Funktionalanalysis II: Inverse Probleme Übungen Sommersemester 2015 7. Blatt

Abgabe bis Mittwoch, 3. Juni 2015 12:00 Uhr, im Postfach oder Donnerstag, 4. Juni 2015, per E-Mail an orzlowski@mathematik.uni-siegen.de .

Aufgabe 25: (4 Punkte)

Sei $T: B(\mathbb{R}_0^+) \to B(\mathbb{R}_0^+)$ definiert durch

$$(Tf)(x) := e^{-x} f(x), \quad x \in \mathbb{R}_0^+, \ f \in B(\mathbb{R}_0^+),$$

wobei $B(\mathbb{R}_0^+)$ als der Raum aller reellen, beschränkten Funktionen auf \mathbb{R}_0^+ definiert ist. Ist T

- a) injektiv,
- b) stetig,
- c) offen,
- d) auf seinem Bild stetig invertierbar?

Aufgabe 26: (4 Punkte)

Aus der Theorie gewöhnlicher Differentialgleichungen ist bekannt, dass das Anfangswert-problem

$$y^{(n)}(x) + \sum_{j=0}^{n-1} f_j(x)y^{(j)}(x) = r(x), \quad x \in [a, b],$$
$$y^{(k)}(a) = b_k, \quad k = 0, \dots, n-1,$$

wobei $f_j \in C[a, b]$ für alle j = 0, ..., n - 1, für jede gegebene rechte Seite $r \in C[a, b]$ und jedem Vektor von Anfangswerten $b \in \mathbb{R}^n$ eine eindeutige Lösung $y \in C^{(n)}[a, b]$ besitzt. Ist die Lösung auch stabil?

<u>Hinweis:</u> $C^{(n)}[a,b]$ ist hier der Banachraum mit der Norm $||y||_{C^{(n)}} := \sum_{j=0}^{n} ||y^{(j)}||_{\infty}$.

Aufgabe 27: (4 Punkte)

Sei die Radon-Transformation $R: L^2(\Omega) \to L^2(Z)$ mit $Z:=[-1,1] \times [0,2\pi]$, $\Omega:=\{x\in\mathbb{R}^2\mid |x|\leq 1\}$ gegeben durch

$$Rf(s,\varphi) := \int_{-w(s)}^{w(s)} f(s\omega(\varphi) + t\omega^{\perp}(\varphi)) dt$$

mit $\omega(\varphi) = (\cos(\varphi), \sin(\varphi))^{\mathrm{T}}, \ \omega^{\perp}(\varphi) = (-\sin(\varphi), \cos(\varphi))^{\mathrm{T}}$ und

$$w(s) := \begin{cases} \sqrt{1 - s^2} & |s| \le 1, \\ 0 & |s| > 1. \end{cases}$$

- a) Beweisen Sie, dass R linear und beschränkt ist mit $||R|| \le 4\pi$.
- b) Zeigen Sie, dass die Adjungierte von R gegeben ist durch

$$R^*g(x) = \int_0^{2\pi} g(x \cdot \omega(\varphi), \varphi) \,d\varphi, \qquad x \in \Omega,$$

wobei \cdot das euklidische Skalarprodukt in \mathbb{R}^2 ist.

Aufgabe 28: (4 Punkte)

Sei X ein Hilbertraum.

a) Beweisen Sie die verallgemeinerte Cauchy-Schwarz-Bunjakowski-Ungleichung: Ist $A: X \to X$ positiv und selbstadjungiert, so gilt

$$|\langle Ax, y \rangle|^2 \le \langle Ax, x \rangle \langle Ay, y \rangle \quad \forall x, y \in X.$$

b) Sei A ein selbstadjungierter, kompakter Operator auf X mit der Darstellung

$$Ay = \sum_{n=0}^{\infty} \mu_n \langle y, u_n \rangle u_n \qquad \forall y \in X$$

und sei $x \in X$ fest mit $Ax \neq 0$. Beweisen Sie, dass

$$\lim_{k\to\infty}\frac{\|A^{2k+2}x\|}{\|A^{2k}x\|}=\alpha^2>0,\qquad \lim_{k\to\infty}\frac{\langle A^{2k+2}x,x\rangle}{\langle A^{2k}x,x\rangle}=\alpha^2,\qquad \lim_{k\to\infty}\frac{A^{2k}x}{\|A^{2k}x\|}=u>0,$$

wobei ||u|| = 1 und $A^2u = \alpha^2u$. Insbesondere ist die Folge $\left(\frac{\langle A^{2k+2}x,x\rangle}{\langle A^{2k}x,x\rangle}\right)_k$ monoton wachsend.

<u>Hinweis:</u> Nehmen Sie zunächst an, dass A positiv ist und dass $(\mu_n)_{n\in\mathbb{N}_0}$ monoton fallend ist (Warum ist dies keine Einschränkung?). Zeigen Sie die Aussage für 2k+2=j+1. Übertragen Sie dann das Ergebnis auf A^2 .