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mathematical physics: the spectral dimension of the
universe
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The Spectral Dimension of the Universe is Scale Dependent
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We measure the spectral dimension of universes emerging from nonperturbative quantum
defined through state sums of causal triangulated geometries. While four dimensional on large sc:
quantum universe appears two dimensional at short distances. We conclude that quantum gravity
“self-renormalizing” at the Planck scale, by virtue of a mechanism of dynamical dimensional rec

DOI: 10.1103/PhysRevLett.95.171301 PACS numbers: 04.60.Gw, 04.60.Nc,

Quantum gravity as an ultraviolet regulator?—A shared  tral dimension, a diffeomorphism-inv
hope of researchers in otherwise disparate approaches to  tained from studying diffusion on the
quantum gravity is that the microstructure of space and  of geometries. On large scales and w
time may provide a physical regulator for the ultraviolet  curacy, it is equal to four, in agreemer
infinities enconntered in nerturhative anantim field theorv surements of the larose-scale dimensin



other hand, the “short-distance spectral dimension,” ob-
tained by extrapolating Eq. (12) to o — 0 is given by

Dg(o = 0) = 1.80 + 0.25, (15)

and thus is compatible with the integer value two.



Numerics

(N [n=7 [n=8 ]
1 || 0.0000 0.0000
2 || 1.0000 1.0000
3 || 1.0000 1.0000
4 || 3.2798 3.2798
5 || 3.2798 3.2798
6
7
8

5.2033 | 5.2032
7.8389 | 7.8386
7.8389 | 7.8386
9 || 8.9141 | 8.9139
10 || 8.9141 | 8.9139
11 || 9.4951 | 9.4950
12 || 9.4952 | 9.4950
13 || 17.5332 | 17.5326
14 || 17.5332 | 17.5327
15 || 17.6373 | 17.6366
16 || 17.6373 | 17.6366
17 || 19.8610 | 19.8607
18 || 21.7893 | 21.7882
19 || 25.7111 | 25.7089
20 || 25.7112 | 25.7091

Table: Hexacarpet renormalized eigenvalues at levels n =7 and n = 8.



Level n

c|1 [2 [3 [ 4 [ 5 [ 6 [7

1

2|/ '1.2801 | 1.3086 | 1.3085 | 1.3069 | 1.3067 | 1.3065 | 1.3064
3] 1.2801 | 1.3086 | 1.3079 | 1.3075 | 1.3066 | 1.3065 | 1.3064
4 ][ 1.1761 | 1.3011 | 1.3105 | 1.3064 | 1.3068 | 1.3065 | 1.3065
5 | 1.1761 | 1.3011 | 1.3089 | 1.3074 | 1.3073 | 1.3065 | 1.3065
6 || 1.0146 | 1.2732 | 1.3098 | 1.3015 | 1.3067 | 1.3065 | 1.3064
7 1.2801 | 1.3114 | 1.3055 | 1.3071 | 1.3066 | 1.3065
8 1.2801 | 1.3079 | 1.3086 | 1.3075 | 1.3067 | 1.3065
9 1.2542 | 1.3191 | 1.2929 | 1.3056 | 1.3065 | 1.3065
10 1.2542 | 1.3017 | 1.3089 | 1.3069 | 1.3066 | 1.3065
11 1.2461 | 1.3051 | 1.3063 | 1.3048 | 1.3065 | 1.3065
12 1.2461 | 1.3019 | 1.3075 | 1.3068 | 1.3066 | 1.3065
13 1.1969 | 1.6014 | 1.0590 | 1.3068 | 1.3066 | 1.3065
14 1.1969 | 1.2972 | 1.3063 | 1.3078 | 1.3066 | 1.3065
15 1.2026 | 1.3059 | 1.3020 | 1.3060 | 1.3066 | 1.3065
16 1.2026 | 1.2993 | 1.3074 | 1.3071 | 1.3067 | 1.3065
17 1.1640 | 1.3655 | 1.2349 | 1.3064 | 1.3066 | 1.3065
18 1.1755 | 1.4128 | 1.2009 | 1.3069 | 1.3067 | 1.3065
19 1.1761 | 1.5252 | 1.1171 | 1.3073 | 1.3068 | 1.3066
20 1.1761 | 1.2988 | 1.3114 | 1.3077 | 1.3068 | 1.3065

n

. . . . Al
Table: Hexacarpet estimates for resistance coefficient c given by %A"—ﬂrl
i



Conjecture
We conjecture that

1.

on the Strichartz hexacarpet there exists a unique self-similar local
regular conservative Dirichlet form € with resistance scaling factor
p =1.304 and the Laplacian scaling factor T = 6p;

the simple random walks on the repeated barycentric subdivisions of
a triangle, with the time renormalized by T", converge to the
diffusion process, which is the continuous symmetric strong Markov
process corresponding to the Dirichlet form E;

this diffusion process satisfies the sub-Gaussian heat kernel estimates
and elliptic and parabolic Harnack inequalities, possibly with
logarithmic corrections, corresponding to the Hausdorff dimension

log(6 log(6

g(6) =~ 2.58 and the spectral dimension 2 g(6) ~ 1.74;
log(2) log(7)
the spectrum of the Laplacian has spectral gaps in the sense of
Strichartz;

the spectral zeta function has a meromorphic continuation to C.



Early (physics) results on spectral analysis on fractals

v

R. Rammal and G. Toulouse, Random walks on fractal structures
and percolation clusters. J. Physique Letters 44 (1983)

v

R. Rammal, Spectrum of harmonic excitations on fractals. J.
Physique 45 (1984)

» E. Domany, S. Alexander, D. Bensimon and L. Kadanoff, Solutions
to the Schrodinger equation on some fractal lattices. Phys. Rev. B
(3) 28 (1984)

Y. Gefen, A. Aharony and B. B. Mandelbrot, Phase transitions on

fractals. |. Quasilinear lattices. Il. Sierpiniski gaskets. Ill. Infinitely
ramified lattices. J. Phys. A 16 (1983)17 (1984)
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Early results on diffusions on fractals

Sheldon Goldstein, Random walks and diffusions on fractals. Percolation
theory and ergodic theory of infinite particle systems (Minneapolis,
Minn., 1984-1985), IMA Vol. Math. Appl., 8, Springer

Summary: we investigate the asymptotic motion of a random walker,
which at time n is at X(n), on certain ‘fractal lattices’. For the
‘Sierpinski lattice’ in dimension d we show that, as L — oo, the process
Yi(t) = X([(d + 3)'t]) /2" converges in distribution to a diffusion on
the Sierpin’ski gasket, a Cantor set of Lebesgue measure zero. The
analysis is based on a simple ‘renormalization group' type argument,
involving self-similarity and ‘decimation invariance’. In particular,

IX(n)| ~ n7,
where v = (In2)/In(d + 3)) < 2.

Shigeo Kusuoka, A diffusion process on a fractal. Probabilistic methods
in mathematical physics (Katata/Kyoto, 1985), 1987.



M.T. Barlow, E.A. Perkins, Brownian motion on the Sierpinski
gasket. (1988)

M. T. Barlow, R. F. Bass, The construction of Brownian motion on
the Sierpiriski carpet. Ann. Inst. Poincaré Probab. Statist. (1989)
S. Kusuoka, Dirichlet forms on fractals and products of random
matrices. (1989)

T. Lindstrgm, Brownian motion on nested fractals. Mem. Amer.
Math. Soc. 420, 1989.

J. Kigami, A harmonic calculus on the Sierpiriski spaces. (1989)

J. Béllissard, Renormalization group analysis and quasicrystals, |deas
and methods in quantum and statistical physics (Oslo, 1988)
Cambridge Univ. Press, 1992.

M. Fukushima and T. Shima, On a spectral analysis for the
Sierpiriski gasket. (1992)

J. Kigami, Harmonic calculus on p.c.f. self-similar sets. Trans.
Amer. Math. Soc. 335 (1993)

J. Kigami and M. L. Lapidus, Weyl's problem for the spectral
distribution of Laplacians on p.c.f. self-similar fractals. Comm.
Math. Phys. 158 (1993)
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[0,1]

Sierpinski gasket

nested fractals

p.c.f. self-similar sets, possibly with various symmetries

finitely ramified self-similar sets, possibly with various symmetries

infinitely ramified self-similar sets, with local symmetries, and with
heat kernel estimates (such as the Generalized Sierpinski carpets)

metric measure Dirichlet spaces, possibly with heat kernel estimates
(MMD+HKE)



£

Figure: Sierpiriski gasket and Lindstrgm snowflake (nested fractals), p.c.f.,
finitely ramified)




Figure: The basilica Julia set, the Julia set of z? — 1 and the limit set of the
basilica group of exponential growth (Grigorchuk, Zuk, Bartholdi, Virag,
Nekrashevych, Kaimanovich, Nagnibeda et al., Rogers-T.).



Figure: Diamond fractals, non-p.c.f., but finitely ramified



Figure: Laakso Spaces (Ben Steinhurst), infinitely ramified



Figure: Sierpinski carpet, infinitely ramified



Existence, uniqueness, heat kernel estimates

Brownian motion:

Thiele (1880), Bachelier (1900)

Einstein (1905), Smoluchowski (1906)

Wiener (1920'), Doob, Feller, Levy, Kolmogorov (1930'),
Doeblin, Dynkin, Hunt, lto ...

Wiener process in R" satisfies %E|Wt|2 =t and has a
Gaussian transition density:

1 Ix —y/?
Pt(XaY)—WGXP T

distance ~ V time

“Einstein space—time relation for Brownian motion”



De Giorgi-Nash-Moser estimates for elliptic and parabolic PDEs;

Li-Yau (1986) type estimates on a geodesically complete
Riemannian manifold with Ricci > 0:

1 d(x,y)?
Pe(x,y) ~ mexp <—C t >

distance ~ V time



Brownian motion on RY: E|X, — Xq| = ct!/2.

Anomalous diffusion: E|X, — Xo| = o(t!/?), or (in regular enough
situations),
E|X; — Xo| ~ t1/%

with dy, > 2.

Here d,, is the so-called walk dimension (should be called “walk index”
perhaps).

This phenomena was first observed by mathematical physicists working in
the transport properties of disordered media, such as (critical) percolation
clusters.



taw—1

1 d(x, y) @1
pe(x,y) ~ WGXP —C———

distance ~ (time) i

dy = Hausdorff dimension

= d,, = "walk dimension” (vy=diffusion index)

N
& Q\H

= dg = "“spectral dimension” (diffusion dimension)

s
H
I

First example: Sierpinski gasket; Kusuoka, Fukushima, Kigami, Barlow,
Bass, Perkins (mid 1980'—)



Theorem (Barlow, Bass, Kumagai (2006)).

Under natural assumptions on the MMD (geodesic Metric Measure space
with a regular symmetric conservative Dirichlet form), the sub-Gaussian
heat kernel estimates are stable under rough isometries, i.e. under
maps that preserve distance and energy up to scalar factors.

Gromov-Hausdorff 4 energy



Theorem. (Barlow, Bass, Kumagai, T. (1989-2010).) On any fractal in
the class of generalized Sierpifiski carpets (includes cubes in RY) there
exists a unique, up to a scalar multiple, local regular Dirichlet form that
is invariant under the local isometries.

Therefore there there is a unique corresponding symmetric Markov
process and a unique Laplacian. Moreover, the Markov process is Feller
and its transition density satisfies sub-Gaussian heat kernel estimates.
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Main difficulties:

If it is not a cube in R", then

> ds < dy, d,, > 2

» the energy measure and the Hausdorff measure are mutually singular;
» the domain of the Laplacian is not an algebra;
>

if d(x,y) is the shortest path metric, then d(x, +) is not in the
domain of the Dirichlet form (not of finite energy) and so methods
of Differential geometry seem to be not applicable;

» Lipschitz functions are not of finite energy;
> in fact, we can not compute any functions of finite energy;
» Fourier and complex analysis methods seem to be not applicable.



Theorem. (Grigor'yan and Telcs, also [BBK])

On a MMD space the following are equivalent
» (VD), (EHI) and (RES)
» (VD), (EHI) and (ETE)
» (PHI)
» (HKE)
and the constants in each implication are effective.
Abbreviations: Metric Measure Dirichlet spaces, Volume Doubling,

Elliptic Harnack Inequality, Exit Time Estimates, Parabolic Harnack
Inequality, Heat Kernel Estimates.



analysis

A part of an infinite Sierpinski gasket.



Figure: An illustration to the computation of the spectrum on the infinite

Sierpiriski gasket. The curved lines show the graph of the function 2R(:).

Theorem. (Béllissard 1988, T. 1998, Quint 2009)

On the infinite Sierpinski gasket the spectrum of the Laplacian consists of
a dense set of eigenvalues 9~1(X() of infinite multiplicity and a
singularly continuous component of spectral multiplicity one
supported on R~ (JR).



The Tree Fractafold.



An eigenfunction on the Tree Fractafold.
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Theorem. (Strichartz, T. 2010) The Laplacian on the periodic triangular
lattice finitely ramified Sierpiniski fractal field consists of absolutely
continuous spectrum and pure point spectrum. The absolutely
continuous spectrum is SR 71[0, %] The pure point spectrum
consists of two infinite series of eigenvalues of infinite multiplicity. The
spectral resolution is given in the main theorem.



More on motivations and connections to other areas:

Cheeger, Heinonen, Koskela, Shanmugalingam, Tyson

J. Cheeger, Differentiability of Lipschitz functions on metric measure
spaces, Geom. Funct. Anal. 9 (1999) J. Heinonen, Lectures on analysis
on metric spaces. Universitext. Springer-Verlag, New York, 2001. J.
Heinonen, Nonsmooth calculus, Bull. Amer. Math. Soc. (N.S.) 44
(2007) J. Heinonen, P. Koskela, N. Shanmugalingam, J. Tyson, Sobolev
classes of Banach space-valued functions and quasiconformal mappings.
J. Anal. Math. 85 (2001)

In this paper the authors give a definition for the class of Sobolev
functions from a metric measure space into a Banach space. They
characterize Sobolev classes and study the absolute continuity in measure
of Sobolev mappings in the “borderline case”. Specifically, the authors
prove that the validity of a Poincaré inequality for mappings of a metric
space is independent of the target Banach space; they obtain embedding
theorems and Lipschitz approximation of Sobolev functions; they also
prove that pseudomonotone Sobolev mappings in the “borderline case”
are absolutely continuous in measure, which is a generalization of the
existing results by Y. G. Reshetnyak [Sibirsk. Mat. Zh. 28 (1987)] and by
J. Maly and O. Martio [J. Reine Angew. Math. 458 (1995)]. The authors
show that quasisymmetric homeomorphisms belong. to a-Sobolev space of



Remark: what are dimensions of the Sierpinski gasket?

> I'ggg ~ 2.15 = Hausdorff dimension in effective resistance metric

> 2 = geometric, linear dimension

> % ~ 1.58 = usual Hausdorff (Minkowsky, box, self-similarity)
dimension in Euclidean coordinates (geodesic metric)

> % =~ 1.37 = usual spectral dimension

> =

there are several Lyapunov exponent type dimensions related to
harmonic functions and harmonic coordinates (Kajino,
lonescu-Rogers-T)

> 1 = topological dimension, martingale dimension

> 2h|;;g52 =~ 0.86 = polynomial spectral co-dimension ?
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Existence of self-similar diffusions on finitely ramified fractals? on
any self-similar fractals? on limit sets of self-similar groups? Is there
a natural diffusion on any connected set with a finite Hausdorff
measure (Béllissard)?

Spectral analysis on finitely ramified fractals but with few
symmetries, such as Julia sets (Rogers-T), and infinitely ramified
fractals (Joe Chen)? Meromorphic spectral zeta function
(Steinhurst-T, Kajino)?

Distributions or generalized functions (Rogers-Strichartz)?

iHt

Resolvent and e'"* estimates (Rogers)?

PDEs involving derivatives, such as the Navier-Stokes equation?

Derivatives on fractals; differential geometry of fractals
(Rogers-lonescu-T, Cipriani-Guido-Isola-Sauvageot, Hinz)?
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