Übungen zur Stochastik I, WS 07/08

Blatt 5

- 1. (GYM/BK) Man beweise, dass der Mittelwert der Poisson–Verteilung P_{λ} gleich λ ist. (3)
- 2. (BA) (Lemma 3.10 der Vorlesung.) Sei $|\Omega| < \infty$ und P_n die Gleichverteilung auf Ω^n . Man beweise, dass für $A_i \subset \Omega$, i = 1, ..., n, folgende Produktregel gilt: (3)

$$P_n(X_{i=1}^n A_i) = \prod_{i=1}^n P_1(A_i)$$

- 3. Sei X eine $B_{n,p}$ -verteilte Zufallsvariable, wobei p zusätzlich rational ist. Man zeige, dass EX = np. [Hinweis: verwende die Aufgaben 1 und 3 von Blatt 4.] Welchen Mittelwert hat B_{np} ? (3)
- 4. Man beweise, dass für eine diskrete, reellwertige Zufallsvariable X Folgendes gilt: $V(X) = E(X^2) - (EX)^2$, falls $E(X^2)$ existiert. [Hinweis: setze $\alpha = \alpha 1_{\Omega}$ für eine konstante Zufallsvariable mit Wert α .] (2)
- 5. In einer Schulklasse wird eine Mathematikarbeit geschrieben. Nach der Korrektur liegt der folgende Datensatz vor, in dem die erreichten Noten der einzelnen Schüler und Schülerinnen festgehalten sind:

$2\,2\,3\,4\,1\,3\,3\,2\,5\,5\,4\,3\,3\,3\,2\,3\,2\,2\,2\,4\,3$

- (i) Man berechne die absoluten Häufigkeiten der einzelnen Merkmalsausprägungen und erzeuge mit Xtremes den Datensatz mittels des Daten-Editors (OPEN DATA EDITOR... HEADER... DISCRETE DA-TA).
- (ii) Man visualisiere den Datensatz mittels eines Histogramms (VISUA-LIZE... HISTOGRAM) und erzeuge einen Ausdruck des Plots. (3)
- 6. (Plot einer empirischen Verteilungsfunktion.) Man erzeuge mittels Xtremes Realisationen x_1, \ldots, x_n zum Stichprobenumfang n = 100 nach der Standard-Exponential-Vf F (POT... GENERATE UNIVARIATE DATA... EXPONENTIAL). Damit liegt ein aktiver Datensatz vor. Man plotte F und die empirische Vf F_n —zu dem aktiven Datensatz—in dasselbe Fenster (POT... DISTRIBUTION... EXPONENTIAL... DF und VISUALIZE... SAM-PLE DF) und erzeuge einen Ausdruck. (2)

- 7. (Plot eines Histogramms.)
 - (i) Man erzeuge mit Xtremes einen Datensatz zum Stichprobenumfang n = 100 nach der Standard-Normalverteilung (mit den Lokationsund Skalenparametern $\mu = 0, \sigma = 1$): SUM... DATA... GENERATE UNIVARIATE DATA... GAUSSIAN. Xtremes greift dann auf diesen aktiven Datensatz zu.
 - (ii) Man konvertiere den gegebenen Datensatz in einen gruppierten Datensatz: Dazu öffne man eine Dialog-Box mit DATA...CONVERT TO... GROUPED DATA, wähle eine geeignete Zerlegung des Intervalls [-4,4] und erzeuge den Datensatz mit OK.
 - (iii) Man plotte das zugehörige Histogramm: VISUALIZE... HISTOGRAM.
 - (iv) Man füge im Textmodus die gewählte Zerlegung in den Plot ein: SET LABEL MOUSE MODE Klick auf die Graphik TEXT...LABEL TEXT
 - (v) Man plotte die Dichte der Standardnormalverteilung dazu: DISTRI-BUTION...GAUSSIAN...DENSITY
 - (vi) Man erzeuge eine eps-Datei des Plots und drucke diese aus. (4)

Abgabetermin: Mo./Di., den 26./27.11.2007, in den Übungen.