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Abstract. A fractafold, a space that is locally modeled on a specified fractal, is the
fractal equivalent of a manifold. For compact fractafolds based on the Sierpiński gasket,
it was shown by the first author how to compute the discrete spectrum of the Laplacian
in terms of the spectrum of a finite graph Laplacian. A similar problem was solved by the
second author for the case of infinite blowups of a Sierpiński gasket, where spectrum is
pure point of infinite multiplicity. Both works used the method of spectral decimations to
obtain explicit description of the eigenvalues and eigenfunctions. In this paper we combine
the ideas from these earlier works to obtain a description of the spectral resolution of the
Laplacian for noncompact fractafolds. Our main abstract results enable us to obtain a
completely explicit description of the spectral resolution of the fractafold Laplacian. For
some specific examples we turn the spectral resolution into a “Plancherel formula”. We
also present such a formula for the graph Laplacian on the 3-regular tree, which appears
to be a new result of independent interest. In the end we discuss periodic fractafolds and
fractal fields.

Acknowledgments. The second author is very grateful to Stanislav Molchanov, Peter
Kuchment and Daniel Lenz for very helpful discussions, and to Eugene B. Dynkin for
asking questions about the periodic fractal structures.
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1. Introduction

Our aim is a “Plancherel formula”:

Pλf(x) =

∫

P (λ, x, y)f(y)dµ(y)

f =

∫

σ(−∆)

Pλfdm(λ)

−∆Pλf = λPλf

||f ||22 =

∫

σ(−∆)

||Pλf ||2λdm(λ).

Our plan:
find a continuation from graphs to fractafolds.
find the explicit spectral resolution of the graph Laplacian on Γ;
describe explicitly a Hilbert space of λ-eigenfunctions with norm || ||λ;



2. Sierpiński fractafolds

2.1. Infinite Sierpiński gaskets.

Figure 2.1. A part of an infinite Sierpiński gasket.
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Figure 2.2. An illustration to the computation of the spectrum on
the infinite Sierpiński gasket. The curved lines show the graph of the
function R(·), the vertical axis contains the spectrum of σ(−∆Γ0

)
and the horizontal axis contains the spectrum σ(−∆).

Theorem 2.1. On the Barlow-Perkins infinite Sierpiński fractafold the spectrum of the
Laplacian consists of a dense set of eigenvalues R−1(Σ0) of infinite multiplicity

and a singularly continuous component of spectral multiplicity one supported on

R−1(JR). [T98, Quint09]



2.2. Laplacian on the Sierpiński gasket. Let µSG be the normalized Hausdorff
probability measure on SG.

Figure 2.3. Sierpiński gasket.

The Laplacian ∆SG on SG is self-adjoint on L2(SG, µSG) with appropriate boundary
conditions and, using Kigami’s resistance (or energy) form,

E(f, f) = lim
n→∞

(

5

3

)n
∑

x,y∈Vn,x∼y

(f(x) − f(y))2 = −3

2

∫

SG

f∆SGfdµSG

for functions in the corresponding domain of the Laplacian (Dirichlet or Neumann).



Example 2.2. Spectral decimation for the unit interval [0,1]. ∆ = ∆[0,1] =
d2

dx2
is the

standard Laplacian on [0, 1], µ = µ[0,1] is the Lebesgue measure on [0, 1], and

E(f, f) = lim
n→∞

2n
∑

(

f( k
2n
)−f(k+1

2n
)
)2

=

∫ 1

0

(f ′(x))2dx = −
∫ 1

0

f∆f dµ

for functions in the domain of the Dirichlet or Neumann self-adjoint Laplacian. The
“eigenfunction extension map” is

ψv,λ(x) = cos(
√
λ |x−v|) − cos(

√
λ)

sin(
√
λ)

sin(
√
λ |x−v|)

where v is 0 or 1. See [Post2008].
To compute the spectrum of −∆[0,1] one can use the spectral decimation method with

inverse iterations of the polynomial

R(z) = z(4 − z).

Each positive eigenvalue can be written as

λ = lim
m→∞

4mλm

for a sequence {λm}∞
m=m0

such that

λm = R(λm+1)



and λm0
∈ {0, 4}. Then

R(z) = lim
k→∞

R◦k(4−kz) = 2 − 2 cos(
√
z)

satisfies the functional equation R(R(z)) = R(4z) and σ(−∆[0,1]) ⊂ R−1{0, 4}.



2.3. Sierpiński gasket: spectral decimation and the eigenfunction extension
map. Fukushima-Shima-Stichartz-T [FS, St03, St06book, T98]: Each positive eigen-
value for −∆SGu = λu can be written as

λ = lim
m→∞

5mλm = 5m0 lim
k→∞

5kλk+m0

for a sequence {λm}∞
m=m0

such that λm = R(λm+1) and λm0
∈ {2, 5, 6} where

R(z) = z(5 − z).

With solutions of Poincare functional equations

R(z) = lim
k→∞

R◦k(5−kz) R(R(z)) = R(5z).

we obtain

ΣD = 5

(

R−1{2, 5} ∪ 5R−1{5}
∞
⋃

m0=2

5m0R−1{3, 5}
)

and

ΣN = {0} ∪ 5

(

R−1{3} ∪
∞
⋃

m0=1

5m0R−1{3, 5}
)

.

The explicitly computed multiplicities grow exponentially fast.



If we define

Σext = 5

(

R−1{2} ∪
∞
⋃

m=0

5mR−1{5}
)

⊂ R−1{0, 6}.

then

Proposition 2.3. For any v ∈ ∂SG and any complex number λ /∈ Σext there
is a unique continuous function ψv,λ(·) : SG → R, called the eigenfunction
extension map, such that ψv,λ(v) = 1, ψv,λ vanishes at the other two boundary
points, and the pointwise eigenfunction equation −∆ψv,λ(x) = λψv,λ(x) holds at
every point x ∈ SG\∂SG.



3. Periodic Fractafolds
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Figure 3.1. A part of the periodic triangular lattice finitely ramified
Sierpiński fractal field and the graph Γ0.
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Figure 3.2. Computation of the spectrum on the triangular lattice
finitely ramified Sierpiński fractal field.

Proposition 3.1. The Laplacian on the periodic triangular lattice finitely ramified
Sierpiński fractal field consists of absolutely continuous spectrum and pure point spectrum.
The absolutely continuous spectrum is R−1[0, 16

3
].

The pure point spectrum consists of two infinite series of eigenvalues of infinite
multiplicity. The series 5R−1{3} ( R−1{6} consists of isolated eigenvalues, and
the series 5R−1{5} = R−1{0}\{0} is at the gap edges of the a.c. spectrum. The
eigenfunction with compact support are complete in the p.p. spectrum. The spectral
resolution is given in the main theorem.



Remark 3.2. Note that on a periodic graph, linear combinations of com-

pactly supported eigenfunctions are dense in an eigenspace.

(see [Kuchment05, Theorem 8], [Kuchment93], [KuchmentPost, Lemma 3.5])
The computation of compactly supported 5- and 6- series eigenfunctions is discussed

in detail in [St03, T98], and the eigenfunctions with compact support are complete in
the corresponding eigenspaces. In particular, [St03, T98] show that any 6-series finitely
supported eigenfunction on Γn+1 is the continuation of any finitely supported function
on Γn, and the corresponding continuous eigenfunction on the Sierpiński fractafold F can
be computed using the eigenfunction extension map on fractafolds (see Subsection 6.2).
Similarly, any 5-series finitely supported eigenfunction on Γn+1 can be described by a
cycle of triangles (homology) in Γn, and the corresponding continuous eigenfunction
on the Sierpiński fractafold F is computed using the eigenfunction extension map on
fractafolds.



Example 3.3. The Ladder Fractafold.
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Figure 3.3. The graphs Γ and Γ0 for the Ladder Fractafold

It is easy to see that the spectrum of −∆Γ is [0, 6], −∆Γ0
has absolutely continuous

spectrum [0, 6] with multiplicity 2 in [0, 2] and [4, 6] and multiplicity 4 in [2, 4].



Example 3.4. The Honeycomb Fractafold.

Figure 3.4. A part of the infinite periodic Sierpiński fractafold based
on the hexagonal (honeycomb) lattice.



4. The Tree Fractafold

In this section we study in detail the spectrum of the Laplacian on the tree fractafold
whose cell graph Γ is the 3-regular tree. In a sense this example is the “universal covering
space” of all the other examples.
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Figure 4.1. Values of
√
3Fz (the center point is z).

It is easy to see from the 6-eigenvalue equation that Fz is the unique (up to a constant

multiple) function in E6 that is radial about z (a function of d(x, z)). Let P̃6(x, y) =
1√
3
Fx(y) = 1

3
(−1

2
)d(x,y) and define P̃6F (x) =

∑

y

P̃6(x, y)F (y).

Theorem 4.1. P̃6 is the orthogonal projection ℓ2(Γ0) → E6; {Fz} is not an or-

thonormal basis of E6, since < Fz, Fy >=
√
3Fz(y), but it is a tight frame

∑

z

| < F, Fz > |2 = 3||F ||2ℓ2(Γ0)
.



The solution of problem (a) is due to Cartier [Cartier]. We outline the solution follow-
ing [F-TN].

Definition 4.2. Let z ∈ C with 22z−1 6= 1. Let c(z) = 1
3
21−z−2z−1

2−z−2z−1
, c(1 − z) =

1
3

2−z−2z

2−z−2z−1
and ϕz(n) = c(z)2−nz + c(1 − z)2−n(1−z).

Remark 4.3. Note that c(z) and c(1−z) are characterized by the identities c(z)+
c(1− z) = 1 and c(z)2−z + c(1− z)2z−1 = c(z)2z + c(1− z)21−z which imply

ϕz(0) = 1 and ϕz(1) = ϕz(−1).

Theorem 4.4. For any fixed y ∈ Γ, let fy(x) = ϕz(d(x, y)). Then

−∆Γfy = (3 − 2z − 21−z)fy

and fy may be characterized as the unique (3 − 2z − 21−z)-eigenfunction that is

radial about y and satisfying fy(y) = 1.

Theorem 4.5. For any F ∈ ℓ2(Γ0) we have the explicit spectral resolution

F = P̃6F +

∫

Σ

P̃λFdm(λ)

for

P̃λF (x) =
1

3(6 − λ)

∑

y

ψ1

2
+it(d(x, y))F (y).



An explicit Plancherel formula on Γ is given in terms of the modified mean inner product

< f, g >M= lim
N→∞

1

N

∑

d(x,x0)≤N

f(x)g(x).

We deal with eigenspaces for which the limit exists and is independent of the point x0.
This is not the usual mean on Γ, since the cardinality of the ball {x : d(x, x0) ≤ N} is
O(2n), but it is tailor made for functions of growth rate O(2−d(x,x0)/2), which is exactly
the growth rate of our generalized eigenfunctions.

Theorem 4.6. Suppose f has finite support. Then

< Pλf, f >= 12b(λ)−1 < Pλf, Pλf >M

and

||f ||2ℓ2(Γ) =
∫

Σ

< Pλf, Pλf >M 12b(λ)−1dµ(λ).
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Figure 4.2. A part of Γ1 with a 5-eigenfunction (values not shown
are equal to zero).



5. General infinite fractafolds and graphs

Let Γ be the cell graph, an arbitrary infinite 3-regular graph. Then Σ = σ(−∆Γ) ⊂
[0, 6], and for µ− a.e.λ

−∆ΓPλ(·, b) = λPλ(·, b)

Pλf(a) =
∑

b∈Γ

Pλ(a, b)f(b)

f =

∫

Σ

Pλfdµ(λ)

−∆ΓPλf = λPλf,



Let Γ0 denote the 4-regular edge graph of Γ and

P̃λ(x, y) =
1

6 − λ

∑

a∈x

∑

b∈y

Pλ(a, b)

(there are 4 terms in the sum).

Theorem 5.1. The spectral resolution of −∆Γ0
is given by

F = P̃6F +

∫

Σ

P̃λFdµ(λ)

where

−∆Γ0
P̃λF = λP̃λF

for µ− a.e.λ, and

P̃λF (x) =
∑

y∈Γ0

P̃λ(x, y)F (y).

In particular, σ(−∆Γ0
) = Σ or Σ ∪ {6}.



Problems:

(a) Find an explicit formula for Pλ(a, b);

(b) Give an explicit description of the projection operator P̃6;
(c) Find an explicit description of the generalized eigensapce ξλ and its inner product,

and transfer this to ξ̃λ of Γ0.

Conjecture 5.2. For µ− a.e.λ there exists a Hilbert space of λ-eigenfunctions ξλ
with inner product <,>λ such that Pλf ∈ ξλ for µ − a.e.λ for every f ∈ ℓ2(Γ),
and

< Pλf, f >=< Pλf, Pλf >λ .

Moreover a similar statement holds for < P̃λF, F > .



6. Technical details

6.1. Underlying graph assumptions and Sierpiński fractafolds. Let Γ0 =
(V0, E0) be a finite or infinite graph. To define a Sierpiński fractafold, we assume that
Γ0 is a 4-regular graph which is a union of complete graphs of 3 vertices. It can be said
that Γ0 is a regular 3-hyper-graph in which every vertex belongs to two hyper-edges.
We define a Sierpiński fractafold F by replacing each cell of Γ0 by a copy of SG.

6.2. Eigenfunction extension map on fractafolds. For any function f0 on Γ0

(and any λ as above), we define the eigenfunction extension map by

Ψλf0(x) =
∑

v∈V0

f0(v)ψv,λ(x).

By definition, f = Ψλf0 is a continuous extension of f0 to the Sierpiński fractafold F

which is a pointwise solution to the eigenvalue equation

−∆ψv,λ(x) = λψv,λ(x)

for all x ∈ F\V0. Ψλ : ℓ2(V0) → L2(F, µ) is a bounded linear operator for any
λ /∈ R−1{2, 5, 6}, and its adjoint Ψ∗

λ : L2(F, µ) → ℓ2(V0) is
(

Ψ∗
λg
)

(v) =

∫

F

g(x)ψv,λ(x)dµ(x).



6.3. Spectral decomposition (resolution of the identity). Let the self-adjoint
discrete Laplacian ∆Γ0

on Γ0 have a spectral decomposition

−∆Γ0
=

∫

σ(−∆Γ0
)

λdEΓ0
(λ)

−∆Γ0
f0(v) =

∫

σ(−∆Γ0
)

λ
∑

u∈V0

PΓ0
(λ, u, v)f0(u)dmΓ0

(λ).

We define

M(λ) =
∞
∏

m=1

(1 − 1
5
λm)(1 − 1

2
λm)

(1 − 1
6
λm)(1 − 2

5
λm)

where λ = limm→∞ 5mλm and λm = R(λm+1). This function does not depend on
the fractafold, but only on the Sierpiński gasket.
Let

Σ′
∞ = 5

( ∞
⋃

m=1

5mR−1{3, 5}
)

( Σ∞ = 5

(

R−1{2} ∪
∞
⋃

m=0

5mR−1{3, 5}
)

.



Theorem 6.1. The Laplacian ∆ is self-adjoint and

R−1(σ(−∆Γ0
)) ∪ Σ′

∞ ⊂ σ(−∆) ⊂ R−1(σ(−∆Γ0
)) ∪ Σ∞.

Moreover, the spectral decomposition −∆ =

∫

σ(−∆)

λdE(λ) can be written as

−∆ =

∫

R−1(σ(−∆Γ0
))\Σ∞

λM(λ)Ψ∗
λd
(

EΓ0
(R(λ))

)

Ψλ +
∑

λ∈Σ∞

λE{λ}.

Here E{λ} denotes the eigenprojection if λ is an eigenvalue. All eigenvalues and eigen-
functions of ∆ can be computed by the spectral decimation method. Furthermore, the
Laplacian ∆ on the Sierpiński fractafold F has the spectral decomposition of the form

−∆f(x) =

∫

R−1(σ(−∆Γ0
))\Σ∞

λ

(
∫

F

P (λ, x, y)f(y)dµ(y)

)

dm(λ) +
∑

λ∈Σ∞

λE{λ}f(x)

where m = mΓ0
◦ R and

P (λ, x, y) = M(λ)
∑

u,v∈V0

ψv,λ(x)ψu,λ(y)PΓ0
(R(λ), u, v).
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erties of Julia sets. Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 3, 699–718.
[DGV3] G. Derfel, P. J. Grabner, and F. Vogl, Laplace Operators on Fractals and Related Functional

Equations, submitted to the J. Phys. A: Math. Gen.
[F-TN] A. Figa-Talamanca and C. Nebbia, Harmonic analysis and representation theory for groups

acting on homogeneous trees. London Mathematical Society Lecture Note Series, 162. Cam-
bridge University Press, Cambridge, 1991.

[Post2008] O. Post, Equilateral quantum graphs and boundary triples. Analysis on Graphs and its
Applications, Proceedings of Symposia in Pure Mathematics, Amer. Math. Soc., 77 (2008),
469–490.



[Quint09] J.-F. Quint, Harmonic analysis on the Pascal graph. J. Funct. Anal. 256 (2009), 3409–
3460.

[St89] R. S. Strichartz, Harmonic analysis as spectral theory of Laplacians. J. Funct. Anal. 87, 51–
148 (1989). Corrigendum to “Harmonic analysis as spectral theory of Laplacians”. J. Funct.
Anal. 109, 457–460 (1992).

[St98] R. S. Strichartz, Fractals in the large. Canad. J. Math. 50 (1998), 638–657.
[St03] R. S. Strichartz, Fractafolds based on the Sierpinski and their spectra. Trans. Amer. Math.

Soc. 355 (2003), 4019–4043.
[St2005gaps] R. S. Strichartz, Laplacians on fractals with spectral gaps have nicer Fourier series.

Math. Res. Lett. 12 (2005), 269–274.
[St06book] R. S. Strichartz, Differential equations on fractals: a tutorial. Princeton University Press,

2006.
[St10] R. S. Strichartz, Transformation of spectra of graph Laplacians, Rocky Mountain J. Math.,

to appear.
[T98] A. Teplyaev, Spectral Analysis on Infinite Sierpiński Gaskets, J. Funct. Anal., 159 (1998),
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VECTOR ANALYSIS ON FRACTALS AND APPLICATIONS

MICHAEL HINZ1 AND ALEXANDER TEPLYAEV2

Abstract. The paper surveys some recent results concerning vector analysis on
fractals. We start with a local regular Dirichlet form and use the framework of 1-
forms and derivations introduced by Cipriani and Sauvageot to set up some elements
of a related vector analysis in weak and non-local formulation. This allows to study
various scalar and vector valued linear and non-linear partial differential equations
on fractals that had not been accessible before. Subsequently a stronger (localized,
pointwise or fiberwise) version of this vector analysis can be developed, which is

related to previous work of Kusuoka, Kigami, Eberle, Strichartz, Hino, Ionescu,
Rogers, Röckner, and the authors.

Date: July 16, 2012.
1Research supported in part by NSF grant DMS-0505622 and by the Alexander von Humboldt

Foundation Feodor (Lynen Research Fellowship Program).
2Research supported in part by NSF grant DMS-0505622.

1



Contents

1. Introduction 2
2. Navier-Stokes equations 3
3. Magnetic Schrödinger equations 6
4. Dirichlet forms and energy measures 7
5. 1-forms and vector fields 9
References 13

1. Introduction

(1.1) div(a(∇u)) = f

(1.2) ∆u+ b(∇u) = f

(1.3) i
∂u

∂t
= (−i∇−A)2u+ V u.



(1.4)

{
∂u
∂t

+ (u · ∇)u−∆u+∇p = 0,

div u = 0,

2. Navier-Stokes equations

Assume that the space X is compact, connected and topologically one-dimensional of
arbitrarily large Hausdorff and spectral dimensions.

Theorem 2.1 (The Hodge theorem). A 1-form ω ∈ H is harmonic if and only if it
is in (Im ∂)⊥, that is divω = 0.

Using the classical identity 1
2
∇|u|2 = (u · ∇)u+ u× curlu we obtain

(2.1)

{
∂u
∂t

+ 1
2
∂ΓH(u)−∆1u+ ∂p = 0

∂∗u = 0.

Theorem 2.2. Any weak solution u of (2.1) is harmonic and stationary, i.e. u is
independent of t ∈ [0,∞). Given an initial condition u0 the corresponding weak
solution is uniquely determined.





Theorem 2.3. Assume that points have positive capacity (i.e. we have a resistance
form in the sense of Kigami) and the topological dimension is one. Then a nontrivial
solution to (2.1) exists if and only if the first Čech cohomology Ȟ1(X) of X is
nontrivial.

Remark 2.4. We conjecture that any set that carries a regular resistance form is
a topologically one-dimensional space when equipped with the associated resistance
metric.



3. Magnetic Schrödinger equations

Ea,V (f, g) = 〈(−i∂ − a)f, (−i∂ − a)g〉H + 〈fV, g〉L2(X,m) , f, g ∈ CC,

Theorem 3.1. Let a ∈ H∞ and V ∈ L∞(X,m).

(i) The quadratic form (Ea,V ,FC) is closed.
(ii) The self-adjoint non-negative definite operator on L2,C(X,m) uniquely asso-

ciated with (Ea,V ,FC) is given by

Ha,V = (−i∂ − a)∗(−i∂ − a) + V,

and the domain of the operator A is a domain of essential self-adjointness for
Ha,V .

Note: related Dirac operator is well defined and self-adjoint

D =

(
0 −i∂∗

−i∂ 0

)



4. Dirichlet forms and energy measures

Let X be a locally compact separable metric space and m a Radon measure on X such
that each nonempty open set is charged positively. We assume that (E,F) is a symmetric
local regular Dirichlet form on L2(X,m) with core C := F∩C0(X). Endowed with the
norm ‖f‖C := E(f)1/2 + supX |f | the space C becomes an algebra and in particular,

(4.1) E(fg)1/2 ≤ ‖f‖C ‖g‖C , f, g ∈ C,

see [16]. For any g, h ∈ C we can define a finite signed Radon measure Γ(g, h) on X
such that

2

∫
X

f dΓ(g, h) = E(fg, h) + E(fh, g)− E(gh, f) , f ∈ C,

the mutual energy measure of g and h. By approximation we can also define the mutual
energy measure Γ(g, h) for general g, h ∈ F. Note that Γ is symmetric and bilinear, and
Γ(g) ≥ 0, g ∈ F. For details we refer the reader to [28]. We provide some examples.



Examples

(i) Dirichlet forms on Euclidean domains. Let X = Ω be a bounded domain in Rn

with smooth boundary ∂Ω and

E(f, g) =

∫
Ω

∇f∇g dx, f, g ∈ C∞(Ω).

If H1
0(Ω) denotes the closure of C∞(Ω) with respect to the scalar product

E1(f, g) := E(f, g)+〈f, g〉L2(Ω), then (E,H1
0(Ω)) is a local regular Dirichlet

form on L2(Ω). The mutual energy measure of f, g ∈ H1
0(Ω) is given by

∇f∇gdx.
(ii) Dirichlet forms on Riemannian manifolds. Let X = M be a smooth compact

Riemannian manifold and

E(f, g) =

∫
M

〈df, dg〉T ∗M dvol, f, g ∈ C∞(M).

Here dvol denotes the Riemannian volume measure. Similarly as in (i) the closure
of E in L2(M,dvol) yields a local regular Dirichlet form. The mutual energy
measure of two energy finite functions f, g is given by 〈df, dg〉T ∗M dvol.

(iii) Dirichlet forms induced by resistance forms on fractals.



5. 1-forms and vector fields

Consider C ⊗ Bb(X), where Bb(X) is the space of bounded Borel functions on X
with the symmetric bilinear form

(5.1) 〈a⊗ b, c⊗ d〉H :=

∫
X

bd dΓ(a, c),

a⊗ b, c⊗ d ∈ C⊗Bb(X), let ‖·‖H denote the associated seminorm on C⊗Bb(X)
and write

Define space of differential 1-forms on X

H = C⊗Bb(X)/ker ‖·‖H
we

The space H becomes a bimodule if we declare the algebras C and Bb(X) to act on
it as follows: For a⊗ b ∈ C⊗Bb(X), c ∈ C and d ∈ Bb(X) set

(5.2) c(a⊗ b) := (ca)⊗ b− c⊗ (ab)

and

(5.3) (a⊗ b)d := a⊗ (bd).



A derivation operator ∂ : C→ H can be defined by setting

∂f := f ⊗ 1.

It obeys the Leibniz rule,

(5.4) ∂(fg) = f∂g + g∂f, f, g ∈ C,

and is a bounded linear operator satisfying

(5.5) ‖∂f‖2
H = E(f), f ∈ C.

On Euclidean domains and on smooth manifolds the operator ∂ coincides with the classical
exterior derivative (in the sense of L2-differential forms). Details can be found in [21, 22,
39, 40, 46].



Being Hilbert, H is self-dual. We therefore regard 1-forms also as vector fields and ∂
as the gradient operator. Let C∗ denote the dual space of C, normed by

‖w‖C∗ = sup {|w(f)| : f ∈ C, ‖f‖C ≤ 1} .
Given f, g ∈ C, consider the functional

u 7→ ∂∗(g∂f)(u) := −〈∂u, g∂f〉H = −
∫
X

g dΓ(u, f)

on C. It defines an element ∂∗(g∂f) of C∗, to which we refer as the divergence of the
vector field g∂f .

Lemma 5.1. The divergence operator ∂∗ extends continuously to a bounded linear
operator from H into C∗ with ‖∂∗v‖C∗ ≤ ‖v‖H, v ∈ H. We have

∂∗v(u) = −〈∂u, v〉H
for any u ∈ C and any v ∈ H.



The Euclidean identity

div (g grad f) = g∆f +∇f∇g
has a counterpart in terms of ∂ and ∂∗. Let (A, dom A) denote the infinitesimal
L2(X,µ)-generator of (E,F).

Lemma 5.2. We have

∂∗(g∂f) = gAf + Γ(f, g) ,

for any simple vector field g∂f , f, g ∈ C, and in particular, Af = ∂∗∂f for f ∈ C.

Corollary 5.3. The domain dom ∂∗ agrees with the subspace

{v ∈ H : v = ∂f + w : f ∈ dom A , w ∈ ker ∂∗} .
For any v = ∂f + w with f ∈ dom A and w ∈ ker ∂∗ we have ∂∗v = Af .
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