produces very good
approximations of the prescribed solution. In the derivation of the algorithm, we stated that
it will be possible to combine different types of basis functions. The presented example
shows that this is indeed true in practice and the results are very promising due to the low
approximation errors.

7 Conclusions and outlook

In this paper, we derived the Regularized Functional Matching Pursuit for nonlinear inverse
problems (RFMP_NL), which is a greedy-type algorithm for nonlinear inverse problems,
and applied it to the nonlinear inverse gravimetric problem. For this nonlinear inverse prob-
lem, we stated the differences in comparison to the linear inverse gravimetric problem from
the theoretical point of view and provided the Fréchet derivative of the associated nonlinear
integral operator. Finally, we have applied the RFMP_NL to two synthetic examples, incor-
porating both only global as well as global and local structures in the prescribed solutions.
Empirically, it can be seen that the algorithm shows a convergent behavior in both of the ex-
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amples and that it also combines diverse types of basis functions to build a solution, which
is what the RFMP also did for linear inverse problems.

Consequently, the RFMP_NL seems to be a suitable algorithm for the nonlinear inverse
gravimetric problem. Due to the high computational effort that comes with the implementa-
tion of the algorithm, currently, this is only a proof of concept that the algorithm successfully
solves the inverse problem, since the computation time for the presented small examples is
already around 9 hours on a node with 12 cores. In the future, we want to apply the algorithm
to realistic data sets, for example, data from satellite missions. On the one hand, with rising
computer power, we may be able to accomplish this in reasonable time. On the other hand,
one could also think about other optimizations of the algorithm to obtain a lower computa-
tion time. For example, the strategy that has been used in the derivation of the RWFMP (see
Kontak 2018; Kontak and Michel 2018) could also be applied to the RFMP_NL. Addition-
ally, the most expensive part of the algorithm is the re-computation of the Fréchet derivatives
in step 2, which is currently done by numerical integration and has to be performed for ev-
ery dictionary element in every iteration. If one could find a closed formula to analytically
compute the integrals, this could also speed up the implementation very much.
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