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1 Introduction

For the whole discussion, let A = {1, 2, 3} be the alphabet consisting of three sym-
bols 1, 2 and 3. Further, denote R2 the Euclidean plane and define p1, p2, p3 ∈ R2

by

p1 := (0, 0), p2 :=

(
1

2
,

√
3

2

)
, p3 := (1, 0).

Hence, p1, p2 and p3 are the vertices of a unilateral triangle of side length one.

Our work centers on one of the most famous fractals, the Sierpiński gasket,
that we denote by SG. This is the unique non-empty compact subset of R2 such
that

SG =

3⋃
i=1

Si(SG),

where

Si : R2 −→ R2

x 7→ x+ pi
2

, i = 1, 2, 3.

This fractal is a p.c.f. self-similar set (see Kigami, J. (1993) for details) and it is
usually approximated by an increasing sequence of finite sets defined by

V0 := {p1, p2, p3} ,

and for every n ≥ 1

Vn :=
⋃

w∈An
Sw(V0), (1)

where Sw : R2 → R2, Sw(x) := Sw1 ◦ · · · ◦ Swn(x) for w = w1 . . . wn ∈ An. The set

V∗ :=
⋃
n≥0

Vn

is dense in SG with respect to the Euclidean metric. For further details we refer
to Kigami, J. (1993).

Definition 1.1: The n-th approximating graph Γn of SG is the graph with vertex
set V (Γn) and edge set E(Γn) defined by{

V (Γn) := Vn
E(Γn) := {{x, y} : x 6= y and ∃w ∈ An such that x, y ∈ Sw(V0)} ,

where Vn is the set defined in (1).
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Figure 1 Approximating graphs Γ0, Γ1 and Γ2.

Hanoi graphs have their origin as mathematical representation of the so called
Tower of Hanoi game (TH game for short), intensely studied since its invention
due to the French mathematician Édouard Lucas in 1883.

This game consists of three (or in general p ≥ 3) vertical pegs, named 1, 2 and
3, and n discs numbered 1 through n according to rising diameters, n ∈ N. At the
beginning, these discs are situated on the first peg so that the largest disc lies at
the bottom and the smallest at the top, building a tower. The goal of the game is
to construct the tower again on one of the other pegs (see Figure 2).

1 2 3 1 2 3

Figure 2 Starting state with the tower on the first peg and expected final state with
the tower on the third peg.

Throughout the construction one must follow two basic rules:

- Each time one and only one disc has to be moved.

- No larger disc lies on a smaller one.

This means that only one disc lying at the top of a peg will be moved each time.
The states of the Tower of Hanoi for n discs and p pegs can be represented by
words w = w1 . . . wn ∈ {1, 2, . . . p}n, where wi indicates the peg on which the disc
i is stacked in state w. A move is a pair of states (w,w′), where w′ results from w
by a legal transfer of a disc (see Figure 3).

1 2 3 1 2 3

Figure 3 Legal move (11111, 21111) of the TH game with p = 3, n = 5.
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A mathematical representation of this game is given by the so called Hanoi
graphs, Hn

p , p being the number of pegs and n being the number of discs.
Of our interest are Hanoi graphs with p = 3. So the states will be represented by
words w ∈ {1, 2, 3}n = An. From now on, we will drop the index p and write Hn

only.

For any n ≥ 1, the Hanoi graph Hn is defined by{
V (Hn) :=An
E(Hn) := {{w,w′} : (w,w′) is a legal move in the TH game} .

The different moves done during the game build a path in the corresponding Hanoi
graph. An example is given in Figures 4 and 5.

1 2 3

w = 111

w3 = 1

w2 = 1

w1 = 1

1 2 3

w = 311

w3 = 1

w2 = 1

w1 = 3

1 2 3

w = 321

w3 = 1 w2 = 2
w1 = 3

1 2 3

w = 221

w3 = 1
w2 = 2

w1 = 2

1 2 3

w = 333

w3 = 3

w2 = 3

w1 = 3

Figure 4 Moves in the TH game with p = 3 and n = 3.

For simplicity we will choose another labelling for the vertices of these graphs.
This labelling was introduced in Klavžar, S. and Milutinović, U. (1997) with the
definition of the so called Sierpiński graphs Sn3 , n ≥ 0. These graphs are defined
recursively by

V (S03 ) := w0, E(S03 ) := ∅,
where w0 denotes the empty word, and

V (Sn+1
3 ) :=An+1

E(Sn+1
3 ) := {{iw, iw′} , i ∈ A, {w,w′} ∈ E(Sn3 )}

∪
{
{ij . . . j, ji . . . i} ∈

(An+1

2

)}
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111 311

211

231 131

331

332
232

132

122 322

312

212
112

113

313 213

233

133123

323

223221

121

321

222

333

Figure 5 The marked edges build the path corresponding to the moves done in
Figure 4.

Since Sierpiński graphs are isomorphic to Hanoi graphs (see Lemma 2 in Hinz,
A.M. and Schief, A. (1990)), we can use equivalently this alternative labelling (see
Figure 6).

11
21 23

33

31 13

32 12

22

11
13 31

33

12 32

21 23

22

Figure 6 Representation of the graphs H2
3 and S2

3 .

From now on, we regard Hanoi graphs not only as topological objects, but
also as geometrical ones. In particular, we will equip the edges with a length. The
purpose of the rest of the paper is to investigate geometric properties of these sets.

We define the parameter α > 0 to be the length of the only edges that belong
to E(Hn) for every n ≥ 2. This length corresponds to the following distance

α := |xijj...j − xjii...i| , (2)

for any i, j ∈ A, i 6= j. Here, xijj...j represents the point that geometrically cor-
responds to the vertex ijj . . . j ∈ An. New similar edges appearing over the levels
will have a length which is a multiple of α.

It is easy to understand (see Figure 7) that, if we let α tend to zero, any Hanoi
graph Hn will end up to the (n− 1)−th approximating graph of SG, Γn−1.
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α

α α

α→0−−−→
Figure 7 H2 will become Γ1 if α→ 0.

This fact brings up some interesting questions. Firstly, how one can describe
properly this geometric convergence. Secondly, if this convergence works for other
quantities than Hausdorff dimension. Thirdly, if and how analytic convergence
holds. The first two questions are answered in the present paper. Hereby some
proofs concerning the second question are sketched only. For details we refer to the
authors paper Alonso-Ruiz, P. and Freiberg, U.R (2012). The last question will be
investigated in the forthcoming paper Alonso-Ruiz, P. and Freiberg, U.R (2012).

2 The Hanoi attractor

Let 0 < α < 1/3 be the parameter defined in (2). Moreover, recall the points p1,
p2, p3, defined at the beginning of the introduction and set

p4 :=
1

2
(p2 + p3), p5 :=

1

2
(p1 + p3), p6 :=

1

2
(p1 + p2).

p1

p2

p3

p6

p5

p4

Further, define the maps Gα,i : R2 → R2, i = 1, . . . 6 by

Gα,i(x) :=

{
1−α
2 (x− pi) + pi for i = 1, 2, 3,

Aiα(x− pi) + pi for i = 4, 5, 6,
(3)

where

A4 =
1

4

(
1 −

√
3

−
√

3 3

)
A5 =

(
1 0
0 0

)
A6 =

1

4

(
1
√

3√
3 3

)
.

Note that Gα,1, Gα,2, Gα,3 are contractive similitudes of ratio 1−α
2 , while

Gα,4, Gα,5, Gα,6 are contractive (singular) mappings of ratio α. Nevertheless, since

all the ratios are less than one, {Gα,i}6i=1 is a family of contractions. Thus we know



7

(see Hutchinson, John E. (1981)) that there exists a unique non-empty compact
set, HGα, such that

HGα =

6⋃
i=1

Gα,i(HGα).

This is what we call the Hanoi attractor of parameter α. The reason for this at-
tractor to be called Hanoi is simply that it almost looks like the drawing of the
graph of the TH game if we would have three pegs and ”infinitely many discs”.

Observe that HGα is not self-similar (see Section 9.2 in Falconer, K. (2003) for
definition), because Gα,4, Gα,5, Gα,6 are not similitudes. This will cause difficulties
when doing calculations (see Section 4).

If we now consider the sequence of Hanoi attractors (HGα)0<α<1/3, we ask
ourselves about its geometric properties when approaching SG.

3 Convergence in the Hausdorff metric

Let (H (R2), h) be the complete metric space of the non-empty compact subsets
of R2 equipped with the Hausdorff metric h.
Recall that this metric h : H (R2)×H (R2)→ [0,+∞) is defined by

h(A,B) := inf {ε > 0 : such that A ⊆ Bε and B ⊆ Aε} , A,B ∈H (R2),

where
Aε :=

{
x ∈ R2 : d(x,A) ≤ ε

}
and

d(x,A) := min {|x− y| : y ∈ A} .

Theorem 3.1: Let SG be the Sierpiński gasket and HGα the Hanoi attractor of
parameter α, 0 < α < 1/3. Then it holds that

h(HGα, SG)
α→0−−−→ 0.

Before proving this, we need some previous work.

For each n ≥ 1 and each 0 < α < 1/3, define the sets Wα,n by

Wα,n :=
⋃

w∈An
Gα,w(Wα,0),

where Wα,0 := {p1, p2, p3} and

Gα,w(x) := Gα,w1 ◦Gα,w2 ◦ · · ·Gα,wn(x), w = w1, . . . wn ∈ An.

Note that we still work with the alphabet A = {1, 2, 3}.
Further, define

Wα,∗ :=
⋃
n≥0

Wα,n.
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Lemma 3.2: It holds that

h(V∗,Wα,∗)→ 0, as α ↓ 0.

Proof: From the definition of Hausdorff metric we know that

h(V∗,Wα,∗) = inf {ε > 0 : V∗ ⊆ (Wα,∗)ε and Wα,∗ ⊆ (V∗)ε} .

Fix α ∈ (0, 1/3). We will show that

h(V∗,Wα,∗) ≤ α.

We firstly show that V∗ ⊆ (Wα,∗)α. We prove by complete induction over m that

Vm ⊆ (Wα,∗)α for all m ≥ 0.

Case m = 0: If x ∈ V0 there is nothing to prove since V0 = Wα,0.
Let us prove the first non-trivial case m = 1: Consider x ∈ V1. Then, x ∈ V0 (trivial
case, see above) or x ∈ V1 \ V0. In the latter case, there exist i, j ∈ A, i 6= j such
that

x = Si(pj). (4)

For the same i, j ∈ A as in (4), consider the point y := Gα,i(pj). Its distance to x
is:

|x− y| = |Si(pj)−Gα,i(pj)| =
∣∣∣∣12pj +

1

2
pi −

1− α
2

pj −
1 + α

2
pi

∣∣∣∣
=
∣∣∣α
2
pj −

α

2
pi

∣∣∣ =
α

2
|pj − pi| =

α

2
≤ α.

Thus V1 ∈ (Wα,∗)α.

Now assume that Vm ⊆ (Wα,∗)α for some m.
Let x ∈ Vm+1 \ Vm. Then, there exist a point x ∈ Vm and a symbol k ∈ A such
that

x = Sk(x). (5)

Since x ∈ Vm, by hypothesis of induction we know that there exists y ∈Wα,∗ such
that

|x− y| ≤ α. (6)

For the same k ∈ A as in (5), consider the point y := Gα,k(y) ∈Wα,∗. For the point
y it holds that

|x− y| = |Sk(x)−Gα,k(y)| =
∣∣∣∣12x+

1

2
pk −

1− α
2

y − 1 + α

2
pk

∣∣∣∣
=

1

2
|x− y + αy − αpk| ≤

1

2
|x− y|+ α

2
|y − pk|

(6)

≤ α

2
+
α

2
= α.
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Thus we have proven, that for every m ≥ 0 the following holds: For any x ∈ Vm
there exists an y ∈Wα,∗ such that |x− y| ≤ α, i.e

Vm ⊆ (Wα,∗)α for all m ≥ 0.

Since V∗ =
⋃
m≥0 Vm, we get

V∗ ⊆ (Wα,∗)α.

This holds for all α ∈ (0, 1/3).

It would remain to prove the inclusion Wα,∗ ⊆ (V∗)α for all 0 < α < 1/3, but
the proof of this is analogous to the latter one by simply changing the roles of V∗
and Wα,∗. Thus,

Wα,m ⊆ (V∗)α for all m ≥ 0,

and therefore
h(V∗,Wα,∗) ≤ α

α→0−−−→ 0,

as we wanted to prove. �

Note that the bound h(V∗,Wα,∗) ≤ α is quite rough, one easily could obtain
sharper estimates. However, the bound α is sufficient for our purposes.

We now introduce a new set, Fα, which is the unique non-empty compact set
such that

Fα =

3⋃
i=1

Gα,i(Fα), (7)

where Gα,1, Gα,2 and Gα,3 are the three similitudes of ratio 1−α
2 defined in (3).

Note that Wα,∗ is dense in Fα with respect to the Euclidean metric in R2.

Lemma 3.3: Let 0 < α < 1/3 and consider the sets HGα and Fα. Then,

Fα ⊆ HGα.

Proof: Define the map

T : H (R2) −→H (R2)

B 7→
3⋃
i=1

Gα,i(B), B ∈H (R2),

whose unique fixed point is Fα. From Theorem 9.1 in Falconer, K. (2003) we know
that for any starting set B0 ∈H (R2) such that Gα,i(B0) ⊆ B0 for all i = 1, 2, 3,
the sequence (Bn)∞n=1 defined recursively by

B1 := T (B0), Bn := T (Bn−1) for every n > 1,

converges to Fα in the Hausdorff distance h and it holds that

Fα =

∞⋂
n=1

Bn.
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On the other hand, define

T̃ : H (R2) −→H (R2)

B 7→
6⋃
i=1

Gα,i(B), B ∈H (R2).

Recall that HGα is the fixed point of T̃ in H (R2).
Analogously, it holds that for any starting set C0 ∈H (R2) such that Gα,i(C0) ⊆
C0 for all i = 1, . . . , 6, the sequence (Cn)∞n=1 defined recursively by

C1 := T̃ (C0), Cn := T̃ (Cn−1) for every n > 1,

converges to HGα in the Hausdorff distance h and it holds that

HGα =

∞⋂
n=1

Cn.

Denote by ∆ the triangle with vertices p1, p2, p3. Set B0 = C0 = ∆. Then,

Fα =

∞⋂
n=1

Bn =

∞⋂
n=1

Tn(∆) ⊆
∞⋂
n=1

T̃n(∆) = HGα,

as required. �

Lemma 3.4: It holds that

h(HGα, Fα)
α→0−−−→ 0.

Proof: Note that, since Fα ⊆ HGα for all 0 < α < 1/3, it follows directly that

Fα ⊆ (HGα)ε for all ε > 0.

In order to obtain the other direction, we prove that

HGα ⊆ (Fα)α
2

for every 0 < α < 1/3. (8)

Let x ∈ HGα. If x ∈ Fα, then we are done. So let us assume, x ∈ HGα \ Fα. Then,
there exists n ≥ 1 and a word w = w1w2, . . . wn ∈ {1, . . . 6} with at least one letter
in {4, 5, 6} (note, there is such a letter since x /∈ Fα) such that

x = Gα,w(HGα).

Consider wk, k ≤ n the first letter of w such that wk ∈ {4, 5, 6} and define w :=
w1w2 . . . wk−1 ∈ Ak−1. Further, observe that

x ∈ Gα,wwk(HGα).

Therefore, there exists a point z ∈ Gα,wk(HGα) such that x = Gα,w(z). By con-
struction (see e.g. Figure 3) we can find a point y ∈ {Gα,i(pj), Gα,j(pi)} for i, j ∈
A, i+ j + wk = 9 such that

|z − y| ≤ α

2
.
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Gα,5(HGα)

Gα,1(p3) Gα,3(p1)

Figure 8 For any x ∈ Gα,5(HGα) it holds that |x−Gα,1(p3)| ≤ α
2

or
|x−Gα,3(p1)| ≤ α

2
.

Define y := Gα,w(y) ∈ Fα. Since Gα,1, Gα,2 and Gα,3 are similitudes of ratio 1−α
2 ,

Gα,w is a similitude of ratio
(
1−α
2

)k−1
and therefore

|Gα,w(z)−Gα,w(y)| =
(

1− α
2

)k−1
|z − y| .

Thus,

|x− y| = |Gα,w(z)−Gα,w(y)| =
(

1− α
2

)k−1
|z − y| ≤

(
1− α

2

)k−1
· α

2
≤ α

2
,

and (8) is proved. Therefore

h(HGα, Fα) ≤ α

2

α→0−−−→ 0

as we wanted to prove. �

Now we are ready to prove Theorem 3.1.

Proof: Since h is a metric, we know from the triangular inequality that

h(HGα, SG) ≤ h(HGα, Fα) + h(Fα, SG). (9)

On the one hand, by Lemma 3.4 we know that

h(HGα, Fα)
α→0−−−→ 0.

On the other hand, Wα,∗ and V∗ are dense in Fα and SG respectively, therefore
we have

h(Fα, SG) ≤ h(Fα,Wα,∗)︸ ︷︷ ︸
=0

+h(Wα,∗, V∗) + h(V∗, SG)︸ ︷︷ ︸
=0

= h(Wα,∗, V∗).

From Lemma 3.2 we know that h(Wα,∗, V∗) tends to zero if α tends to zero. Thus
from (9) we get

h(HGα, SG) ≤ h(HGα, Fα) + h(Wα,∗, V∗)
α→0−−−→ 0,

as we wanted to prove. �
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4 Geometric convergence

4.1 Hausdorff dimension

We are interested in the geometric properties of the sets HGα, α ∈ (0, 1/3), and
in particular we look for their Hausdorff dimensions. From the result of the last
section, one could conjecture that the Hausdorff dimension of HGα converges to
the Hausdorff dimension of SG. In the present section we show that this is true.

First of all, let us recall some definitions, that can be found for example in Fal-
coner, K. (2003).

Definition 4.1: Let (X, d) be a complete metric space and (H (X), h) its associ-
ated Hausdorff space.

(1) Let U ⊆ X, U 6= ∅. The diameter of U is defined as

|U | := sup {d(x, y) : x, y ∈ U} .

(2) Let K ∈H (X) and {Ui}i∈I a countable (or finite) collection of sets of diameter at
most δ covering K, i.e

K ⊆
⋃
i∈I

Ui, and 0 ≤ |Ui| ≤ δ.

We say that {Ui}i∈I is a δ−covering of K.

(3) Let s ≥ 0. For any δ > 0 we define

Hsδ(K) = inf

{ ∞∑
i=1

|Ui|s : {Ui}i∈I is a δ − covering of K

}
.

(4) The limit
Hs(K) = lim

δ↓0
Hsδ(K)

is called the s-dimensional Hausdorff measure of K. This limit exists as an element
of [0,+∞] because the sequence (Hsδ(K))δ>0 is monotone and non-decreasing for
δ ↓ 0.

(5) If we consider Hs(K) as a function over s, there is a critical value of s such that
the function jumps down from ∞ to 0. This critical value is called the Hausdorff
dimension of K, dimH(K). So it holds

dimH(K) = inf {s ≥ 0 : Hs(K) = 0} = sup {s ≥ 0 : Hs(K) =∞} .

Observe that for s = dimH(K), Hs(K) may be zero, infinite, or some positive finite
number. The latter case makes possible to get a deep analysis of the object.

In our particular case, we work in the metric space R2 equipped with the Euclidean
norm. Recall, that a contractive c-similitude is a map S : R2 → R2 such that

S(x) = cUx+ x0, x ∈ R2,
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where U is a unitary matrix, x0 ∈ R2 and 0 < c < 1.

A finite family of similitudes {Si}Ni=1 is said to satisfy the open set condition
(OSC) if there exists a non-empty bounded open set V ⊆ R2 such that

N⋃
i=1

Si(V ) ⊆ V

and Si(V ) ∩ Sj(V ) = ∅ for i 6= j. Note that {R2;S1, . . . , SN} is also called Iterated
Function System (IFS for short).

Theorem 4.2: Provided that the family {Si}Ni=1 with ratios c1, . . . cN satisfies
(OSC) and K is the unique non-empty compact set such that

K =

N⋃
i=1

Si(K),

then dimH K = s, where s > 0 is the solution of the equation given by

N∑
i=1

csi = 1. (10)

Moreover, for this value of s, it holds that 0 < Hs(K) <∞.

Proof: See Hutchinson, John E. (1981) as the original source, or Theorem 9.3
in Falconer, K. (2003). �

Our next goal is to determine the Hausdorff dimension of HGα, but there is
a problem: Since HGα is not self-similar, we can not apply the formula in (10).
So we will have to solve the problem using the original definition of Hausdorff
dimension, which involves δ−coverings.
Here we state our result.

Theorem 4.3: Let 0 < α < 1/3 and HGα be the corresponding Hanoi attractor.
Then it holds that

dimH(HGα) =
ln 3

ln 2− ln(1− α)
.

Proof: Fix α ∈ (0, 1/3) and denote d := ln 3
ln 2−ln(1−α) .

(1) d ≤ dimH(HGα).
Let Fα be the set defined in (7). It satisfies the open set condition and therefore
we can easily compute its Hausdorff dimension. This is the unique number s > 0
such that

3∑
i=1

(
1− α

2

)s
= 1,
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thus,

s =
ln 3

ln 2− ln(1− α)
= d.

From the monotonicity of Hausdorff dimension (see (Falconer, K., 2003, p. 32)),
we get that

d = dimH(Fα) ≤ dimH(HGα),

because we have that Fα ⊆ HGα by Lemma 3.3. This proves Step (1).

(2) For the proof of the inequality dimH(HGα) ≤ d we refer to Alonso-Ruiz, P.
and Freiberg, U.R (2012). We only note that it requires the original definition of
Hausdorff dimension based on δ−coverings. Since this is quite technical, it will be
skipped here. �

The most important consequence, and the reason for our great interest in this
theorem is the following observation.

Corollary 4.1:

dimH(HGα)
α→0−−−→ dimH(SG) =

ln 3

ln 2
.

4.2 Hausdorff measure

We already mentioned that the d-dimensional Hausdorff measure of a set with
Hausdorff dimension d, can be zero or even infinity. Although we may not use
this fact until further work (see Alonso-Ruiz, P. and Freiberg, U.R (2012)), it will
become important to determine, if the d-dimensional Hausdorff measure of HGα
is positive and finite or not. Hereby d = d(α) is the Hausdorff dimension of HGα,
given in Theorem 4.3. The following result answers this question.

Theorem 4.4: Let 0 < α < 1/3 and d = d(α) = dimH HGα. Then it holds that

0 < Hd(HGα) <∞.

Before proving this, we need some previous work. Recall that Fα is defined by

Fα =

3⋃
i=1

Gα,i(Fα).

If we decompose HGα into the (disjoint) union of Fα and HGα \ Fα, we obtain
obviously that

Hd(HGα) = Hd(Fα) +Hd(HGα \ Fα).

From Theorem 4.2 we know that 0 < Hd(Fα) <∞.

Hence, we have already proven one of the inequalities stated in Theorem 4.4,
since

Hd(HGα) ≥ Hd(Fα) > 0.

However, we still cannot assure that the measure remains finite. The question if
it holds that Hd(HGα \ Fα) <∞ is not trivial. One could think, since this set is
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the countable union of segments of finite 1-dimensional Lebesgue measure (and
hence finite 1-dimensional Hausdorff measure), it should have “almost” finite 1-
dimensional Hausdorff measure and therefore d−dimensional Hausdorff measure
zero for any d > 1. But this set has infinite 1-dimensional Hausdorff measure, as
the following calculation shows.

For any m ∈ N it holds that

λ1(HGα \ Fα) = 3α+ 32α
1− α

2
+ · · ·+ 3mα

(
1− α

2

)m−1
= 3α

m−1∑
k=0

(
3(1− α)

2

)k
m→∞−−−−→∞

which implies H1(HGα) =∞.

So the proof of Theorem 4.4 consists of proving that Hd(HGα \ Fα) <∞. For
this we have to work again with δ-coverings. Since the proof is rather technical,
we refer to Alonso-Ruiz, P. and Freiberg, U.R (2012) for details.

These results make us conjecture that the d(α)-dimensional Hausdorff measures
of HGα, α ∈ (0, 1/3) may converge to the ln3

ln2 -dimensional Hausdorff measure of
SG.
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geometric convergence’, Preprint

Alonso-Ruiz, P. and Freiberg, U.R (2012)c ‘From Hanoi graphs to Sierpiński gasket -
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