Für eine korrekte Darstellung dieser Seite benötigen Sie einen XHTML-standardkonformen Browser, der die Darstellung von CSS-Dateien zulässt.

/ fb6 / geomathe / theses /
 



  Theses Supervised by Volker Michel

PhD Theses

  • Finished Theses
  1. N. Akhtar: A Multiscale Harmonic Spline Interpolation Method for the Inverse Spheroidal Gravimetric Problem, submitted and accepted 2009, second referee: Prof. Dr.-Ing.habil. Dr.tech.h.c.mult. Dr.-Ing.E.h.mult. Erik W. Grafarend (Stuttgart). The thesis is published at Shaker Verlag, Aachen.
  2. M. Akram: Constructive Approximation on the 3-dimensional Ball with Focus on Locally Supported Kernels and the Helmholtz Decomposition, submitted and accepted 2008, second referee: Prof. Dr. Michael Schreiner (Buchs, CH). The thesis is published at Shaker Verlag, Aachen.
  3. A. Amirbekyan: The Application of Reproducing Kernel Based Spline Approximation to Seismic Surface and Body Wave Tomography: Theoretical Aspects and Numerical Results, submitted 2006, accepted 2007, second referee: Prof. Frederik J. Simons, PhD (Princeton, USA). The thesis is published on-line at http://kluedo.ub.uni-kl.de/volltexte/2007/2103/
  4. P. Berkel: Multiscale Methods for the Combined Inversion of Normal Mode and Gravity Variations, submitted and accepted 2009, second referee: Prof. A.S. Fokas, PhD, MD (Cambridge, UK). The thesis is published at Shaker Verlag, Aachen.
  5. D. Fischer: Sparse Regularization of a Joint Inversion of Gravitational Data and Normal Mode Anomalies, submitted and accepted 2011, second referee: Prof. Frederik J. Simons, PhD (Princeton, USA). The thesis is published at Verlag Dr. Hut, München and on-line at http://dokumentix.ub.uni-siegen.de/opus/volltexte/2012/544/index.html .
  6. D. Michel: Framelet Based Multiscale Operator Decomposition, submitted and accepted 2006, second referee: Prof. Dr. Peter Maaß (Bremen). The thesis is published at Shaker Verlag, Aachen.
 

Diploma/Master Theses

  • Finished Theses
  1. N. Bachmann: The Mathematics Behind Tsunamis.
  2. D. Fischer: A Numerical Study of the Approximation Quality and Speed of Certain Strongly Localizing Kernels on the 3D-Ball.
  3. A. Horbach: Analysis of Cosmic Microwave Background Observed by WMAP. 
  4. T. Iordanov: The Localization Behaviour of Spherical Scaling Functions and Wavelets - Studied at the Example of Gravity Field Analysis.
  5. K. Jonas: Grundlagen eines regularisierten Newton–One–Step–Verfahrens für die funktionelle Elektrische Impedanztomographie.
  6. P. Kammann: Modelling Seismic Wave Propagation Using Time–Dependent Cauchy–Navier Splines.
  7. A. Kohlhaas: Multiscale Modelling of Temporal and Spatial Variations in the Earth’s Gravity Potential Observed by GRACE.
  8. B. Lappé: Multiresolutionsanalyse zeitvariierender Flächen mit Anwendung in der Herzanatomie.
  9. S. Maßmann: Spatiotemporal Multiscale Analysis of Sea Level Variations.
  10. S. Mertes: Die Bernstein-Skalierungsfunktion und das Bernstein-Wavelet im linearen und bilinearen Fall.
  11. U. Niederle: Synthetische Seismogramme im SNREI-Erdmodell. 
  12. L. Osman: Wavelets on the Unit Sphere and the Unit Ball in Rn. 
  13. I. Ostermann: Optimally Localizing Approximate Identities on the Three-dimensional Ball: Theory, Construction and Numerical Experiments.
  14. A. Simon: Wavelet-based Adaptive Multiresolution Tools Applied to Speech Recognition.
  15. K. Wolf: Numerical Aspects of Harmonic Spline-Wavelets for the Satellite Gravimetry Problem.

 

Bachelor Theses

  • Finished Theses
    1. M. Kontak: Indikatoren für die Gleichmäßigkeit gitterbasierter Daten - Entwicklung und Vergleich von Methoden zur Bewertung von Vliesstoffen

 

PhD Admission Theses

  • Finished Theses
  1. N. Akhtar: The Numerical Calculation of the Surface Divergence via Product Kernels, 2006.
  2. M. Akram: Multiresolution Analysis of the Martian Topography, 2005.