
A Pascal-based Approach towards

Statistical Computing

F. Katritzke1 W. Merzenich1

R.-D. Reiss2 M. Thomas2

1 Department of Electr. Eng. and Computer Science, University of Siegen
2 Mathematical Department, University of Siegen

September 16, 2002

Abstract

Most statistical programming languages (like S, R or XploRe) are dynam-
ically typed and employ an interpreter for program execution. However,
the interactivity supported by that approach is usually not required for
libraries which are not modified by the user. We discuss the related perfor-
mance problems and suggest the usage of a strongly typed language that
includes the data manipulation facilities provided by statistical languages.

We illustrate our approach by comparing the coding techniques and
runtime performance of our prototypical implementation of a Pascal based
statistical language with a traditional one. An outlook on a client/server
environment is given where components written in our language can be
utilized in various frontends.

1 Introduction

Statistical analyses require the use of a programmable environment if tasks
beyond the limited facilities of a menu system must be performed. Common
general purpose languages like C or Fortran are inconvenient for implementing
statistical algorithms which often require the manipulation of complete data
sets. Statistical languages, like S [1], R [4] or XploRe [5], have been developed
with the following characteristics:

• The handling of data sets with arbitrary lengths is supported whereby
memory management is automatically performed.

• Operators and functions can be applied to complete data sets without
requiring explicit loops.

• Parts of data sets can be extracted and easily manipulated.
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• These languages are generally applicable, i.e., they provide the usual con-
trol structures and subroutine mechanisms of general purpose languages.

Statistical languages are usually scripting languages offering the user an
interactive dialog allowing commands that are interpreted and immediately ex-
ecuted. Subroutines (macros) are implemented by using the same statements
that are employed in an interactive analysis. Chambers [2] points out that the
resulting smooth migration path from interactive usage to serious programming
is important to reduce the start-up costs for new users.

Because it is not necessary to declare types of variables and formal argu-
ments of subroutines, these languages are often called typeless. This approach
can be better characterized as “dynamically typed”, because each value in these
languages is associated with a data type. However, any type checking is post-
poned until it is actually required and the type of a variable may change during
the execution of a program.

Such a behavior is necessary in interactive languages, because it would be
unacceptable for a user to declare all variables before starting a session. There
are also some advantages when subroutines are implemented without declaring
types of formal parameters and results. As a simple example, we consider the
generic function for adding numbers in the S/R notation, namely,

add <- function (x, y) x + y.

This function can be used to add values of any type, for which the +-operator
is defined. However, more complex algorithms usually require an explicit check
of the data types of the actual arguments. Thus, true generic functions are
usually possible in special cases only. One should note that the templates of the
strongly typed C++ language provide similar facilities.

2 Problems with Interpreted Languages

In the preceeding lines, we described the advantages of interpreted, dynamically
typed languages, yet one should be aware of two serious drawbacks. Firstly,
these languages only perform semantic checks (e.g., for the existence of iden-
tifiers) when the code is actually executed which leaves many possibilities for
typing errors to be undetected.

Secondly, type checks for each operation must be performed at run-time.
This must be done not only once, but every time an instruction is executed.
When performing simple operations like the addition of two real numbers, most
of the time for the operation will be wasted on verifying the types of the ar-
guments, even when it is clear that — because of the design of the algorithm
— no other types may occur. While the additional overhead is negligible for
interactive execution of commands typed on a command line, it has a serious
impact on routines that require intensive calculations.

Interpreted statistical systems usually offer the inclusion of external subrou-
tines written in a compiled language like C or Fortran as a solution to that
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problem. Such an approach is inconvenient in various ways: a recompilation of
a module is required for every target platform. Also, the developer of a module
must be familiar with technical details like parameter passing conventions and
the usage of host-specific development systems. Error handling is problematic.
In addition, general purpose languages are not well suited for performing statis-
tical computing, which is the main reason for using a special statistical language
in the first place.

Ousterhout [10] distincts between high-level scripting languages and low-
level system programming languages. He suggests to use scripting languages to
combine components that are implemented in a system programming language.
However, there is not yet a system programming language suited for statistical
computing.

Therefore, we implement a strongly typed language that is based on a general
purpose language (namely, Pascal) with the extensions required for statistical
computing. Our language provides vector and matrix operations like other com-
mon statistical languages. Moreover, all variables, parameters and return types
of subroutines must be declared. As a result, the language can be compiled
and executed efficiently. Such a language cannot be applied as an interactive
immediate language for command line execution, but it serves well for the im-
plementation of statistical components.

In the next section, we outline some details of our language, called Stat-
Pascal, and measure its runtime performance. Then, we describe shortly the
design of a prototype of a component integrating environment where StatPas-
cal components are used within a menu system or a graphical programming
environment. This allows their visual combination, as alternatives to a textual
scripting language.

3 StatPascal

In this section, we describe some basic concepts of StatPascal and its implemen-
tation and compare it with other statistical languages.

3.1 Overview of StatPascal

Because a statistical programming language should provide a complete language
kernel with only a few extensions that are specific for statistical computing, see
Huber [6], it is natural to base a new statistical language on an existing general
purpose language. We used Pascal [7] because of the clearness of its syntax and
the simplicity of its compiler. StatPascal supports most of the standard Pascal
constructs including a unit concept for modular programming.

However, standard Pascal is not well suited for dealing with data sets making
some extensions to the language necessary. In particular, we introduce two new
data structures called vector and matrix, which may be considered as one- and
two-dimensional arrays. In contrast to the standard array structure there is no
need to declare a maximum size. These structures can also be used in arithmetic
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expressions and as arguments and return types of functions. The example in
the next section shows their applicability in vector-oriented techniques that are
similar to the ones present in other statistical languages.

The StatPascal compiler generates a code for an abstract stack machine
which is interpreted at runtime. Such an approach has been frequently used in
Pascal implementations [8]. It has the following advantages:

1. The compiler and the runtime environment can be easily ported to another
platform.

2. The resulting binaries are not system dependent.

3. The language can be easily included into a host system. Access to the host
system may be implemented by introducing some predefined functions
generating special operation codes for the abstract machine. An object-
oriented implementation facilitates the required enhancements.

Of course, it would be possible to generate a machine code for the host pro-
cessor or to output source code of a system programming language like C. How-
ever, because vector and matrix operations are performed by single instructions
of the virtual machine, a reasonable runtime performance is already achieved
for vector oriented programs. For example, the StatPascal expression

y := log (rev (sort (x)))

which yields the logarithms of all values in a vector in descending order, is
translated to just a few instructions of the virtual stack machine:

loadval -6, 1
vload ; load x on stack
vfsrt ; sort
vrev ; rev
vlog ; log
loadptr -7, 1
vstore ; store y from stack

Although we do not present further details of the virtual machine, one can see
that the nested vector expressions may be evaluated in-place on a calculator
stack facilitating an efficient execution. Nevertheless, performance is unsatis-
factory if the vectorized extensions are not used.

We now demonstrate the similarities between StatPascal and other systems
(in particular, R) and measure their performance.

3.2 StatPascal and Other Systems

We implemented the Hill estimator (an estimator for the reciprocal shape index
of the tail of a distribution) in R/S, StatPascal and C. The Hill estimator is
given by
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α̂n,k =
1
k

k∑
i=1

log
xn−i+1:n

xn−k:n
, k = 1, . . . , n− 1,

where xn−k:n ≤ ... ≤ xn:n are the k + 1 largest values of data x1, ..., xn.
The following implementations expect a univariate data vector (x1, . . . , xn)

and return a vector of the Hill estimates (α̂n,1, . . . , α̂n,n−1). We start with the
R/S version.

hill <- function(x) {
x <- log(rev(sort(x[x > 0])))
n <- length(x)
cumsum(x)[ - n]/(1:(n - 1)) - x[-1]

}

The StatPascal equivalent is given next.

function hill (x: realvector): realvector;
var n: integer;
begin
x := log (rev (sort (x [x > 0])));
n := size (x);
return (cumsum (x)) [1..(n-1)] / (1..(n-1)) - x [2..n]

end;

The C version was written carefully eliminating loops whenever possible. It
consists of 78 lines, including an implementation of the quicksort algorithm.

One can see that R and StatPascal provide similar vectorized operations.
Especially, no explicit loop is required to evaluate the estimator. There is a
significant difference in runtime performance. Table 1 shows the execution times
for 10000 calls to the Hill estimator, applied to a newly simulated data set in
each call (we used R 1.4, StatPascal and the GNU C compiler version 2.95.3
with optimization -O3 under Linux). The runtime for StatPascal also includes
the compilation of the program, while R had already been started and parsed
the routines.

Sample Size R StatPascal C StatPascal (loops) Pascal
20 2.8 0.26 0.14 2.3 0.17
50 4.08 0.55 0.35 6.5 0.45

100 6.28 1.1 0.71 14.0 0.94
500 26.7 5.4 3.7 82.3 5.0

1000 54.9 10.9 7.7 175 10.5

Table 1: Time (in seconds) for 10000 evaluations of the Hill estimator.

StatPascal clearly outperforms the R system, at the cost of only a small
declarative overhead in the implementation of the estimator. The increased
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performance is important for long running simulations and interactive visual-
izations. However, the performance of the virtual machine is bad if the vector
oriented extensions are not used. The last two columns of Table 1 show the
execution time of an unoptimized standard Pascal implementation of the Hill
estimator (not utilizing any vectorized expressions), under StatPascal and the
GNU Pascal compiler.

4 A Component Integrating Statistical
Environment

As a descendant of a classical system programming language, StatPascal is not
suited for interactive use. The combination of StatPascal components by using
an interactive operating system shell seems unattractive as a statistical envi-
ronment. We therefore need some other means to provide interactivity. In this
section, we present a prototype of a client/server based component integrating
statistical environment (called Risktec) where StatPascal programs are utilized.

We use CORBA [9] as a middleware to manage the communication between
clients and servers. The system is, therefore, open for the provision and usage
of components in other softwares. Figure 1 shows an overview of the structure
of our environment.

C++

Shared Library

Other Client/Server

Java

XGPL

StatPascal

Xtremes

Xtremes GUI

StatPascal

C++ C++

Component

Factory

C++

Figure 1: Client/Server structure of component integrating statistical environ-
ment.

One recognizes two usages of StatPascal. Firstly, it is included within the
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host system Xtremes [11], a menu oriented statistical software. Interactive Stat-
Pascal programs can be used to extend the Xtremes system.

Secondly, the Xtremes system exports a component server (consisting of a
factory managing prototypes [3]) where StatPascal components can be registered
and produced, besides components provided by Xtremes.

It seems important to hide the complexities of CORBA from users of the
system. Within the Risktec environment, there is currently only a single in-
terface definition for the components. They basically implement a function
f : S1×· · ·×Sn → T1×· · ·×Tm and provide methods to inform a client about the
number and data types of the arguments and results. Such a minimal interface
serves well for numerical computations. For details, the reader is referred to the
project homepages http://www.statpascal.de and http://www.risktec.de.

The implementation of a StatPascal server component is straightforward. A
special program header defining the name of the component and its parameters
is required. For example, the Hill estimator is turned into a CORBA server by
using the following header:

component hillserver;
inports x: realvector;
outports alpha: realvector;
...

The graphical programming language XGPL allows the combination of these
components by building a dependence graph and using an interactive graph
editor, see [12] and [13] for details. Moreover, a shared library (DLL) provides
access to the components by means of a procedural interface, allowing the usage
of StatPascal components from systems like R or MS Excel.

5 Conclusion

By combining vectorized operations from statistical programming languages and
strong typing from system programming languages, one can create a statisti-
cal language with a good runtime performance. Such a language is well suited
to implement statistical components which may be combined using menu ori-
ented systems, interactive textual scripting languages or graphical programming
environments.
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