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Given two maps between smooth manifolds, the obstruction to removing
their coincidences (via homotopies) is measured by minimum numbers. In
order to determine them we introduce and study an infinite hierarchy of
Nielsen numbers Ni, i = 0, 1, . . . ,∞ . They approximate the minimum
numbers from below with decreasing accuracy, but they are (in principle)
more easily computable as i grows. If the domain and the target manifold
have the same dimension (e.g. in the fixed point setting) all these Nielsen
numbers agree with the classical definition. However, in general they can
be quite distinct.

While our approach is very geometric the computations use the tech-
niques of homotopy theory and, in particular, all versions of Hopf invari-
ants (à la Ganea, Hilton, James..). As an illustration we determine all
Nielsen numbers and minimum numbers for pairs of maps from spheres to
spherical space forms. Maps into even dimensional real projective spaces
turn out to produce particularly interesting coincidence phenomena.

1 Introduction

Consider (continuous) maps f1, f2 : X −→ Y between connected smooth mani-
folds without boundary, X being compact. We are interested in ’essential’ aspects
of their coincidence set

(1.1) C = C(f1, f2) := {x ∈ X | f1(x) = f2(x)} ,

i.e. in those features which are preserved by homotopies fi ∼ f ′i , i = 1, 2 . Such
essential phenomena can be measured to some extend by the minimum numbers (of
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coincidence points and pathcomponents, resp.)

(1.2) MC(f1, f2) := min {#C(f ′1, f
′
2)|f ′1 ∼ f1, f ′2 ∼ f2}

and (even better)

(1.3) MCC(f1, f2) := min {#π0 (C(f ′1, f
′
2)) |f ′1 ∼ f1, f ′2 ∼ f2} .

E.g. both numbers vanish precisely if the maps f1, f2 can be deformed until they are
coincidence free.

Example 1.4: topological fixed point theory. Here X = Y , f2 = idX , and
the principal object of study is the minimum number of fixed points

MF(f) := min {#C (f ′, idX) |f ′ ∼ f} = MC(f, idX)

for maps f : X −→ X (cf [B], p.9; see also [Br]). If it vanishes then so does the
Lefschetz number, but the converse conclusion fails to hold in general. A powerful
tool for a better understanding of minimum numbers was introduced by Jakob Nielsen
in the 1920s when he described a lower bound N(f) of MC(f, idX) . This ’Nielsen
number’ turned out to coincide with the minimum fixed point number precisely if X
is not a surface with strictly negative Euler characteristic. (For an account of the
spectacular history of this result see [B]).

In general coincidence theory the geometry of generic coincidence phenomena is
much richer. E.g. when Xm, Y n are smooth manifolds of dimensions m > n , then
C is generically an (m− n)–manifold (and not just a finite set of isolated points).

In this paper we introduce an infinite hierarchy of (integer) Nielsen coincidence
numbers

(1.5) (MC ≥ MCC ≥ ) N# ≡ N0 ≥ N1 ≥ N2 ≥ . . . ≥ Nr ≥ . . . ≥ N∞ ≡ Ñ ≥ 0 .

It interpolates between the sharpest (”nonstabilized”) Nielsen number N0 := N#

introduced in [K3] and the (”fully stabilized”) Nielsen number N∞ := Ñ (cf. [K6];

Ñ was introduced and discussed originally under the name N in [K2] and also in
[K3], [K4] and [K5]).

For every pair f1, f2 : X −→ Y of maps and r = 0, 1, 2, . . . ,∞ the Nielsen
number Nr(f1, f2) = Nr(f2, f1) ∈ Z depends only on the homotopy classes of f1
and f2 . It is extracted from the bordism class

(1.6) ωr(f1, f2) = [(ir : C(f ′1, f
′
2) ⊂ X ×Rr, g̃, ḡr )]

which captures the geometric coincidence data of a generic pair (f ′1, f
′
2) homotopic

to (f1, f2) : the vector bundle isomorphism ḡr describes the normal bundle of the
coincidence set C(f ′1, f

′
2) , considered as a submanifold of X×Rr, and g̃ is a canonical

map into a certain pathspace E(f1, f2) (the so–called homotopy coincidence set). The
decomposition of E(f1, f2) into its pathcomponents induces the Nielsen decomposition

(1.7) C(f ′1, f
′
2) = q

A ∈ π0(E(f1,f2) )
g̃−1(A)
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and the Nielsen number Nr(f1, f2) counts those pathcomponents which contribute
nontrivially to ωr(f1, f2) . (For more details compare [K3], [K6], as well as sections 3
and 4 below.)

In the setting of fixed point theory our Nielsen numbers Nr (cf. 1.5) all coincide
with the classical Nielsen number. However, in general they can be quite distinct:
often they get weaker but also more easily computable as r increases.

The following 2–step program suggests itself.

I. Decide when MCC(f1, f2) is equal to a Nielsen number Nr(f1, f2)
(and for which r). In topological fixed point theory this was the central
unsolved problem for nearly 60 years. In general coincidence theory complete
answers have been given only in some simple settings; often they involve deep
notions of differential topology and homotopy theory such as e.g. Kervaire in-
variants, all versions of Hopf invariants or the elements in the stable homotopy
of spheres defined by invariantly framed Lie groups (cf. e.g. [K6], [KR]).

II. Determine the Nielsen numbers Nr(f1, f2) .

In this paper we concentrate our attention mainly on this step II and on the case
when the domain of the maps f1, f2 is a sphere. Again all types of Hopf invariants
(à la Ganea, Hilton, James, . . . ) turn out to play an important rôle.

We need some preliminary explanations. Choose an oriented compact n–dimensional
ball B (with boundary sphere ∂B ), embedded in the universal covering space Ỹ
of Y . Let

(1.8) b : Ỹ −→ Ỹ�
(
Ỹ − B̊

)
= B�∂B ∼= Sn

denote the collapsing map. Moreover let

(1.9) HC :
[
Sm, Ỹ

]
∼= πm(Ỹ ) −→ πm(Sn[Ỹ )

be the Hopf–Ganea invariant homomorphism based on the cofibration

C : ∂B ⊂ Ỹ \ B̊ −→ Ỹ

(cf. [CLOT], 6.44 and 6.45); here Sn[Ỹ denotes the homotopy fiber of the inclusion

of the one–point union Sn ∨ Ỹ into Sn × Ỹ (cf. [G] (9) and [CLOT], §6.7).
In section 2 below we will present and use an explicit geometric description of partial

suspension homomorphisms

(1.10) er : πm(Sn[Ỹ ) −→ πm+r(S
n+r[Ỹ ) , r = 0, 1, 2, . . . ,∞ ,

very closely related to those discussed by H. J. Baues (compare [Ba], chapter 3).
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Theorem 1.11. Let Y be a connected smooth n–dimensional manifold without
boundary and write k := #π1(Y ) for the order of the fundamental group. Also
let 0 ≤ r ≤ ∞ and assume m ≥ 2 . Given [f1], [f2] ∈ πm(Y, y0) , let

[f̃1], [f̃2] ∈ πm(Ỹ , ỹ0) be liftings to the universal covering space Ỹ of Y .

Case 1: π1(Y ) is infinite or Y is not compact or m < n . Then
MCC(f1, f2) = 0 and all Nielsen numbers vanish.

Case 2: 2 ≤ k <∞ . Choose a map a· : (Ỹ , ỹ0) −→ (Ỹ , ỹ0) which is freely

homotopic to a fixed point free selfmap a of Ỹ (e.g. to a covering transformation
a 6= identity map). Then precisely one of the following four conditions holds (compare
1.8 and 1.9):

(∗k) HC(f̃1) 6= HC(f̃2) or b ◦ f̃1 6∼ b ◦ f̃2 6∼ b ◦ a· ◦ f̃1 ;

(∗k−1) HC(f̃1) = HC(f̃2) and b ◦ f̃1 6∼ b ◦ a· ◦ f̃1 ∼ b ◦ f̃2 ;

(∗1) HC(f̃1) = HC(f̃2) and b ◦ a· ◦ f̃1 6∼ b ◦ f̃1 ∼ b ◦ f̃2 ;

(∗0) HC(f̃1) = HC(f̃2) and b ◦ a· ◦ f̃1 ∼ b ◦ f̃1 ∼ b ◦ f̃2 .

If the condition (∗i) is satisfied for i = 0, 1, k − 1 or k , then

N#(f1, f2) = i .

Precisely the analogous result holds for Nr(f1, f2) , r = 0, 1, 2, . . . ,∞ , when we

replace HC by er ◦ HC (cf. 1.10) and b ◦ f̃ by the r–fold (standard) suspension

Er([b ◦ f̃ ]) ∈ πm+r(S
n+r) (for f̃ = f̃i , a

· ◦ f̃i , i = 1, 2 ).

Case 3: Y is simply connected and admits a fixed point free map a .
Deform a to a base point preserving map a· : (Y, y0) −→ (Y, y0) . Then

Nr(f1, f2) =

{
1 if er (HC(f1)) 6= er (HC(a

· ◦ f2)) or Er ([b ◦ f1]) 6= Er ([b ◦ a· ◦ f2]) ;

0 otherwise.

In particular, the values which our Nielsen numbers may possibly assume are
severely restricted. In fact, only two or at most three different values can occur:

Proposition 1.12. Let 0 ≤ r ≤ ∞, m ≥ 2, Y and k := #π1(Y ), as well as
[f1], [f2] ∈ πm(Y ) be as in theorem 1.11.

Then Nr(f1, f2) ∈ {0, 1, k}. Furthermore, if Nr(f1, f2) /∈ {0, k}, then the
following restrictions must all be satisfied:

(i) n is even and m ≥ n ≥ 4, or else m = 2 and Y = RP(2); and

(ii) the manifold Y is closed, not orientable and not a product of two manifolds
with strictly positive dimensions; π1(Y ) ∼= Z2; χ(Y ) 6= 0; Y admits no fixed
point free selfmap. Also the homomorphism i∗ : πm(Y \ {∗}) −→ πm(Y )
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(induced by the inclusion of Y , punctured at some point ∗) is not surjective.
Moreover, the composed homomorphism

E ◦ ∂Y : πm(Y )
∂Y−→ πm−1(Sn−1)

E−→ πm(Sn)

is nontrivial; here ∂Y denotes the boundary homomorphism in the homotopy
sequence of the tangent sphere bundle ST(Y ) over Y .

A typical example of a manifold Y which may satisfy all these restrictions is even
dimensional real projective space RP(n) = Sn�Z2 ·a , the orbit space of the antipodal
involution a. More generally, let us illustrate theorem 1.11 by examples where Y is
an arbitrary spherical space form Sn�G. Here our criteria can be expressed in terms
of the Hopf–Hilton invariant homomorphisms

(1.13) h′j : πm(Sn) −→ πm(Sn+j(n−1)) , j = 1, 2, . . .

which correspond to the basic Whitehead products

(1.14) w′j := [ι2, . . . , [ι2, [ι1, ι2] . . .] ] ∈ πn+j(n−1)(S
n ∨ Sn)

with one factor ι1 and j factors ι2 (cf. [H] and section 5 below). Define

(1.13’) h′ := (h′1, h
′
2, . . .) : πm(Sn) −→ ⊕

j≥1
πm(Sn+j(n−1)

and h := (id, h′) . Thus e.g.

Er ◦ h := (Er, Er ◦ h′1, E
r ◦ h′2, . . .) .

Theorem 1.15. Let G be a finite group acting smoothly and freely on the sphere
Sn and let Y = Sn�G be the resulting orbit space. Assume m,n ≥ 2 and
0 ≤ r ≤ ∞ . Also let ι ∈ πn(Sn) be represented by the identity map id .

For all homotopy classes [fi] ∈ πm(Sn�G, y0) and their liftings [f̃i] ∈
πm(Sn, ỹ0), i = 1, 2 , we have:
If n is odd, then:

Nr(f1, f2) =

{
#G if Er ◦ h([f̃1]) 6= Er ◦ h([f̃2]) ;

0 otherwise .

If n is even and G = 0 , then:

Nr(f1, f2) =

{
1 if Er ◦ h([f̃1]) 6= Er ◦ h((−ι) ◦ [f̃2]) ;

0 otherwise .

If n is even and G ∼= Z2 , then:

Nr(f1, f2) =


2 if Er ◦ h′[f̃1] 6= Er ◦ h′[f̃2] or Er[f̃1] /∈

{
Er[f̃2], Er((−ι) ◦ [f̃2])

}
;

1 if Er ◦ h′[f̃1] = Er ◦ h′[f̃2] and Er[f̃1] ∈
{
Er[f̃2], Er((−ι) ◦ [f̃2])

}
but Er[f̃2] 6= Er((−ι) ◦ [f̃2]) ;

0 if Er ◦ h′[f̃1] = Er ◦ h′[f̃2] and Er[f̃1] = Er[f̃2] = Er((−ι) ◦ [f̃2]) .
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In particular, all these Nielsen numbers depend only on the order #G of the group
G and not on the G–action itself.

Note that #G ≤ 2 when n is even (as seen by a simple argument involving Euler
characteristics).

Corollary 1.16. (Case r = 0). Recall that N0 ≡ N# (cf. 1.5).
Let a : Sn −→ Sn denote the antipodal map.

(i) Suppose that n is odd or G = 0. Then

N0(f1, f2) =

{
#G if f̃1 6∼ a ◦ f̃2 ;

0 if f̃1 ∼ a ◦ f̃2 .

In particular, if n ≥ 3 is odd then N0(f1, f2) takes the value 0 or #G

according as f̃1 is (freely) homotopic to f̃2 or not, resp..

(ii) Suppose that n is even and G ∼= Z2. Then

N0(f1, f2) =


2 if f̃1 6∼ f̃2 and f̃1 6∼ a ◦ f̃2 ;

1 if f̃1 ∼ f̃2 or f̃1 ∼ a ◦ f̃2, but f̃2 6∼ a ◦ f̃2 ;

0 if f̃1 ∼ f̃2 ∼ a ◦ f̃2 .

Corollary 1.17. (Case r ≥ 1).

Here Er((−ι) ◦ [f̃2]) = −Er([f̃2]). We get e.g. for n even, G ∼= Z2:

Nr(f1, f2) =


2 if Er ◦ h′(f̃1) 6= Er ◦ h′(f̃2) or Er(f̃1) 6= ±Er(f̃2) ;

1 if Er ◦ h′(f̃1) = Er ◦ h′(f̃2) and Er(f̃1) = ±Er(f̃2) has order > 2 ;

0 if Er ◦ h′(f̃1) = Er ◦ h′(f̃2) and Er(f̃1) = ±Er(f̃2) has order ≤ 2 .

Note that Hopf invariantes play no rôle here in our criteria for the basic Nielsen
number N# = N0. However they are often decisive when r ≥ 1.

Example 1.18: m = 3, n = 2 and G = 0.
For all maps f1, f2 : S3 −→ S2 and 0 ≤ r ≤ ∞ we have: Nr(f1, f2) equals

0 or 1, resp., according as f1 ∼ f2 or f1 6∼ f2, resp. When r ≥ 1 this is
detected only by Erh′ = Erh′1 or, equivalently, by the classical Hopf invariant H.
Indeed,

h′(fi) = ±H(fi) ◦ ι ∈ π3(S3) ∼= Z, i = 1, 2 ,

(cf. [W], XI, 8.17) persists under all iterated suspensions; in contrast, Er(fi) measures
only mod 2 values in πr+3(Sr+2) ∼= Z2 when r ≥ 1.

Corollary 1.19. (Case r =∞).
For all [f1], [f2] ∈ πm(Sn), m, n ≥ 2, we have:

N∞(f1, f2) =

{
0 if E∞ ◦ γj([f1]) = E∞ ◦ γj(((−1)n+1 · ι) ◦ [f2]) for all j ≥ 1 ;

1 otherwise.
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Here E∞ ◦ γj : πm(Sn) −→ πSm−1−j(n−1) is defined by the infinitely suspended
Hopf–James invariant, j = 1, 2, . . . .

This was proved already in [K2], §8, by interpreting E∞ ◦ γj via (j − 1)–tuple
selfintersections of framed immersions.

Corollary 1.20. Let Y = Sn�G and m,n ≥ 2 be as in theorem 1.15. Assume
that 2α = 0 for all α ∈ πSm−n (according to the tables in [T] this holds e.g.
when m − n = 1, 2, 4, 5, 6, 8, 9, 12, 14, 16 or 17). Then N∞(f1, f2) ∈ {0, #G} for
all [f1], [f2] ∈ πm(Sn�G).

Hopf–James invariants occur not only in the criteria which determine Nielsen num-
bers (as e.g in corollary 1.19). They play also an important rôle — via EHP–sequences
— in the computations needed to decide whether these criteria are fulfilled.

We are particularly interested on those settings in theorem 1.15 where the Nielsen
numbers can possibly assume three distinct values (compare proposition 1.12). Thus
let n ≥ 2 be even and G ∼= Z2. In several important cases we are able to carry out
our 2–step program and compute all Nielsen numbers as well as the minimum number
MCC.

Example 1.21: m ≤ 2n− 1; n ≥ 2 even.
Given maps f1, f2 : Sm −→ Sn�Z2 , all Nielsen numbers agree, Nr(f1, f2) =

N#(f1, f2) for 0 ≤ r ≤ ∞ , and are determined by corollary 1.16(ii) or, equivalently,
by corollary 1.17.

If m ≤ 2n− 3 , then:

MCC(f1, f2) = N#(f1, f2) .

If m = 2n − 2 , then: MCC(f1, f2) = N#(f1, f2) except precisely if n =
16, 32, 64 (or maybe 128 ) and f1 ∼ f2 =: f , and N#(f, f) = 0 , but the lifting

f̃ : S2n−2 −→ Sn of f has a nontrivial Kervaire invariant K(f̃) = 1 .
If m = 2n − 1 , then MCC(f1, f2) = N#(f1, f2) except precisely if n ≡

2(4), n ≥ 6 , and f1 ∼ f2 =: f and N#(f, f) = 0 and the Hopf invariant of

the lifting f̃ : S2n−1 −→ Sn of f is not divisible by 4 .

Example 1.22: m ≤ n+ 3; n ≥ 2 even.
Given maps f1, f2 : Sm −→ Sn�Z2 and 0 ≤ r ≤ ∞ , we have

MCC(f1, f2) = N0(f1, f2) = · · · = Nr(f1, f2) = · · · = N∞(f1, f2) .

I.e. the Nielsen numbers do not depend on r and agree with the minimum number
MCC ; they are determined by corollary 1.16(ii) or, equivalently, by corollary 1.17.

When the domain and target manifolds of f1, f2 have the same dimension m = n
(e.g. in fixed point theory) and also in examples 1.21 and 1.22 our Nielsen numbers are
independent of r. However, they can be quite distinct in general (and loose strength,
but gain in computability as r increases).
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Given Y, r, m and X = Sm as in theorem 1.11, a standard stability argument
shows that Nr ≡ Nr+1 ≡ . . . ≡ N∞ for r ≥ m − 2n + 2 ; thus the number of
possibly different Nielsen number functions Nr is limited by the so–called ”degree of
instability” m− 2n+ 3 (cf. [KR], 1.12). For distinguishing them we define
(1.23)

#i
r(m,Y ) := #

{
([f1], [f2]) ∈ (πm(Y ))

2 | Nr(f1, f2) = i
}
∈ {0, 1, 2, . . . ,∞}

for i = 0, 1, . . . . These cardinalities sum up to the square of #πm(Y ) and van-
ish when i /∈ { 0, 1, k := #π1(Y )} (cf. proposition 1.12). Clearly, #0

r(m,Y ) ≤
#0
r+1(m,Y ) and #k

r (m,Y ) ≥ #k
r+1(m,Y ) .

Proposition 1.24. Let m, Y = Sn�G and r be as in theorem 1.15. Then the
following conditions are equivalent:

(i) Nr ≡ Nr+1 (i.e. Nr(f1, f2) = Nr+1(f1, f2) for all f1, f2 : Sm −→ Y ) ;

(ii) # Ker(Er ◦ h) = # Ker(Er+1 ◦ h) (cf. 1.13ff);

(iii) #0
r(m,Y ) = #0

r+1(m,Y ) ;

(iv) #i
r(m,Y ) = #i

r+1(m,Y ) for all i = 0, 1, . . . ;

In particular, when comparing Nielsen number functions Nr, Nr′ , 0 ≤ r, r′ ≤ ∞ ,
it suffices to count how often they vanish.

Example 1.25: m = 16, Y = S6�Z2. Here the Nielsen numbers Nr determine
five distinct functions on pairs f1, f2 : S16 −→ S6�Z2 of maps:

MC ≡ MCC ≡ N0 6≡ N1 ≡ N2 6≡ N3 6≡ N4 6≡ N5 ≡ N6 ≡ N∞

(stability arguments would not allow more than seven distinct such functions anyway).
The precise value distributions are given by Table 1.26.

Moreover there are precisely four ”loose” pairs ([f1], [f2]) ∈ π16(S6�Z2)2 (i.e.
MCC(f1, f2) = 0 or, equivalently, f1 and f2 can be deformed away from one

another); they have the form ([f1], [f2]) = ([p ◦ f̃ ], [p ◦ f̃ ]) where p denotes the

projection and [f̃ ] lies in the subgroup

Z2(4ν6 ◦ σ9) ⊕ Z2(η6 ◦ µ7) ⊂ π16(S6) ∼= Z8 ⊕ Z2 ⊕ Z9

(compare [T], theorem 7.3).
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r 0 1, 2 3 4 r ≥ 5

# Ker(Er ◦ h) 1 3 6 12 24

#0
r(16, S6�Z2) 4 36 144 576 1152

#1
r(16, S6�Z2) 280 792 1440 2304 4608

#2
r(16, S6�Z2) 20452 19908 19152 17856 14976

#0
r(16, S6) 144 432 864 1728 3456

Table 1.26: The value distributions of the Nielsen numbers Nr for pairs of maps
from S16 to S6�Z2 and to S6 . Here the suspension Er ◦h = (Er, 0) : π16(S6) −→
πr+16(Sr+6) is equally relevant in both cases.

Example 1.27: m = 16, Y = S6. Here there are again five distinct Nielsen num-
bers (as in example 1.25):

MC ≡ MCC ≡ N0 ; N1 ≡ N2 ; N3 ; N4 and N5 ≡ . . . ≡ N∞ .

They take only the values i = 0 and 1 . The precise value distribution is given in
Table 1.26. (Note that

#0
r(16, S6) + #1

r(16, S6) = (#π16(S6))2 = 20736 ).

Moreover precisely the 144 pairs of the form ( [f̃ ] , −[f̃ ] ), [f̃ ] ∈ π16(S6) , are

loose; unless 2[f̃ ] = 0 they do not project to loose pairs in S6�Z2 (compare
example 1.25).

Finally let us come back to the central objects of study in topological coincidence
theory: the minimum numbers MC and MCC of coincidence points and of coincidence
pathcomponents, resp. (cf. 1.2, 1.3, and compare [B], p.9). What can we say about
them for maps into spherical space forms, once the Nielsen numbers – or at least N0

– are understood?

Theorem 1.28. Let the finite group G act smoothly and freely on Sn and consider
(basepoint preserving) maps

f1, f2 : Sm −→ Y = Sn�G, m, n ≥ 1 .

When Y ∼= Sn then MCC ≡ N0 (i.e., MCC(f1, f2) = N0(f1, f2) for all
f1, f2 ).

When #G ≥ 2 then MCC ≡ N0 if and only if the ’Wecken condition’

(1.29) 0 = ∂ (πm (Sn)) ∩ Ker
(
E : πm−1

(
Sn−1

)
−→ πm (Sn)

)
holds; here ∂ := ∂Sn denotes the boundary homomorphism in the exact homotopy
sequence of the tangent sphere bundle ST(Sn) fibred over Sn (as in proposition
1.12).
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Clearly condition 1.29 is satisfied when n is odd or n = 2 or m < n or in
the ”stable range” m < 2n− 2 . But it can already fail to hold when m = 2n− 2
or m = 2n− 1 . This explains the appearance of the Kervaire invariant and of the
mod 4 Hopf invariant in the criteria in example 1.21. For information concerning the
next six nonstable dimension settings see [KR]. For the many geometric consequences
of (a possible failure of) condition 1.29 see e.g. [K6], corollary 1.21.

Once the minimum number MCC of coincidence pathcomponents is determined
what about the minimum number MC of coincidence points? The answer for spherical
space forms involves Hopf invariants in a decisive way.

Theorem 1.30. Given maps f1, f2 : Sm −→ Y = Sn�G , m, n ≥ 1 , as in
theorem 1.28, we have:

(i) If MC(f1, f2) < ∞ , then MC(f1, f2) = MCC(f1, f2) .

(ii) If n = 1 or m < n , then MC(f1, f2) = MCC(f1, f2) < ∞ .

If m,n ≥ 2 , then

MC(f1, f2) < ∞ ⇐⇒ [f̃ ] ∈

{
E(Ker(h′)) if #G ≥ 3 ;

E(πm−1(Sn−1)) if #G ≤ 2 .

Here [f̃ ] := [f̃1] − [f̃2] ∈ πm(Sn) where [f̃i] is obtained by lifting [fi] ∈
πm(Y, y0), i = 1, 2 ;

(1.30’) h′ : πm−1(Sn−1) −→ πm−1(S2n−3)⊕ πm−1(S3n−5)2 ⊕ πm−1(S4n−7)3 ⊕ . . .

is the total Hopf–Hilton homomorphism (which involves all basic Whitehead products
and not just a selection as in (1.13’); note also the different dimensions here).

Since Hopf invariants vanish on suspended maps, we have the inclusions

(1.31) E2(πm−2(Sn−2)) ⊂ E(Ker(h′)) ⊂ E(πm−1(Sn−1)) ⊂ Kerh′ ⊂ πm(Sn)

at least when n ≥ 3 (cf. 1.13’ and 1.30’).

Corollary 1.32. Assume n ≥ 2 .

(i) If MC(f1, f2) < ∞ then h′([f̃1]) = h′([f̃2]) .

If n is even and m ≤ 3n− 4 , then:

MC(f1, f2) < ∞ ⇐⇒ h′([f̃1]) = h′([f̃2]) .

(ii) Now assume that n is odd. Then:

MC(f1, f2) = MCC(f1, f2) =

{
#G if f̃1 6∼ f̃2 ;

0 if f̃1 ∼ f̃2 ;

provided [f̃1]−[f̃2] lies in E(πm−1(Sn−1)) when #G ≤ 2 or in E(Ker(h′))
when #G ≥ 3 . If this condition fails to hold, then MCC(f1, f2) = #G but
MC(f1, f2) is infinite.

10



Thus if n is odd and E(Ker(h′)) 6= E(πm−1(Sn−1)) the finiteness of MC(f1, f2)
depends strongly on #G .

Example 1.33: Let m = 2n − 2 and n = 3, 5 or 9 , resp.. Then πm(Sn) is a
cyclic group of order 2, 24 or 240 , resp., and

E(Ker(h′)) = 2 · πm(Sn) 6= πm(Sn) = E(πm−1(Sn−1)) .

If #G ≤ 2 then MC(f1, f2) < ∞ for all maps f1, f2 : Sm −→ Sn�G . However,

if #G ≥ 3 and [f̃1]− [f̃2] /∈ 2πm(Sn) then MC(f1, f2) = ∞ .

Finally let us take a look at maps into surfaces.

Example 1.34: m > n = 2.
Given maps f1, f2 fom Sm, m > 2 , into any closed surface Y , we have

MC(f1, f2) =

{
∞ if f1 6∼ f2 ;

0 if f1 ∼ f2 ;

and

MCC(f1, f2) = N0(f1, f2) =

{
#π1(Y ) if f1 6∼ f2 ;

0 if f1 ∼ f2 .

The same result holds for maps from Sm into an n–dimensional spherical space form
whenever m,n ≥ 2 and πm−1(Sn−1) = 0 , e.g. when [f1], [f2] ∈ π22(S10�G) ∼=
Z12 .

When the target manifold of our maps is not a spherical space form certain finiteness
conditions for the minimum number MC can still be expressed in terms of Hopf–
Ganea invariants (cf. [K3], corollary 7.4 and theorem 7.6).

When the target manifold is a (real, complex or quaternionic) projective space a
detailed discussion of minimum numbers and certain Nielsen numbers was carried out
e.g in [K5] and [K7].

Problem 1.35: Let f1, f2 : X −→ Y be maps between arbitrary smooth connected
manifolds, X being compact.

Is MC(f1, f2) = MCC(f1, f2) whenever MC(f1, f2) < ∞ ? Also: give general
complete criteria for MC(f1, f2) being finite.

Recall that the case n = 2 may play a special role here (cf. [K3], theorem 1.2(iii)).

Conventions and notations. Throughout this paper m,n ≥ 1 , and Y is
a smooth connected n–dimensional manifold (Hausdorff, having a countable base)
without boundary and with basepoint y0 . Let ΩY = Ω(Y, y0) (and (ΩY )+ , resp.)
denote the loop space (with a single disjoint point added, resp.). E stands for the
Freudenthal suspension. Ty(Y ) is the tangent space of Y at a point y ∈ Y .

If p : Ỹ −→ Y denotes the universal covering we equip Ỹ with a basepoint
ỹ0 ∈ p−1 ({y0}). Identity maps are denoted by id . The symbols ∼ (or 6∼ , resp.)
mean freely homotopic (or not, resp.). #S is the cardinality of a set S .

11
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2 The group πm(Sq ∧ (ΩY )+) and the partial
suspension homomorphism e.

In our discussion of Nielsen numbers a central rôle will be played by Thom spaces
of the form Sq ∧ ((ΩY )+) . In this section we interpret these as fibers of appropriate
fibrations. This will allow us to study their homotopy groups, as well as suspension
homomorphisms which are important in coincidence theory.

Fix integers m, q ≥ 1 and base points ∞ ∈ Sq, y0 ∈ Y . Then the obvious
collapsing map

(2.1) p2 : Sq ∨ Y −→ Y

can be transformed (up to homotopy equivalences) into the fibration ev1 in the top
line of the homotopy commutative diagram

(2.2)

F ⊂

quot

∼

��

Z
ev1 //

∼

��

Y

Sq ∧ ((ΩY )+)
j

// Sq ∨ Y
p2

// Y
inclYoo

Here

(2.3) Z :=
{

(x, θ) ∈ (Sq ∨ Y ) × Y I | θ(0) = p2(x)
}

is homotopy equivalent to Sq ∨ Y (via the first projection); the fiber map ev1

evaluates the path θ at 1 ∈ I := [0, 1]. The fiber

(2.4) F =
{

(x, θ) ∈ (Sq ∨ Y ) × Y I | θ(0) = p2(x), θ(1) = y0
}

contains the contractible subspace P = { (x, θ) ∈ F | x ∈ Y }, and the quotient map

(2.5) quot : F −→ F/P = Sq ∧ ((ΩY )+)

is a homotopy equivalence (compare [C], p.2769, and [K3], lemma 7.1). Its inverse
(when composed with the fiber inclusion) yields the map

(2.6) j : Sq ∧ ((ΩY )+) −→ Sq ∨ Y .

Obviously the collapsing map p2 (cf. (2.1)) allows a canonical right inverse. Thus
the exact homotopy sequence of the fibration ev1 splits and takes the following form:

(2.7) 0 // πm(Sq ∧ ((ΩY )+))
j∗ // πm(Sq ∨ Y )

p2∗ // πm(Y )
inclY ∗
oo // 0 .

We conclude

12



Proposition 2.8. The map j (cf. (2.6)) induces the isomorphism

j∗ : πm (Sq ∧ ((ΩY )+))
∼= // Kerm,q(Y ) := Ker( p2∗ : πm(Sq ∨ Y ) −→ πm(Y ) ).

It will be useful to describe j∗ geometrically. Let Bq(r) (and ∂Bq(r), resp.),
r > 0, denote the compact ball (and sphere, resp.) of radius r in R

q, and use an
(orientation preserving) standard identification Bq(r)�∂Bq(r) = Sq. Given a base
point preserving map

u : Sm = R
m ∪ {∞} −→ (Bq(1)× ΩY )� (∂Bq(1)× ΩY ) = Sq ∧

(
(ΩY )+

)
,

we may deform it until we have the following standard situation (as in Pontrjagin–
Thom theory): there is a smoothly embedded tubular neighbourhood T3 := Bq(3) ×
C ⊂ Rm of C := u−1 ({0} × ΩY ) such that

(2.9) u(x) =

{[
(v, θu(c))

]
if x = (v, c) ∈ Bq(1)× C;

∞ if x /∈ B̊q(1)× C.

Here ∞ denotes also the base point of the Thom space (Rq × ΩY ) ∪ {∞} =
Sq ∧ ((ΩY )+) , and θu(c) = u(0, c) ∈ ΩY (= {0} × ΩY ). Thus u maps all

normal slices B̊q(1) × {c} in T3 by the same diffeomorphism to the corresponding
fibers Rq × {θu(c)} in the Thom space, c ∈ C.

Next consider the map
u′ : Sm −→ Sq ∨ Y

defined by
(2.10)

u′(x) =


[v] ∈ Bq(1)�∂Bq(1) = Sq if x = (v, c) ∈ Bq(1)× C;

θu(c)(‖ v ‖ −1) ∈ Y if x = (v, c) ∈
(
Bq(2) \ B̊q(1)

)
× C;

wedge point of Sq ∨ Y if x /∈ Bq(2)× C.

Proposition 2.12. j∗([u]) = [u′].

Proof. We need only to lift u′ to a map

ũ′ : Sm −→ F ⊂ Z

such that quot ◦ũ′ ∼ u (compare diagram 2.2). In view of the standard form of
u and u′ we can do so slice by slice. Given c ∈ C, let x = (v, c) lie in the
normal slice Bq(3) × {c} in the tubular neighbourhood T3. Then we must find a
path θ in Y starting from p2 (u′(x)) and ending at y0. If ‖ v ‖≤ 1, then
p2 (u′(x)) = y0 and we put θ = θu(c) (compare (2.9) and (2.10)). If 1 ≤‖ v ‖≤ 2,
then p2 (u′(x)) = θu(c)(‖ v ‖ −1), and we define θ to be the path which first
goes back to y0 along θu(c) and then traverses the full loop θu(c). In particular,
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y0

y0

y0

y0

y0

y0
Y

y0

θu(c)θu(c)

θu(c)

θu(c)

θu(c)

u′
Sq

Bq(1)× {c}

Figure 2.11: The image of u′ on any normal slice Bq(3)× {c}, c ∈ C.

if ‖ v ‖ = 2, then θ is θ−1u(c) followed by θu(c). We use the remaining parameter

2 ≤ ‖ v ‖ ≤ 3 in the outer part (Bq(3) \Bq(2))×{c} of our normal slice to deform
θ−1u(c) · θu(c) in Ω(Y ) to the constant loop.

This procedure allows us to construct a continuous lifting of u′ on the whole
tubular neighbourhood T3 = Bq(3) × C, and it can be extended trivially to all of
Sm. All but the innermost part Bq(1)×C of T3 gets mapped to P (cf. (2.5)) so
that quot ◦ũ′ = u and j∗([u]) = (j ◦ quot)∗([ũ

′]) = [u′], as required.

Next we construct a partial suspension homomorphism∗

(2.13)

e : Kerm,q(Y )

⊂

// Kerm+1,q+1(Y )

⊂

πm(Sq ∨ Y ) πm+1(Sq+1 ∨ Y )

(compare proposition 2.8) which suspends Sq, but leaves Y unchanged. We use the
same approach and notations as in (2.9) and (2.10).

Given [w] ∈ Kerm,q(Y ), we may assume that

(2.14) w : Sm = R
m ∪ {∞} −→ (Bq(1)�∂Bq(1)) ∨ Y = Sq ∨ Y

has the following standard form: there is a tubular neighbourhood T1 = Bq(1)×C ⊂
R
m of C = {0} × C such that

(i) w|T1 is the obvious composed projection from Bq(1)×C to Bq(1)�∂Bq(1) =
Sq ⊂ Sq ∨ Y ; and

∗After I had written this paper M. Golasinski drew my attention to the work of H. J. Baues who
had introduced partial suspensions for suitable spaces A,B and Y (cf. [Ba], chapter 3). My explicit
geometric construction turns out to agree with Baues’ homotopy theoretical definition for the case
A = Sm, B = Sq .
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(ii) w
(
Sm \

(
B̊q(1)× C

))
⊂ Y ⊂ Sq ∨ Y.

Pick a base point preserving nullhomotopy W : Sm × [0, 1] −→ Y from p2 ◦ w to
the constant map and define

eW | : R
m × [−2, 2] −→ Sq+1 ∨ Y

(i) on T1 × [−1, 1] = (Bq(1)× [−1, 1])× C by the obvious projection to

(Bq(1)× [−1, 1])�∂ (Bq(1)× [−1, 1]) = Sq+1 ⊂ Sq+1 ∨ Y ;

(ii) on (Rm − T1) × [−1, 1] by the projection to R
m − T1, composed with the

restricted map w| into Y ⊂ Sq+1 ∨ Y ;

(iii) for (x, xm+1) ∈ Rm ×R with 1 ≤ |xm+1| ≤ 2 by

eW (x, xm+1) = W (x, |xm+1| − 1) ∈ Y ⊂ Sq+1 ∨ Y .

These piecewise definitions fit well together and allow a trivial extension eW to all
of Sm+1 = (Rm ×R) ∪ {∞}.

The resulting homotopy class

(2.13’) e ([w]) := [eW ] ∈ πm+1

(
Sq+1 ∨ Y

)
is independent of our choice of W. Indeed, given another nullhomotopy W ′ of p2 ◦w,
let [W−1 ·W ′] ∈ πm+1(Y ) ⊂ πm+1(Sq+1 ∨ Y ) be defined by concatenation; then

[eW ′ ] = −[W−1 ·W ′] + [eW ] + [W−1 ·W ′] = [eW ].

Similarly, p2∗([eW ]) = 0, again due to the symmetry property of our construction
with respect to the variable xm+1.

Thus we obtain a welldefined partial suspension homomorphism e as in (2.13).
Clearly e restricts to the full (standard) suspension on the subgroup πm(Sq) of
πm(Sq ∨ Y ).

Remark 2.15. The representation of e([w]) need not to be quite so specific as in
(2.13’). Let

T̂1 = Bq+1(1)× C ↪→ R
m ×R = R

m+1 ⊂ Sm+1

be a tubular neighbourhood inclusion with extends the inclusion of T1 = Bq(1)×C
into R

m = R
m × {0} and takes the last coordinate in Bq+1 to xm+1. Also, let

Ŵ : Sm+1 \ T̂1 −→ Y ⊂ Sq+1 ∨ Y

be any map which extends w|Sm \ T, maps the boundary ∂T̂1 of T̂1 to the
wedgepoint and satisfies the symmetry condition

Ŵ (x, xm+1) = Ŵ (x,−xm+1)
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for all (x, xm+1) ∈ Rm × R ⊂ Sm+1, (x, xm+1) /∈ T̂1. Using a suitable ambient

deformation of T̂1 into T1 × [−1, 1] it is not hard to see that the map

e
Ŵ

: Sm+1 −→ Sq+1 ∨ Y,

defined by Ŵ and the projection

T̂1 = Bq+1 × C −→ Bq+1(1)�∂Bq+1(1) = Sq+1 ⊂ Sq+1 ∨ Y,

represents e([w]).

Theorem 2.16. The partial suspension homomorphism e has the following properties
(where E denotes (standard) full suspension homomorphisms and m,m′, q, q′ ≥ 1):

(a) Compatibility with the isomorphism j∗. The diagram

πm(Sq ∧ ((ΩY )+))
∼=
j∗

//

E

��

Kerm,q(Y )

e

��
πm+1(Sq+1 ∧ ((ΩY )+))

∼=
j∗

// Kerm+1,q+1(Y )

(cf. Proposition 2.8 and (2.13) ) commutes.

(b) Naturality.

(i) Given a base point preserving map g : Sm
′ −→ Sm and [w] ∈ Kerm,q(Y ) ,

we have
e([w ◦ g]) = (e([w])) ◦ [E g] ∈ Kerm′+1,q+1(Y ) .

(ii) Given base point preserving maps g1 : Sq −→ Sq
′

and g2 : Y −→ Y ′

between manifolds, the map g1 ∨ g2 : Sq ∨ Y −→ Sq
′ ∨ Y ′ induces the

commuting diagram

Kerm,q(Y )
e //

(g1∨g2)∗

��

Kerm+1,q+1(Y ) ⊂

((Eg1)∨g2)∗
��

πm+1(Sq+1 ∨ Y )

Kerm,q′(Y
′)

e // Kerm+1,q′+1(Y ′) ⊂ πm+1(Sq
′+1 ∨ Y ′).

(c) Compatibility with Whitehead products.

Given α ∈ πm(Sq∨Y ) = πm(Y )⊕Kerm,q(Y ) and β ∈ Kerm′,q(Y ), we have:

(i) if α ∈ πm(Y ), then e([α, β]) = ±[α, e(β)] ∈ Kerm+m′,q+1(Y );

(ii) if α ∈ Kerm,q(Y ), then e([α, β]) = 0.
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Proof. Given [u] ∈ πm(Sq ∧ (ΩY )+), pick a representative u in standard form (as
in (2.9) ), based on a map g : C −→ ΩY and on a framed embedding C ⊂ Rm.
Then we can represent the suspension E([u]) by a map Eu in standard form, based
on the same g and on the composite embedding C ⊂ Rm ⊂ Rm+1. Now compare
the corresponding maps u′ and (Eu)′ in standard form (cf. (2.10) and (2.14) ) and
apply remark 2.15 to w := u′. When we restrict (Eu)′ to the complement of the

tubular neighbourhood T̂1 of C in Sm+1, we obtain a map Ŵ as in remark 2.15.
Thus

(e · j∗([u]) =) e([u′]) = [(Eu)′] (= j∗ ◦ E([u])).

This establishes our first claim.
Naturality follows similarly from the way e is defined or from remark 2.15.
For the proof of our third claim we use the geometric description of Whitehead

products suggested e.g. by [W], Ch. X, (7.1) or Figure 10.2. Write R
m+m′−1 =

R
m−1 × R × R

m′−1 and let S′ ⊂ Rm+m′−1 denote the unit sphere (with center
0 ) of R

m−1 × R × {0}, framed in the standard fashion by the outward pointing
vector and R

m′−1. Similarly, let S ⊂ {0} ×R×Rm′−1 be the framed unit sphere
(with center em = (0, 1, 0) ∈ S′ ) of the normal space of S′ at em. Also let

T := Bm × S, T ′ = Bm
′
× S′ ⊂ R

m+m′−1

denote compact tubular neighbourhoods of S and S′, resp., parametrized compatibly
with the framings and disjoint (but linked).

Now pick representatives a, b in standard form (cf. (2.4) ) of the homotopy classes
α, β ∈ π∗(S

q ∨ Y ). Define

wa,b : Sm+m′−1 −→ Sq ∨ Y

on the tubular neighbourhood T and T ′, resp., by composing a and b, resp., with
the obvious projections (e.g. compose α with

T = Bm × S −→ Bm�∂Bm = Sm ) ,

and on Sm+m′−1 − (T ∪ T ′) by the constant map. Then

[wa,b ] = ±[α, β]

and wa,b is again in standard form.
Now construct e([b]) = [e

Ŵ
] as in remark 2.15 and consider the map

T̂ ′ = Bm
′+1 × S′ // Sm

′+1
e
Ŵ // Sq ∨ Y

which extends wa,b |T ′ to a tubular neighbourhood of S′ in Rm+m′ . If a maps Sm

fully into Y, we can also extend wa,b |T to a tubular neighbourhood T̂ = Bm × Ŝ
of the unit sphere Ŝ (around em ) in

(
{0} ×R×Rm′−1

)
× R ⊂ R

m+m′ by
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applying a to each normal slice. We get a representative of e([α, β]) (as in remark
2.15) which represents also ±[α, e(β)]. This proves the first part of claim (c).

If α ∈ Kerm,q(Y ) we do not need all of Ŝ but we can extend both wa,b|T
and wa,b|T ′ to tubular neighbourhoods of S, S′ ⊂ Rm+m′−1 in R

m+m′ . But these
tubular neighbourhoods are not linked and can be isotoped to disjoint xm+m′–levels.
Thus

e([α, β]) = [0, e(β)] + [e(α), 0] = 0.

Corollary 2.17. Let [w] ∈ π∗(S
q∨Y ) be an iterated Whitehead product with factors

in π∗(Y ) and with at least one factor purely in π∗(S
q). If [w] has precisely one

factor [v] ∈ π∗(S
q), then ±e([w]) equals the same Whitehead product, but with [v]

replaced by the standard suspension E([v]) ∈ π∗(S
q+1); otherwise e([w]) = 0.

Proof. This follows by applying theorem 2.16(c) and the anticommutativity of White-
head products repeatedly.

3 The coincidence invariants ωr and Hopf–Ganea
homomorphisms.

In this section we discuss our ω–invariants and their interpretation – via the isomor-
phism j∗ (cf. proposition 2.8) – in terms of suspensions and Hopf–Ganea invariants.

Assume that n ≥ 2 . Fix a local orientation of the n-manifold Y at its basepoint y0
and an embedded path γ in Y from y0 to some point ∗ ∈ Y , ∗ 6= y0 . (Constant
maps with value ∗ will also be denoted by ∗ ). Then, given [f1] ∈ πm(Y, ∗)
and [f2] ∈ πm(Y, y0) , we can use the Pontryagin–Thom procedure to interpret
ω#(f1, f2) = ω0(f1, f2) (cf. 1.6) as an element in πm(Sn ∧ (ΩY )+) (cf. [K3],
proposition 2.5); more generally,

(3.1) ωr(f1, f2) = Er(ω#(f1, f2)) ∈ πm+r(S
n+r ∧ (ΩY )+) , r = 0, 1, . . . ,∞ ,

(compare 1.6 and 3.1’ below) where E denotes the suspension homomorphism. In
addition

(3.2) ωr(f1 + f ′1, f2 + f ′2) = ωr(f1, f2) + ωr(f
′
1, f
′
2)

for all [f1], [f ′1] ∈ πm(Y, ∗) , [f2], [f ′2] ∈ πm(Y, y0) (cf. [K3], 6.1).
Let us describe these invariants more explicitly in the case when f1 ≡ ∗ . Given

[f ] ∈ πm(Y, y0), we may assume that f : Sm −→ Y is smooth with regular
value ∗. Then ω#(∗, f) is the nonstabilized bordism class of the triple (C, g̃, ḡ# )
consisting of

(i) the embedded smooth submanifold C := f−1({∗}) of Rm ⊂ R
m ∪ {∞} =

Sm ;
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(ii) the map g̃ from C to the loop space ΩY defined as follows: pick a homotopy
G : C × I −→ Sm from the inclusion C ⊂ Sm to the constant map with
value ∞ (= the basepoint of Sm ). Then g̃(x) is the (concatenated) loop
γ · f (G (x,−)) , x ∈ C;

(iii) (−1) · ḡ# is the isomorphism from the normal bundle of C in R
m to the

trivial bundle (over C ) with fiber T∗(Y ) ∼= Ty0(Y ) ∼= R
n, induced by the

tangent map of f and the chosen path γ .

We use the Pontryagin–Thom procedure to identify the group of nonstabilized bor-
dism classes of such triples with the homotopy group πm(Sn ∧ ( (ΩY )+) ) (for more
details see [K3]).

If we forget about embeddings and consider C only as an abstract (m − n)–
dimensional manifold, equipped with the map g̃ and with the stable framing deter-
mined by ḡ# , we obtain the framed bordism class

(3.1’) ω∞(∗, f) = [C, g̃, ḡ∞] ∈ Ωfrm−n(ΩY ) = lim
r→∞

πm+1(Sn+r ∧ (ΩY )+)

which was discussed in detail in [K2].
Now let B ⊂ Y be a smoothly embedded compact n–ball with center point ∗

such that y0 lies in the boundary sphere ∂B and B contains the image of γ . We
obtain a pinching map

pinch : Y = (Y − B̊) ∪∂B B −→ Y�∂B ∼= Sn ∨ Y

which collapses ∂B to a point.

Theorem 3.3. If Y is a simply connected, oriented n–dimensional manifold, n ≥ 2,
the diagram of homomorphisms

πm(Y )

ω#(∗,−)
��

pinch∗− inclY ∗ ◦ p2∗◦ pinch∗

++
πm(Sn ∧ ((ΩY )+))

j∗ ◦ κ

∼= // Kerm,n(Y ) ⊂ πm(Sn ∨ Y )

(compare 2.7 and 2.8) commutes. (Here κ denotes the involution induced by (−1)· iden-
tity map on R

n ⊂ Sn = R
n ∪ {∞} .)

Proof. The corresponding result for general Y (with arbitrary finite fundamental
group) was established in [K3], theorem 7.2. Here we give a different geometric proof
for the special case Y = Sn (which is relevant for spherical space forms).

Given [f ] ∈ πm(Sn), we may assume that f has the following standard form:
there exists a smoothly embedded tubular neighbourhood

T = C ×Bn ⊂ R
m ⊂ Sm
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such that f |T is the projection

C ×Bn −→ Bn�∂Bn = Sn = R
n ∪ {∞}

and f(x) = y0 = ∞ for all x /∈ T . In the spirit of Pontryagin–Thom
we may interpret pinch∗([f ]) by the framed link C q C ′ ⊂ R

m consisting
of the (neighbouring ”parallel”) components C = C × {0} = f−1({∗}) and
C ′ = C × {z0} for some z0 ∈ B̊n \ {0}. Then inclY ∗ ◦ p2 ◦ pinch∗([f ])
corresponds to the translated framed submanifold C ′′ = C ′ + v0 ⊂ R

m, pushed
away by some big vector v0 ∈ Rm, so that it does not link with C ×Bn anymore.

Consider the homotopy

(3.4) G′ : C ′ × I −→ R
m, G′(x, t) := x+ tv0,

and the embedding

E : C ′ × I ⊂ Rm × I, E(x, t) := (x+ tv0, t),

(x, t) ∈ C ′ × I. We may assume that ∗ ∈ Sn is a regular value of f ◦G′ so that
E(C ′ × I) intersects C × I transversely in an embedded submanifold

K ⊂ C × (0, 1) ⊂ R
m × (0, 1) .

Pick δ > 0 such that the δ–neighbourhood of K is still embedded, and so is the
δ · t–neighbourhood of (c, t) ∈ K , growing as t > 0 increases from one intersection
of E with {c} × I to a higher one, for any c ∈ C . Now remove the δ · t–ball
B′ ⊂ E(C ′ × I) around each point (c, t) ∈ K and replace it by the cylinder
∂B′ × [t, 1] ⊂ R

m × I . After smoothing corners we obtain an embedded framed

Ĉ

T × I

T × I

C ′ × {1}

C × {0}C ′ × {0}

R
m × I

R
m × I

R
m × {1}

R
m × {0}

E(C ′ × I)

Figure 3.5: The bordism which proves theorem 3.3 in case Y = Sn.
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bordism in (Rm \ C)× I from C ′ × {0} to the disjoint union of C ′ × {1} with a

framed submanifold Ĉ ⊂ R
m × {1} which lies in the δ–neighbourhood of C × {1}

(see figure 3.5). But the link C q Ĉ ⊂ Rm represents j∗ ◦κ(ω#(∗, f)) . This follows
from proposition 2.12 if we construct ω#(∗, f) using the homotopy G′ (cf. (3.4)) as
well as the straight path between 0 and z0 in Bn and a local isotopy along this
path. Therefore pinch∗([f ]) = inclY ∗ ◦ p2∗ ◦ pinch∗([f ]) + j∗ ◦ κ(ω#(∗, f)).

For all m, q ≥ 1 there exists a canonical decomposition

(3.6) Kerm,q(Y ) = πm(Sq) ⊕ πm(Sq [ Y )

where Sq [ Y denotes the homotopy fiber of the inclusion Sq ∨ Y ⊂ Sq × Y (cf.
[G](9) and [CLOT], 6.7).

Corollary 3.7. Let B be a compact n–ball embedded in the 1–connected oriented
manifold Y (as in 3.3). For all [f ] ∈ πm(Y )

j∗ ◦ κ(ω#(∗, f)) = ([b ◦f ] , HC(f)) ∈ πm(Sn) ⊕ πm(Sn [ Y )

where b and HC are defined as a (1.8) and (1.9).

Thus our basic coincidence invariant ω#(∗, f) turns out to be an enriched Hopf–
Ganea invariant. For a proof and further details see [K3], (63)–(65).

Corollary 3.8. For all r = 0, 1, . . . ,∞ and [f ] ∈ πm(Y ) we have

j∗(E
r(κ(ω#(∗, f)))) = (Er([b ◦f ]) , er(HC(f)) ) ∈ πm+r(S

n+r) ⊕ πm+r(S
n+r [ Y ) .

In particular, ωr(∗, f) = 0 if and only if Er([b ◦ f ]) = 0 and er(HC(f)) = 0.

Proof. This follows from the fact that j∗ is injective and compatible with suspensions
(cf. theorem 2.16(a)). Moreover, ωr = Er ◦ ω# (cf. 3.1) agrees with Er ◦ κ ◦ ω#

up to an involution on π∗(S
n+r ∧ (ΩY )+) of the form (d ∧ id)∗ where the map

d : Sn+r −→ Sn+r has degree (−1)n.

4 Computing Nielsen numbers

In this section we prove theorem 1.11 and proposition 1.12
Let p : Ỹ −→ Y be a universal covering map of the n–dimensional manifold

Y , n ≥ 2 , and pick a basepoint ỹ0 ∈ Ỹ such that p(ỹ0) = y0 . Also denote the
number of pathcomponents of the loop space ΩY = Ω(Y, y0) by

k := #π1(Y ) = #π0(ΩY ) , 1 ≤ k ≤ ∞ .

Given homotopy classes [f ], [f1], [f2], . . . ∈ πm(Y, y0) , m ≥ 2 , let [f̃ ], [f̃1], [f̃2], . . . ∈
πm(Ỹ , ỹ0) be their liftings.

The Nielsen number Nr(f1, f2) is extracted from the coincidence data (ir, g̃, ḡr)
of a generic coincidence manifold C (cf. 1.1) as follows, r = 0, 1, . . . ,∞ . Since the
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domain of f1, f2 is a sphere, g̃ maps C into the loop space ΩY (after suitable
homotopies; cf. [K2], 2.4, and compare also section 3 above). Thus C is the disjoint
union of the Nielsen classes CA = g̃−1(A) , A ∈ π0(ΩY ) . Such a Nielsen class
CA is called nonessential or essential, according to whether or not the coincidence
data (ir, g̃, ḡr) , when restricted to CA , form a nullbordant triple. By definition
Nr(f1, f2) ∈ {0, 1, . . . , k} is the number of essential Nielsen classes.

Clearly Nielsen numbers do not depend on the choice of the local orientation of Y
at y0 and of the path γ which play a rôle in the construction of ωr(f1, f2) (compare
the proof of corollary 3.7).

Proof of theorem 1.11. In the case 1 of the theorem our claim follows from proposition
1.3 in [K4].

If k is finite and n ≥ 2 , consider first the coincidence data of a pair of the form
(∗, f) where ∗ 6= y0 and [f ] ∈ πm(Y, y0) . After suitable isotopies of Ỹ and

deformations of f̃ we may assume that

i.) there is a smoothly embedded open n–ball B̊ ⊂ Ỹ \ {ỹ0} which contains all

the points p−1({∗}) = {∗̃ = ∗̃1, ∗̃2, . . . , ∗̃k} ⊂ Ỹ over ∗ ∈ Y ;

ii.) f̃ is smooth with regular value ∗̃ = ∗̃1 and maps a tubular neighbourhood

C̃ × B̊ = T̊ ⊂ R
m ⊂ R

m ∪ {∞} = Sm

of C̃ := f̃−1({∗̃}) to B̊ via the obvious projection; and

iii.) f̃(Sm \ T̊ ) ⊂ Ỹ \ B̊ .

Then the generic coincidence manifold C := f−1({∗}) = f̃−1({∗̃1, ∗̃2, . . . , ∗̃k})
consists of the (”parallel”) Nielsen classes

C̃i = C̃ × {∗̃i} ⊂ C̃ × B̊ ⊂ Sm , i = 1, . . . , k ,

which are simultaneously either all nonessential or essential, according as the coinci-
dence data of C̃ = C̃×{∗1} are nullbordant (or, equivalently ωr(∗̃, f̃) = 0 ) or not.

Indeed, given a homotopy G : C̃ × I −→ Sm from the inclusion C̃ ⊂ Sm to a
constant map at ∞ , base the construction of the ω–invariant on the concatenation of
G with the straight path c̃i from {∗̃i} to {∗̃} in B̊ , i = 1, . . . , k (see the beginning
of our section 3 above). Since the loops p ◦ c̃i in Y are pairwise nonhomotopic we

get the Nielsen decomposition C = qC̃i with equally strong components.
In contrast the coincidence data [ir, g̃, ḡr] of a pair of the form (f, f) have the

special property that g̃ is homotopic to a constant map (cf. [K3], (21)). Thus the

ω–invariants of (f, f) and (f̃ , f̃) are equally strong and nontrivial precisely if the
pathcomponent of the trivial loop in ΩY corresponds to an essential Nielsen class.

Next consider an arbitrary pair (f1, f2) , [f1], [f2] ∈ πm(Y, y0) . Use the chosen
path γ from y0 to ∗ (cf. § 3) and a small neighbourhood of the basepoint ∞ in
Sm to deform f1 to a map f ′1 : (Sm,∞) −→ (Y, ∗) . According to (3.2)

(ωr(f1, f2) =) ωr(f
′
1, f2) = ωr(f

′
1, f1)− ωr(∗, f1) + ωr(∗, f2) .
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Applying our previous discussion to [f ] = [f1] − [f2] , we see that the nontrivial
elements of π0(ΩY ) ∼= π1(Y ) yield essential Nielsen classes if and only if

(4.1) ωr(∗̃, f̃1) 6= ωr(∗̃, f̃2) .

The trivial element of π0(ΩY ) contributes an essential Nielsen class precisely if

(4.2) ωr(f̃
′
1, f̃1)− ωr(∗̃, f̃1) + ωr(∗̃, f̃2) 6= 0 .

Now assume that Ỹ allows a fixed point free selfmap a . It is freely homotopic to
a basepoint preserving map

a· : (Ỹ , ỹ0) −→ (Ỹ , ỹ0) .

Then ωr(f̃
′
1, a

· ◦ f̃1) = ωr(f̃1, a ◦ f̃1) = 0 and

(4.3) ωr(f̃
′
1, f̃1) = ωr(f̃

′
1, f̃1)− ωr(f̃ ′1, a· ◦ f̃1) = ωr(∗̃, f̃1)− ωr(∗̃, a· ◦ f̃1) .

Therefore condition (4.2) takes the form

(4.2.a) ωr(∗̃, a· ◦ f̃1) 6= ωr(∗̃, f̃2) .

This agrees with condition (4.1) if the Euler characteristic of Ỹ vanishes (e.g. when
n is odd); indeed, a vector field without zeros yields a fixed point free selfmap a of

Ỹ which is isotopic to the identity map a· = id.
Finally apply the isomorphism j∗ to the conditions (4.1) and (4.2.a) and use

corollaries 3.7 and 3.8. Also note that HC(f̃1) = HC(a
· ◦ f̃1) since ωr(f̃

′
1, f̃1) , and

j∗(ωr(f̃
′
1, f̃1)) , resp., lie already in the subgroup πm(Sn) of πm(Sn∧ (ΩỸ )+) , and of

Kerm,n(Ỹ ) , resp. (compare (3.6) and [K5], 5.6). This completes the proof of theorem
1.11.

Proof of Proposition 1.12. We need to study only the arguments in the previous proof
which deal with the case 2 of theorem 1.11. All Nielsen classes are simultaneously
essential or nonessential (i.e. Nr(f1, f2) ∈ {0, k}) except possibly when ωr(f̃1, f̃1) 6=
0 (cf. (4.2)). But in this case also ωr(f1, f1) = Er(ω#(f1, f1)) and hence ω#(f1, f1)
are nontrivial. Thus all the restrictions listed in proposition 1.12 follow from [K4],
proposition 1.3, and [K6], theorem 1.32.

5 Spherical space forms

In this section we prove theorem 1.15 and its corollaries.
Let Y = Sn�G be a spherical space form as in 1.15; thus Ỹ = Sn. In view of

the criteria (4.1) and (4.2.a) we need to apply theorem 3.3 only to (lifted) homotopy
classes ϕ̃ ∈ πm(Sn). For the calculation of Nielsen numbers we may assume that the
n–ball B ⊂ Sn (used in (1.8), (1.9) and in the construction of the pinching map in
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theorem 3.3) is a suitable halfsphere, endowed with the standard orientation of Sn.
Then b ∼ id in (1.8) and

(5.1) pinch∗(ϕ̃) = (ι1 + ι2) ◦ ϕ̃ ∈ πm(Sn ∨ Sn) ,

where ι1 and ι2 are represented by the two obvious inclusions of Sn onto Sn∨Sn.
Using Hilton’s choice of basic Whitehead products and applying his theorem A (in
[H]) we conclude that

(5.2) (pinch∗− ι2∗ ◦ p2∗ ◦ pinch∗) (ϕ̃) = ι1 ◦ ϕ̃+
∑
j≥1

w′j ◦ h
′
j(ϕ̃) +

∑
w′′k ◦ h

′′
k(ϕ̃) ;

here the last two sums to the right involve those basic Whitehead products of ι1 and
ι2 which contain ι1 precisely once (cf. 1.14), and at least twice, resp.

Now according to theorems 2.16(a) and 3.3, ωr(∗̃, ϕ̃) = Er(ω#(∗̃, ϕ̃)) = 0
or, equivalently, Er(κ(ω#(∗̃, ϕ̃))) = 0 (cf. 3.3) if and only if the iterated partial
suspension homomorphism er annihilates the right hand term in equation (5.2).
Denote this term by τ . It vanishes precisely if its first summand and hence ϕ̃ itself
does (by theorem A in [H]). When r ≥ 1 our theorem 2.16(b) and corollary 2.17,
together again with Hilton’s result (applied to Sn+r ∨ Sn ) imply that

er(τ) = ι1 ◦ E
r(ϕ̃) +

∑
j≥1

er(w′j) ◦ E
r(h′j(ϕ̃)) = 0

if and only if Er(ϕ̃) = 0 and ±Er ◦ h′j(ϕ̃) = 0 for all j ≥ 1, i.e. Er ◦ h(ϕ̃) = 0.

Finally put ϕ̃ := [f̃1] − (±ι) ◦ [f̃2] and apply our criteria (4.1) and (4.2.a); note
also that the antipodal map a is freely homotopic to a representative a· of the
generator (−1)n+1 · ι of πn(Sn, y0). Theorem 1.15 and its corollaries 1.16 and 1.17
follow. For corollary 1.19 compare also theorem 4.18 in [BS].

Remark 5.3. The discussion following formula 4.3 implies, in particular, that

h′([f ]) = h′(((−1)n+1 · ι) ◦ [f ])

for all [f ] ∈ πm(Sn), m, n ≥ 2. This has been used to simplify the criterion in
Example 1.18.

Proof of corollary 1.20. As in the proof of proposition 1.12 we need to show only that
ω∞(f̃1, f̃1) vanishes (compare (4.2)) or, in the language of [K2], theorem 1.14, that

ω̃j(f̃1, f̃1) := hj(ω̃(f̃1, f̃1)) = 0, j = 1, 2, . . . .

When j ≥ 2 the ’Hopf invariant component’ hj(ω̃(f̃1, f̃1)) is indeed trivial in this

selfcoincidence situation (since ω̃(f̃1, f̃1) lies already in the subgroup Ωfrm−n of

Ωfrm−n(ΩY ). Similarly

ω̃1(f̃1, f̃1) = d̃eg1(f̃1)± d̃eg1(f̃1) ∈ πSm−n

(cf. [K2], theorem 1.14) vanishes in view of our assumption 2 · πSm−n = 0.
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Note that this assumption cannot be dropped. E.g. if n = 4, 8, 12, 14, 16 or 20
then there exist infinitely many homotopy classes [f ] ∈ π2n−1(RP(n)) such that
ω∞(f, f) 6= 0 or, equivalentely, N∞(f, f) = 1. Indeed, apply corollary 1.17 to
desuspensions of elements of order > 2 in πSn−1 (see also [K4], example 1.26).

6 Examples

In this section we use theorem 1.15 to establish the claims in examples 1.21, 1.22, 1.25
and 1.27, as well as Proposition 1.24 and Table 1.26.

The first claim in example 1.21 follows from theorem 1.15 or its corollaries since

E∞ ◦ h = (E∞, E∞ ◦ h′) : πm(Sn) −→ πSm−n ⊕ πSm−2n+1

(cf. 1.13 ff) is injective here. Indeed, in the stable range m ≤ 2n− 2 already E∞

is an isomorphism; when m = 2n − 1 the needed injectivity follows from the exact
EHP–sequence

Z
·[ιn,ιn] // π2n−1(Sn)

E∞ // πSn−1

(cf. [W], Ch. XII, (2.3) and (2.4)) and from the fact that the classical Hopf invariant

H : π2n−1(Sn)
E∞ ◦ h′1−−−−−−→ πS0 ≡ Z

(cf. [W], Ch. XI, (8.17)) takes the value 2 on [ιn, ιn] (cf. [W], Ch. XI, (2.5)).
According to the generalized ”Wecken theorem” 1.10 in [K2] the minimum number

MCC agrees always with N0 ≡ N∞ when m < 2n − 2 . The remaining claims in
Example 1.21 follow from [K6], theorems 1.12, 1.27 and 1.29, and from [KR], theorems
1.13 and 1.16.

Next let us prove the claims in Example 1.22. When n ≥ 2 is even and m ≤ n+3 ,
then n ≤ 2n−1 (and hence E∞ ◦h is injective by the preceding proof) or else n = 2
and m = 4 or 5 (and then already E∞ alone is injective (cf. [T], Propositions
5.3, 5.6 and Theorem 14.1,i). Thus again all Nielsen numbers agree among themselves,
and also with MCC (by [K6], theorems 1.12 and (the last claim in) 1.19).

In view of theorem 1.15 suspensions of the Hopf–Hilton homomorphism h (cf. 1.13
ff) play possibly a decisive role also in arbitrary dimensions m, n .

Lemma 6.1. (# Ker (Er ◦ h))r=0,1,... is a nondecreasing sequence of finite integers
≤ #πm(Sn) . In fact, we have more: if #πm(Sn) = ∞ , then E∞ ◦ h is injective
and # Ker(Er ◦ h) = 1 for all r ≥ 0 .

The second claim is obvious when m = n and was established in the preceding
discussion when m = 2n− 1 and n ≡ 0(2) .

Proof of Proposition 1.24. If condition (ii) is satisfied then Ker(Er ◦h) = Ker(Er+1 ◦

h) by Lemma 6.1 and E is injective, when restricted to Im(Er ◦ h) . Hence the
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criteria for Nr and Nr+1 in theorem 1.15 agree and condition (i) holds. In turn this
implies (iv) and (iii).

On the other hand, if (ii) is not satisfied, then πm(Sn) is finite by lemma 6.1 and

contains a class [f̃ ] such that

Er ◦ h([f̃ ]) 6= 0 = Er+1 ◦ h([f̃ ]) .

Thus according to theorem 1.15

Nr

(
(p ◦) [f̃ ], 0

)
6= 0 = Nr+1

(
(p ◦) [f̃ ], 0

)
and therefore #0

r(m,Y ) < #0
r+1(m,Y ) . This completes the proof.

Next we compute the cardinalities #i
r(m,Y ) (cf. 1.23) in a particularly simple

special case.

Lemma 6.2. Given m,n ≥ 2, n even , assume that h′ ≡ 0 on πm(Sn) (cf. 1.13’).
Consider the iterated suspension homomorphism Er : πm(Sn) −→ πm+r(S

n+r) , and
the (finite) cardinality Qr := #{α ∈ Er(πm(Sn)) | 2α = 0}, 0 ≤ r ≤ ∞ . If
Y = Sn�Z2 as in theorem 1.15, then

#0
r(m,Y ) = Qr · (# KerEr)2 ;

#1
r(m,Y ) = 2 · ((#Er(πm(Sn))−Qr) · (# KerEr)

2
;

#2
r(m,Y ) = (# (πm(Sn)))

2 −#0
r(m,Y )−#1

r(m,Y ).

(All these cardinalities are finite except when m = n ; in this case #0
r(m,Y ) = 1 ,

but #1
r(m,Y ) = #2

r(m,Y ) = ∞ ).
In particular, the number of pairs ([f1], [f2]) , fi : Sm −→ Sn�Z2 , i = 1, 2 ,

such that N0(f1, f2) = 0 , is equal to Q0 , i.e. to the number of elements of ≤ 2 in
πm(Sn) .

Proof. Our assumption h′ ≡ 0 simplifies the criteria in theorem 1.15 considerably
and implies also that (−ι) ◦ [f̃2] = −[f̃2] (cf. [W], Ch. XI, (8.12)). Thus the set
of pairs ([f1], [f2]) ∈ πm(Y )2 such that Nr(f1, f2) = 0 (or = 1 , resp.) is
characterized by the following conditions:

(i) Er([f̃2]) is an element of order ≤ 2 , or not, resp., in Er(πm(Sn)) ; and

(ii) [f̃1] ∈ (Er)−1{±Er([f2])} .

The ’number’ of elements [f2] ∈ πm(Y ) satisfying condition (i) is Qr · # KerEr ,
and ((# ImEr)−Qr) · # KerEr , resp.. Each such [f2] can be paired with as many

as #{±Er[f̃2]} ·# KerEr homotopy classes [f1] ∈ πm(Y ) in order to satisfy also
condition (ii).

If m = n , then Nr(f1, f2) = 0 , or 1 , or 2 , resp., according as ([f1], [f2]) = 0 ,
or lies in the remaining union of the diagonal and antidiagonal in πm(Y )2 ∼= Z× Z ,
or outside of this union, resp..
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Finally let us apply lemma 6.2 to the case m = 16, Y = S6�Z2 . We use
the computations in Toda’s book [T] (cf. theorems 7.3, 13.9 and the tables in Chapter
XIV) as well as Serre’s theorem (cf. e.g. [T], (13.1)).

π16+r(S
6+r) # Ker(Er) Er(π16(S6))

π16(S6)

E ����

∼= Z8

∼=

��

⊕ {0} ⊕ Z2

∼=

��

⊕ Z9

����

1 Z8 ⊕ Z2 ⊕ Z9

π17(S7)

E ��

∼= Z8

∼=

��

⊕ {0} ⊕ Z2

∼=
��

⊕ Z3
∼=

��

3 Z8 ⊕ Z2 ⊕ Z3

π18(S8)

E ����

∼= Z8

·±2   

⊕ Z8

∼=
��

⊕ Z2
∼=

��

⊕ Z3

∼=

��

⊕ Z3 3 Z8 ⊕ Z2 ⊕ Z3

π19(S9)

E ����

∼= Z8

����

⊕ Z2

∼=

��

⊕ Z3

∼=

��

6 Z4 ⊕ Z2 ⊕ Z3

π20(S10)

E ����

∼= Z4

����

⊕ Z2

∼=

��

⊕ Z3

∼=

��

12 Z2 ⊕ Z2 ⊕ Z3

π21(S11)

E ����

∼= Z2 ⊕ Z2

∼=

��

⊕ Z3

∼=

��

24 Z2 ⊕ Z3

π22+j(S
12+j), j ≥ 0 ∼= Z2 ⊕ Z3 24 Z2 ⊕ Z3

Table 6.3: The suspension homomorphisms on the groups π16+r(S
6+r), r ≥ 0 , as

described by Toda [T]. The cyclic direct summands in the ith row, i = 1, 2, 3, 4 ,
are generated by ν6+r ◦ σ9+r , σ6+r ◦ ν13+r , η6+r ◦ µ7+r and β1(6 + r) , resp..

In particular, the suspension homomorphism from π15(S5) to π16(S6) is both
onto and injective. This implies not only that h′ ≡ 0 on π16(S6) , but also that
MC(f1, f2) = MCC(f1, f2) = N0(f1, f2) for all pairs f1, f2 : S16 −→ S6�Z2

(cf. theorems 1.28 and 1.30; or else [K3], Corollary 6.10 and theorem 6.14 as well as
[K6], theorem 1.19). Moreover we can extract the explicit description of the groups
π16+r(S

6+r), r = 0, 1, . . . , and of the relevant suspension homomorphism as listed in
Table 6.3. E.g. it follows from [T], (4.4) and (7.19), that

E(ν8 ◦ σ11) = ±2σ9 ◦ ν16 .

Now the data in Table 1.26 and the claims in Example 1.25 follow immediatly from
Lemma 6.2, Table 6.3 and Proposition 1.24.
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Similarly, according to theorem 1.15

#0
r(16, S6) = #π16(S6) ·# KerEr .

Therefore Table 6.3 (together with [K3], 6.10 and 6.14) yields also the claims in Ex-
ample 1.27.

7 The minimum numbers MC and MCC.

In this section we discuss theorems 1.28, 1.30 and some of their consequences.
Theorem 1.28 follows from [K6], Corollary 1.20, except when Y is a sphere. But

if Y = Sn and a· : (Sn, y0) −→ (Sn, y0) is freely homotopic to the antipodal map
and [f ] := [f1]− a·∗[f2] , then

MCC(f1, f2) = MCC(f, y0) = N0(f, y0) = N0(f1, f2) .

Indeed, if also n ≥ 2 then ([f1], [f2]) = ([f ], y0) + (a·∗[f2], [f2]) and MCC(a ◦
f2, f2) = 0 ; moreover, MCC(f, y0) ≤ 1 vanishes precisely when [f ] = 0 or,
equivalently, N0(f, y0) = 0 (since by construction ω#(f, y0) ∈ πm(Sn ∧ (ΩSn)+)
determines [f ] ∈ πm(Sn) .)

If Y = S1 , then our claim follows from theorem 1.13 in [K2]. This completes the
proof of our theorem 1.28.

Proof of theorem 1.30. We may assume that m ≥ n since otherwise πm(Sn) = 0
and MC ≡ MCC ≡ 0 . The same holds if m > n = 1 . If m = n = 1 and
we denote the mapping degree of fi : S1 −→ S1 by d0(fi), i = 1, 2 , and put
d0 := d0(f1 · f−12 ) = d0(f1)− d0(f2) , then

MC(f1, f2) = MCC(f1, f2) =
∣∣d0(f1)− d0(f2)

∣∣ < ∞
since f1 · f−12 is homotopic to the map z −→ zd

0

, z ∈ S1 , whose roots of unity
belong to pairwise different Nielsen classes.

If m > n = 2 and MCC(f1, f2) < ∞ , then MC(f1, f2) = MCC(f1, f2) = 0
since each isolated coincidence point has an ’index’ in πm−1(Sn−1) = 0 and hence
may be eliminated by small deformations (cf. [K3], (28)). If m = n = 2 , then claim
1.30(i) follows from [J], theorem 4.0.

Now we can deduce the full claim (ii) in our theorem 1.30 from [K3], corollary 6.10,
applied to [f ] := [f1] − [f2] : just note that |MC(f1, f2)−MC([f1]− [f2], y0)| ≤
MC(f2, f2) ≤ 1 (cf. [K3], Proposition 6.2, and [K6], theorem 1.19). In order to
complete also the proof of claim (i) we may assume that m, n ≥ 3 and – in view of
[K3], theorem 1.2 – also that MC(f1, f2) ≤ #G . If MC(f1, f2) 6= MCC(f1, f2) , then
obviously N0(f1, f2) < #G and hence (by Corollary 1.16) f1 ∼ f2 or f1 ∼ a ◦ f2
and therefore MC(f1, f2) = MCC(f1, f2) = 0 or = 1 (cf [K6], theorem 1.19).
Contradiction.
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Proof of Corollary 1.32. (i) Assume that n is even and m ≤ 3n−4 . Then #G ≤ 2
and h′ fits into the exact EHP–sequence (cf. [W], Ch. XII, 2.3)

πm−1(Sn−1)
E−→ πm(Sn)

H=h′−−−−→ πm(S2n−1) −→ . . . .

Indeed, πm(S2m−1) is stable and hence the Hopf–James invariant H agrees with
the Hopf–Hilton invariant h′ (cf. [BS], theorem 4.18).

(ii) If n is odd then MCC(f1, f2) = N0(f1, f2) (cf. theorem 1.28) is described in
corollary 1.16(i); here a ∼ id .

Finally let us discuss Example 1.33. Here h′ : πm−1(Sn−1) −→ Z coincides
with the classical Hopf invariant homomorphism (cf. [W], Ch. XI, 8.17) and is onto.
According to the first argument in section 6 above the Freudenthal suspension epi-
morphism E is injective when restricted to Kerh′ , i.e. to the torsion subgroup
of πm−1(Sn−1) . An inspection of Toda’s table I (cf. [T], p.186) now shows us
that E(Ker(h′)) is a subgroup of index 2 of the cyclic group E(πm−1(Sn−1)) =
πm(Sn) .

Since all closed surfaces but S2 and RP(2) are aspherical the claims in Example
1.34 follow from

Proposition 7.1. Assume that πm−1(Sn−1) = 0 where m,n ≥ 2 . Then we have
for all maps f1, f2 : Sm −→ Sn�G :

(i) If f1 ∼ f2 , then MC(f1, f2) = MCC(f1, f2) = Nr(f1, f2) = 0 for all
r = 0, 1, . . .∞ .

(ii) If f1 6∼ f2 , then MC(f1, f2) = ∞ but MCC(f1, f2) = N0(f1, f2) = #G .

Proof. If MC(f1, f2) < ∞ , the maps fi may be deformed until they have only
isolated coincidence points. Each of these can be removed by a further local defor-
mation since its index (very similar to the index of a vector field at an isolated zero,
cf. [K3], (28)) lies in πm−1(Sn−1) = 0 . Thus MC(f1, f2) vanishes (and so do
MCC(f1, f2) and the Nielsen numbers). According to theorem 1.30 this happens pre-
cisely when [f ′1] = [f ′2] where f ′i is any basepoint preserving map freely homotopic
to fi, i = 1, 2 . Hence f1 ∼ f2 ; in turn, MC(f1, f2) ≤ 1 whenever f1 ∼ f2 (cf.
[K6], theorem 1.19). The previous argument shows also that MC(f2, f2) = 0 even
when f1 6∼ f2 . Thus the pairs (f1, f2) and ([f ′1]− [f ′2], 0) have the same minimum
and Nielsen numbers (cf. [K3], 6.2). Claim (ii) follows now from theorem 1.28 and
corollary 1.16.

It is a curious consequence of the last proof that each map f : Sm −→ Sn is
homotopic to its composite a ◦ f with the antipodal map a whenever m,n ≥ 2
and πm−1(Sn−1) = 0 . Indeed, clearly MC(f, a ◦ f) = 0 .
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