
StatPascal

User Manual and Reference

R.-D. Reiss
M. Thomas

Xtremes Group
Zur Alten Burg 29

57076 Siegen
Germany

2

Inquiries
Please e-mail all inquiries and bug reports to
info@xtremes.de

Check the Xtremes homepage for the latest information:
http://www.xtremes.de

Copyright Notice
Copyright (C) 1997, 2002, 2005 by Xtremes Group, Siegen. All rights reserved.

Disclaimer
Xtremes Group does not offer any representations or warranties for Xtremes Group
products with respect to their performance or fitness for a particular purpose.
Xtremes Group believes that the information contained in this manual is correct.
However, Xtremes Group reserves the right to revise the product hereof and make
any changes to the contents without the obligation to notify any user of this
revision. Xtremes Group does not assume the responsibility for the use of this
manual, nor the product described therein.

mailto:info@xtremes.de
http://www.xtremes.de/

Contents

1 Introduction to StatPascal 11
1.1 StatPascal integrated in Xtremes 12

1.1.1 The ‘Hello, World” Program 12
1.1.2 The StatPascal Window . 12
1.1.3 A second Example Program 13

2 Programming with StatPascal 15
2.1 Basic Programming . 15

2.1.1 Variables and Data Types 15
2.1.2 Expressions and Assignments 16
2.1.3 Constant Declarations . 17
2.1.4 Input and Output . 18
2.1.5 Conditional statements . 19

2.1.5.1 if-statement . 19
2.1.5.2 case-statement . 20

2.1.6 Loops . 20
2.1.6.1 while-loop . 20
2.1.6.2 repeat-loop . 21
2.1.6.3 for-loop . 21

2.1.7 Procedures and Functions 22
2.1.8 Forward Declarations . 24

2.2 Data Structures and Types . 25
2.2.1 Arrays . 25
2.2.2 Type declarations . 26
2.2.3 Ordinal types . 27

2.2.3.1 Enumerations . 27
2.2.3.2 Subranges . 28

2.2.4 Records . 28
2.2.5 Sets . 29
2.2.6 Pointers . 30

3

4 CONTENTS

3 Vector and Matrix Operations 31
3.1 Introductory Examples . 31
3.2 Construction of Vectors . 33
3.3 Type Conversions . 33
3.4 Assignments . 34
3.5 Output . 34
3.6 Expressions . 35
3.7 Index Operations . 35
3.8 Function Calls . 36
3.9 Special Operations . 36
3.10 Strings . 37
3.11 Matrix Operations . 37

4 Advanced StatPascal Techniques 39
4.1 Units . 39
4.2 Functional and Procedural Types 41
4.3 Evaluation of Boolean Operands 41
4.4 Generating and Accessing Data . 42

4.4.1 Passing Data from StatPascal to Xtremes 42
4.4.2 Passing Data from Xtremes to StatPascal 44
4.4.3 Temporary Data Sets . 44

4.5 Predefined Estimators . 45
4.6 Estimator Programs . 47

4.6.1 Implementing Estimators of the Shape Parameter 47
4.6.2 Implementing Estimators of Further Parameters 49

4.7 StatPascal Runtime Environment 49
4.7.1 Handling Run–Time Errors 49
4.7.2 The Compile Button in the StatPascal Editor 50
4.7.3 The Compiler Options Button 51

4.8 Appending StatPascal Programs to the Menu Bar of Xtremes . . . 52

5 Input and Output 53
5.1 The StatPascal Window . 53
5.2 File Operations . 53

5.2.1 Text Files . 53
5.2.2 Binary files . 54

5.3 Plots . 55
5.3.1 Univariate Curves . 55
5.3.2 Scatterplots . 55
5.3.3 Contour and Surface Plots 55
5.3.4 Polygons . 56
5.3.5 Overview Of Advanced Plot Options 56

5.4 Graphical User Interface . 57

CONTENTS 5

6 Syntax of StatPascal 59
6.1 Lexical Elements . 59

6.1.1 Special Symbols and Reserved Words 59
6.1.2 Identifiers . 60
6.1.3 Numerical Constants . 60
6.1.4 Character and String Constants 61
6.1.5 Comments . 61

6.2 Blocks . 62
6.3 Labels . 63
6.4 Constants . 64
6.5 Types . 64

6.5.1 Type Declarations . 65
6.5.2 Simple Types . 66

6.5.2.1 Ordinal Types . 66
6.5.2.2 Reals . 66

6.5.3 Structured Data Types . 67
6.5.3.1 Sets . 67
6.5.3.2 Arrays . 67
6.5.3.3 Vectors . 67
6.5.3.4 Matrices . 67
6.5.3.5 Records . 68
6.5.3.6 Pointers . 68
6.5.3.7 Procedural and functional types 68

6.5.4 Compatible Types . 68
6.6 Variables . 69

6.6.1 Variable Declarations . 69
6.6.2 Accessing Variables . 70

6.6.2.1 Arrays . 70
6.6.2.2 Records . 70
6.6.2.3 Pointers . 71
6.6.2.4 Syntax . 71

6.7 Expressions . 71
6.7.1 Syntax . 71
6.7.2 Operators . 73

6.7.2.1 Arithmetic operators 73
6.7.2.2 Logical operators 74
6.7.2.3 Relational operators 74
6.7.2.4 String operators 74

6.7.3 Function Calls . 74
6.8 Statements . 74

6.8.1 Compound Statements . 75
6.8.2 Simple Statements . 75
6.8.3 Return Statement . 76
6.8.4 Memory Allocation . 76

6 CONTENTS

6.8.5 Goto Statement . 76
6.8.6 Iterations . 76

6.8.6.1 while-Loop . 76
6.8.6.2 repeat-Loop . 77
6.8.6.3 for-Loop . 77

6.8.7 Selections . 77
6.8.7.1 if-Statement . 77
6.8.7.2 case-Statement . 78

6.9 Procedures and Functions . 78
6.10 Units . 79
6.11 Programs . 80

7 The StatPascal Library Functions 83
7.1 abs . 84
7.2 All . 84
7.3 arccos . 84
7.4 arcsin . 85
7.5 arctan . 85
7.6 BetaData . 85
7.7 BetaDensity . 86
7.8 BetaDF . 86
7.9 BetaQF . 86
7.10 BeginMultivariate . 87
7.11 BinomialData . 87
7.12 BoxPlot . 87
7.13 CBind . 87
7.14 ChiSquareData . 88
7.15 ChiSquareDensity . 88
7.16 ChiSquareDF . 88
7.17 ChiSquareQF . 89
7.18 Chol . 89
7.19 Choose . 89
7.20 chr . 90
7.21 ClearWindow . 90
7.22 ColumnData . 90
7.23 ColumnName . 90
7.24 cos . 91
7.25 cosh . 91
7.26 CreateMultivariate . 91
7.27 CreateTimeSeries . 92
7.28 CreateUnivariate . 92
7.29 CumSum . 93
7.30 Data . 93
7.31 DataType . 93

CONTENTS 7

7.32 Date . 94
7.33 DialogBox . 94
7.34 Dimension . 95
7.35 DreesPickandsGP . 95
7.36 EndMultivariate . 95
7.37 eof . 96
7.38 EstimateBandwidth . 96
7.39 EVData . 97
7.40 EVDensity . 97
7.41 EVDF . 97
7.42 EVQF . 97
7.43 Exists . 97
7.44 exp . 98
7.45 ExponentialData . 98
7.46 ExponentialDensity . 98
7.47 ExponentialDF . 99
7.48 ExponentialQF . 99
7.49 Extremes . 99
7.50 Flush . 99
7.51 frac . 99
7.52 FrechetData . 100
7.53 FrechetDensity . 100
7.54 FrechetDF . 100
7.55 FrechetQF . 100
7.56 gamma . 100
7.57 GammaData . 101
7.58 GammaDensity . 101
7.59 GammaDF . 101
7.60 GaussianData . 101
7.61 GaussianDensity . 101
7.62 GaussianDF . 102
7.63 GaussianQF . 102
7.64 GCauchyData . 102
7.65 GCauchyDensity . 102
7.66 GCauchyDF . 102
7.67 GCauchyQF . 103
7.68 GeometricData . 103
7.69 GMFEVDF . 103
7.70 GMFEVDensity . 103
7.71 GMFEVSF . 103
7.72 GMFGPDF . 104
7.73 GMFGPDensity . 104
7.74 GMFGPSF . 104
7.75 GotoXY . 104

8 CONTENTS

7.76 GPData . 105
7.77 GPDensity . 105
7.78 GPDF . 105
7.79 GPQF . 105
7.80 GumbelData . 105
7.81 GumbelDensity . 106
7.82 GumbelDF . 106
7.83 GumbelQF . 106
7.84 HillGP1 . 106
7.85 HREVDF . 107
7.86 HREVDensity . 107
7.87 HREVSF . 107
7.88 HRGPDF . 107
7.89 HRGPDensity . 108
7.90 HRGPSF . 108
7.91 Indicator . 108
7.92 Invert . 108
7.93 KernelDensity . 108
7.94 log . 109
7.95 ln . 109
7.96 LRSEV . 109
7.97 MakeMatrix . 110
7.98 max . 110
7.99 MDEEV . 110
7.100MDEGaussian . 111
7.101Mean . 111
7.102Median . 111
7.103MEGP1 . 111
7.104MemAvail . 112
7.105MenuBox . 112
7.106MessageBox . 113
7.107MHDEGaussian . 113
7.108min . 113
7.109MLEEV . 114
7.110MLEEV0 . 114
7.111MLEEV1 . 114
7.112MLEGaussian . 115
7.113MLEGP . 115
7.114MLEGP0 . 116
7.115Moment . 116
7.116MomentGP . 116
7.117NegBinData . 117
7.118ord . 117
7.119Page . 117

CONTENTS 9

7.120ParamCount . 117
7.121ParamStr . 118
7.122ParetoData . 118
7.123ParetoDensity . 118
7.124ParetoDF . 118
7.125ParetoQF . 119
7.126Plot . 119
7.127PlotContour . 119
7.128PlotSurface . 119
7.129PoissonData . 120
7.130Poly . 120
7.131PolynomialRegression . 120
7.132pred . 120
7.133Random . 121
7.134Rank . 121
7.135RBind . 121
7.136read . 121
7.137ReadData . 122
7.138readln . 122
7.139RealVect . 123
7.140Rev . 123
7.141RGB . 123
7.142round . 123
7.143RowData . 124
7.144SampleDF . 124
7.145SampleMeanClusterSize . 124
7.146SampleQF . 124
7.147SampleSize . 125
7.148SaveEPS . 125
7.149ScatterPlot . 126
7.150SetColor . 126
7.151SetColumn . 126
7.152SetCoordinates . 127
7.153SetLabel . 127
7.154SetLabelFont . 127
7.155SetLineOptions . 128
7.156SetLineStyle . 128
7.157SetMarkers . 128
7.158SetMarkerFont . 128
7.159SetPlotStyle . 129
7.160SetPointStyle . 129
7.161SetTicks . 130
7.162sign . 130
7.163SimulateRuinTime . 130

10 CONTENTS

7.164sin . 130
7.165sinh . 131
7.166size . 131
7.167Smooth . 131
7.168Sort . 132
7.169sqr . 132
7.170sqrt . 132
7.171str . 132
7.172StratifiedUniform . 132
7.173succ . 133
7.174sum . 133
7.175system . 133
7.176tan . 133
7.177tanh . 134
7.178TData . 134
7.179TDensity . 134
7.180TDF . 134
7.181TextBackground . 135
7.182TextColor . 135
7.183Time . 135
7.184TQF . 135
7.185Transpose . 136
7.186TTest . 136
7.187UFODefine . 136
7.188UFOMessage . 136
7.189UFOEvaluate . 137
7.190UniformData . 137
7.191UnitMatrix . 137
7.192UnitVector . 138
7.193Variance . 138
7.194WeibullData . 138
7.195WeibullDensity . 138
7.196WeibullDF . 139
7.197WeibullQF . 139
7.198WelchTest . 139
7.199WilcoxonTest . 139
7.200write . 139
7.201writeln . 140
7.202Estimator Error codes . 141

A Porting to StatPascal 143
A.1 Differences between StatPascal and Pascal 143
A.2 Differences to XPL . 144

Chapter 1

Introduction to StatPascal

StatPascal is a statistical programming language that is based on the Pascal lan-
guage. It is available within the menu system of Xtremes and as a text-oriented
commmand line language that runs on Win32 and Unix platforms. StatPascal
provides the following extension to standard Pascal that are important within a
statistical context.

• Vector and matrix operations,

• a library with statistical routines,

• predefined plots and some simple GUI elements.

In contrast to other statistical languages, StatPascal is strongly typed and
employes a compiler to produce code for an abstract stack machine. The resulting
runtime performance is usually better than the one achieved with an interpreted
system.

StatPascal supports most of the features of the Pascal language to ease port-
ing existing algorithms to StatPascal. However, StatPascal lacks the following fa-
cilities of Pascal:

• variant records

• with statements

• Pascal–like file access

The first two gaps may be filled in future releases, while the file access is based on
the concepts provided by the C language.

This chapter describes the first steps with StatPascal. We start with a de-
scription of the integrated StatPascal editor within Xtremes and demonstrate some
introductory example programs.

The following typographie is used.

11

12 CHAPTER 1. INTRODUCTION TO STATPASCAL

Boldface reserved words within text

Italics identifiers within text

Typewriter program listings

Function names specific to StatPascal are written utilizing both lower and upper
case letters (e.g. GaussianDensity), while functions also available in common pro-
gramming languages are presented using only lower case letters. StatPascal is not
case sensitive, so you can use upper and lower case letters within a StatPascal
program.

1.1 StatPascal integrated in Xtremes

A StatPascal editor window is opened by selecting the button within the
toolbar. Please note that under Windows 98, the maximum file size of the editor
window is limited to 64 KBytes.

The toolbar enables the user to save and load text files. The Run option
is a short cut for the compilation and execution of a program. Table 1.1 lists the
available tools.

1.1.1 The ‘Hello, World” Program

We start with the traditional ‘Hello, world” program to demonstrate the tech-
niques of entering, compiling and running a StatPascal program. The user will
immediately recognize that the program looks like its Pascal equivalent.

program hello;
begin

writeln (’Hello, world!’)
end.

Type in the program, save it to a file (Save as, and click the Run button

to execute the program. If the program contains no errors, Xtremes opens
the StatPascal window displaying the output.

1.1.2 The StatPascal Window

The procedures write, writeln and read of the Pascal language are provided to
perform input and output operations in the StatPascal window. In Fig. 1.1, we
see a program in the StatPascal editor window and its output in the StatPascal
window.

13

New: erases the text within the StatPascal editor
window.

Load: opens the MS Windows file dialog box and
loads a StatPascal program.

Save: writes the text in the StatPascal editor window
to a disk file. If no filename has been provided, the
Save as option is activated.

Save as: writes the text in the StatPascal editor win-
dow to a disk file after asking for a file name.

Run: compiles and executes the program in the Stat-
Pascal editor window.

Compile: compiles a program and stores the resulting
binary under a filename, executes it or locates the
position of a runtime error with the source file.

Compiler Options: opens the Compiler Options dia-
log box, controlling parameters of the compiler and
runtime environment.

Help: opens the StatPascal online help.

Table 1.1: Toolbar of the StatPascal editor

The example program asks for real numbers t and displays the Gaussian den-
sity ϕ(t). The predefined routines MessageBox, DialogBox and MenuBox (which
are described in the StatPascal manual) provide an alternative using dialog boxes.

One may execute multiple StatPascal programs simultaneously. A new Stat-
Pascal window is opened for each running program. By closing the pertaining
StatPascal window, a program is aborted.

1.1.3 A second Example Program

The next example adds real numbers entered by the user and prints their sum as
soon as a zero is entered:

program CalcSum;
(* Program calculating sums *)
var sum, x: real;

14 CHAPTER 1. INTRODUCTION TO STATPASCAL

Figure 1.1: StatPascal editor window with example program (front) and its output in
the StatPascal window (back).

begin
sum := 0;
repeat

write (’Enter number: ’);
read (x);
sum := sum + x

until x = 0;
writeln (’The sum is ’, sum)

end.

The program contains several statements that are seperated by semicolons.
The second line provides a comment. Comments are used to document a program,
they do not perform any operations.

The third line shows a variable declaration: var sum, x: real. We provide
two variables (sum and x) that are used to store real numbers. Within the program,
sum contains the sum of the numbers entered previously. In the first statement
(given on the fourth line), sum is initialized with 0. Then the program enters a
loop (repeat-until) that is executed until the condition at the end of the loop
(x = 0) is satisfied. Within the loop, the user is prompted for numbers that are
added to sum. When the user inputs 0, the loop terminates, and the sum of the
values is displayed.

Chapter 2

Programming with
StatPascal

The beginnning of this chapter addresses the novice programmer who has little
or no experience with programming languages. We provide an introduction to the
StatPascal language that can hopefully be read without prior knowledge.

This chapter assumes that you are familiar with the tasks of entering and
executing a program as shown in the previous chapter. Experienced Pascal pro-
grammers may start with the section Differences between StatPascal and Pascal
(see section A.1). An important extension for statistical programming is the vector
structure (see Section 3).

2.1 Basic Programming

2.1.1 Variables and Data Types

Variables are used to store values that change during the execution of a program,
e.g. values entered by the user or results of calculations. A variable must be de-
clared before it can be used. Each variable has a data type that determines a set
from which values may be stored. We mention some basic data types.

integer integer numbers 7, 5
real real numbers 2.71828, -3.12e-15
char single characters ’a’, ’7’
string sequence of characters ’A string’
boolean logical values false, true

The datatype string does not belong to standard Pascal, but is supported by
many implementations of the language. The distinction between integer and real
values is made because of the internal representation of these values. Operations

15

16 CHAPTER 2. PROGRAMMING WITH STATPASCAL

with real values are subject to rounding errors, which is not the case with integer
operands. In the following, we use type to represent any data type.

Variables are declared at the beginning of a program by means of a variable
declaration taking the form

var identifier, identifier, ... : type;

The word identifier is used for names of variables (and also procedures, functions,
etc. introduced later) that are provided by the programmer. The following example
shows the declaration of two integer and a real variable:

var i, j: integer;
x: real;

2.1.2 Expressions and Assignments

After declaring a variable, a value is assigned to it using the statement

identifier := expression

Here, the variable identifier is set to the value of the expression. Expressions are
built using numbers, variables, functions and operators combining them. The fol-
lowing example shows some assignments.

var a, b: integer;
x, y: real;

begin
a := 2;
b := 5 * a + 3;
x := 3.1415;
y := sin (x) - 1.5;
y := 2 / (x + 1)

end.

In the above expressions we used addition (+), substraction (-), multiplication
(*), division (/) and the function sin. The operators * and / have a higher priority
than + and -, so brackets were used in the last example.

StatPascal is a typed language, and the compiler checks if the types used in
an expression or in an assignment are the same. Some implicit type conversions
are provided, e.g. it is possible to assign an integer value to a real number.

In our above example, a := x would result in an error since a real number
cannot be assigned to an integer. It is possible to perform an explicit conversion by
means of the functions round (rounding a value to the nearest integer) and trunc
(truncating the fractional part, thus trunc (3.14) = 3 and trunc (-2.71) =
-2).

17

StatPascal also works with logical values: A data type boolean with the values
true and false is provided. These values occur as the result of comparisons (recall
the condition x = 0 in the second example). Other relational operators are <, >,
<=, >= and <> (not equal). Moreover, the logical operators and, or, not and xor
(exlusive or, not available in standard Pascal). are available. The following example
shows the use of logical expressions.

var a, b, c: boolean;
x, y: integer;

begin
x := 2;
y := 3;
a := true;
b := false;
c := a and b; (* false *)
c := a or b; (* true *)
c := x = 2; (* true *)
c := x > y; (* false *)
c := not a; (* false *)
c := (x < y) and (x = 2) (* true *)

end.

The and-operator has a higher priority than the relational operators, so
brackets are required in the last assignment. Although logical expressions are most
commonly used in conditional statements (like repeat - until), it is possible to
assign the results of these expressions to variables of the data type boolean.

2.1.3 Constant Declarations

Constants are declared by means of a constant declaration

const identifier = value ;

The example shows a constant declaration

const n = 50;
Pi = 3.1415;
s = ’String constant’;

In the Pascal language, such a declaration must appear before the variable
declaration. StatPascal allows an arbitrary mix of declarations. Note that the =
operator is used to assign a value to a constant, while := is used in conjunction
with variables. The following example defines the constant Pi and uses it in an
expression.

18 CHAPTER 2. PROGRAMMING WITH STATPASCAL

program constdemo;
const Pi = 3.1415;
var x: real;
begin

x := sin (Pi);
writeln (’sin (Pi) = ’, x)

end.

2.1.4 Input and Output

The input and output operations of StatPascal resemble a terminal-like interface.
One may write values to an output device (a text window if StatPascal is embedded
in a graphical environment or standard output) using write and writeln. The values
must be given in brackets and are seperated by commas. The following example
shows some write and writeln statements.

var a, b: real;
begin

write (2.71);
write (a, 2 * b + 0.5);
write (’sin(a)=’, sin (a));
writeln;
writeln (a = b)

end.

writeln performs the same operations as write, then it advances to the next
line. Logical values (like a = b) are printed as true or false.

You can read values by means of a read-statement. When a read-statement
is performed, the computer waits for you to type in the values requested. If more
than one value is needed, they are separated by blanks when typed in. Character
strings should be the last item in a read-statement since any text up to the end of
the line (which is entered by pressing the return key) is stored in the string. The
following program performs a simple dialog by means of read and write statements.

program sum;
var s: string;

a, b: real;
begin

write (’Enter your name: ’);
read (s);
write (’Enter two numbers: ’);
read (a, b);
writeln (’Hello, ’, s);
write (’The sum of ’, a, ’ and ’, b, ’ is ’, a + b)

end.

19

2.1.5 Conditional statements

Conditional statements control the execution of statements depending on a con-
dition.

2.1.5.1 if-statement

The if-then-else statement has the general form

if expression then statement [else statament]

If the (logical) expression is true, then the statement following then is exe-
cuted. One may also provide an optional else-part that is executed if the condition
is false. Some examples are:

if x = 0 then
writeln (’x = 0’);

if (a < b) and (c = 5) then begin
d := 7; e := 2

end else
x := x + 1;

if a = b then
if c = d then

e := 5
else

f := g;

One should note the following details:

• A semicolon in front of else is not allowed.

• Only one statement may be given in the then or else part. However, two
or more statements can be grouped together using begin and end. Such a
compound statement may be used whenever a single statement is required.
Within the compound statement, the single statements are seperated by
semicolons. It is not necessary to provide a semicolon in front of end.

• if-statements may be nested (see the third example). An else belongs to the
most recently used if- statement. One may use begin and end to enforce
another grouping; thus, if you write

if a = b then begin
if c = d then

e := 5
end else

f := g;

20 CHAPTER 2. PROGRAMMING WITH STATPASCAL

then f := g is executed if the condition a = b is false.

2.1.5.2 case-statement

The case-statement is used to select one option from several alternatives. The
following example determines the length of a month:

case month of
1, 3, 5, 7, 8, 10, 12: length := 31;
4, 6, 9, 11: length := 30;
2: length := 2
else length := -1 (* error *)

end;

The result of the expression is compared with the constant values provided,
the statement with a matching label is executed. Note that in standard Pascal a
program terminates with a run time error if no match is found, while StatPascal
ignores the case-statement or executes the optional else branch.

2.1.6 Loops

StatPascal provides three different loop constructs which allow the repeated exe-
cution of a statement.

2.1.6.1 while-loop

The while-loop repeats a statement as long as a given condition is satisfied. The
condition is checked before each iteration of the loop, and the entire loop is skipped
if the condition already fails when the program enters the loop. The general form
is given by

while condition do statement

Only one statement may be controlled by the loop. Two or more statements must
be grouped together using begin and end, thus forming a compound statetment.
The following example adds the values from 1 to 100 using a while-loop.

program sum2;
var i, sum: integer;
begin

sum := 0;
i := 1;
while i <= 100 do begin

sum := sum + i;
i := i + 1

end;
writeln (i)

end.

21

2.1.6.2 repeat-loop

The repeat-loop repeats a sequence of statements given between repeat and
until, it terminates when the condition given after until is satisfied. The condition
is checked after the statements are executed, so they are performed at least once
even if the condition is already fulfilled at the beginning of the loop. The general
form of the repeat-loop is

repeat statement {;statement} until condition

The following example calculates the sum of the numbers 1 to 100 using a repeat-
loop:

program sum1;
var i, sum: integer;
begin

sum := 0;
i := 1;
repeat

sum := sum + i;
i := i + 1

until i > 100;
writeln (i)

end.

Note the following details:

• No begin-end is required to group the statements within the loop.

• A semicolon in front of until is not necessary.

2.1.6.3 for-loop

The for-loop is used to repeat a statement a predefined number of times. It takes
the following general form:

for identifier := expression to expression do statement
for identifier := expression downto expression do statement

The statement is repeated with increasing (or decreasing if downto is employed)
values of the control variable specified by identifier, starting with the value given
by the first expression. After each execution of the loop, the variable is incremented
(decremented) by one, and the loop is repeated if the variable is less (greater) than
or equal to the value provided by the second expression. The control variable must
be of an integer type (or an ordinal type introduced later), and the two expression
must yield results of that type. The example calculates the sum of the numbers
from 1 to 100 using a for-loop.

22 CHAPTER 2. PROGRAMMING WITH STATPASCAL

program sum3;
var i, sum: integer;
begin

sum := 0;
for i := 1 to 100 do

sum := sum + i;
writeln (sum)

end.

We mention some details:

• If the second expression yields a result that is smaller (larger) than the start
value given by the first expression, the entire loop is skipped.

• Two or more statements inside a for-loop must be grouped using begin and
end.

• The expressions providing start and end value are evaluated once upon enter-
ing the loop. If their values change during the execution of the loop, then the
number of repetitions of the loop is not affected. In the following example,
the loop is repeated five times:

var i, e: integer;
begin

e := 5;
for i := 1 to e do begin

e := 1;
...

end
end.

• Standard Pascal does not allow changes to the control variable within the
loop by means of assignments, which is legal in StatPascal.

2.1.7 Procedures and Functions

Procedures and functions are used to group together operations and make them
accessible from other parts of a program. If a operation is to be performed more
than once, it can be defined as a procedure or function that is called from the
places where it is needed.

Functions (like the predefined function sin) return a value that is used within
an expression, while a procedure (like writeln) is used as a statement. Both kinds
of subroutines are defined after the variable declarations, and both may take pa-
rameters provided by the caller.

The following example shows the declaration of a function and a procedure:

23

program demo;

function square (x: real): real;
begin

square := x * x
end;

procedure table;
var i: integer;
begin

for i := -10 to 10 do
writeln (i/10, ’ ’, square (i/10))

end;

begin
table

end.

The header of a subroutine consists of the reserved word function or proce-
dure followed by its name. An optional parameter list is included in brackets, and
consists of one of more identifiers, seperated by commas and followed by a colon
and the data type associated with the parameters. Two or more such parameter
blocks may be specified, they are seperated by semicolons. A function requires a
return type that is given as the last part of the header: a colon followed by the
name of the returned type. Thus, the following headers are valid:

procedure proc1 (a, b: integer; c, d: real);
function func1 (a, b, c: string): integer;
function func2: real;

The last line contains a function taking no parameters at all. Such a function
is still useful since it can address global variables within the program.

The body of a subroutine is structured like a program: one may declare con-
stants, variables and further procedures and functions. The statements performed
by the subroutine are given between begin and end. A subroutine ends with a
semicolon.

Identifiers declared within a subroutine are local, they cannot be accessed
from the outside. Thus, the variable i declared within table in the above example
can only be used within table. If you declare an identifier that already exists outside
the function, then the original identifier is hidden inside the routine; its original
meaning is restored at the end of the routine.

Functions and procedures may call themselves recursively. One may imple-
ment a function calculationg the faculty in the following way.

function fac (n: integer): integer;

24 CHAPTER 2. PROGRAMMING WITH STATPASCAL

begin
if n = 0 then fac := 1
else fac := n * fac (n - 1)

end;

The parameters of a subroutine are treated like local variables. Assigning
values to them does not affect the variables that were given in the call of the sub-
routine. If you want to change the original values, then the parameter declaration
must be proceeded by var. Consider the following example:

program test;
var n: integer;

procedure assign (var j: integer);
begin

j := 6
end;

begin
n := 1;
assign (n);
writeln (n)

end.

This program prints 6 because n is passed as a variable parameter to assign.
It is not possible to provide an expression (like 3.2*sin(x)) when a variable
parameter is required.

2.1.8 Forward Declarations

A problem arises when two subroutines must call each other. Because StatPascal
requires that identifiers are declared before they can be used, the subroutine that
is implemented first does not have access to the second one.

As a solution to this problem, it is possible to only declare the name and
parameter types of a subroutine. Instead of giving an implementation of the routine
after the function or procedure header, one writes the reserved word forward, as
in the following (technical) example.

procedure p1 (n: integer); forward;

procedure p2 (n: integer);
begin

if n < 10 then writeln (n)
else p1 (n)

end;

25

procedure p1;
begin

if n >= 10 then writeln (n)
else p2 (n)

end;

One can see that p1 calls p2 and vice versa. By declaring p1 as forward, p2
has enough information about p1 to perform the call to it. Note that the parameter
list of p1 is not repeated when the procedure is actually defined.

The same holds for the definition of function that was declared forward: in
that case one also must omit the return type and just give the function name, as,
e.g.

function f (x: real): real; forward;
...
function f;

begin
f := 2 * x

end;

Functions and procedures defined in the interface part of a unit (see Section
4.1) are declared forward implicitly.

2.2 Data Structures and Types

StatPascal provides the user with data structures that allow the organization of
data in various ways. The most important structure is the array. Readers who are
unfamiliar with the concepts presented in this section may skip the other structures
on the first reading.

2.2.1 Arrays

Arrays enable the programmer to store multiple values of the same data type
within one variable and to access them utilizing an index that is calculated at run
time. To declare an array, one must provide a lower and upper bound for the index
as well as the type of the values to be stored. The following example shows some
array declarations.

var x: array [1..100] of real;
b: array [-7..15] of boolean;
a: array [1..10] of array [1..15] of real;

An array is a new data type, so one may declare arrays that consist of other arrays.
The variable a in the above example can be considered as a real matrix with 10
rows and 15 columns. Such declarations can be given in the shorter form

26 CHAPTER 2. PROGRAMMING WITH STATPASCAL

var a: array [1..10, 1..15] of real;

The components of an array are accessed by means of an index given in square
brackets. With the above declarations, the following is legal.

for i := 1 to 100 do
x[i] := cos (i / 100 * Pi);

b[-2] := false;
a[i][j] := 0.8;
a[3,2] := 1.2;
a[3] := a[2];

Note that a[3,2] is a shorthand notation for a[3][2]. The last assignment
shows that entire arrays of the same type (in this case array [1..15] of real)
can be copied.

2.2.2 Type declarations

StatPascal allows the user to define names for data types by means of a type
declaration. Such a type declaration is required if you want to declare (and as-
sign) variables of a user defined type at different locations within a program. For
example, one might introduce two arrays by means of the declaration

var a: array [1..10] of real;
b: array [1..10] of real;

Although a and b have the same structure, they are considered to belong to
different types since the array type is constructed twice. Therefore, the assignment
a := b is illegal. Using the declarations

type field = array [1..10} of real;
var a: field;

b: field;

the assignment a := b becomes legal.
A type declaration is necessary if you want to provide an array as argument

to a function or procedure. We provide an example of a routine calculating the
mean of a real array. Note that a type field is used to declare an array in the
procedure demo and to pass it to the function mean.

const n = 100;

type field = array [1..n] of real;

function mean (a: field): real;
var sum: real;

27

i: integer;
begin

sum := 0.0;
for i := 1 to n do

sum := sum + a [i];
mean := sum / n

end;

procedure demo;
var a: field;

i: integer;
begin

for i := 1 to n do
a [i] := i;

writeln (mean (a))
end;

begin
demo

end.

A major drawback of this approach is the requirement to define the size of
the array (100 in the present case) as a constant within the program. StatPascal
provides vector types (see Section 3) as extensions to the Pascal type system whose
sizes are defined at runtime.

2.2.3 Ordinal types

Ordinal types have values within a countable set. StatPascal provides the pre-
defined ordinal types boolean, char and integer. Note that real is not an ordinal
type. A new ordinal type is introduced by means of enumerations and subrange
declarations.

2.2.3.1 Enumerations

A simple way to introduce a data type is to enumerate all its values, e.g.

type color = (red, green, blue, black);

The identifiers used in the list are treated as constants of the type declared.
An order is defined on the type based on the position of the values in the list (e.g.
red < blue). The values are converted to integers by means of the function ord.
ord returns the position of the value in the list, starting with 0 (i.e. ord (red) =
0, ord (green) = 1, etc.).

One may use enumerated types as an index of arrays. Given the above dec-
laration, the following is valid.

28 CHAPTER 2. PROGRAMMING WITH STATPASCAL

var a: array [color, 3..5] of integer;
b: array [green..black] of real;

Moreover, variables of enumeration types may be used as control variables of
for-loops.

var c: color;
d: array [color] of integer;

begin
for c := red to black do

d [c] := ord (c)
end.

2.2.3.2 Subranges

One may declare a new data type as a subset of another ordinal data type. We
provide some examples.

type month = 1..12;
day = 1..31;
color = (red, green, blue, black);
mycolor = green..blue;

Whenever a value is assigned to a subrange type, StatPascal checks if the
value is within the specified range and terminates the program if the check fails.
For example, the assignment dayvar := 25 is valid, but dayvar := 32 fails if
dayvar is a variable of type day. Subranges do not only document a program, but
also enforce a check on the values assigned to a variable.

Note that these checks can be turned of in the Compiler Options dialog (see
4.7.3) to increase the execution speed of a program.

2.2.4 Records

Records are used to group together data belonging to the same or different data
types. Instead of indexing them with a number, the components are addressed by
means of individual names. A record type storing complex numbers is defined by

type complex = record
re, im: real

end;

Having declared a variable of the above data type, its components are ac-
cessed by appending the component name (i.e. re or im in our example) to the
variable name:

29

var c, d, e: complex;
begin

c.re := 0;
c.im := 1;
d.re := -c.re + 2;
e := c

end.

Arrays of record types may be built, and records can in turn contain com-
ponents that are arrays. The following example shows a declaration that allows
the storage of data collected from a student during a course: His name, delivered
homeworks and points achieved in examinations.

type student = record
name: string;
homework: array [1..12] of integer;
examination: array [1..2] of integer

end;

var class: array [1..45] of student;

Now, to store the points achieved by the fifth student in his third delivered home-
work, one would write

class[5].homework[3] := ...

2.2.5 Sets

StatPascal handles sets of ordinal data types. The following example shows the
declaration of two variables, storing a set of the values 1 to 20:

var a, b: set of 1..20;

A set is defined by listing its members in square brackets:

a := [2, 7, 13];
b := [1, 2, 3, 5];

The empty set is denoted by []. One may unite sets by means of the operator
+, * calculates the intersection and - the difference set. The boolean operator in
is used to check if a value is a member of a set, e.g. 2 in [2, 7, 13] is true. The
number of values of the base type of a set is limited to 256; thus, the declaration
set of 1..500 is illegal. The reader should note that this limitation may vary
between different implementations of Pascal.

30 CHAPTER 2. PROGRAMMING WITH STATPASCAL

2.2.6 Pointers

Pointers are used to store references to other objects that are created at run time.
A procedure new is provided to create an object and to initialize a pointer to it.
We give an example of this data type:

var a: ^integer;
...
new (a);
a^ := 42;
write (a^);
dispose (a);

The pointer type is introduced by means of ^. In the above example, a is a
variable that contains a pointer to an integer object. The call to new creates an
integer object and assigns a pointer to it to a. The assignment a^ := 42 stores a
value within that object. It should be released using a call to dispose when it is
no longer needed.

Pointers are mainly used to create dynamical data structures (like lists and
trees). A simple example of such a structure is a linear list. Each list entry contains
the data one wants to store, and a pointer to the next entry. Since the list is build
at run time, there is (theoretically) no limit on the amount of data one is able to
store. The type declaration for a list looks like

type nodeptr = ^node;
node = record

data: integer;
next: nodeptr

end;

Note that it is possible to declare a pointer to a data type declared later on,
so the above recursive definition is legal.

Pointers provide a powerful mechanism to implement intricate data structures
like trees or graphs. The reader is referred to an advanced book (e.g. Wirth, N.:
Algorithms and Data Structures) for details.

Chapter 3

Vector and Matrix
Operations

StatPascal implements the new data structures vector and maxtrix which are
similiar to the array structure; yet, one does not have to specify the number of
elements when declaring a vector or matrix. Such a type is defined using the
declaration

vector of type

or

matrix of type.

Vectors are initialized with an empty vector upon their creation. StatPascal deallo-
cates the memory used by a vector automatically and provides a compactification
of the heap where these objects are stored within its run time environment.

In the following sections, the operations that are supported for vectors and
matrices are described, and examples are given. We start with the vector structure.

3.1 Introductory Examples

We start with a simple example that shows the usage of a real vector. The follow-
ing program generates a Gaussian data set with location parameter 2 and scale
parameter 3 and stores it in the vector x. It then displays the mean and variance
of the simulated data set.

program example;
var x: vector of real;
begin

31

32 CHAPTER 3. VECTOR AND MATRIX OPERATIONS

x := 2 + 3 * GaussianData (100);
writeln (mean (x), variance (x))

end.

Readers who are familar with other statistical languages should note that
the usual arithmetic and logical expressions (with componentwise operations) as
well as index operations are supported. Vectors can also be used as arguments
and return types of functions. The language provides implicit looping over the
components of a vector if a function operates on the base type of a vector structure.
Details on these topics are given in the following sections.

The next program demonstrates further vector operations. We perform a
numerical integration of a function f : R → R using the approximation∫ b

a

f(x) dx ≈
n∑

i=1

f(ci) + f(ci+1)
2

b− a

n
,

where ci = a + (i− 1)(b− a)/n, i = 1, . . . , n + 1. The function f that is integrated
as well as the parameters a, b and n are provided as arguments.

type realfunc = function (real): real;

function integrate (f: realfunc; a, b: real; n: integer): real;
var fc: vector of real;
begin

fc := f (realvect (a, b, n + 1));
return sum (fc [1..n] + fc [2..(n+1)]) * (b-a) / (2*n)

end;

We start with a type declaration for the functional parameter (see section
4.2 for details on functional parameters). The first assignment within the function
integrate calculates the values f(ci), i = 1, . . . , n+1 and stores them in the variable
fc. Note that the call to the predefined function realvect returns a real vector with
n+1 equally spaced points between a and b, which is given as an argument in the
call of f.

In the second statement, we generate two integer vectors containing the values
from 1 to n and from 2 to n + 1, which serve as indices to fc. The index operation
yields two real vectors with the values (f(c1), . . . , f(cn)) and (f(c2), . . . , f(cn+1)).
The + operator adds these vectors componentwise, and the predefined function
sum calculates the sum of the components of the resulting vector. Finally, the
value of the integral is returned.

Next, we define a function square and calculate its integral.

function square (x: real): real;
begin

return x * x

33

end;

begin
writeln (integrate (square, 0, 1, 100)) (* 0.33335 *)

end.

3.2 Construction of Vectors

A value of a vector type is obtained in one of the following manners.

1. The .. operator constructs an integer vector, i.e. m..n returns a vector with
the values m,m+1, . . . , n. If m > n, then an empty vector is returned. S-Plus
users should note that we cannot use the : operator because it is utilized in
write to format the output.

2. The predefined function realvect (a, b, m) returns a vector d of real values
with di = a + (i− 1)/(m− 1)(b− a), i = 1, . . . ,m.

3. The combine function constructs a vector from an arbitrary number of ar-
guments, which must be vectors or single values of the same type t. The
usual type conversions (e.g. from integer to real) are supported. The type
of the vector is defined by the type of the first argument (after discarding
subranges and performing calls to functions without parameters).

Example: (Construction of Vectors.) The following example illustrates the con-
struction of a vector.

var a: vector of integer;
b: vector of real;

begin
a := 3..15;
b := realvect (0, 1, 11);
a := combine (2..4, 8, 13..15)

end.

The first statement generates an integer vector with values from 3 to 15, while
the second one produces a real vector with the values 0.0, 0.1, . . . , 1.0. The last
statement utilizes the combine function to generate an integer vector with the
values 2, 3, 4, 8, 13, 14, 15. Note that the assignment frees the memory allocated for
the vector 3..15.

3.3 Type Conversions

StatPascal supports the following type conversions related to vectors.

34 CHAPTER 3. VECTOR AND MATRIX OPERATIONS

1. An array of type t can be converted to a vector of type t.

2. A vector of integer values can be converted to a vector of real values.

3. A value of type t can be converted to a vector of type t.

These conversions allow the application of all vector operations to arrays and
the mixing of scalar values and vectors in arithmetic expressions.

3.4 Assignments

Vectors having the same base type can be assigned to each other, regardless of the
number of elements. In particular, vectors originating from different type declara-
tions are compatible as long as their base type is the same, as e.g.,

var a: vector of real;
b: vector of real;

...
a := b;

The relaxed type compatibility is required because we do not provide constructors
to specify a type when a vector is generated. Standard Pascal uses a similiar
mechanism for set construction.

3.5 Output

Vectors of the types integer, char, real and boolean are allowed as arguments of a
call to the write procedure.
Example: (Printing Vectors.) The following example prints the elements of the
vectors given in the call of the writeln procedure, seperated by a blank.

begin
writeln (3..15, 7..20)

end.

The format options of the Pascal write procedure (one or two additional values
seperated by colons) are also available for vectors, and a second value (or a third
one for real vectors) defines the number of columns written before a line feed is
emitted. Thus, the statement writeln (a:10:5:6) would print the real vector a
using 6 columns, each 10 characters wide with 5 digits after the decimal point.

35

3.6 Expressions

The arithmetic operators (+, −, ∗, / and ∗∗) and relational operators (<, <=, >,
>=, = and <>) can be applied to vectors of the types integer and real. Numerical
operators yield a real vector if one of the operands is a real vector. The relational
operators return a boolean vector.

When applying the operator ⊗ (with ⊗ being one of the above operators) to
the vectors a and b with length m and n, the resulting vector c is defined by

c[i] := a[(i− 1)mod m + 1]⊗ b[(i− 1)mod n + 1], 1 ≤ i ≤ max(m,n).

Note that the shorter vector is repeated until the length of the longer one is
reached when the vectors have different length. This semantic was chosen because
it allows a natural combination of vectors and scalars: An expression like 2 * a
(where a is a vector) is handled by converting the scalar value to a vector with the
length 1, and then the multiplication is applied to all components of a.

The data type string is implemented as vector of char and gets a different
treatment in comparisons; see section 3.10 for details.
Example: (Applying Operators to Vectors.) The boolean vector obtained by the
expression a < b is printed using ’FALSE’ and ’TRUE’.

var a, b: vector of integer;
begin

a := 1..10;
b := combine (1..5, 9..13);
writeln (a + b);
writeln (a < b)

end.

3.7 Index Operations

Given a vector a with size (a)=l (denoting the number of elements), the following
index operations are possible:

a[n] n integer; returns the n-th component of the vector a, 1 ≤ n ≤ l.
The returned value is of the base type of the vector.

a[b] b vector of boolean with size(b) ≤ l, extracts the components a[i]
for which b[i] is true. The returned vector has the same type as a.

a[c] c vector of integer with 1 ≤ c[i] ≤ l for 1 ≤ i ≤ size(c), yields
a vector d with the values d[i] = a[c[i]], 1 ≤ i ≤ size(c). The
returned vector has the same type as a.

These index operations do not produce l-values, i.e. it is not possible to use them
on the left side of an assignment.
Example: (Index Operations.) We demonstrate the index operations.

36 CHAPTER 3. VECTOR AND MATRIX OPERATIONS

var a, b: vector of integer;
begin

a := 1..10;
b := 4..9;
writeln (a [3]); (* 3 *)
writeln (a [a > 5]); (* 6 7 8 9 10 *)
writeln ((2 * a)[b div 2]) (* 4 4 6 6 8 8 *)

end.

The writeln statements use the three possible index operations. The first one em-
ploys an integer value as index. The second one uses a vectorized comparison to
obtain a boolean vector with the index positions where a exceeds 5. The last op-
eration uses an integer vector listing the positions to be extracted. Note that the
index operations of vectors can be applied to vector expressions (like 2 * a) and
not just variables.

3.8 Function Calls

A vector a of integer or real values can be given as argument to the call of a
function f : R → R or f : N → N. The resulting vector is defined by f(a[i]), i =
1, . . . , size(a).
Example: (Function Calls.)

function f (x: real): real;
begin

f := 2 * x
end;

begin
writeln (sqr (1..5)); (* 1 4 9 16 25 *)
writeln (f (realvect (-0.5, 1.5, 5))) (* -1 0 1 2 3 *)

end.

The first call passes the integer vector 1..5 to the predefined square function,
while the second call passes a real vector as argument of a real-valued function. A
loop that calls the function for the single values is generated by StatPascal when
a user defined function is called.

3.9 Special Operations

The following functions can be applied to any vector type.

1. size returns the number of components of a vector.

2. rev reverts the order of components of a vector.

37

It is not possible to implement these functions using the StatPascal language, i.e.
there is no way to obtain the size of an arbitrary vector other than by calling the
size function. These limitations exist because it is impossible to write a function
that accepts vectors of any type.

3.10 Strings

The data type string is predefined as a character vector. A constant of the string
type is specified in the usual way (see below for some examples). Applying rela-
tional operators to a string type does not perform a vectorized comparison of the
single characters as described in section 3.6. Instead, an alphabetical comparison
is performed. Moreover, the + operator concatenates two strings.

The special treatment is only applied to values of the predefined string type,
not to other character vectors. There is no type conversion operator, but one
can use assignments to the appropriate type to obtain the desired treatment. No
maximum length for strings exists.
Example: We demonstrate the differences between strings and character vectors.

var a, b: string;
c, d: vector of char;

begin
a := ’Hello, world’; b := ’Hello’;
c := ’AGM’; d := ’ABY’;
writeln (a > b); (* TRUE *)
writeln (c > d); (* FALSE TRUE FALSE *)
writeln (a [1..5]); (* Hello *)
writeln (size (a)) (* 12 *)

end.

The first comparison yields a single logical value because it is applied to
a string, while the second one produces a boolean vector. All vectorized index
operations are applicable to strings and return a string as their result; the size
function determines the length of a string.

3.11 Matrix Operations

The data structure matrix represents two–dimensional arrays where the number
of rows and columns are determined at run time. The language provides an implicit
conversion from two–dimensional arrays to matrices. Thus, it is possible to provide
an array whenever a matrix is expected, e.g., in calls to predefined functions and
procedures.

One can also construct a matrix using predefined functions. MakeMatrix (see
Section 7.97) fills a matrix with the components of a vector, while UnitMatrix (see

38 CHAPTER 3. VECTOR AND MATRIX OPERATIONS

Section 7.191) creates a unit matrix. The following examples demonstrates these
possibilities.

var A: matrix of real;
begin

A := MakeMatrix (1..6, 2, 3);
writeln (A); (* 1 2 3 *)

(* 4 5 6 *)
A := UnitMatrix (3);
writeln (A); (* 1 0 0 *)

(* 0 1 0 *)
(* 0 0 1 *)

end.

Matrices can be used in arithmetic operations. The multiplication of two
matrices or of a matrix and a vector perform the usual mathematical matrix op-
erations. The predefined functions Transpose (see Section 7.185) transposes a real
matrix, while Invert (see Section 7.92) calculates the inverse matrix. Another func-
tion is Chol (see Section 7.18) which performs the Cholesky decomposition. The
following example uses this function to simulate Gaussian random variables with
a given covariance matrix.

program bivgauss;
var S, C: matrix of real;

i: integer;
begin

S := MakeMatrix (combine (1.0, 0.2, 0.2, 1.5), 2, 2);
C := chol (S);
for i := 1 to 100 do

writeln (C * GaussianData (2))
end.

Chapter 4

Advanced StatPascal
Techniques

4.1 Units

Units are used to modularize programs by breaking them into several smaller parts
and to implement libraries of predefined routines that can be called from different
programs. We start with an example that shows a simple unit.

unit example;

interface

procedure hello (s: string);

implementation

procedure hello;
begin

writeln (’Hello, ’, s)
end

end.

After defining the unit name (example), an interface and an implementation
section are specified. The interface section declares all constants, types, variables,
procedures and functions that are provided by the unit. In the above example, this
is the procedure hello. The definition of the procedure takes place in the imple-
mentation section. Note that — similar to a forward declaration — the parameter

39

40 CHAPTER 4. ADVANCED STATPASCAL TECHNIQUES

list is not repeated when the procedure is actually implemented (doing so would
result in an error message).

The unit must be stored in a file with the unit name and the extension
.sp. In the above example, one would have to store the unit example in the file
example.sp.

To utilize a unit in a program, it is imported after the definition of the
program name with the reserved word uses. The following program imports the
unit example and calls the procedure hello.

program demo;
uses example;
begin

hello (’Name’)
end.

The separation between interface and implementation section enables a unit
to make private declarations (e.g., variables or further subroutines) that are not
visible outside the unit. The interface section may also start with a uses declara-
tion to import further required units.

The next example shows a unit performing a numerical integration of a func-
tion given as argument. It also utilizes functional parameters (see Section 4.2)
introduced in the next section. An example unit with a more sophisticated inte-
gration algorithm is provided in the sp–subdirectory of the Xtremes installation.

unit integration;

interface

type realfunc = function (real): real;
function integrate (f: realfunc; a, b: real; n: integer): real;

implementation

function integrate;
var fc: vector of real;
begin

fc := f (realvect (a, b, n + 1));
return sum (fc [1..n] + fc [2..(n+1)]) * (b-a) / (2*n)

end;

end.

Multiple units can be included by separating their names with commas. The
compiler searches the corresponding files within the working directory and within
the directories listed in the Search Path for Units in the Compiler Options dialog
box

41

4.2 Functional and Procedural Types

StatPascal supports procedural and functional data types, i.e. one may declare
variables that store references to functions and procedures, e.g.

type realfunc = function (real): real;

var g: realfunc;

function f (x: real): real;
begin

f := 2.0 * x
end;

begin
g := f;
writeln (g (3.0)) (* 6 *)

end.

Two subroutines are of the same type if they expect the same number and
types of arguments and if they return values of the same type in the case of a
function. Such types are important because they allow the provision of functions
as arguments of subroutines.

Using functional or procedural variables, it is possible to make subroutines
visible outside their scope. Performing calls to such subroutines may lead to errors
if the subroutine accesses nonlocal variables.

4.3 Evaluation of Boolean Operands

StatPascal offers a shortcut evaluation for the boolean operators and and or.
Contrary to Pascal, all operands are guaranteed to be evaluated from left to right.
If the option Boolean Shortcuts is selected in the Compile dialog box, then the
evaluation of an and operator is terminated if the first operand evaluates to false.
Likewise, the second operand of the or operator is not evaluated if the first one
returns true. Expressions like (x > 0) and (log (x) < c) are, therefore, possi-
ble (this code breaks in Pascal because it is tried to evaluate the logarithm even
if x ≤ 0 and the expression is false anyway).

As an example, consider the search for the smallest value exceeding a thresh-
old t. Using the shortcut evaluation of boolean operators, the search is performed
by

i := 1;
while (i <= samplesize) and (data (i) <= t) do i := i + 1;

Without the shortcut evaluation, one has to write

42 CHAPTER 4. ADVANCED STATPASCAL TECHNIQUES

i := 1; Done := false;
while (i <= samplesize) and not Done do

if data (i) > t then Done := true
else i := i + 1;

to stop the system from accessing data (samplesize + 1) if no value exceeds
the threshold t.

4.4 Generating and Accessing Data

An important facility of StatPascal is the implementation of routines for data gen-
eration and data transformation not covered by the menu system or UserFormula.
In this section, we introduce functions and procedures to exchange data between
StatPascal and Xtremes. Data stored in a StatPascal program (e.g., in a vector)
are not used directly within Xtremes, and data sets loaded in Xtremes are not
used by StatPascal automatically. Instead, all data transfer is accomplished by
calling predefined functions and procedures. They give the user access to the ac-
tive data set from within a StatPascal program and allow to pass data collected
in a StatPascal vector to Xtremes, thus creating a new active data set.

One should note that the routines described in this section are also available
in the command line version of StatPascal. It is possible to read and generate
data sets in the format of Xtremes, and the concept of an active data set is also
supported by the runtime environment.

We start with an example for generating standard Pareto data under the
shape parameter α = 1.

program Pareto;
const n = 100;

alpha = 1.0;
var x : vector of real;
begin

x := paretodata (alpha, n);
createunivariate (x, ’pareto.dat’, ’Description’)

end.

Here n Pareto data are generated independently by the function paretodata
and stored in the vector x. The call to createunivariate passes the data to Xtremes,
that is, the data set stored in x is saved to the file pareto.dat which is then the
active one. In addition, a short comment is added. After having run the program,
all options of the menu system can be applied to the new data set.

4.4.1 Passing Data from StatPascal to Xtremes

We now provide a more systematic description of the generation of data sets by
StatPascal. Four different procedures are provided to pass data collected in a

43

vector from StatPascal to Xtremes. In the following examples, the data are saved
to filename.dat in the working directory. One may create data sets of the following
types.

Xtremes Univariate Data: data x1, . . . , xn are collected in a real vector given
as argument to the call of the predefined procedure createunivariate.

var x: vector of real;
...
createunivariate (x, ’filename.dat’, ’Description’);

Instead of a vector, a one–dimensional real array may be given as well.

Xtremes Time Series: in addition to the previous case, a vector containing the
times ti of the observations must be provided.

var x : vector of real;
t : vector of integer;

...
createtimeseries (t, x, ’filename.dat’, ’Description’);

Xtremes Censored Data: besides a real vector containing the censored data,
there is an integer vector with the censoring information.

var z : vector of real;
delta : vector of integer;

...
createcensored (z, delta, ’filename.dat’, ’Description’);

Xtremes Multivariate Data: the data xi,j are collected in a real matrix. In
addition, a string with the column names, separated by ’|’, must be provided.

var x: matrix of real;
h: string;

...
h := ’Day|Month|...’;
createmultivariate (x, h, ’filename.dat’, ’Description’);

Note that a two–dimensional array can be provided instead of a matrix type,
because the language supports an implicit type conversion from two–dimensional
arrays to matrix types.

As a result of such a procedure you will get an active data set of the type
as specified by the command create... The Active Data window opens showing
the name of your data set and the description provided in the last argument.

44 CHAPTER 4. ADVANCED STATPASCAL TECHNIQUES

4.4.2 Passing Data from Xtremes to StatPascal

Next, let us consider the case where active data are dealt with by StatPascal. The
active data set is accessed by means of the following functions:

samplesize size of the active data set;

dimension dimension of the active data of type Xtremes Multivariate
Data. This function can also be applied to univariate data or
a time series, yielding 1 or 2, respectively;

data(i) xi:n if x1, . . . , xn are Xtremes Univariate Data. Use the func-
tion call data(i,1) to access the unsorted data;

data(i,j) xi,j if (x1,1, x1,2), . . . , (xn,1, xn,2) is the active time series. Mul-
tivariate data are dealt with in the same way. If a grouped data
set is active, then data(i,1) returns the cell boundary ti and
data(i,2) the frequencies ni in cell [ti, ti+1). Moreover, censored
data are treated like multivariate data with the censored data
in the first component, the censoring information in the second
and the weights of the Kaplan–Meier estimate in the third one;

columndata(i) vector with the (unsorted) data in the ith column of the active
data set;

rowdata(i) vector with the data in the ith row of the active data set;

columnname(i) name of the ith column. This function yields an empty string
if not applied to a multivariate data set.

In the following example, we employ StatPascal to add the value 5 to uni-
variate data. Note that the vector structure allows us to deal with data sets of any
size.

program translation;
var x: vector of real;
begin

x := columndata (1);
createunivariate (x + 5, ’demo.dat’, ’’)

end.

We used the function call columndata (1) to access the unsorted data set.

4.4.3 Temporary Data Sets

One should be aware that the data creation routines described so far result in data
being written to disk files and kept in memory until explicitly deleted. In addition,

45

StatPascal allows the generation of temporary data sets. These data sets are not
written to a file and they are deleted as soon as another temporary data set is
created.

Within a StatPascal program, temporary data are treated like the usual active
data which come from Xtremes. To create a temporary data, specify an empty file
name in the call to create*. For example, the following code generates a temporary
data set.

var x: vector of real;
...
createunivariate (x, ’’, ’’);

This feature is useful when a procedure relying on an active data set is em-
ployed in a simulation, where one usually creates large amounts of data.

4.5 Predefined Estimators

Predefined estimators for univariate data can be called from StatPascal programs.
These procedure calls require a real vector with the data set and reference pa-
rameters that are set to the estimated shape (if applicable), location and scale
parameters. An additional parameter accepts an error condition. Moreover, one
must specify the number of upper extremes when calling estimators in the POT
domain.

Suppose the following variables are declared:

var k, Result: integer;
x: vector of real;
alpha, gamma, mu, sigma: real;

With these declarations, one can call the following estimates. The names of these
procedures are the same as the corresponding menu options.

POT MLEGP0 (x, k, mu, sigma, Result)
HillGP1 (x, k, alpha, mu, sigma, Result)
MEGP1 (x, k, alpha, mu, sigma, Result)
MomentGP (x, k, gamma, mu, sigma, Result)
DreesPickandsGP (x, k, gamma, mu, sigma, Result)
MLEGP (x, k, gamma, mu, sigma, Result)

MAX MLEEV0 (x, mu, sigma, Result)
MLEEV1 (x, alpha, mu, sigma, Result)
MLEEV (x, gamma, mu, sigma, Result)
LRSEEV (x, gamma, mu, sigma, Result)
MDEEV (x, gamma, mu, sigma, Result)

46 CHAPTER 4. ADVANCED STATPASCAL TECHNIQUES

SUM MLEGaussian (x, mu, sigma, Result)
MDEGaussian (x, mu, sigma, Result)
MHDEGaussian (x, mu, sigma, Result)
LSEGaussian (x, mu, sigma, Result)

The parameter x containing the data can be omitted. In that case, the esti-
mators are applied to the active data set. The parameter Result is set to an error
status with the following possible values.

0 No error;
1 Negative data in GP1 or EV1 model;
2 Newton–Raphson iteration found no point of zero;
3 k is too small;
4 k is larger than sample size;
5 xn−k+1:n, xn:n have different sign (MomentGP only);
6 Sample size is too small;
8 Internal error.

As a technical example, we simulate the distribution of the MDE(EV) esti-
mator under a Gumbel distribution. The following program applies the estimator
to m = 1000 data sets with n = 100 independently generated values and stores the
estimates of the shape parameter in a new active data set. Then, one can use menu
options of Xtremes (e.g., Visualize... Kernel Density or Functional Parameters in
the local menu of the Active Sample window to analyze the result.

program EVSim;
const m = 1000;

n = 100;
var x, y: vector of real;

gamma, mu, sigma: real;
i, result: integer;

begin
for i := 1 to m do begin

x := GumbelData (n);
MDEEV (x, gamma, mu, sigma, result);
if result = 0 then

y := combine (y, gamma)
end;
createunivariate (y, ’evsim.dat’, ’’)

end.

In the above program, we collect the estimates in the vector y, which is passed
to createunivariate at the end of the program.

47

4.6 Estimator Programs

An important facility of Xtremes is the estimator dialog box, providing options
for the execution of an estimator and for the exploration of the results. With
StatPascal, one can implement estimators and attach them to the estimator dialog
box. This section shows the required technical details.

Table 4.1 gives an overview of the different domains, distributions and models
in the extreme value setting. Estimators of the shape parameter may be imple-
mented by specifying a statistical model after the program name.

Table 4.1: Statistical models.

Domain Model Distribution Shape Parameter
GP0 W0,µ,σ –

POT GP1 W1,α,σ α

GP Wγ,µ,σ γ

EV0 G0,µ,σ –
MAX EV1 G1,α,σ α

EV Gγ,µ,σ γ

4.6.1 Implementing Estimators of the Shape Parameter

We start with an artificial example. Enter the following program and save it to a
file (e.g., to art.sp).

estimator art GP1;
returning alpha;
begin

alpha := 1.0
end.

Next, select Run from the button bar in the editor window. Xtremes opens
the usual estimator dialog box and displays the results of your estimator (recall
that an active data set is required to carry out an estimation procedure). We
mention some details.

• The program header defines

– the name of the estimator (this is art in our example),

– the model for which the estimator is defined (e.g., GP1).

48 CHAPTER 4. ADVANCED STATPASCAL TECHNIQUES

• The identifier (e.g., alpha) after the returning symbol defines the name of
the estimated parameter and is treated as a global variable of type real. The
value of this variable will be returned as estimate.

• Changing the active data set while your estimator dialog box is still open
does not affect the estimator. You must start the program again to apply
the estimator to a new data set.

• Within the GP models, the number of extremes used for the estimation is
available by means of the function extremes.

• Xtremes provides least squares estimators for the scale and location param-
eters (e.g., in our artificial example, the least squares estimation is carried
out in the Pareto model with fixed shape parameter α = 1).

The following example deals with the implementation of the Pickands esti-
mate

γ̂k = log
(

xn−m+1:n − xn−2m+1:n

xn−2m+1:n − xn−4m+1:n

) /
log 2

for m = [k/4] and 4 ≤ k ≤ n (note that the predefined functions data, samplesize
and extremes correspond to x, n and k in this formula):

estimator Pickands GP;
returning gamma;

function EstimateGamma (m: integer): real;
var h1, h2: real;
begin

if m < 1 then return 1.0;
h1 := data (samplesize - m + 1)

- data (samplesize - 2*m + 1);
h2 := data (samplesize - 2*m + 1)

- data (samplesize - 4*m + 1);
return log (h1 / h2) / log (2)

end;

begin
gamma := EstimateGamma (extremes div 4)

end.

Note that a div b is the notation for [a/b] in StatPascal, where a and b are
positive integers. This program is stored in the file pickands.sp in the subdirectory
sp.

49

4.6.2 Implementing Estimators of Further Parameters

Within the framework presented above, additional functional parameters (such as
the right endpoint) may be returned. Then, the shape parameter must be written
as the first identifier after returning. For example, write

returning alpha, theta;

to include a parameter theta. Note that theta will be displayed in the estimator
dialog box, and a diagram of the estimated parameters can be plotted in the case
of GP models. Yet, parametric curves, such as densities etc., based on theta are
not supported.

You may also implement your own estimators for the scale and location pa-
rameters. In that case, the word full is added to the model definition, i.e., one
must write FullGP1, FullGP, FullEV1 or FullEV instead of GP1, etc. We provide
an example for the EV model.

estimator art1 FullEV;
returning gamma, mu, sigma;
begin

gamma := 1.0;
mu := -0.2;
sigma := 0.8

end.

We mention some details:

• the first parameter after returning is the shape parameter. The second and
third parameter are treated as location and scale parameters. Additional
parameters (like theta introduced above) may be included, and

• predefined estimators are available by means of the functions hillgp1, megp1,
etc.

4.7 StatPascal Runtime Environment

The options of the compiler and the handling of run–time errors are described.

4.7.1 Handling Run–Time Errors

Run–time errors occur during the execution of a program; these are divisions by
zero, stack overflows or range check errors when accessing arrays or data sets.
If StatPascal encounters such an error, the program terminates and a message
showing the type of the error and its address is displayed. When possible, the
caret is positioned at the line that caused the error.

Consider the following program (intended to generate a univariate data set):

50 CHAPTER 4. ADVANCED STATPASCAL TECHNIQUES

program error;

const n = 100;
var a: array [1..n] of real;

i: integer;

function invert (x: real): real;
begin

return 1 / x
end;

begin
for i := 1 to n do

a [i] := invert (trunc (5 * random));
createunivariate (n, a, ’test.dat’, ’Data set test.dat’)

end.

This program is likely to crash because the call to trunc(5 * random) re-
turns random integer numbers between 0 and 4. As soon as the system performs
a division by 0, it displays the error message

Division by zero at address ...

and starts searching for the run–time error. It then displays

Run-time error position found at line 8

and places the caret on the line with the statement return 1/x.

4.7.2 The Compile Button in the StatPascal Editor

The Compile button is used to compile and/or execute programs. One can
choose between the following options.

• Syntax Check Only. Compiles the program in the StatPascal window and
shows errors that are detected.

• Compile and Run Program. Compiles the program and executes it.

• Compile to File. Compiles the program and writes the generated code to the
specified file. One can append pre–compiled programs to the menu bar of
Xtremes by storing them in the sp–subdirectory of an Xtremes installation.
The programs become availabe the next time Xtremes is started.

• Find Run–Time Error. An automatic search for the position of a run–time
error position is not possible for pre–compiled programs because they run

51

independent of an editor window. If a run–time error occurs, one only gets
a message showing the type and address of the error in the compiled code.
You can load the source code into a StatPascal window and enter the error
address to locate its position in the source code.

Note that the Compile to File–option allows the distribution of StatPascal
programs without disclosing source code.

4.7.3 The Compiler Options Button

The Compiler Options button in the StatPascal editor window opens the
dialog box (cf. Fig. 4.1) that provides all options for controlling the compiler.
It allows the user to change the memory size and run–time error handling of
StatPascal.

Figure 4.1: The Compiler Options box provides options to compile and run a
StatPascal program.

Turning off the run–time error checking increases the speed of your program.
However, this should only be done for programs which are free of errors, because,
otherwise, Xtremes might terminate unexpectedly.

The Search Path for Units contains a list of directories where units are
searched. Different directories are separated using a semicolon. E.g., the entry
c:\xtremes\sp;d:\myfiles would instruct the compiler to search within the di-
rectories c:\xtremes\sp and d:\myfiles for units.

The options on the right side of the dialog box control the memory sizes of the
abstract stack machine that executes compiled StatPascal programs. It contains of
a storage area for program code (Program Size) and an area for data (Data Size).

The data area must be large enough to hold all objects that are used within
a program. The system creates two special areas within the data area whose size
is set using Pointer Table and Calculator Stack. The pointer table keeps track of
all pointers and vectors that are created within a program; each of these objects

52 CHAPTER 4. ADVANCED STATPASCAL TECHNIQUES

uses one entry within the table. The calculator stack is used to store intermediate
results that occur in calculations.

It is usually safe not to change the default values. One can lower them to
spare memory when running a program. Increasing the values may be necessary
for programs working with very large data sets. Note that the memory sizes define
the number of numerical values (integer or reals) that can be stored; one must
multiply these values with eight to obtain the number of bytes required for them.

4.8 Appending StatPascal Programs to the Menu
Bar of Xtremes

It is possible to append StatPascal programs to the menu bar of Xtremes. These
programs are called like other menu options, it is not necessary to load the source
file into the StatPascal editor and to compile it each time the program is started.

To append a program to the menu bar, select the option Compile to File in
the Compile box and store your compiled program under the name *.out within
the sp subdirectory of the working directory. Upon the next start of Xtremes, the
system loads all *.out files from that directory and creates a separate menu with
the names of the programs. The source file is not required to execute the programs,
so one can distribute StatPascal programs in binary form.

Chapter 5

Input and Output

This chapter describes the input and output facilities of StatPascal. We start with
text–oriented operations in the StatPascal window and a description of the access
to text and binary files. The following sections describe the plot routines and
facilities to build a graphical user interface.

5.1 The StatPascal Window

The procedures write, writeln and read of the Pascal language are provided to
perform input and output operations in the StatPascal window. The are several
predefined procedures which allow the control of the ouput. The Page (see Section
7.119) procedure is used to clear the contents of the StatPascal window, while
TextColor (see Section 7.182) and TextBackground (see Section 7.181) set the
color of subsequent output operations.

The output position can be adjusted with the GotoXY (see Section 7.75)
procedure.

5.2 File Operations

Two different types of files are provided by StatPascal. Text files are used to store
information in human readible form, while binary files are employed to store values
using the internal representation of StatPascal.

5.2.1 Text Files

The predefined data type text is used to address text files. The following example
shows the creation of a text file:

var f: text;

53

54 CHAPTER 5. INPUT AND OUTPUT

begin
assign (f, ’demo.txt’);
rewrite (f);
writeln (f, ’Output to demo.txt’);
close (f)

end.

After running this program, the working directory contains a file demo.txt
with the text line Output to demo.txt.

You can write all values that are legal as arguments of write or writeln in its
standard form, i.e. values of the types integer, char, boolean, real and string. It is
not possible to output other types or data structures.

5.2.2 Binary files

Binary files store the internal representation of objects used by StatPascal. This
format is not readible by humans; such files may only be accessed from an StatPascal-
program. The main advantage is the possibility to store objects of any type.

Users familiar with Turbo Pascal should note that binary files are not typed
in StatPascal. It is therefore possible to store objects of different data types within
a file. Turbo Pascal provides the predefined procedures BlockRead and BlockWrite
for that purpose.

The following example shows the storage of a real array to a binary file.

var a: array [1..n] of real;
f: file;

begin
assign (f, ’demo.bin’);
rewrite (f);
write (f, a);
close (f)

end.

Then, to read the array back into a program, the following code can be used.

var a: array [1..n] of real;
f: file;

begin
assign (f, ’demo.bin’);
reset (f);
read (f, a);
close (f)

end.

55

5.3 Plots

StatPascal allows the user to open an Xtremes plot window and to display curves
and scatterplots in it. These windows and curves exactly act like the ones available
from the menu system.

5.3.1 Univariate Curves

Xtremes provides a predefined function Plot (see Section 7.126) which is utilized
to plot univariate curves. The function requires two vectors containing the points
xi and values f(xi), the destination window and a description of the curve. A
linear interpolation of the given points is displayed.

For example, the following program plots a Gaussian density in two Xtremes
plot windows.

program gaussplot;
const n = 100;
var x, y: vector of real;
begin

x := realvector (-3, 3, n);
y := gaussiandensity (x);
plot (x, y, ’Density 1’, ’Gaussian density’);
plot (x, y, ’Density 2’, ’Gaussian density’)

end.

Two Xtremes plot windows (Density 1 and Density 2) are opened by calls to
plot. The curves are displayed as solid black lines. One can change their appearance
using different plot options (see Section 5.3.5).

Please note that the points provided in the vector x do not need to be in
increasing order. Thus, it is possible to plot any line segment.

5.3.2 Scatterplots

The ScatterPlot (see Section 7.149) procedure is similar to the Plot (see Section
7.126) procedure. The routine requires three parameters: two arrays defining the
points and the name of the scatterplot window. In the above example, the call
to plot must be replaced by scatterplot (x, y, ’Scatterplot’) to obtain a
scatterplot of the points (x1, y1), . . . , (xn, yn).

5.3.3 Contour and Surface Plots

StatPascal also performs contour (see Section 7.127) and surface (see Section 7.128)
plots of a bivariate function f . Given a rectangle [x0, x1]×[y0, y1], one has to define
a real matrix or a two–dimensional array v: array [1..n, 1..m] of real, and
store the values f(x0 + (i − 1)/(n − 1)(x1 − x0), y0 + (j − 1)/(m − 1)(y1 − y0))

56 CHAPTER 5. INPUT AND OUTPUT

in the indices v [i, j]. Then, the calls to PlotContour (x0, x1, y0, y1, v)
and PlotSurface (x0, x1, y0, y1, v) produce a contour plot or surface plot
of f .

The following example displays a contour plot and a surface plot of a bivariate
Gaussian density.

program plotdemo;
var y: array [-30..30, -30..30] of real;

i, j: integer;
begin

for i := -30 to 30 do
for j := -30 to 30 do

y [i, j] := gaussiandensity (i / 10) *
gaussiandensity (j / 10);

plotcontour (-3, 3, -3, 3, y);
plotsurface (-3, 3, -3, 3, y)

end.

5.3.4 Polygons

5.3.5 Overview Of Advanced Plot Options

The appearance of plot windows and curves can be controlled from a StatPascal
program by calling predefined procedures. The user can select a coordinate system,
attach labels to a plot or change the color and line style of curves.

Coordinate System: the coordinate system of a window is set by calling the
procedure SetCoordinates (see Section 7.152) which changes the coordinates in the
window specified by the first parameter. One can control the ticks and markers
displayed on the axes by calling SetTicks (see Section 7.161) and SetMarkers (see
Section 7.157).

Labels: use the procedure SetLabel (see Section 7.153) to place a text label
into a window, whereby the the alignment of the label as well as its orientation
can be controlled. You can also place a label at the edges of the window.

Curves: one can select the color of a curve by calling SetColor (see Section
7.150). The plot style (i.e. the appearance of the curve, like displaying a linear
interpolation or just the supporting points) is controlled by SetPlotStyle (see Sec-
tion 7.159). Use SetLineStyle (see Section 7.156) to activate a predefined line style
(like solid or dashed) or define your own one by using SetLineOption (see Section
7.155).

We provide an example for the use of the advanced plot options. The following
StatPascal program displays a dotted Pareto density and a dashed Frechet density.
The ticks and markers of the coordinate system are selected by the program, and
a title is added to the plot. Note that because of the implicit type conversion from
arrays to vectors, a one–dimensional array can be given as argument to Plot (see
Section 7.126).

57

program PlotDemo;
const win = ’Density’;
var x, y: array [40..80] of real;

i: integer;
begin

for i := 40 to 80 do begin
x [i] := i / 10;
y [i] := paretodensity (1, x [i])

end;
SetLineStyle (DottedLine);
Plot (x, y, win, ’Pareto’);
for i := 40 to 80 do

y [i] := frechetdensity (1, x [i]);
SetLineStyle (DashedLine);
Plot (x, y, win, ’Frechet’);
SetTicks (win, 4, 8, 0.5, 0, 0.1, 0.05);
SetMarkers (win, 4, 8, 1, 0, 0.1, 0.1);
SetLabel (win, VerticalPositionTop or

HorizontalPositionCentered, 0, 0, ’Densities’)
end.

5.4 Graphical User Interface

StatPascal provides three predefined routines for the construction of graphical user
interfaces. The call to MessageBox (see Section 7.106) opens a dialog box with the
given string argument and an OK–button.

MenuBox (see Section 7.105) is used to construct menus. It expects two
strings yielding the title of the menu and the single entries, separated by |. The
number of the selected menu option is returned (counting starts with 1), a zero
indicates that the menu was cancelled by the user.

The DialogBox (see Section 7.33) function allows the contruction of dialog
boxes with up to 10 real input values. Its first two arguments are similar to the
MenuBox function. They provide a title and list with the single entries. The third
argument is a real vector with the default values of the input fields. A vector with
the input values is returned; it is empty if the dialog is cancelled by the user.

58 CHAPTER 5. INPUT AND OUTPUT

Chapter 6

Syntax of StatPascal

This chapter provides a concise definition of the StatPascal syntax, starting with
the lexical elements. We utilize syntax diagrams because they are readible easily.
Lower and upper case letters can be used. StatPascal is not case-sensitive, so
WHILE, while or WhilE mean the same.

6.1 Lexical Elements

We start with the lexical elements that are handled by the scanner.

6.1.1 Special Symbols and Reserved Words

A StatPascal program is built using the following symbols.

• Letters A to Z, a to z.

• Digits 0 to 9.

• Whitespaces (blanks, tabulators and line feeds).

• The following special symbols.

+ - * / ** ! :=

; : = < > <> <=

>= () [] .. %

(* *) , . ˆ ” ’

{ }

StatPascal reserves the following words which cannot be used as identifiers.

59

60 CHAPTER 6. SYNTAX OF STATPASCAL

and array begin case component div do else end estimator for
forward function goto if implementation in interface label ma-
trix mod new nil not of or procedure program record repeat
return returning set then to unit until uses var vector while
xor

6.1.2 Identifiers

An identifier starts with a letter followed by letters or digits, it ends with a white-
space or one of the specials symbols listed above. Identifiers may be of arbitrary
length, but only the first 30 characters are significant. This means that two iden-
tifiers must be different within the first thirty characters.

Letter

A
�
�	��...
�
 �	�z
�
�	

�

Digit

0
�
�	��...
�
 �	�9
�
�	

�

Identifier

Letter �� Letter��Digit

�

�

6.1.3 Numerical Constants

Integer constants are written as a sequence of decimal digits as shown in the
following syntax graph (with digit representing one of the symbols 0, ..., 9.) Real
numbers contain an exponent or a fractional part.

IntConst

Digit�� �

61

UnsignedNumber

IntConst ��.
�
�	 IntConst

�
�

���� e

�
�	��E
�
�	

�
��-
�
�	

�
IntConst

�

Negative numbers are produced within the context of expressions.

The following example shows integer and real numbers.

integer 4631 71 42
real 3.1415 2.71e5 3e-4 1.0

6.1.4 Character and String Constants

Character constants are included in single apostrophes, e.g. ’A’. String constants
are included in ” or ’. They may contain any character except the chosen quotation
marks, line breaks are not allowed within them. The following syntax applies to
string constants.
StringConst

’
�
�	��char1

�
’
�
�	�

�"
�
�	��char2

�
"
�
�	

�

Here char1 denotes any character except ”, while char2 denotes any character
except ’. Examples of string constants are:

’pareto.dat’
”Data set containing last year’s maxima”
’He said: ”Hi there.”’
””

Note that a single character included in primes ’ denotes a char constant,
while multiple characters or a single character surrounded by ” define a constant
of the string type.

6.1.5 Comments

Comments may be inserted between identifiers or special symbols. Any text within
a comment is ignored. A comment starts with (* or { and ends with *) or }. The
TEX–format of comments is also supported. Any text following a %-sign is regarded

62 CHAPTER 6. SYNTAX OF STATPASCAL

as a comment until the end of the line where the %-sign occured. The following
example shows the use of comments.

xplprogram gaussiandensity;
(* This program displays a table

of Gaussian densities *)
var i: integer;
begin

for i := -30 to 30 do
writeln (i / 10, ’ ’, gaussiandensity (i))

end. % End of program

A comment is treated as a white space.

6.2 Blocks

A block consists of four different parts followed by a statement. The optional parts
define labels, constants, types, variables and declare functions and procedures. All
identifiers declared within a block are local to that block. One obtains nested
blocks by declaring functions and procedures. Any identifier declared within an
outer block is accessible in an inner block. Such identifiers may be redeclared in
the inner block; in this case the original meaning is hidden and restored at the end
of the inner block.

The first optional part of a block starts with the reserved word label followed
by label declarations. The others are used to declare constands, data types and
variables. They start with the reserved words const, type and var.

Procedures and functions may be defined in any order. However, if a function
or procedure calls another one it is necessary that the called routine is defined first.

The strict ordering of the different parts of a block required by Pascal is not
necessary within StatPascal. In addition, each part may be given more than once.
This modification allows the inclusion of routines depending on their own variable
or type declarations by means of include directives.

The last part of the block is mandatory: A sequence of statements bracketed
with begin and end must be used. A block takes the following general form.
Block �� LabelDecl��ConstDecl�TypeDecl�VarDecl�ProcedureDecl�FunctionDecl

�

�
begin
�
 �	 Statement�� ;

�
�	
�
end

�
 �	

63

The next example shows all parts of a block. Note that the procedure defines
a nested block with a local identifier.

label lbl;

const n = -30;
m = 30;

type field = array [n..m] of real;

var a: field;

procedure fill (var c: field);
var i: integer;
begin

for i := n to m do c[i] := GaussianDF (i / 10)
end;

begin
goto lbl;
writeln (’Not executed’);

lbl:
writeln (’Filling array’);
fill (a)

end

6.3 Labels

A label is used as a target of a goto instruction, which unconditionally transfers
program execution to the statement after the label. A label may be an identifier
or an integer number.

LabelDecl

label
�
 �	 Label�� ,

�
�	
�

Label

UnsignedNumber��Identifier

�

64 CHAPTER 6. SYNTAX OF STATPASCAL

6.4 Constants

A constant declaration defines an identifier representing a constant value within the
block it appears in. The constant declaration starts with the reserved word const
followed by a list of identifiers set equal to constant expressions. Each definition
ends with a semicolon. The general form of the constant declaration is

ConstDecl

const
�
 �	 Identifier =

�
�	Constexpr ;
�
�	�� �

A constant expression is build by numbers or by constants defined previously using
the operators +, −, ∗ and /. Its syntax is given by
ConstExpr��-

�
�	
�
 ConstTerm�� +

�
�	��-
�
�	

�

�

ConstTerm

ConstFact�� *
�
�	��/
�
�	

�

�

ConstFact

IntConst��RealConst�Identifier�(
�
�	ConstExpr)

�
�	

�

The following example demonstrates the declarations of constants:

const a = 3.1415;
b = 7;
c = 2.5 * (a + b);
s = ’String constant’;
d = ’A’;

6.5 Types

StatPascal is a typed language, i.e. each object belongs to a data type that defines
the set of possible values of an object. The language provides predefined data types
(boolean, char, integer, real, string, text, file, realvector, real2 and real3) and type
constructors to introduce new data types.

65

6.5.1 Type Declarations

StatPascal permits the declaration of new data types. A name is assigned to a
data type in a type declaration taking the form
TypeDecl

type
�
 �	 Identifier =

�
�	TypeExpr ;
�
�	�� �

TypeExpr

EnumDecl��SubrangeDecl�SetDecl�ArrayDecl�VectorDecl�MatrixDecl�RecordDecl�PointerDecl�ProcTypeDecl�FuncTypeDecl�Identifier

�

with typeexpr representing a predefined or previously declared data type or a data
type created using one of the type constructors. A pointer to a data type that
appears later in the type declaration may be declared.

The following example shows some type declarations (note especially the
recursive declaration of the types nptr and node).

type field = array [1..10] of real;
rec = record

a, b: field;
s: string

end;
colset = set of (red, green, blue, brown, black);

nptr = ^node;
node = record

contents: rec;
next: nptr

end;

realf = function (real): real;

66 CHAPTER 6. SYNTAX OF STATPASCAL

realp = procedure (real);

6.5.2 Simple Types

6.5.2.1 Ordinal Types

Ordinal types are ordered data types with an injective mapping from the set of
their values to a subset of the natural numbers.

Boolean boolean is a predefined data type representing logical values. It contains
the values true and false which are available as predefined identifiers. The relation
false < true holds.

Char The data type char represents single characters.

Integer integer contains the integer numbers which may be represented in a
memory word of the machine. Its length is therefore machine dependent.

Enumerations New ordinal data types are declared by enumerating all their
values, e.g.

type colors = (red, green, blue, brown, black)

When ord is applied to a value of an enumerated type, it returns the position
of the value in the list (starting with zero).
EnumDecl

(
�
�	 Identifier�� ,

�
�	
�
)

�
�	
Subranges Subranges of enumerated types are defined by specifying the lower
and upper bounds of the subrange type, e.g.

type index = 1..15;
color = red..blue;

SubrangeDecl

ConstExpr ..
�
 �	ConstExpr

6.5.2.2 Reals

The data type real contains floating point numbers using the internal representa-
tion for double precision values.

67

6.5.3 Structured Data Types

Various type constructors are provided to build structured data types based on
scalar types.

6.5.3.1 Sets

Sets of enumerated types are introduced using the set constructor
SetDecl

set
�
 �	of

�
 �	TypeExpr

where TypeExpr must yield an enumerated data type with ordinal values between
0 and 255. Sets may be united or intersected using the operators + and *, the op-
erator - calculates the difference set. Sets are constructed by including expressions
in square brackets, e.g. [1, 3, 7] or [red, blue]. The empty set is denoted by
[].

The boolean operator in is provided to check if a value is a member of a set,
e.g. the expression red in [red, blue] evaluates to true.

6.5.3.2 Arrays

Arrays are defined using the array constructor
ArrayDecl

array
�
 �	[

�
�	 TypeExpr�� ,
�
�	

�
]
�
�	of

�
 �	TypeExpr

The type expressions within the square brackets define the index types used to
access the components of the array. These types must be ordinal.

6.5.3.3 Vectors

A vector type is obtained by the type constructor
VectorDecl

vector
�
 �	of

�
 �	TypeExpr

Within expressions, integer vectors are constructed by listing the first and
last value, seperated by two dots, e.g. 3..10.

6.5.3.4 Matrices

Matrices are defined by the matrix construction
MatrixDecl

matrix
�
 �	of

�
 �	TypeExpr

68 CHAPTER 6. SYNTAX OF STATPASCAL

6.5.3.5 Records

Records are declared using the record constructor
RecordDecl

record
�
 �	 Identifier�� ,

�
�	
�
:

�
�	TypeExpr�
� ;

�
�	
�

end
�
 �	

6.5.3.6 Pointers

Pointer types are declared utilizing the constructor
PointerDecl�̂
�	TypeExpr

6.5.3.7 Procedural and functional types

Procedural and functional types are constructed by means of the type constructors

ProcTypeDecl

procedure
�
 �	��(

�
�	 TypeExpr�� ,
�
�	

�
)
�
�	

�

and

FuncTypeDecl

function
�
 �	��(

�
�	 TypeExpr�� ,
�
�	

�
)
�
�	

�
:
�
�	TypeExpr

6.5.4 Compatible Types

Two data objects are of the same data type if they were declared using the same
type constructor or if they are objects of the same named data type. Reference
parameters of a subroutine expect actual parameters of the same type as the formal
parameter.

If a value is to be assigned to another one, or if two values are combined using
a binary operator, type compatibility is required. Assignment of a value having
data type v to a variable of type u is possible in the following cases.

1. u and v are the same types.

69

2. u and/or v are subranges of the same type. If u is a subrange type, a range
check is performed.

3. v is a parameterless function returning type w. If w and u are compatible,
the function is called, and the return value of the function is assigned to the
variable.

4. u and v are functional or procedural types with the same number and types
of parameters and the same return type.

5. v is an integer type or a subrange thereof, and u is real.

6. u and v are vectors of the same type, or u is a real and v an integer vector.

7. u is a vector of a type w, and v has type w or is an array of type w.

8. u is matrix of a type w, and v is a two–dimensional array of type w.

If the operands of a binary operator belong to different types u and v, the
following rules apply.

1. u and v are subranges of the same type w: The result is of the base type w.

2. u and/or v are parameterless functions: The functions are called, and the
rules are applied to their return types.

3. u is real, and v is integer or a subrange thereof. Then v is converted to real,
and the result is real.

4. u and v are integer or real vectors. If u is a real vector and v an integer
vector, then v is converted to a real vector.

5. v is an integer or a real vector, and u is an integer or real value or array.
Then, u is converted to a vector and the above rule applied.

6.6 Variables

6.6.1 Variable Declarations

Variables must be declared in the declaration part of the block where they are
used in or in the declaration part of a surrounding block. A variable declaration
starts with the reserved word var followed by a list of identifiers and the data type
associated with them. It has the form
VarDecl

var
�
 �	 IdentList :

�
�	TypeExpr�� ;
�
�	

�

70 CHAPTER 6. SYNTAX OF STATPASCAL

with IdentList representing one or more identifiers seperated by commas. Note
that TypeExpr may be any of the data types described in section 6.5. Variables
are local to the block, where they are declared.

The following example shows a variable declaration.

var a: field;
c, d: array [1..5] of real;
d: (red, green, blue, brown, black);

6.6.2 Accessing Variables

A variable access denotes a (part of a) variable. It can be used in expressions as
well as in the target of an assignment. A variable access starts with the name of
the variable; arrays, records and pointer types provide further possibilities that
are shown below.

6.6.2.1 Arrays

An index given in square brackets is used to select array components. If a multidi-
mensional array is accessed, one may give more than one index inside the brackets.

Consider the following variable declarations.

var a: array [1..10] of real;
b: array [char, boolean, 7..15] of (red, green, blue);

Then the following variable accesses are legal.

a % entire array
a[7] % one component
b[’A’][false] % is the same as the next line
b[’A’, false] % which is an array of the enumeration

Note that vector indices are treated syntactically like array indices; yet, the
do not yield l-values, i.e. it is not possible to assign values to a part of a vector.

6.6.2.2 Records

A component of a record is accessed by means of the point operator. An example
is given.

var i: record
re, im: real

end;
begin

i.re := 0.0;
i.im := 1.0

end.

71

6.6.2.3 Pointers

A pointer is dereferenced utilizing the ˆ–operator. The following example illus-
trates the usage of a pointer.

var a: ^integer;
begin

new (a);
a^ := 5

end.

6.6.2.4 Syntax

The following syntax diagram defines a variable access.
VarAccess

Identifier �� .
�
�	 Identifier��[
�
�	 Expression�� ,

�
�	
�
]

�
�	
��̂
�	

�

�

�

�

�

6.7 Expressions

The usual notation for expressions is supported. Constants, variables and function
calls may be combined using the operators shown in the following table.

ˆ . []
** not
* / div mod and
+ - or xor
= < > <= >= <> in

These operators have the same meaning as in Pascal. Note that ** evalu-
ates powers. Operators are presented in descending order. The pointer dereference
operator has the highest priority, while the relational operators have the lowest.
Operators belonging to the same group are evaluated from left to right. Brackets
are used to change the order of evaluation.

6.7.1 Syntax

The following diagrams define the syntax of expressions.

72 CHAPTER 6. SYNTAX OF STATPASCAL

Expression

SimpleExpr �� =
�
�	��<>
�
 �	�<
�
�	�>
�
�	�<=
�
 �	�>=
�
 �	� in

�

SimpleExpr

�

SimpleExpr��-
�
�	

�
 Term�� +
�
�	��-
�
�	�or
�
 �	�xor
�
 �	

�

�

Term

Factor�� *
�
�	��/
�
�	�div
�
 �	�mod
�
 �	�and
�
 �	

�

�

These productions are the same as in the Pascal language. Next, we introduce
the power operator and the constructor for integer vectors.

Note that the vector constructor has a high priority to ease the use of vectors
that are produced by it in expressions. Exercise caution with expressions like 1..a
- 1 which generates the vector 0, . . . , a − 1. One must utilize brackets as in the
expression 1..(a - 1) to obtain the vector 1, . . . , a− 1.
Factor��not

�
 �	
�
 Power�� **

�
 �	
�

Power

FunctionCall ��..
�
 �	FunctionCall

�

73

The production for a function call is seperated from the production Func-
tionExpr to introduce functional and procedural variables. Moreover, a function
may return a functional or procedural value, so successive calls are allowed (see
section 6.8.2 for an example).

FunctionCall

FunctionExpr �� (
�
�	 Expression�� ,

�
�	
�
)

�
�	�
�

�

�

The production FunctionExpr is similiar to its Pascal equivalent. Vector ex-
pressions given in parantheses may be followed by optional index operations.
FunctionExpr

VarAccess��UnsignedConst�[
�
�	�� Expression�� ,

�
�	
�

�
]
�
�	

�(
�
�	Expression)

�
�	�� [
�
�	Expression]

�
�	�� �

�

�

UnsignedConst

UnsignedNumber��StringConstant�nil
�
 �	

�

6.7.2 Operators

6.7.2.1 Arithmetic operators

Note that the operators div, and mod can merely be applied to integer operands.
The logical operators and, or, xor and not perform a bitwise operation when
applied to integers.

Dividing two integers using the / operator produces a result of type real, div
and mod (giving the whole part of the ratio and the remainder) can be used when
an integer result is required.

74 CHAPTER 6. SYNTAX OF STATPASCAL

6.7.2.2 Logical operators

The logical operators and, or, xor (exclusive or) and not perform the usual logical
operations when applied to boolean values.

6.7.2.3 Relational operators

The relational operators <, >, <=, >=, = and <> may be applied to values of all
ordinal types as well as real and vectors thereof. They return true (boolean) if the
condition is met and false if not.

6.7.2.4 String operators

Strings are represented by character vectors. The + operator concatenates two
arguments of the predefined string type, and the relational operators perform an
alphabetical comparison rather than a componentwise one.

6.7.3 Function Calls

A function call requires a list of actual parameters, corresponding to the formal
parameters specified in the declaration of the function. Parameters that are passed
by reference require an l-value of the same type, while a compatible type (see
section 6.5.4) suffices for parameters passed by value.

6.8 Statements

Statements define the actions taking place when a program is run. A statement is
defined by the following syntax diagram.
Statement��Label :

�
�	
�
 SimpleStatement��ReturnStatement�Allocation�GotoStatement�WhileLoop�RepeatLoop�ForLoop�IfStatement�CaseStatement�CompoundStatement�

�

75

6.8.1 Compound Statements

Two or more statements may be grouped together seperated by semicolons and
surrounded by begin and end. Such a compound statement may always be used
when a single statement is allowed.
CompoundStatement

begin
�
 �	 Statement�� ;

�
�	
�
end

�
 �	
6.8.2 Simple Statements

Simple statements perform assigments and procedure calls.
SimpleStatement

Expression ��:=
�
 �	Expression

�

An expression is assigned to a variable using the assignment operator :=.

The types on both sides of the assignment must fulfill the type compatibility as
described in section 6.5.4, and the expression used on the left side of the assignment
must denote an l-value.

In the most simple case, a procedure is called by using its name as a state-
ment. Formal parameters used in the declaration of the procedure require a list of
actual parameters of the same or a compatible type.

Internally, a procedure is treated as a function with a special empty return
type void. Thus, a procedure call is represented by an expression with the type
void. The following construction is therefore possible.

type proc = procedure (integer);

procedure proc1 (a: integer);
begin

write (2 * a)
end;

procedure proc2 (a: integer);
begin

write (a / 2)
end;

function f (i: integer): proc;
begin

if i = 1 then f := proc1
else f := proc2

76 CHAPTER 6. SYNTAX OF STATPASCAL

end;

begin
f (1)(2) (* 4 *)

end

6.8.3 Return Statement

A return statement is used to terminate a function and return a value to the
caller. Its syntax is defined by
ReturnStatement

return
�
 �	Expression

The type of the expression must be compatible to the type of the function. The
result of a function may also be defined by an assignment to the function name.

6.8.4 Memory Allocation

Memory is allocated for a pointer type using the new–statement.
Allocation

new
�
 �	(

�
�	VarAccess ��,
�
�	Expression

�
)
�
�	

6.8.5 Goto Statement

A goto statements continues the exeution of the program at the first statement
after the specified label. It is not allowed to jump out of a subroutine or into the
body of a for-loop.
GotoStatement

goto
�
 �	Label

6.8.6 Iterations

Three iterations allow the controlled repetition of a statement.

6.8.6.1 while-Loop

The while-loop has the form
WhileLoop

while
�
 �	Expression do

�
 �	Statement

77

The statement is repeated as long as the expression is true. Since the expression
is evaluated before the first execution of the statement, it is possible that the
statement is skipped.

6.8.6.2 repeat-Loop

The repeat-loop has the form
RepeatLoop

repeat
�
 �	 Statement�� ;

�
�	
�
until

�
 �	Expression

The statements are repeated until the expression is true. Note that the statements
are executed at least once since the expression is tested after the execution of the
statements.

6.8.6.3 for-Loop

The third loop available has the form
ForLoop

for
�
 �	 Identifier :=

�
 �	Expression �
�� to
�
 �	��downto
�
 �	

�
Expression do
�
 �	Statement

At the beginning of the loop both expressions are evaluated. They must yield values
of compatible enumerated data types. The statement is repeated with increasing
(decreasing) values of identifier running from the first to the second ordinal value.

6.8.7 Selections

One of several statements may be executed depending on certain conditions. Stat-
Pascal provides two different statements to perform selections.

6.8.7.1 if-Statement

The if-statement allows the execution of a statement depending on a single con-
dition. It has the form
IfStatement

if
�
 �	Expression then

�
 �	Statement ��else
�
 �	Statement

�

78 CHAPTER 6. SYNTAX OF STATPASCAL

The statement after then is executed if the expression is true. If the expression
is false and an else part is provided, then the statement following the else is
executed, otherwise control passes to the next statement. An else belongs to the
most recently used if in nested if–statements.

6.8.7.2 case-Statement

The case-statement consists of an expression (the selector) and a list of branches.
Each branch starts with a list of constants and ends with a statement.
CaseStatement

case
�
 �	Expression of

�
 �	�
�� ConstExpr ��..
�
 �	ConstExpr

�
�
� ,

�
�	
�

:
�
�	Statement�

� ;
�
�	

�

�

����else
�
 �	Statement

�
end
�
 �	

If the selector is equal to a label, the corresponding statement is executed. The
case–statement is terminated after the first match, other branches are not tested.
If the selector does not match a constant, control passes to the next statement,
or the optional else part is executed. Selector and constants may be of the types
boolean, char or integer.

6.9 Procedures and Functions

Procedures and functions may be defined in an StatPascal program. Both types of
subroutines have an optional parameter list that may be used to pass arguments.

A procedure consists of a header defining its name and parameters followed
by a block or the reserved word forward. It ends with a semicolon.
ProcDecl

ProcHeader forward
�
 �	��Block

�
;
�
�	

ProcHeader

procedure
�
 �	 Identifier ��ParaDecl

�
;
�
�	

79

ParaDecl

(
�
�	 ��var

�
 �	
�
 Identifier�� ,

�
�	
�
:

�
�	TypeExpr�
� ;

�
�	
�

)
�
�	

Formal parameters preceeded by a var keyword are reference parameters.
A function has a similiar structure; it starts with the reserved word function

and provides an additional return type.
FuncDecl

FuncHeader forward
�
 �	��Block

�
;
�
�	

FuncHeader

function
�
 �	 Identifier ��ParaDecl

�
��:
�
�	TypeExpr

�
;
�
�	

A function may contain a return statement specifying its result. Control is passed
to the caller immediately after the execution of a return statement. Functions and
procedures may call themselves recursively.

The return type of a function must only be omitted when a previous forward
declaration is actually defined. In that case, one must also not repeat the param-
eter list. The following example shows the forward declaration and definition of a
procedure and a function.

procedure p (n: integer); forward;
function f (x: real): real; forward;

procedure p;
begin
...
end;

function f;
begin
...
end;

6.10 Units

A unit starts with the reserved word unit. It consists of an interface section with
the public declarations and an implementation section with private declarations
and the definition of the subroutines declared in the interface section. A unit thus
has the form

80 CHAPTER 6. SYNTAX OF STATPASCAL

Unit

unit
�
 �	 Identifier ;

�
�	��UsesDeclaration

�
Interface Implementation end
�
 �	.

�
�	
whereby the UsesDeclaration list further units required by the actual one.
UsesDeclaration

uses
�
 �	 Identifier�� ,

�
�	
�
;

�
�	
The interface section is defined by
Interface

interface
�
 �	�� ConstDecl��TypeDecl�VarDecl�ProcHeader�FuncHeader

�

�

Finally, the implementation section is given.
Implementation

implementation
�
 �	Block

6.11 Programs

A program consists of an optional program header defining the name of the pro-
gram and a program block followed by a point. It has the form
Program

program
�
 �	 Identifier ;

�
�	Block .
�
�	

The given name serves only as a comment, it is not used within Xtremes.
The implementation of an estimator requires an estimator header followed

by a program block and a point. The estimator header has the form
Estimator

estimator
�
 �	 Identifier Identifier ;

�
�	�
��returning
�
 �	 Identifier�� ,

�
�	
�
;

�
�	

81

with the second Identifier being one of the words gp, gp1, ev, ev1, fullgp, fullgp1,
fullev or fullev1.
The names after returning define the parameters that are estimated. They are
used as global variables of the type real within the program, the values assigned
to them at the end of the program will be returned to Xtremes.

Finally, a node is defined by
Node

component
�
 �	 Identifier ;

�
�	�
��inports
�
 �	 Identifier�� ,

�
�	
�
:

�
�	TypeExpr ;
�
�	�

�
�

�

����outports

�
 �	 Identifier�� ,
�
�	

�
:
�
�	TypeExpr ;

�
�	�
�

�

�

82 CHAPTER 6. SYNTAX OF STATPASCAL

Chapter 7

The StatPascal Library
Functions

This chapter provides an alphabetical list of all predefined functions and proce-
dures available in StatPascal and UserFormula. The entry Availability shows if a
function is implemented in UserFormula and/or StatPascal. Functions available in
standard Pascal or other programming languages are only explained briefly.

One should note that the densities, dfs and qfs of most distributions imple-
mented in XTREMES are available in their standard form; e.g. the function call
paretoqf(2,x) evaluates the qf of the Pareto distribution with shape parame-
ter 2 at the point x. Location and scale parameter must be given explicitly, e.g.,
by writing 4 + 5 * paretoqf(2,x) to utilize a scale parameter 5 and a location
parameter 4.

Each function and procedure contains entries showing its declaration, a de-
scription and its availability. Routines marked with UFO can be applied within the
UserFormula facility, routines marked with StatPascal are available in StatPascal
programs. Vectorized versions of a function cannot be used in UserFormula.

83

84 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

7.1 abs

function abs (x: real): real;
function abs (n: integer): integer;
function abs (x: realvector): realvector;
function abs (x: integervector): integervector;

returns the absolute value of the argument.

Available in UFO, StatPascal

var x: real;
begin
x := -2;
writeln (abs (x))

end.

7.2 All

function All (b: vector of boolean): boolean

returns true iff all components of the boolean vector b are true.

Available in StatPascal

var x: vector of real;
begin
x := GaussianData (100);
if All (x < 3) then
writeln (’All values are below 3’)

end.

7.3 arccos

function arccos (x: real): real;
function arccos (x: realvector): realvector

returns arcus cosine of x.

Available in UFO, StatPascal

var x: real;
begin
x := 0.5;
writeln (arccos (x))

end.

85

7.4 arcsin

function arcsin (x: real): real;
function arcsin (x: realvector): realvector

returns arcus sine of x.

Available in UFO, StatPascal

var x: real;
begin
x := 0.5;
writeln (arcsin (x))

end.

7.5 arctan

function arctan (x: real): real;
function arctan (x: realvector): realvector

returns arcus tangent of x.

Available in UFO, StatPascal

var x: real;
begin
x := 1.0;
writeln (’Pi = ’, 4 * arctan (x))

end.

7.6 BetaData

function BetaData (alpha: real): real
function BetaData (alpha: real; n: integer): realvector

generates standard Beta (GP 2) data under the shape parameter alpha. The vec-
torized version generates a real vector with n independent realizations.

Available in UFO, StatPascal

const alpha = 1.0;
var x: vector of real;
begin
x := BetaData (alpha, 100)

end.

86 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

7.7 BetaDensity

function BetaDensity (alpha, x: real): real

returns the density of the Beta (GP 2) distribution with shape parameter alpha.

Available in UFO, StatPascal

const alpha = 1.0;
var x: real;
begin
x := 1.0;
writeln (BetaDensity (alpha, x))

end.

7.8 BetaDF

function BetaDF (alpha, x: real): real

returns the df of the Beta (GP 2) distribution with shape parameter alpha.

Available in UFO, StatPascal

const alpha = 1.0;
var x: real;
begin
x := 1.0;
writeln (BetaDF (alpha, x))

end.

7.9 BetaQF

function BetaQF (alpha, x: real): real

returns the qf of the Beta (GP 2) distribution with shape parameter alpha.

Available in UFO, StatPascal

const alpha = 1.0;
var x: real;
begin
x := 1.0;
writeln (BetaQF (alpha, x))

end.

87

7.10 BeginMultivariate

procedure BeginMultivariate (size, dimension: integer)

The procedure BeginMultivariate initializes a new multivariate data set. The pa-
rameters dimension and size define the size of the data set. Use SetColumn (see
Section 7.151) and EndMultivariate (see Section 7.36) to insert the data points
and to provide a filename. An example is provided under SetColumn (see Section
7.151).

Available in StatPascal

7.11 BinomialData

function BinomialData (m: integer, p: real): integer;
function BinomialData (m: integer; p: real; n: integer): intvector;

generates binomial data with paramters m and p. The vectorized version generates
an integer vector with n independent realizations.

Available in StatPascal

7.12 BoxPlot

procedure BoxPlot (x: real; y: realvector; win, des: string)

A boxplot of the data contained in y is plotted at the position specified in x in the
given window. The description provided in des is added to the plot.

Available in StatPascal

var i: integer;
begin
for i := 1 to 20 do
boxplot (i, GaussianData (500), ’Boxplot’, ’Nr ’ + str (i))

end.

7.13 CBind

funcction CBind (...): matrix of type

concatenates matrices and vectors (with the same number of rows) columnwise.

See also: RBind (see Section 7.135)

88 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

program CBindDemo;
var a: matrix of real;
begin

a := unitmatrix (3);
writeln (cbind (a, realvect (1, 3, 3), a));

end.

7.14 ChiSquareData

function ChiSquareData (n: integer): real
function ChiSquareData (n, m: integer): realvector

generates data according to a chi-square distribution with n degrees of freedom.
The vectorized version generates a real vector with m independent realizations.

Available in UFO, StatPascal

const n = 5;
var x: vector of real;
begin
x := ChiSquareData (n, 100)

end.

7.15 ChiSquareDensity

function ChiSquareDensity (x: real; n: integer): real

returns the density of the chi-square distribution with n degrees of freedom.

Available in UFO, StatPascal

const n = 5;
var x: real;
begin
x := 1.0;
writeln (ChiSquareDensity (x, n))

end.

7.16 ChiSquareDF

function ChiSquareDF (x: real; n: integer): real

returns the df of the chi-square distribution with n degrees of freedom.

89

Available in UFO, StatPascal

const n = 5;
var x: real;
begin
x := 1.0;
writeln (ChiSquareDF (x, n))

end.

7.17 ChiSquareQF

function ChiSquareQF (x: real; n: integer): real

returns the qf of the chi-square distribution with n degrees of freedom.

Available in UFO, StatPascal

const n = 5;
var x: real;
begin
x := 1.0;
writeln (ChiSquareQF (x, n))

end.

7.18 Chol

function Chol (A: realmatrix): realmatrix

returns the Cholesky decomposition of a symmetric, positive definite real matrix
A.

Available in StatPascal

7.19 Choose

function Choose (n, k: integer): intvector

draws k values from the set {1, . . . , n} without replacement. Note that Choose
(n, n) will generate a random permutation of the numbers 1, . . . , n.

Available in StatPascal

90 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

7.20 chr

function chr (n: integer): char

chr converts an integer representation of a character value to the pertaining charac-
ter. If ch is a character variable, then the following holds: ch = chr (ord (ch)).

Available in StatPascal

var i: integer;
begin
for i := ord (’A’) to ord (’Z’) do
writeln (i, ’ ’, chr (i))

end.

7.21 ClearWindow

procedure ClearWindow (win: string)

erases all plots from the given window.

Available in StatPascal

7.22 ColumnData

function ColumnData (i: integer): realvector

returns a real vector with the i-th column of the active data set.
See also: Data (see Section 7.30), RowData (see Section 7.143).

Available in StatPascal

var x: vector of real;
i: integer;

begin
for i := 1 to dimension do begin
x := ColumnData (i);
writeln (’Column i: ’, x)

end
end.

7.23 ColumnName

function ColumnName (i: integer): string

91

returns the name of the i-th column of the active multivariate data set.

Available in StatPascal

var i: integer;
begin
for i := 1 to dimension do
writeln (’Name of column i: ’, ColumnName (i))

end.

7.24 cos

function cos (x: real): real;
function cos (x: realvector): realvector

returns the cosine of x.

Available in UFO, StatPascal

var x: real;
begin
x := cos (0.7)

end.

7.25 cosh

function cosh (x: real): real;
function cosh (x: realvector): realvector

returns the hyperbolic cosine of x.

Available in UFO, StatPascal

var x: real;
begin
x := cosh (0.7)

end.

7.26 CreateMultivariate

procedure CreateMultivariate (x: realmatrix; fn, desc, headers: string)

Generates a multivariate data set from the data contained in the real matrix x.
The data set is written to the specified filename, and a short description is ap-
pended. The string headers contains the column headers, separated by |. Note that

92 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

a two–dimensional array can be given instead of a matrix, because an implicit type
conversion is supported.

Available in StatPascal

var a: array [1..100, 1..3] of real;
i, j: integer;

begin
for i := 1 to 100 do

for j := 1 to 3 do
a [i, j] := random;

createmultivariate (a, ’test.dat’, ’Demo sample’, ’1|2|3’)
end.

7.27 CreateTimeSeries

CreateTimeSeries (t, x: realvector; fn, desc: string)

Generates a time series from the data provided in t and x. The data set is written
to the specified filename, and a short description is appended.

Available in StatPascal

var t, x: realvector;
begin
t := 1..100;
x := GaussianData (100);
CreateTimeSeries (t, x, ’whitenoise.dat’, ’’)

end.

7.28 CreateUnivariate

procedure CreateUnivariate (x: realvector; fn, desc: string)

Generates a univariate data set from the data contained in the real vector x. The
data set is written to the specified filename, and a short description is appended.

Available in StatPascal

var x: vector of real;
begin
x := GaussianData (100);
CreateUnivariate (x, ’gaussian.dat’, ’Gaussian Data’)

end.

93

7.29 CumSum

function CumSum (x: realvector): realvector

The CumSum function returns the cumulative sum of the real vector x.

Available in StatPascal

var x: vector of real;
begin
x := 1..5;
writeln (cumsum (x)) (* 1 3 6 10 15 *)

end.

7.30 Data

function Data (i: integer): real;
function Data (i, j: integer): real

The Data function is used to access the active data set from an StatPascal program.
If a univariate data set is active, then Data(i) returns the i-th order statistic of
the data set. If a multivariate data set is active, then one must also specify a
component to be read. Note that Data (i, 1) returns the i-th unordered value
of a univariate data set. The program is terminated with a run-time error if an
invalid index or component is specified.
See also: ColumnData (see Section 7.22), RowData (see Section 7.143), Dimension
(see Section 7.34), SampleSize (see Section 7.147)

Available in StatPascal

var i: integer;
begin
for i := 1 to SampleSize do
writeln (Data (i))

end.

7.31 DataType

function DataType: string

returns a string describing the type of the active data set, whereby the following
values are possible: ’univariate’, ’multivariate’, ’timeseries’, ’censored’, ’discrete’,
’grouped’; a string ’nothing’ is returned if no data set was loaded.

Available in StatPascal

94 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

begin
if DataType = ’nothing’ then
writeln (’No data set is active’)

else
writeln (’Active type: ’, DataType)

end.

7.32 Date

procedure Date (d, m, y: integer)

Date retrieves the system date (the year is returned as a 4-digit value).

See also: Time (see Section 7.183)

Available in StatPascal

var d, m, y: integer;
begin
date (d, m, y);
writeln (’Today is: ’, d, ’.’, m, ’.’, y)

end.

7.33 DialogBox

function DialogBox (title, prompt: string; default: realvector): realvector

If the program is executed within Xtremes, then DialogBox displays a dialog box
with the given title that asks for the parameters listed in the prompt. The param-
eters are separated using |. The default values are given in the vector default. The
function returns a vector with the values entered by the user; it returns an empty
vector if the user aborts the dialog.

If the program is executed on the command line, the system prompts for the
values using the standard input/output device.

Available in StatPascal

var para: realvector;
begin
para := combine (1.0, 0.0, 2.0);
para := DialogBox (’GP Parameters’, ’gamma|mu|sigma’, para);
if size (para) <> 0 then
writeln (’You entered: ’, para)

else

95

writeln (’Dialog was cancelled’)
end.

7.34 Dimension

function Dimension: integer

returns the dimension of the active data set.

Available in StatPascal

begin
if datatype <> ’nothing’ then
writeln (’Dimension of active data: ’, Dimension)

end.

7.35 DreesPickandsGP

procedure DreesPickandsGP (k: integer; var g, m, s: of real; var r: integer)
procedure DreesPickandsGP (x: realvector; k: integer; var g, m, s: real;
var r: integer)

returns Drees-Pickands estimate based on the data set provided in x or on the
active data set. The routine requires the following parameters:

x Real vector containing the data. If this parameter is
omitted, then the active data set is used.

k Number of upper extremes used by the estimator.
g, m, s Estimated shape, location and scale parameter.
r Errorcode, see estimator error codes (see Section

7.202).

Available in StatPascal

var gamma, mu, sigma: real;
r: integer;

begin
DreesPickandsGP (EVData (1, 100), 30, gamma, mu, sigma, r);
writeln (gamma, ’ ’, mu, ’ ’, sigma)

end.

7.36 EndMultivariate

procedure EndMultivariate (Filename, Description: string)

96 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

The multivariate data set created using BeginMultivariate (see Section 7.10) and
SetColumn (see Section 7.151) is stored under the specified filename and becomes
the active data set; the description is added. See SetColumn (see Section 7.151)
for an example.

Available in StatPascal

7.37 eof

function eof (f: text): boolean;
function eof (f: file): boolean

returns true if the end of the specified file has been reached.

Availabe in StatPascal

var f: text;
s: string;

begin
assign (f, ’name.txt’);
reset (f);
repeat
read (f, s);
writeln (s)

until eof (f);
close (f)

end.

7.38 EstimateBandwidth

function EstimateBandwidth (x: vector of real): real;

estimates a bandwidth for a kernel density by means of cross validation (using the
Epanechnikov kernel).

Available in StatPascal

var x: vector of real;
begin

x := GaussianData (100);
writeln (EstimateBandwidth (x))

end.

97

7.39 EVData

function EVData (gamma: real): real;
function EVData (gamma: real; n: integer): realvector

EVData generates standard EV data under the shape parameter gamma. The
vectorized version generates a real vector with n independent realizations.

Available in UFO, StatPascal

const beta = 1.0;
var x: vector of real;
begin
x := EVData (alpha, 100)

end.

7.40 EVDensity

function EVDensity (gamma, x: real): real

evaluates the standard EV density under the shape parameter gamma.

Available in UFO, StatPascal

7.41 EVDF

function EVDF (gamma, x: real): real

evaluates the standard EV df under the shape parameter gamma.

Available in UFO, StatPascal

7.42 EVQF

function EVQF (gamma, x: real): real

evaluates the standard EV qf under the shape parameter gamma.

Available in UFO, StatPascal

7.43 Exists

function Exists (b: vector of boolean): boolean

98 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

returns true iff at least one component of the boolean vector b is true.

Available in StatPascal

var x: vector of real;
begin
x := GaussianData (100);
if Exists (x > 3) then
writeln (’At least one value is greater than 3’)

end.

7.44 exp

function exp (x: real): real;
function exp (x: realvector): realvector

evaluates the exponential function.

Available in UFO, StatPascal

var e: real
begin
e := exp (1)

end.

7.45 ExponentialData

function ExponentialData: real;
function ExponentialData (n: integer): realvector

generates standard exponential data. The vectorized version generates a real vector
with n independent realizations.

Available in UFO, StatPascal

7.46 ExponentialDensity

function ExponentialDensity (x: real): real

evaluates the standard exponential density.

Available in UFO, StatPascal

99

7.47 ExponentialDF

function ExponentialDF (x: real): real

evaluates the standard exponential df.

Available in UFO, StatPascal

7.48 ExponentialQF

function ExponentialQF (x: real): real

evaluates the standard exponential qf.

Available in UFO, StatPascal

7.49 Extremes

function Extremes: integer

Extremes returns the number of extremes a user–defined estimator is based on.
The function can only be applied in estimator programs written for one of the
statistical models gp, gp1, fullgp or fullgp1 within the POT domain.

Available in StatPascal

7.50 Flush

procedure flush (f: text);
procedure flush (f: file);
procedure flush

flushes buffered output for the given file (or output if no file is specified).

Available in StatPascal

7.51 frac

function frac (x: real): real;
function frac (x: realvector): realvector

returns x− [x]. if x is not negative or x− [x] + 1 if x is negative.

Available in UFO, StatPascal

100 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

7.52 FrechetData

function FrechetData (alpha: real): real;
function FrechetData (alpha: real; n: integer): realvector

generates standard Fréchet data under the shape parameter alpha. The vectorized
version generates a real vector with n independent realizations.

Available in UFO, StatPascal

7.53 FrechetDensity

function FrechetDensity (alpha, x: real): real

evaluates the standard Fréchet density under the shape parameter alpha.

Available in UFO, StatPascal

7.54 FrechetDF

function FrechetDF (alpha, x: real): real

evaluates the standard Fréchet df under the shape parameter alpha.

Available in UFO, StatPascal

7.55 FrechetQF

function FrechetQF (alpha, x: real): real

evaluates the standard Fréchet qf under the shape parameter alpha.

Available in UFO, StatPascal

7.56 gamma

function gamma (x: real): real

returns the value of the gamma function Γ(x).

Available in UFO, StatPascal

101

7.57 GammaData

function GammaData (r: real): real;
function GammaData (r: real; n: integer): realvector

generates data under the gamma distribution with shape parameter r. The vec-
torized version generates a real vector with n independent realizations.

Available in UFO, StatPascal

7.58 GammaDensity

function GammaDensity (r, x: real): real

evaluates the density of the gamma distribution with shape parameter r.

Available in UFO, StatPascal

7.59 GammaDF

function GammaDF (r, x: real): real

evaluates the df of the gamma distribution with shape parameter r. The series
expansion is taken from Brandt, S. (1999): Data Analysis. Springer, New York.

Available in UFO, StatPascal

7.60 GaussianData

function GaussianData: real;
function GaussianData (n: integer): realvector

generates standard Gaussian data. The vectorized version generates a real vector
with n independent realizations.

Available in UFO, StatPascal

7.61 GaussianDensity

function GaussianDensity (x: real): real

evaluates the standard Gaussian density.

Available in UFO, StatPascal

102 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

7.62 GaussianDF

function GaussianDF (x: real): real

evaluates the standard Gaussian df.

Available in UFO, StatPascal

7.63 GaussianQF

function GaussianQF (x: real): real

evaluates the standard Gaussian qf.

Available in UFO, StatPascal

7.64 GCauchyData

function GCauchyData (alpha: real): real;
function GCauchyData (alpha: real; n: integer): realvector

generates standard generalized Cauchy data under the shape parameter alpha. The
vectorized version generates a real vector with n independent realizations.

Available in UFO, StatPascal

7.65 GCauchyDensity

function GCauchyDensity (alpha, x: real): real

evaluates the standard generalized Cauchy density under the shape parameter
alpha.

Available in UFO, StatPascal

7.66 GCauchyDF

function GCauchyDF (alpha, x: real): real

evaluates the standard generalized Cauchy df under the shape parameter alpha.

Available in UFO, StatPascal

103

7.67 GCauchyQF

function GCauchyQF (alpha, x: real): real

evaluates the standard generalized Cauchy qf under the shape parameter alpha.

Available in UFO, StatPascal

7.68 GeometricData

function GeometricData (p: real): integer;
function GeometricData (p: real; n: integer): intvector;

generates geometric data with paramter p. The vectorized version generates an
integer vector with n independent realizations.

Available in StatPascal

7.69 GMFEVDF

function GMFEVDF (lambda, gamma1, gamma2, x, y: real): real

returns the df of the Gumbel-McFadden EV distribution with dependence param-
eter lambda and EV marginals with shape parameter gamma1 and gamma2.

Available in StatPascal

7.70 GMFEVDensity

function GMFEVDensity (lambda, gamma1, gamma2, x, y: real): real

returns the density of the Gumbel-McFadden EV distribution with dependence
parameter lambda and EV marginals with shape parameter gamma1 and gamma2.

Available in StatPascal

7.71 GMFEVSF

function GMFEVSF (lambda, gamma1, gamma2, x, y: real): real

returns the survivor function of the Gumbel-McFadden EV distribution with de-
pendence parameter lambda and EV marginals with shape parameter gamma1 and
gamma2.

104 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

Available in StatPascal

7.72 GMFGPDF

function GMFGPDF (lambda, gamma1, gamma2, x, y: real): real

returns the df of the Gumbel-McFadden GP distribution with dependence param-
eter lambda and GP marginals with shape parameter gamma1 and gamma2.

Available in StatPascal

7.73 GMFGPDensity

function GMFGPDensity (lambda, gamma1, gamma2, x, y: real): real

returns the density of the Gumbel-McFadden GP distribution with dependence
parameter lambda and GP marginals with shape parameter gamma1 and gamma2.

Available in StatPascal

7.74 GMFGPSF

function GMFGPSF (lambda, gamma1, gamma2, x, y: real): real

returns the survivor function of the Gumbel-McFadden GP distribution with de-
pendence parameter lambda and GP marginals with shape parameter gamma1 and
gamma2.

Available in StatPascal

7.75 GotoXY

procedure GotoXY (f: text; x, y: integer)

If the text file f is associated with a text window, then the outpout position is set
to the given coordinates. Otherwise, GotoXY is ignored.

Available in StatPascal

var i: integer;
begin
for i := 1 to 20 do begin
GotoXY (output, 2 * i, i);

105

write (i)
end

end.

7.76 GPData

function GPData (gamma: real): real;
function GPData (gamma: real; n: integer): realvector

returns standard GP data generated under the shape parameter gamma. The vec-
torized version generates a real vector with n independent realizations.

Available in UFO, StatPascal

7.77 GPDensity

function GPDensity (gamma, x: real): real

returns the standard GP density under the shape parameter gamma.

Available in UFO, StatPascal

7.78 GPDF

function GPDF (gamma, x: real): real

returns the standard GP df under the shape parameter gamma.

Available in UFO, StatPascal

7.79 GPQF

function GPQF (gamma, x: real): real

returns the standard GP qf under the shape parameter gamma.

Available in UFO, StatPascal

7.80 GumbelData

function GumbelData: real;
function GumbelData (n: integer): realvector

106 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

generates standard Gumbel data. The vectorized version generates a real vector
with n independent realizations.

Available in UFO, StatPascal

7.81 GumbelDensity

function GumbelDensity (x: real): real

evaluates the standard Gumbel density.

Available in UFO, StatPascal

7.82 GumbelDF

function GumbelDF (x: real): real

evaluates the standard Gumbel df.

Available in UFO, StatPascal

7.83 GumbelQF

function GumbelQF (x: real): real

evaluates the standard Gumbel qf.

Available in UFO, StatPascal

7.84 HillGP1

procedure HillGP1 (k: integer; var a, m, s: real; var r: integer);
procedure HillGP1 (x: realvector; k: integer; var a, m, s: real; var
r: integer)

HillGP1 applies the Hill estimator to the active data set. The routine requires the
following parameters.

107

x Real vector containing the data. If this parameter is
omitted, then the active data set is used.

k Number of upper extremes used by the estimator
a, m, s Estimated shape, location and scale parameter
r Errorcode, see estimator error codes (see Section

7.202)

Available in StatPascal

7.85 HREVDF

function HREVDF (lambda, gamma1, gamma2, x, y: real): real

returns the df of the Huesler-Reiss EV distribution with dependence parameter
lambda and EV marginals with shape parameter gamma1 and gamma2.

Available in StatPascal

7.86 HREVDensity

function HREVDensity (lambda, gamma1, gamma2, x, y: real): real

returns the density of the Huesler-Reiss EV distribution with dependence param-
eter lambda and EV marginals with shape parameter gamma1 and gamma2.

Available in StatPascal

7.87 HREVSF

function HREVSF (lambda, gamma1, gamma2, x, y: real): real

returns the survivor function of the Huesler-Reiss EV distribution with dependence
parameter lambda and EV marginals with shape parameter gamma1 and gamma2.

Available in StatPascal

7.88 HRGPDF

function HRGPDF (lambda, gamma1, gamma2, x, y: real): real

returns the df of the Huesler-Reiss GP distribution with dependence parameter
lambda and GP marginals with shape parameter gamma1 and gamma2.

Available in StatPascal

108 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

7.89 HRGPDensity

function HRGPDensity (lambda, gamma1, gamma2, x, y: real): real

returns the density of the Huesler-Reiss GP distribution with dependence param-
eter lambda and GP marginals with shape parameter gamma1 and gamma2.

Available in StatPascal

7.90 HRGPSF

function HRGPSF (lambda, gamma1, gamma2, x, y: real): real

returns the survivor function of the Huesler-Reiss GP distribution with dependence
parameter lambda and GP marginals with shape parameter gamma1 and gamma2.

Available in StatPascal

7.91 Indicator

function Indicator (a, b, x: real): integer

Indicator returns 1 if x is in the closed interval from a to b, and 0 otherwise.

Available in UFO, StatPascal

var x: integer;
begin
x := Indicator (2, 5, exp (1))

end.

7.92 Invert

function Invert (A: realmatrix): realmatrix

returns the inverse of the real matrix A.

Available in StatPascal

7.93 KernelDensity

function KernelDensity (x, b: real; j: integer): real

returns the kernel density at the point x for the active data set given the bandwidth

109

b and the number of the kernel j. The following kernels are available:

k1(x) = 0.75 ∗ (1.0− z ∗ ∗2)
k2(x) = 0.5
k3(x) = 0.125 ∗ (9.0− 15.0z ∗ ∗2)
k4(x) = 45/32 ∗ (1− 10/3z ∗ ∗2 + 7/3z ∗ ∗4)

Available in StatPascal

7.94 log

function log (x: real): real;
function log (x: realvector): realvector

returns the natural logarithm of the argument.

Available in UFO, StatPascal

7.95 ln

function ln (x: real): real;
function ln (x: realvector): realvector

returns the natural logarithm of the argument.

Available in StatPascal

7.96 LRSEV

procedure LRSEV (var g, m, s: real; var r: integer);
procedure LRSEV (x: realvector; var g, m, s: real; var r: integer)

returns the LRSE for the EV model based on the data set provided in x or on the
active data set. The routine requires the following parameters:
x Real vector containing the data. If this parameter is

omitted, then the active data set is used.
g, m, s Estimated shape, location and scale parameter (in

gamma parametrization)
r Errorcode, see estimator error codes (see Section

7.202)

Available in StatPascal

110 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

7.97 MakeMatrix

function MakeMatrix (a: vector of type; n, m: integer): matrix of type

creates a matrix with n rows and m columns and fills it by row with the values
given in the vector a. The vector a is repeated cyclically if it is shorter than nm.

Available in StatPascal

var a: vector of real;
B: matrix of real;

begin
a := combine (2, 5, 1);
B := MakeMatrix (a, 2, 3);
writeln (B) (* 2 5 1

2 5 1 *)
end.

7.98 max

function max (a, b: real): real;
function max (x: realvector): real;
function max (x, y: realvector): realvector

max (a, b) returns the maximum of its real arguments. The call max (x) returns
the maximum component of the vector x, while max (x, y) returns a real vector
with the componentwise maximum of its arguments x and y.

Available in UFO, StatPascal

7.99 MDEEV

procedure MDEEV (var g, m, s: real; var r: integer);
procedure MDEEV (x: realvector; var g, m, s: real; var r: integer)

returns the MDE (minimum distance estimator) for the EV model based on the
active data set. The routine requires the following parameters.

x Real vector containing the data. If this parameter is
omitted, then the active data set is used.

g, m, s Estimated shape, location and scale parameter (in
gamma parametrization).

r Errorcode, see estimator error codes (see Section
7.202).

111

Note: The current implementation minimizes the Hellinger distance between the
histogram obtained by grouping the data set into 20 equally sized cells and the
EV density.

Available in StatPascal

7.100 MDEGaussian

procedure MDEGaussian (var m, s: real; var r: integer;
procedure MDEGaussian (x: realvector; var m, s: real; var r: integer)

returns the MDE (minimum distance estimator) for the Gaussian model based on
the active data. The routine requires the following parameters.

x Real vector containing the data. If this parameter is
omitted, then the active data set is used.

m, s Estimated location and scale parameter.
r Errorcode, see estimator error codes (see Section

7.202).

Available in StatPascal

7.101 Mean

function Mean (x: realvector): real

returns the mean of the real vector x.

Available in StatPascal

7.102 Median

function Median (x: realvector): real

returns the median of the real vector x.

Available in StatPascal

7.103 MEGP1

procedure MEGP1 (k: integer; var a, m, s: real; var r: integer;
procedure MEGP1 (x: realvector; k: integer; var a, m, s: real; var r:
integer)

112 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

MEGP1 applies the M-estimator for the GP1 model to a data set. The routine
requires the following parameters.

x Real vector containing the data. If this parameter is
omitted, then the active data set is used.

k Number of upper extremes used by the estimator.
a, m, s Estimated shape, location and scale parameter.
r Errorcode, see estimator error codes (see Section

7.202).

Available in StatPascal

7.104 MemAvail

function MemAvail: integer

forces a compactification of the heap and returns the number of free data cells. A
data cell may store any ordinal value or a real number. It consumes eight bytes of
memory on common architectures.

Available in StatPascal

begin
writeln (MemAvail, ’ cells available.’)

end.

7.105 MenuBox

function MenuBox (title, prompt: string): integer

If the program is executed within Xtremes, then MenuBox displays a menu with
the given title and the options listed in the prompt. The options are separated
using |. The function returns an integer with the number of the selected menu
option; it returns zero if the user cancels the menu.

If the program is executed on the command line, the system displays the
options using the standard input/output device and prompts for a selection.

Available in StatPascal

var selection: integer;
begin
selection := MenuBox (’Select option’, ’Option 1|Option 2’);
if selection <> 0 then
writeln (’Your selection: ’, selection)

else

113

writeln (’Menu was cancelled’)
end.

7.106 MessageBox

procedure MessageBox (s: string)

displays the string s in a message box and waits for the selection of the OK-
button. The command line version displays the string s and continues execution
of the program.

Available in StatPascal

var x: real;
begin
x := sin (0.5);
MessageBox (’sin (0.5) = ’ + str (x))

end.

7.107 MHDEGaussian

procedure MHDEGaussian (var m, s: real; var r: integer);
procedure MHDEGaussian (x: realvector; var m, s: real; var r: integer)

returns the MHDE (minimum Hellinger distance estimator) for the Gaussian model
based on the active data. The routine requires the following parameters.

x Real vector containing the data. If this parameter is
omitted, then the active data set is used.

m, s Estimated location and scale parameter.
r Errorcode, see estimator error codes (see Section

7.202).

Available in StatPascal

7.108 min

function min (a, b: real): real;
function min (x: realvector): real;
function min (x, y: realvector): realvector

min (a, b) returns the minimum of its real arguments. The call min (x) returns
the minimum component of the vector x, while min (x, y) returns a real vector
with the componentwise minimum of its arguments x and y.

114 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

Available in UFO, StatPascal

7.109 MLEEV

procedure MLEEV (var g, m, s: real; var r: integer);
procedure MLEEV (x: realvector; var g, m, s: real; var r: integer)

returns the MLE for the EV model based on the data set provided in x or on the
active data set. The routine requires the following parameters.

x Real vector containing the data. If this parameter is
omitted, then the active data set is used.

g, m, s Estimated shape, location and scale parameter (in
gamma parametrization).

r Errorcode, see estimator error codes (see Section
7.202).

Available in StatPascal

7.110 MLEEV0

procedure MLEEV0 (var m, s: real; var r: integer);
procedure MLEEV0 (x: realvector; var m, s: real; var r: integer)

returns the MLE for EV0 (Gumbel) model based on the data set provided in x or
on the active data set. The routine requires the following parameters.

x Real vector containing the data. If this parameter is
omitted, then the active data set is used.

m, s Estimated location and scale parameter.
r Errorcode, see estimator error codes (see Section

7.202).

Available in StatPascal

7.111 MLEEV1

procedure MLEEV1 (var a, m, s: real; var r: integer);
procedure MLEEV0 (x: realvector; var a, m, s: real; var r: integer)

returns the MLE for the EV1 (Frechét) model based on the data set provided in
x or on the active data set. The routine requires the following parameters.

115

x Real vector containing the data. If this parameter is
omitted, then the active data set is used.

a, m, s Estimated shape, location and scale parameter (al-
pha parametrization).

r Errorcode, see estimator error codes (see Section
7.202).

Available in StatPascal

7.112 MLEGaussian

procedure MLEGaussian (var m, s: real; var r: integer);
procedure MLEGaussian (x: realvector; var m, s: real; var r: integer)

returns the MLE for the Gaussian model based on the data set provided in x or
on the active data set. The routine requires the following parameters.

x Real vector containing the data. If this parameter is
omitted, then the active data set is used.

m, s Estimated location and scale parameter.
r Errorcode, see estimator error codes (see Section

7.202).

Available in StatPascal

7.113 MLEGP

procedure MLEGP (k: integer; var g, m, s: of real; var r: integer);
procedure MLEGP (x: realvector; k: integer; var g, m, s: of real; var
r: integer)

returns the MLE for the GP model based on the data set provided in x or on the
active data set. The routine requires the following parameters.

x Real vector containing the data. If this parameter is
omitted, then the active data set is used.

k Number of upper extremes used by the estimator.
g, m, s Estimated shape, location and scale parameter.
r Errorcode, see estimator error codes (see Section

7.202).

Available in StatPascal

116 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

7.114 MLEGP0

procedure MLEGP0 (k: integer; var m, s: real; var r: integer);
procedure MLEGP0 (x: realvector; k: integer; var m, s: real; var r: integer)

returns the MLE for the GP 0 (exponential) model based on the data set provided
in x or the active data set. The routine requires the following parameters.

x Real vector containing the data. If this parameter is
omitted, then the active data set is used.

k Number of upper extremes used by the estimator.
m, s Estimated location and scale parameter.
r Errorcode, see estimator error codes (see Section

7.202)

Available in StatPascal

7.115 Moment

function Moment (x: realvector; n: integer): real

returns the n-th moment of the real vector x.

Available in StatPascal

7.116 MomentGP

procedure MomentGP (k: integer; var g, m, s: of real; var r: integer);
procedure MomentGP (x: realvector; k: integer; var g, m, s: of real;
var r: integer)

returns the moment estimator for the GP model based on the data set provided
in x or on the active data set. The routine requires the following parameters.

x Real vector containing the data. If this parameter is
omitted, then the active data set is used.

k Number of upper extremes used by the estimator.
g, m, s Estimated shape, location and scale parameter.
r Errorcode, see estimator error codes (see Section

7.202).

Available in StatPascal

117

7.117 NegBinData

function NegBinData (m: integer, p: real): integer;
function NegBinData (m: integer; p: real; n: integer): intvector;

generates negative binomial data with paramters m and p. The vectorized version
generates an integer vector with n independent realizations.

Available in StatPascal

7.118 ord

function ord (x): integer;
function ord (x): integervector

returns the ordinal value of an ordinal type. If x is a vector with an ordinal base
type, then an integer vector is returned.

Available in StatPascal

7.119 Page

procedure Page (f: text);
procedure Page

Page writes a form feed to the given text (or output if no file name is given). If the
text file denotes a text window, then the window is cleared.

Available in StatPascal

begin
writeln (’This text will be deleted’);
Page (output)

end.

7.120 ParamCount

function ParamCount: integer

returns the number of arguments provided on the command line. See ParamStr
(see Section 7.121) for details.

Available in StatPascal

118 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

7.121 ParamStr

function ParamStr (i: integer): string

returns the i-th argument provided on the command line. Arguments controlling
the StatPascal compiler are not accessible.

Assume that the example program below is stored under the filename printpara.sp.
If you invoke the program with the command

sp printpara.sp first second

then it will print the words first and second.

Available in StatPascal

var i: integer;
begin
for i := 1 to ParamCount do
writeln (ParamStr (i))

end.

7.122 ParetoData

function ParetoData (alpha: real): real;
function ParetoData (alpha: real; n: integer): realvector

generates standard Pareto data under the shape parameter alpha. The vectorized
version generates a real vector with n independent realizations.

Available in UFO, StatPascal

7.123 ParetoDensity

function ParetoDensity (alpha, x: real): real

returns the standard Pareto density under the shape parameter alpha.

Available in UFO, StatPascal

7.124 ParetoDF

function ParetoDF (alpha, x: real): real

returns the standard Pareto df under the shape parameter alpha.

Available in UFO, StatPascal

119

7.125 ParetoQF

function ParetoQF (alpha, x: real): real

returns the standard Pareto qf under the shape parameter alpha.

Available in UFO, StatPascal

7.126 Plot

procedure Plot (x, y: realvector; win, desc: string)

plots linear interpolation of the points (x1, y1) to (xn, yn) defined by the real
vectors x and y within the specified window and adds the specified description.

Available in StatPascal

var x, y: realvector;
begin
x := realvector (0, 2 * 3.14, 100);
y := sin (x);
x := cos (x);
plot (x, y, ’Circle’, ’’)

end.

7.127 PlotContour

procedure PlotContour (x0, x1, y0, y1: real; v: matrix of real)

displays a contour plot of the points (x0 + (i − 1)/(n − 1) ∗ (x1 − x0), y0 + (j −
1)/(m − 1) ∗ (y1 − y0), v[i, j]) for 1 ≤ i ≤ n, 1 ≤ j ≤ m. n and m are the number
of rows and columns of the matrix v.

Available in StatPascal

7.128 PlotSurface

procedure PlotSurface (x0, x1, y0, y1: real; v: matrix of real)

displays a surface plot of the points (x0 + (i − 1)/(n − 1) ∗ (x1 − x0), y0 + (j −
1)/(m − 1) ∗ (y1 − y0), v[i, j]) for 1 ≤ i ≤ n, 1 ≤ j ≤ m. n and m are the number
of rows and columns of the matrix v.

Available in StatPascal

120 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

7.129 PoissonData

function PoissonData (lambda: real): integer;
function PoissonData (lambda: real; n: integer): intvector;

generates standard Poisson data under the parameter lambda. The vectorized ver-
sion generates an integer vector with n independent realizations.

Available in StatPascal

7.130 Poly

function Poly (a: realvector; x: real): real

evaluates the polynomial a1 + a2x + a3x
2 + ... + anxn−1.

Available in StatPascal

7.131 PolynomialRegression

function RegressionPolynomial (x, y: realvector; n: integer): realvector

calculates a regression polynomial of degree n based on the data points given in x
and y. The coefficients of the polynomial are returned as the result of the function
and may be used by the function Poly (see Section 7.130).

Available in StatPascal

var x, y, a: vector of real;
begin
x := GaussianData (100);
y := 5 * x + 3 + GaussianData (100);
a := RegressionPolynomial (x, y, 1);
writeln (’Linear Regression: ’, a [2], ’ * x + ’, a [1])

end.

7.132 pred

function pred (x)

returns predecessor of ordinal type value.

Available in StatPascal

121

begin
writeln (pred (3)) (* 2 *)

end.

7.133 Random

function Random: real;
function Random (n: integer): realvector

generates [0,1)-uniform data. The vectorized form returns n independent realiza-
tions.

Available in UFO, StatPascal

7.134 Rank

function Rank (x: realvector): integervector

returns the ranks of the values of the real vector x.

Available in StatPascal

7.135 RBind

funcction RBind (...): matrix of type

concatenates matrices (with the same number of columns) rowwise. A vector is
interpreted as n × 1 matrix and may need to be transposed before using it in
RBind

See also: CBind (see Section 7.13)

program RBindDemo;
var a: matrix of real;
begin

a := unitmatrix (3);
writeln (rbind (a, a, transpose (realvector (1, 3, 3))));

end.

7.136 read

procedure read (var x: T [,...]);
procedure read (f: text; var x: T [,...]);

122 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

procedure read (f: file; var x)

read is used to read values from a file. If no file is given as first argument, the text
file input (which is opened to the standard output device) is used. T may be one
of the predefined types integer, char, real or string. If the first argument is of the
type file, one must specify a second argument of arbitrary type that is read from
the binary file.

Available in StatPascal

var x: real;
begin
read (x);
writeln (GaussianDensity (x))

end.

7.137 ReadData

function ReadData (s: string): integer

ReadData reads a data set from the file specified by s, which becomes the active
one. The data set must follow the format of data sets used by Xtremes. The
function returns 1 if the data set was read succesfully and 0 if there was an error.

Available in StatPascal

begin
if readdata (’pareto.dat’) = 1 then
write (’Reading of pareto.dat succeeded’)

else
write (’Reading failed’)

end.

7.138 readln

procedure readln (var x: T [,...]);
procedure readln (f: text; var x: T [,...]);

read is used to read values from a file. It performs the same operations like read
(see Section 7.136) and advances to the next line of a text file afterwards. Any
unread input up to the end of the current line is discarded.

Available in StatPascal.

123

7.139 RealVect

function RealVect (a, b: real; n: integer): realvector

returns a real vector with n equally spaced values between a and b.

Available in StatPascal

7.140 Rev

function Rev (x: vector): vector

reverses the order of elements of a vector.

Available in StatPascal

var a: vector of integer;
begin
a := combine (2, 9, 1, 4);
writeln (rev (a)) (* 4 1 9 2 *)

end.

7.141 RGB

function RGB (r, g, b: integer): integer

returns a color code to be used in SetColor (see Section 7.150) and SetMarkerFont
(see Section 7.158), whereby r, g and b must be between 0 and 255.

7.142 round

function round (x: real): integer;
function round (x: realvector): vector of integer

rounds a real number to the nearest integer

Available in UFO, StatPascal

var n: integer;
begin
n := round (2.7) (* 3 *)

end.

124 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

7.143 RowData

function RowData (i: integer): realvector

returns a real vector with the i-th row of the active multivariate data set.

See also: Data (see Section 7.30), ColumnData (see Section 7.22).

Available in StatPascal

7.144 SampleDF

function SampleDF (x: real): real

returns the sample df based on the active univariate data set

Available in UFO, StatPascal

var x: real;
begin
x := SampleDF (2.3)

end.

7.145 SampleMeanClusterSize

function SampleMeanClusterSize (mingap, u: real): real

returns the mean cluster size of the exceedances above the threshold u of the
active time series. Two different clusters are separated by a gap consisting of at
least mingap points.

Available in StatPascal

7.146 SampleQF

function SampleQF (x: real): real

returns the sample qf based on the active univariate data set.

Available in UFO, StatPascal

var x: real;
begin
x := sampleqf (0.5)

end.

125

7.147 SampleSize

function SampleSize: integer

returns the size of the active data set.

Available in StatPascal

7.148 SaveEPS

procedure SaveEPS (win, filename: string; width, height, left, right,
top, bottom: real)

creates an EPS file with the contents of the specified window. The parameters
width and height determine the size of the plot area, while left, right, top and bot-
tom specify the size of the border border which is used to print coordinates and
additional labels.

Available in StatPascal

program SaveEPSDemo;

const
width = 60;
height = 44;
left = 8;
right = 4;
top = 4;
bottom = 8;

WindowName = ’EPS-Demo’;

var
x, y: vector of real;

begin
x := realvect (-6, 6, 100);
y := sin (x);
plot (x, y, WindowName, ’Sine function’);
SaveEPS (WindowName, ’test.eps’, width, height,

left, right, top, bottom)
end.

126 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

7.149 ScatterPlot

procedure ScatterPlot (x, y: realvector; win: string)

displays a scatterplot of the points defined by x and y in a window with the specified
title. If the window already exists, then a number is added to the name until a
new window can be created.

Available in StatPascal

var x, y: realvector;
begin
x := 1..100;
y := GaussianData (100);
ScatterPlot (x, y, ’Gaussian White Noise’)

end.

7.150 SetColor

procedure SetColor (n: integer)

sets the color of subsequent plot operations. n may be one of the following values:

ColorBlack ColorRed ColorGreen ColorBlue ColorGrey

Available in StatPascal

7.151 SetColumn

procedure SetColumn (col: integer; x: realvector; header: string)

The procedure SetColumn copies the vector x to the specified column of a mul-
tivariate data set created with BeginMultivariate (see Section 7.10). A header is
attached to the column.

Available in StatPascal

var i: integer;
begin
BeginMultivariate (100, 3);
for i := 1 to 3 do
SetColumn (i, GaussianData (100), ’Column ’ + str (i));

EndMultivariate (’test.dat’, ’Description’)
end.

127

7.152 SetCoordinates

procedure SetCoordinates (win: string; x0, y0, x1, y1: real)

sets a new coordinate system in the specified window.

Available in StatPascal.

7.153 SetLabel

procedure SetLabel (win: string; mode: integer; x, y: real; s: string)

displays a text label s in the specified window. The values of mode, x and y define
the position of the label and its orientation as well as its aligment. The following
constants are defined to build the parameter mode; add the desired values (the first
entry in each block is equal to zero and can be left out).

VerticalPositionTop HorizontalPositionRight
VerticalPositionCentered HorizontalPositionCentered
VerticalPositionBottom HorizontalPositionLeft
VerticalPositionUser HorizontalPositionUser

VerticalAlignmentTop HorizontalAlignmentRight
VerticalAlignmentCentered HorizontalAlignmentCentered
VerticalAlignmentBottom HorizontalAlignmentLeft

HorizontalDisplay
VerticalDisplay

The values provides for x and y are only used if the flag HorizontalPositionUser
or VerticalPositionUser is specified.

Available in StatPascal

7.154 SetLabelFont

procedure SetLabelFont (font, style, size: integer)

sets the font for labels created with SetLabel (see Section 7.153).

font is one of the following values: Times Helvetica Courier Symbol

style is one of the following values: Normal Italic Bold BoldItalic

size determines the size of the font used for the labels.

128 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

Available in StatPascal

7.155 SetLineOptions

procedure SetLineOptions (Thickness, Line, Gap: integer)

defines the thickness of a user defined line style as well as the length of line segments
and gaps.

Available in StatPascal

7.156 SetLineStyle

procedure SetLineStyle (n: integer)

sets the line style for subsequent plot operations. n may be one of the following
values.

SolidLine DashedLine DottedLine DashDottedLine UserLine

If you specify the UserLine-style, then the values defined by SetLineOptions (see
Section 7.155) are utilized to plot lines.

Available in StatPascal

7.157 SetMarkers

procedure SetMarkers (win: string; x0, x1, dx, y0, y1, dy: real)

defines the range and the spacing of the markers displayed on the axes of the
coordinate system in the specified window.

Available in StatPascal

7.158 SetMarkerFont

procedure SetMarkerFont (win: string; font, style, size, color: integer)

sets the font for the coordinate system in the given window.

font is one of the following values: Times Helvetica Courier Symbol

style is one of the following values: Normal Italic Bold BoldItalic

129

size determines the size of the font used for the coordinate system.

color is a value returned by RGB (see Section 7.141) or one of the following values:
ColorBlack ColorRed ColorGreen ColorBlue ColorGrey

Available in StatPascal

const Window = "CSDemo";
begin

SetCoordinates (Window, -5, -1, 5, 2);
SetMarkerFont (Window, Helvetica, BoldItalic, 15, ColorBlack);

end

7.159 SetPlotStyle

procedure SetPlotStyle (n: integer)

selects a plot style for plot operations. n may be one of the following values.

LineStyle Plot solid lines
PointStyle Plot supporting points using the shape defined

with SetPointStyle (see Section 7.160)
BarStyle Plot vertical bars
BoxStyle Plot solid line and the supporting points us-

ing the shape defined with SetPointStyle (see
Section 7.160)

StairCaseStyle Plot staircases beetween supporting points
AreaStyle Fill area between graph and the x-axis with

the plot color

Available in StatPascal

7.160 SetPointStyle

procedure SetPointStyle (n: integer)

selects a point style (shape) for plot operations when the plot styles (see Section
7.159) PointStyle or BoxStyle are active. The size of the plotted shape is deter-
mined by the line thickness (see Section 7.155).n may be one of the following
values.

Circles Plot empty circles
FilledCircles Plot filled circles
Boxes Plot boxes
Triangles Plot triangles

130 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

Available in StatPascal

7.161 SetTicks

procedure SetTicks (win: string; x0, x1, dx, y0, y1, dy: real)

defines the range and the spacing of the ticks displayed on the axes of the coordi-
nate system in the specified window.

Available in StatPascal

7.162 sign

function sign (x: real): integer;
function sign (x: realvector): integervector

returns sign of argument.

Available in UFO, StatPascal

7.163 SimulateRuinTime

function SimulateRuinTime (s, rho, beta, lambda, T, gamma, mu, sigma:
real): real

The path of a reserve process is simulated and the ruin time (or T if no ruin oc-
curs) is returned. The parameters determine.

s initial reserve
rho safety loading
beta safety exponent
lambda intensity
T time horizon
gamma, mu, sigma GP claim size distribution

Gamma must be less than 1 because otherwise the mean of the GP distribution
does not exist.

Available in StatPascal

7.164 sin

131

function sin (x: real): real;
function sin (x: realvector): realvector

returns the sine of the argument.

Available in UFO, StatPascal

7.165 sinh

function sinh (x: real): real;
function sinh (x: realvector): realvector

returns the hyperbolic sine of the argument.

Available in UFO, StatPascal

7.166 size

function size (x: vector): integer

returns the number of elements of the vector x. Strings are internally represented
as vectors, so size also determines the length of a string.

Available in StatPascal

var x: vector of real;
s: string;

begin
x := realvector (0, 1, 11);
writeln (size (x)); (* 11 *)
s := ’Hello’;
writeln (size (s)) (* 5 *)

end.

7.167 Smooth

function Smooth (x: realvector; b: integer): realvector

The values of the real vector x are smoothed using a symmetric moving average
with equal weights 1/b. The first and last (b+1)/2 values become equal (b should
be odd).

Available in StatPascal

132 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

7.168 Sort

function Sort (x: realvector): realvector

The values of the real vector x are sorted.

Available in StatPascal

7.169 sqr

function sqr (n: integer): integer;
function sqr (x: real): real;
function sqr (a: integervector): integervector;
function sqr (x: realvector): realvector

returns the square of the argument.

Available in UFO, StatPascal

7.170 sqrt

function sqrt (x: real): real
function sqrt (x: realvector): realvector

returns the square root of the argument.

Available in UFO, StatPascal

7.171 str

function str (x: real): string

converts a real number to a character string.

Available in StatPascal

var s: string;
begin
s := ’exp (1) = ’ + str (exp (1))

end.

7.172 StratifiedUniform

133

function StratifiedUniform (n: integer): realvector;

generates a stratified sample with n realizations in the interval [0, 1). The returned
values will be ordered, with the i-th value being uniform in the interval [(i −
1)/n, i/n), i = 1, . . . , n.

Available in StatPascal

7.173 succ

function succ (x: T): T

returns the successor of the ordinal type value.

Available in StatPascal

7.174 sum

function sum (x: realvector): real

returns the sum of the values of the real vector given as argument.

Available in StatPascal

7.175 system

function system (s: string): integer

passes the string s to the system function of the C-library. The result of the call
to system is returned.

Available in StatPascal

7.176 tan

function tan (x: real): real;
function tan (x: realvector): realvector

returns the tangent of the argument.

Available in UFO, StatPascal

134 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

7.177 tanh

function tanh (x: real): real;
function tanh (x: realvector): realvector

returns the hyperbolic tangent of the argument.

Available in UFO, StatPascal

7.178 TData

function TData (a: real): real
function TData (a: real; n: integer): realvector

generates data according to Student’s t-distribution with shape parameter a. The
vectorized version generates a real vector with m independent realizations.

Available in UFO, StatPascal

7.179 TDensity

function TDensity (a, x: real;): real

returns the density of Student’s t-distribution with shape parameter a.

Available in UFO, StatPascal

var x: real;
begin
x := TDensity (3.0, 1.5)

end.

7.180 TDF

function TDF (a, x: real;): real

returns the df of Student’s t-distribution with shape parameter a.

Available in UFO, StatPascal

var x: real;
begin
x := TDF (3.0, 1.5)

end.

135

7.181 TextBackground

procedure TextBackground (f: text; color: integer;)
procedure TextBackground (color: integer)

sets the background color of subsequent text output.

Available in StatPascal

7.182 TextColor

procedure TextColor (f: text; color: integer;)
procedure TextColor (color: integer)

sets the color of subsequent text output.

Available in StatPascal

7.183 Time

procedure Time (var h, m, s: integer)

retrieves system time.

See also: Date (see Section 7.32)

Available in StatPascal

var h, m, s: integer;
begin
time (h, m, s);
writeln (’The time is ’, h, ’:’, m, ’.’, s)

end.

7.184 TQF

function TQF (a, x: real): real

returns the qf of Student’s t-distribution with shape parameter a.

Available in UFO, StatPascal

var x: real;
begin
x := TQF (3.0, 0.5)

136 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

end.

7.185 Transpose

function Transpose (A: realmatrix): realmatrix

transposes the real matrix A.

Available in StatPascal

7.186 TTest

function TTest (x, y: realvector): real

returns p-value of two-sided t-test.

Available in StatPascal

7.187 UFODefine

procedure UFODefine (s: string)

A function or a variable is defined within the UFO-environment of the StatPascal
program. These definitions are utilized when the UFOEvaluate function is called;
they are deleted at the end of the program.

Available in StatPascal

begin
UFODefine (’f(r)=PI*r**2’);
writeln (UFOEvaluate (’f(2)’)

end.

7.188 UFOMessage

function UFOMessage: string

returns the error message produced by the last UFO operation. If the operation
has been successful, an empty string is returned.

Available in StatPascal

var s: string;
e: real;

137

begin
e := UFOEvaluate (’2*x+’);
s := UFOMessage

end.

7.189 UFOEvaluate

function UFOEvaluate (s: string): real

The string s is evaluated using the UFO facility. One may access functions and
variables defined using the integrated calculator or the procedure UFODefine.

Available in StatPascal

var x: real;
begin
x := UFOEvaluate (’sin(2)+3’)

end.

7.190 UniformData

function UniformData (m: integer): integer;
function UniformData (m, n: integer): intvector;

generates integer uniform data in the set {1, . . . ,m}. The vectorized version gen-
erates an integer vector with n independent realizations.

Available in StatPascal

7.191 UnitMatrix

function UnitMatrix (n: integer): realmatrix

returns the n-dimensional unit matrix.

Available in StatPascal

var A: matrix of real;
begin
A := UnitMatrix (5);
writeln (A)

end.

138 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

7.192 UnitVector

function UnitVector (i, n: integer): realvector

returns the i-th n-dimensional unit vector.

Available in StatPascal

var a: vector of real;
begin
a := UnitVector (3, 5);
writeln (a) (* 0 0 1 0 0 *)

end.

7.193 Variance

function Variance (x: realvector): real

returns the empirical variance of the data contained in the real vector x.

Available in StatPascal

var x: realvector;
begin
x := GaussianData (100);
writeln (’Mean: ’, Mean (x), ’, variance: ’, Variance (x))

end.

7.194 WeibullData

function WeibullData (alpha: real): real;
function WeibullData (alpha: real; n: integer): realvector

generates standard Weibull data under the shape parameter alpha. The vectorized
version generates a real vector with n independent realizations.

Available in UFO, StatPascal

7.195 WeibullDensity

function WeibullDensity (alpha, x: real): real

evaluates the standard Weibull density under the shape parameter alpha.

Available in UFO, StatPascal

139

7.196 WeibullDF

function WeibullDf (alpha, x: real): real

evaluates the standard Weibull df under the shape parameter alpha.

Available in UFO, StatPascal

7.197 WeibullQF

function WeibullQf (alpha, x: real): real

evaluates the standard Weibull qf under the shape parameter alpha.

Available in UFO, StatPascal

7.198 WelchTest

function WelchTest (x, y: realvector): real

returns the p-value of the two-sided Welch-test.

Available in StatPascal

7.199 WilcoxonTest

function WilcoxonTest (x, y: realvector): real

returns the p-value of the two-sided Wilcoxon-test.

Available in StatPascal

7.200 write

procedure write (x: T [,...])
procedure write (f: text; x: T [,...])
procedure write (f: file; var x)

write is used to output values to a file. If no file is given as first argument, the
text file output (which is opened to the standard output) is used. T may be one
the predefined data types boolean, char, integer, real, a subrange, vector or matrix
thereof or a string. If the first argument is of the type file, one must specify a
second argument that is written to the file. Up to three integer expressions can

140 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

be appended to an expression that is written to a textfile; they are seperated by
semicolons. The first expression denotes the minimum number of characters used to
print the value, leading spaces are appended if necessary. If a real value is printed,
the second argument defines the number of digits printed after the decimal point.
The last expression is used when printing vectors and defines the number of values
that are written before a line feed is generated.

Available in StatPascal

begin
writeln (’Phi(2) = ’, GaussianDF (2));
writeln (exp(1):5:2) (* _2.72 *)

end.

7.201 writeln

procedure writeln (x: T [,...])
procedure writeln (f: text; x: T [,...])

writeln can only be applied to text files. It performs the same operations as write,
the output position advances to the beginning of the next line after the last char-
acter is written.

Available in StatPascal

141

7.202 Estimator Error codes

The following error codes are returned by an estimator:

0 No error
1 Negative data in GP1 or EV1 model
2 Newton-Raphson iteration found no point of zero
3 k is too small
4 k is larger than sample size
5 Order statistics have different sign (MomentGP only)
6 Sample size is too small
8 Internal error

142 CHAPTER 7. THE STATPASCAL LIBRARY FUNCTIONS

Appendix A

Porting to StatPascal

A.1 Differences between StatPascal and Pascal

StatPascal supports most features of the Pascal language. The basic data types
boolean, char, integer, real and string (defined as a character vector with special
operations) are provided, and new data types can be introduced by means of
enumerations, subrange types, arrays, pointers, sets and records. Procedures and
functions accept parameters passed by value or by reference. Control structures
include assignments, procedure calls, for, while and repeat loops as well as if
and case statements. The following minor changes to Pascal were made.

1. Order of declaration parts: constants, types, variables, functions and proce-
dures may be defined in any order, and more than one declaration of each
kind may be given in a block. Note that an object must be defined before it
can be used.

There is one exeption to this rule: To declare a recursive structure, a pointer
to a data type declared later is allowed, e.g.,

type nodeptr = ^node;
node = record

contents: integer;
next: nodeptr

end;

The actual type of nodeptr is determined at the end of the type declaration
part to ensure that nodeptr points to the record declared below the pointer.
Otherwise, the meaning of a block could be changed by declaring a type node
in an outer block.

143

144 APPENDIX A. PORTING TO STATPASCAL

2. Functions may return values of any type. This feature is particularly im-
portant as it allows a data set as the result type of a function. The vector
structure described in chapter 3 enables the handling of data sets of arbitrary
length within subroutines. The result of a function may be defined using the
return statement which ends the execution immediately. Assignments to
the function name are also supported.

It is also possible to return other functions as result. StatPascal provides
functional and procedural data types and considers a subroutine as a con-
stant of such a type.

3. Evaluation of boolean expressions: StatPascal terminates the evaluation of
a boolean expression as soon as the result is known. This behaviour can
be disabled to achieve compatibility with existing programs relying on side
effects.

4. Currently unsupported Pascal constructs: variant records and with are not
implemented.

5. Typed files are not supported. StatPascal provides two predefined file types
for text files (text) and binary files (file). Values of all types can be written
to the latter ones. By default, input and output operations are performed
through the predefined text files input and output.

6. Treatment of pointers and arrays: an optional second argument in a call of
new allocates multiple values that are addressed by indexing the pointer. We
only provide a short example.

var p: ^real;
begin

new (p, 20); (* allocate p [0], ..., p [19] *)
dispose (p) (* release memory *)

end;

The use of these low level features should be avoided. It is preferred to employ
the vector structure (see Section 3) of StatPascal when dealing with data sets
of unknown size.

A.2 Differences to XPL

XPL, the predecessor of StatPascal, was introduced in the first edition of ”Statis-
tical Analysis.” That language closely resembled Pascal and lacked the vector and
matrix operations provided by StatPascal. We outline the most important changes
required for XPL programs to be executed using StatPascal.

145

• The predefined routines accepting data sets (like createunivariate, plot, etc.)
now require a vector instead of an array. StatPascal can convert arrays to
vectors; one only has to delete the size parameter required in XPL. For
example, one writes

createunivariate (x, filename, description)

instead of

createunivariate (x, n, filename, description)

when creating a univariate data set, whereby n is the number of elements in
x.

• Calls to estimators require scalar variable parameters instead of an array to
accept the estimates. For example, one must call the MLE(GP), based on
the k largest value of a data set x, using

mlegp (x, k, gamma, mu, sigma, errcode)

instead of

mlegp (x, n, k, p, errcode)

where p is a real array with three components.

• The predefined procedures mark and release, which provided a simple heap
management, are no longer available. If you used them to release data sets
that were allocated dynamically, you might switch to vectors providing an
automatic memory management. The predefined procedure dispose is still
available.

With these modifications, it should be possible to execute XPL programs
under StatPascal. However, it is preferrable to use the new vector and matrix
operations of StatPascal because they will result in a higher execution speed of
your programs.

	Introduction to StatPascal
	StatPascal integrated in Xtremes
	The `Hello, World'' Program
	The StatPascal Window
	A second Example Program

	Programming with StatPascal
	Basic Programming
	Variables and Data Types
	Expressions and Assignments
	Constant Declarations
	Input and Output
	Conditional statements
	if-statement
	case-statement

	Loops
	while-loop
	repeat-loop
	for-loop

	Procedures and Functions
	Forward Declarations

	Data Structures and Types
	Arrays
	Type declarations
	Ordinal types
	Enumerations
	Subranges

	Records
	Sets
	Pointers

	Vector and Matrix Operations
	Introductory Examples
	Construction of Vectors
	Type Conversions
	Assignments
	Output
	Expressions
	Index Operations
	Function Calls
	Special Operations
	Strings
	Matrix Operations

	Advanced StatPascal Techniques
	Units
	Functional and Procedural Types
	Evaluation of Boolean Operands
	Generating and Accessing Data
	Passing Data from StatPascal to Xtremes
	Passing Data from Xtremes to StatPascal
	Temporary Data Sets

	Predefined Estimators
	Estimator Programs
	Implementing Estimators of the Shape Parameter
	Implementing Estimators of Further Parameters

	StatPascal Runtime Environment
	Handling Run--Time Errors
	The Compile Button in the StatPascal Editor
	The Compiler Options Button

	Appending StatPascal Programs to the Menu Bar of Xtremes

	Input and Output
	The StatPascal Window
	File Operations
	Text Files
	Binary files

	Plots
	Univariate Curves
	Scatterplots
	Contour and Surface Plots
	Polygons
	Overview Of Advanced Plot Options

	Graphical User Interface

	Syntax of StatPascal
	Lexical Elements
	Special Symbols and Reserved Words
	Identifiers
	Numerical Constants
	Character and String Constants
	Comments

	Blocks
	Labels
	Constants
	Types
	Type Declarations
	Simple Types
	Ordinal Types
	Reals

	Structured Data Types
	Sets
	Arrays
	Vectors
	Matrices
	Records
	Pointers
	Procedural and functional types

	Compatible Types

	Variables
	Variable Declarations
	Accessing Variables
	Arrays
	Records
	Pointers
	Syntax

	Expressions
	Syntax
	Operators
	Arithmetic operators
	Logical operators
	Relational operators
	String operators

	Function Calls

	Statements
	Compound Statements
	Simple Statements
	Return Statement
	Memory Allocation
	Goto Statement
	Iterations
	while-Loop
	repeat-Loop
	for-Loop

	Selections
	if-Statement
	case-Statement

	Procedures and Functions
	Units
	Programs

	The StatPascal Library Functions
	abs
	All
	arccos
	arcsin
	arctan
	BetaData
	BetaDensity
	BetaDF
	BetaQF
	BeginMultivariate
	BinomialData
	BoxPlot
	CBind
	ChiSquareData
	ChiSquareDensity
	ChiSquareDF
	ChiSquareQF
	Chol
	Choose
	chr
	ClearWindow
	ColumnData
	ColumnName
	cos
	cosh
	CreateMultivariate
	CreateTimeSeries
	CreateUnivariate
	CumSum
	Data
	DataType
	Date
	DialogBox
	Dimension
	DreesPickandsGP
	EndMultivariate
	eof
	EstimateBandwidth
	EVData
	EVDensity
	EVDF
	EVQF
	Exists
	exp
	ExponentialData
	ExponentialDensity
	ExponentialDF
	ExponentialQF
	Extremes
	Flush
	frac
	FrechetData
	FrechetDensity
	FrechetDF
	FrechetQF
	gamma
	GammaData
	GammaDensity
	GammaDF
	GaussianData
	GaussianDensity
	GaussianDF
	GaussianQF
	GCauchyData
	GCauchyDensity
	GCauchyDF
	GCauchyQF
	GeometricData
	GMFEVDF
	GMFEVDensity
	GMFEVSF
	GMFGPDF
	GMFGPDensity
	GMFGPSF
	GotoXY
	GPData
	GPDensity
	GPDF
	GPQF
	GumbelData
	GumbelDensity
	GumbelDF
	GumbelQF
	HillGP1
	HREVDF
	HREVDensity
	HREVSF
	HRGPDF
	HRGPDensity
	HRGPSF
	Indicator
	Invert
	KernelDensity
	log
	ln
	LRSEV
	MakeMatrix
	max
	MDEEV
	MDEGaussian
	Mean
	Median
	MEGP1
	MemAvail
	MenuBox
	MessageBox
	MHDEGaussian
	min
	MLEEV
	MLEEV0
	MLEEV1
	MLEGaussian
	MLEGP
	MLEGP0
	Moment
	MomentGP
	NegBinData
	ord
	Page
	ParamCount
	ParamStr
	ParetoData
	ParetoDensity
	ParetoDF
	ParetoQF
	Plot
	PlotContour
	PlotSurface
	PoissonData
	Poly
	PolynomialRegression
	pred
	Random
	Rank
	RBind
	read
	ReadData
	readln
	RealVect
	Rev
	RGB
	round
	RowData
	SampleDF
	SampleMeanClusterSize
	SampleQF
	SampleSize
	SaveEPS
	ScatterPlot
	SetColor
	SetColumn
	SetCoordinates
	SetLabel
	SetLabelFont
	SetLineOptions
	SetLineStyle
	SetMarkers
	SetMarkerFont
	SetPlotStyle
	SetPointStyle
	SetTicks
	sign
	SimulateRuinTime
	sin
	sinh
	size
	Smooth
	Sort
	sqr
	sqrt
	str
	StratifiedUniform
	succ
	sum
	system
	tan
	tanh
	TData
	TDensity
	TDF
	TextBackground
	TextColor
	Time
	TQF
	Transpose
	TTest
	UFODefine
	UFOMessage
	UFOEvaluate
	UniformData
	UnitMatrix
	UnitVector
	Variance
	WeibullData
	WeibullDensity
	WeibullDF
	WeibullQF
	WelchTest
	WilcoxonTest
	write
	writeln
	Estimator Error codes

	Porting to StatPascal
	Differences between StatPascal and Pascal
	Differences to XPL

