Dept. Mathematik Univ. Siegen

Übungen (7) zur Vorlesung "Numerik II" im Sommersemester 2013

Abgabetermin für theor. Übungen: Mittwoch, 05.06.13, 10 Uhr Abgabetermin für prakt. Übung: Mittwoch, 12.06.13, 10 Uhr)

18. (Rosenbrock-Methode)

Für das lineare AWP mit konstanter Matrix A,

$$u' = Au, t \in [0, T], u(0) = \alpha,$$

sei mit einem (freien) Parameter $\gamma > 0$ ein Einschrittverfahren wie folgt definiert,

$$(I - \gamma hA) k_1 = f(t_j, u_j)$$

 $u_{j+1} = u_j + hk_1, j = 0, \dots, N_h - 1.$

Voraussetzung dafür ist, dass $I-\gamma hA$ regulär ist, damit das Gleichungssystem für k_1 eindeutig lösbar ist. Zeigen Sie:

a) Das Stabilitätsfunktional ist gegeben durch

$$R_0(z) = \frac{1 + (1 - \gamma)z}{1 - \gamma z}, \ z \in \mathbb{C};$$

b) Das Verfahren ist A-stabil, d.u.n.d. wenn $\gamma \geq 1/2$ ist.

Hinweis: Das obige Verfahren ist ein Spezialfall einer einstufigen Rosenbrock-Methode (vgl. [Rei], Beispiel 2.28 und 2.66).

19. (Konsistenzordnung von Mehrschrittverfahren)

Bestimmen Sie mit Hilfe der Bedingung (a) aus [Rei], Satz 3.11,

(a)
$$\sum_{k=0}^{s} a_k = 0$$
 und $\sum_{k=0}^{s} (k^{\ell} a_k - \ell k^{\ell-1} b_k) = 0$ für $\ell = 1, \dots, p$,

die von $\gamma \in \mathbb{R}$ abhängige Konsistenzordnung pdes linearen Mehrschrittverfahrens

$$\frac{1}{h} \Big(u_h(t_3) + \gamma \big(u_h(t_2) - u_h(t_1) \big) - u_h(t_0) \Big) \\
= \frac{3 + \gamma}{2} (f_2 + f_1),$$

für $t_j = t + jh$, $f_j = f(t_j, u_h(t_j))$, $j = 0, 1, 2, 3, t \in I'_h(s = 3)$.

20. (Praktische Aufgabe)

Berechnen Sie Näherungslösungen für die Kippschwingung mit $\varepsilon=0.1$ mit den folgenden Verfahren:

(a) (Gruppe C)

Extrapolationsverfahren von Adams (s = 4):

$$u_h(t_j) = u_h(t_{j-1}) + \frac{h}{24} \left(55f_{j-1} - 59f_{j-2} + 37f_{j-3} - 9f_{j-4} \right),$$

mit $f_j = f(t_j, u_h(t_j))$.

(b) (Gruppe B)

Prädiktor-Korrektor-Verfahren von Adams (s = 3)

$$\tilde{u}_h(t_j) = u_h(t_{j-1}) + \frac{h}{12} \{ 23f_{j-1} - 16f_{j-2} + 5f_{j-3} \} ,$$

$$u_h(t_j) = u_h(t_{j-1}) + \frac{h}{24} \{ 9\tilde{f}_j + 19f_{j-1} - 5f_{j-2} + f_{j-3} \} , \quad j = 3, 4, \dots ,$$

$$\text{mit } \tilde{f}_j = f(t_j, \tilde{u}_h(t_j)) .$$

(c) (Gruppe A)

Prädiktor-Korrektor-Verfahren von Nyström und Milne (s = 3):

$$\tilde{u}_h(t_j) = u_h(t_{j-2}) + \frac{h}{3} (7f_{j-1} - 2f_{j-2} + f_{j-3}),$$

$$u_h(t_j) = u_h(t_{j-2}) + \frac{h}{3} (\tilde{f}_j + 4f_{j-1} + f_{j-2}),$$
mit $\tilde{f}_j = f(t_j, \tilde{u}_h(t_j)).$

(d) (Gruppe D)

Verfahren von Nyström (s = 4):

$$u_h(t_j) = u_h(t_{j-2}) + \frac{h}{3}(8f_{j-1} - 5f_{j-2} + 4f_{j-3} - f_{j-4}).$$

Vergleichen Sie die numerische Lösung mit der numerischen Lösung des klassischen RK-Verfahrens.

Rechnen Sie mit Schrittweiten $h=5\cdot 10^{-2}, 10^{-2}, 5\cdot 10^{-3}$, und starten Sie bei der Anfangsbedingung aus Aufg. 10. Rechnen Sie bis T=130.

Als Anlaufrechnung für $t_j=h,2h$ bzw. 3h verwenden Sie die Näherungslösungen des klassischen RK-Verfahrens.