Übungen zur Stochastik I, WS 08/09

Blatt 11

- 1. (BA) Sei F^{-1} die Quantilfunktion zu der Vf F (vgl. Blatt 7, Aufg. 5).
 - (i) (Quantiltransformation.) Sei U gleichverteilt auf (0,1). Man zeige: $F^{-1}(U)$ besitzt die Vf F.
 - (ii) (W–Integral transformation.) Sei X eine Zufallsvariable mit stetiger Vf F. Man zeige: F(X) ist gleichverteilt auf [0,1]. (2)
- 2. (i) Seien U_1, \ldots, U_n iid (0,1)-gleichverteilte Zufallsvariable. Man beweise, dass $F^{-1}(U_1), \ldots, F^{-1}(U_n)$ iid Zufallsvariable mit Vf F sind. (1)
 - (ii) Berechne die Quantilfunktion zur Standard-Exponential-Vf. (1)
 - (iii) (Erzeugen von Pseudo-Zufallszahlen.) Man erzeuge 6 Realisationen nach der Gleichverteilung auf (0,1) mit einem Taschenrechner (oder man gebe sich 6 äquidistante Werte vor). Erzeuge hiermit mittels (i), (ii) Realisationen nach der Standard-Exponentialverteilung und zeichne mit Bleistift und Lineal die zugehörige Stichproben-Vf. (3)
- 3. Seien X_1, \ldots, X_n reellwertige, iid Zufallsvariable mit Vf F. Man beweise:

(i)
$$P(\max\{X_1, \dots, X_n\} \le x) = F^n(x)$$
. (3)

(ii)
$$P(\min\{X_1,\dots,X_n\} \le x) = 1 - (1 - F(x))^n$$
. (3)

4. (i) Seien $x_{1:n}, \ldots, x_{n:n}$ die der Größe nach geordneten Werte (Komponenten) des Vektors (x_1, \ldots, x_n) . Man beweise für $1 \le k \le n$, dass

$$x_{k:n} \le t \iff \sum_{i=1}^{n} 1_{(-\infty,t]}(x_i) \ge k.$$

(2)

(ii) Sei $g_{k:n}: \mathbb{R}^n \to \mathbb{R}$ definiert durch $g_{k:n}(x_1, \dots, x_n) = x_{k:n}$, vgl. (i). Die k-te Ordnungsstatistik zu iid Zufallsvariablen X_1, \dots, X_n ist definiert durch $X_{k:n} = g_{k:n}(X_1, \dots, X_n)$. Man beweise, dass

$$P(X_{k:n} \le t) = \sum_{i=k}^{n} {n \choose i} F(t)^{i} (1 - F(t))^{n-i}, \quad t \in \mathbb{R},$$

falls F die Vf von X_i ist. (4)

5. Ein Unternehmen stellt Schrauben her. Die zufällige Länge (in Millimeter) einer Schraube besitze die Varianz 0,00032. Welche Abweichung vom Erwartungswert muss das Unternehmen zulassen, wenn der Ausschuss höchstens 5% betragen soll? (Anleitung: Man wende die Tschebyschevsche Ungleichung für n=1 an.)

Abgabetermin: Mo/Di, den 19./20.1.2009, in den Übungen.