Name:	 	 •	••	 		•	•	• •		• •	
Matr.Nr	 			 				• •		• •	

Kurztest (5) zur Vorlesung "Numerik I" im Wintersemester 2014/15 am 21.01.15 (7 Min.)

1) Wie sieht die Normalgleichung für eine Matrix $A \in \mathbb{K}^{N,n} (N \geq n)$ aus?

2) Was bedeutet $B^t \longrightarrow 0 (t \longrightarrow \infty)$ für $B \in \mathbb{K}^{n,n}$? (Definition oder Charakterisierung(en))

3) Wie sieht das Newton-Verfahren zur Berechnung der Inversen A^{-1} einer regulären Matrix $A \in \mathbb{K}^{n,n}$ aus?

4)	Wie ist das Gesamtschrittverfahren zur Lösung von $Az=b$ definiert, unausgesetzt werden?	d was m	uss vor-
5)	Was ergibt sich für die Funktionalmatrix $f'(x)$ der affinen Abbildung $f(x)$ $\mathbb{K}^{n,n}$?	(x) = Bx - C	$+c,B\in$
6)	Entscheiden Sie, ob "wahr" oder "falsch":		
		wahr	falsch
	a) Eine diagonaldominante Matrix ist immer auch regulär.		
	b) Für eine $m \times n$ -Matrix $A, m \geq n$, ist die Gramsche Matrix $C = (c_{jk}), c_{jk} = (a_k, a_j)_2, j, k = 1, \ldots, m$, regulär, wenn die Spaltenvektoren $a_k, k = 1, \ldots, n$, von A paarweise verschieden sind.		
	c) Das Einzelschrittverfahren zur Lösung von $z-Bz=c$ konvergiert für jeden Startvektor $x^{(0)}$, falls das schwache		
	Zeilensummenkriterium erfüllt ist.		
	d) Ein Eigenvektor kann auch null sein, ein Eigenwert nicht.		Ш