
Theses Supervised by Volker Michel
PhD Theses
Finished Theses
- N. Akhtar: A Multiscale Harmonic Spline Interpolation Method for the Inverse Spheroidal Gravimetric Problem, submitted and accepted 2009, second referee: Prof. Dr.-Ing.habil. Dr.tech.h.c.mult. Dr.-Ing.E.h.mult. Erik W. Grafarend
(Stuttgart). The thesis is published at
Shaker Verlag, Aachen.
- M. Akram: Constructive Approximation on the
3-dimensional Ball with Focus on Locally Supported
Kernels and the Helmholtz Decomposition, submitted
and accepted 2008, second referee: Prof. Dr. Michael
Schreiner
(Buchs, CH). The thesis is published at
Shaker Verlag, Aachen.
- A. Amirbekyan: The Application of Reproducing
Kernel Based Spline Approximation to Seismic
Surface and Body Wave Tomography: Theoretical
Aspects and Numerical Results, submitted 2006,
accepted 2007, second referee: Prof. Frederik J.
Simons, PhD
(Princeton, USA). The thesis is
published on-line at http://kluedo.ub.uni-kl.de/volltexte/2007/2103/ 
- P. Berkel: Multiscale Methods for the Combined Inversion of Normal Mode and Gravity Variations, submitted and accepted 2009, second referee: Prof. A.S. Fokas, PhD, MD
(Cambridge, UK). The thesis is published at Shaker Verlag, Aachen. - D. Fischer: Sparse Regularization of a Joint Inversion of Gravitational Data and Normal Mode Anomalies, submitted and accepted 2011, second referee: Prof. Frederik J.
Simons, PhD
(Princeton, USA). The thesis is published at Verlag Dr. Hut, München and on-line at http://dokumentix.ub.uni-siegen.de/opus/volltexte/2012/544/index.html
. - D. Michel: Framelet Based Multiscale Operator
Decomposition, submitted and accepted 2006, second
referee: Prof. Dr. Peter Maaß
(Bremen). The thesis is
published at Shaker Verlag, Aachen.
Diploma/Master Theses
Finished Theses
- N. Bachmann: The Mathematics Behind Tsunamis.
- D. Fischer: A Numerical Study of the Approximation Quality and Speed of Certain Strongly Localizing Kernels on the 3D-Ball.
- A. Horbach: Analysis of Cosmic Microwave Background Observed by WMAP.
- T. Iordanov: The Localization Behaviour of
Spherical Scaling Functions and Wavelets - Studied at
the Example of Gravity Field Analysis.
- K. Jonas: Grundlagen eines regularisierten Newton–One–Step–Verfahrens für die funktionelle Elektrische Impedanztomographie.
- P. Kammann: Modelling Seismic Wave Propagation Using
Time–Dependent Cauchy–Navier Splines.
- A. Kohlhaas: Multiscale Modelling of Temporal and Spatial Variations in the Earth’s Gravity Potential Observed by GRACE.
- B. Lappé: Multiresolutionsanalyse zeitvariierender
Flächen mit Anwendung in der Herzanatomie.
- S. Maßmann: Spatiotemporal Multiscale Analysis of Sea Level Variations.
- S. Mertes: Die Bernstein-Skalierungsfunktion und das Bernstein-Wavelet im linearen und bilinearen Fall.
- U. Niederle: Synthetische Seismogramme im SNREI-Erdmodell.
- L. Osman: Wavelets on the Unit Sphere and the Unit Ball in Rn.
- I. Ostermann: Optimally Localizing Approximate Identities on the Three-dimensional Ball: Theory, Construction and Numerical Experiments.
- A. Simon: Wavelet-based Adaptive Multiresolution Tools Applied to Speech Recognition.
- K. Wolf: Numerical Aspects of Harmonic Spline-Wavelets for the Satellite Gravimetry Problem.
Bachelor Theses
Finished Theses
- M.
Kontak: Indikatoren für die Gleichmäßigkeit gitterbasierter Daten -
Entwicklung und Vergleich von Methoden zur Bewertung von Vliesstoffen
- M.
Kontak: Indikatoren für die Gleichmäßigkeit gitterbasierter Daten -
Entwicklung und Vergleich von Methoden zur Bewertung von Vliesstoffen
PhD Admission Theses
Finished Theses
- N. Akhtar: The Numerical Calculation of the Surface
Divergence via Product Kernels, 2006.
- M. Akram: Multiresolution Analysis of the Martian Topography, 2005.

