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ORACLE CONTINUOUS TIME RANDOM WALKS

A. JURLEWICZ, P. KERN, M. M. MEERSCHAERT, AND H.-P. SCHEFFLER

Abstract. In a continuous time random walk (CTRW), a random waiting time
precedes each random jump. The CTRW model is useful in physics, to model dif-
fusing particles. Its scaling limit is a time-changed process, whose densities solve an
anomalous diffusion equation. Some applications require the anticipating version,
an oracle continuous time random walk (OCTRW), where the next jump after any
given time is also included. This paper develops limit theory and governing equa-
tions for the OCTRW, which can be quite different from the non-anticipating case
if the waiting time and the subsequent jump are dependent random variables.

1. Introduction

The continuous time random walk (CTRW) is a model developed in physics to
represent diffusing particles. A random waiting time Jn > 0 precedes the nth random
jump Yn of the particle. Typically we assume that (Yn, Jn) are iid random vectors
in space-time with possible dependence between the waiting time Jn and the jump
Yn. This coupling can be used to enforce certain physical constraints, e.g., particle
velocity Yn/Jn should not exceed the speed of light [37]. The jumps can represent
movements of tracer particles in underground aquifers [6], downstream movements of
gravel particles along river beds [36], biological cell movements [13], motion of DNA-
binding proteins along a chromosome [41], or movements of animals in search of a
food source [32]. In finance, the jumps represent changes in price (or log-returns) [34].
The CTRW is a random walk subordinated to a renewal process. If the space-time
vector belongs to some generalized domain of attraction, then under some technical
conditions [3] the CTRW scaling limit is a stable Lévy process whose time index is
replaced by the hitting time process of another (possibly dependent) stable subor-
dinator. The hitting time or first passage time process is the scaling limit of the
renewal process, and adjusts the outer process for random waiting times between
jumps. The probability densities c(x, t) of the scaling limit solve certain pseudo-
differential equations that generalize the diffusion equation ∂tc = b∂2

xc. Power-law
jumps P (Yn > x) ≈ x−α for 0 < α < 2 lead to a space-fractional diffusion equation
∂tc = b∂αx c, while power-law waiting times with P (Jn > t) ≈ t−β for 0 < β < 1
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lead to a time-fractional diffusion equation ∂βt c = b∂2
xc + δ(x)t−β/Γ(1− β) [25, 26].

For a coupled CTRW, the scaling limit density solves a coupled pseudo-differential
equation, e.g., (∂t − ∂2

x)
βc(x, t) = δ(x)t−β/Γ(1− β) for power law waiting times Jn

and mean zero conditionally Gaussian jumps with variance 2Jn [3, Example 5.2].
In certain applications it is useful to consider the anticipating version of a CTRW,

in which one additional jump is included. Let T (n) = J1 + · · · + Jn be the time of
the nth jump, and S(n) = Y1 + · · ·+ Yn the particle location after n jumps. Then

(1.1) N(t) = max{n ≥ 0 : T (n) ≤ t},

is the number of jumps by time t > 0 and the CTRW S(N(t)) is the particle location
at time t > 0. The anticipating version is simply S(N(t) + 1) and we will call it an
oracle continuous time random walk (OCTRW). In finance, it represents the price at
the next available trading time [17]. In geophysics, it could represent the accumulated
energy released during the next earthquake, or volcanic eruption. In hydrology, it can
model the magnitude of the next flood event. In all these cases, it is natural for the
waiting time to affect the magnitude of the next jump, leading to a coupled model.
For finite mean waiting times Jn, the OCTRW has the same asymptotics as the
usual CTRW. But if P (Jn > t) ≈ t−β for 0 < β < 1 (regularly varying tail) then the
asymptotics, and the governing equation, are usually quite different. In this paper, we
develop limit theory and governing equations for the anticipating case of an OCTRW
with infinite mean waiting times. We emphasize the general setting in which (Yn, Jn)
are iid but there is dependence between the waiting time Jn and the subsequent jump
Yn. In finance, coupling between log returns and waiting times is rather common [27].
Coupling can also result from a clustering of trades: The price changes by an amount
Y1 + · · ·+ YM at time J1 + · · ·+ JM where M > 0 is a random cluster size [17].

2. Preliminaries

Let (Yn, Jn) be iid with (Y, J) on R× R+ and set

(2.1) T (n) =
n∑
j=1

Jj and S(n) =
n∑
i=1

Yi

so that (S(n), T (n)) is a random walk on R×R+. For t ≥ 0 we define the continuous
time random walk (CTRW)

(2.2) X(t) = S(N(t)) = Y1 + · · ·+ YN(t)

where N(t) is given by (1.1). The OCTRW

(2.3) Z(t) = S(N(t) + 1) = Y1 + · · ·+ YN(t) + YN(t)+1

involves one additional jump. In the context of finance, Yn represents a price jump
(or log return) after a waiting time Jn, the CTRW is the price at time t > 0, and the
OCTRW is the price at the next available trading time in the future.
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Assume (Y, J) belongs to the strict generalized domain of attraction of some oper-
ator stable law [24] with exponent E = diag(1/α, 1/β), so that for some bn > 0 and
Bn > 0 we have

(2.4) (BnS(n), bnT (n))⇒ (A,D)

where D > 0 almost surely. Here ⇒ denotes convergence in distribution. The distri-
bution µ of (A,D) is strictly operator stable with index E, meaning that µt = tEµ
for all t > 0, where µt is the convolution power of the infinitely divisible law µ,
tE = exp(E log t) using the usual matrix exponential, and (tEµ)(dx) = µ(t−Edx) is
the probability distribution of tE(A,D) = (t1/αA, t1/βD) for t > 0. Then a standard
result [26, Theorem 4.1] shows that

(2.5) {(B(c)S(ct), b(c)T (ct))}t≥0 ⇒ {(A(t), D(t))}t≥0 as c→∞

in the Skorohod space D([0,∞),R × R+) with the J1 topology, where b(t) = b[t],
B(t) = B[t], and (A(t), D(t)) is a Lévy process with (A(1), D(1)) = (A,D). In view
of [24, Theorem 8.3.24] we may assume without loss of generality that B(t), b(t) vary
regularly with index −1/α, −1/β respectively. Then 1/b(t) is regularly varying with

index 1/β > 0 so by [38, Property 1.5.5] there exists a regularly varying function b̃

with index β such that 1/b(b̃(c)) ∼ c as c→∞. Here f ∼ g means that f(c)/g(c)→ 1

as c→∞. Define B̃(c) = B(b̃(c)), a regularly varying function with index −β/α.
For suitable functions g on R×R+ we define the Fourier-Laplace transform (FLT)

(2.6) ḡ(k, s) =

∫
R

∫ ∞
0

eikxe−stg(x, t)dt dx

where (k, s) ∈ R× R+. Similarly, if µ is a bounded Borel measure on R× R+,

µ̄(k, s) =

∫
R

∫ ∞
0

eikxe−stµ(dx, dt)

is the FLT of µ. If ρ is a probability measure on R, the Fourier transform (FT)

ρ̂(k) =

∫
R
eikx ρ(dx).

If ρt is a probability measure on R for each t > 0 such that t 7→ ρ̂t(k) is Borel
measurable, then

ρ̄(k, s) =

∫ ∞
0

∫
R
e−steikxρt(dx) dt

is the FLT of (ρt)t>0.
Any infinitely divisible distribution is characterized by the Lévy-Khinchin formula.

This concept carries over to the FLT setting [3, Lemma 2.1] so that

(2.7) E[e−sD(u)+ikA(u)] = exp(−uψ(k, s))
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for all (k, s) ∈ R × R+. We call ψ the Fourier-Laplace symbol of (A,D). Moreover,
there exist uniquely determined (a, b) ∈ R×R+, a positive constant σ2 and a measure
φ on R× R+ \ {(0, 0)} such that

ψ(k, s) = iak + bs+
1

2
σ2k2 +

∫
R×R+\{(0,0)}

(
1− eikxe−st +

ikx

1 + x2

)
φ(dx, dt).(2.8)

The Lévy measure φ is finite outside every neighborhood of the origin and∫
0<x2+t≤1

(x2 + t)φ(dx, dt) <∞.

We denote by φA(dx) = φ(dx,R+) the Lévy measure of the Lévy process {A(u)}u≥0.
By setting s = 0 in the representation (2.7) we see that

(2.9)

∫
R
eikx PA(u)(dx) = e−uψA(k)

so that

(2.10) ψA(k) = iak +
1

2
σ2k2 +

∫
R\{0}

(
1− e−ikx +

ikx

1 + x2

)
φA(dx)

is the Fourier symbol of the Lévy process {A(u)}. Similarly, we let φD(dt) = φ(R, dt)
denote the Lévy measure of {D(u)}. By setting k = 0 in the representation (2.7) we
see that

(2.11)

∫ ∞
0

e−st PD(u)(dt) = e−uψD(s)

where

(2.12) ψD(s) =

∫ ∞
0

(
1− e−sv

)
φD(dv)

is the Laplace symbol of the Lévy process {D(u)}. Note that {D(u)} is a stable
subordinator with drift term b = 0 in (2.8). Since the sample paths of D(t) are
càdlàg and strictly increasing with D(0) = 0 and D(t) → ∞ as t → ∞, the first
passage time process

(2.13) E(t) = inf{x : D(x) > t}
is well–defined.

Given any λ > 0 let L1
λ(R × R+) denote the collection of real-valued measurable

functions on R× R+ for which the integral and hence the norm

‖f‖λ =

∫ ∞
0

∫
R
e−λt|f(x, t)| dx dt

exists. With this norm, L1
λ(R × R+) is a Banach space that contains L1(R × R+).

The symbol ψ(k, s) defines a pseudo-differential operator ψ(i∂x, ∂t) on this space,
and the negative generator of the corresponding Feller semigroup, see [28] for more
details. Theorem 3.2 in [2] shows that the domain of this operator contains any
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f ∈ L1
λ(R×R+) whose weak first and second order spatial derivatives as well as weak

first order time derivatives are in L1
λ(R× R+), and that in this case we have

ψ(i∂x, ∂t)f(x, t) = −a∂xf(x, t)− 1

2
σ2∂2

xf(x, t)

−
∫

R×R+\{(0,0)}

(
H(t− u)f(x− y, t− u)− f(x, t) +

y∂xf(x, t)

1 + y2

)
φ(dy, du)

(2.14)

where H(t) = I(t ≥ 0) is the Heaviside step function.

3. Limit theorems

In this section we derive the limiting distribution of the coupled OCTRW process
Z(t) = S(N(t) + 1) and compare it to the limit of the corresponding CTRW process

X(t) = S(N(t)). Recall from Section 2 that B̃(c) = B(b̃(c)). Theorem 3.1 in [3] es-
tablished process convergence for the CTRW, using some continuous mapping results
from the book of Whitt [43] to show that

(3.1) {B̃(c)S(N(ct))}t≥0 ⇒ {A(E(t))}t≥0

as c→∞ in the M1 topology on D([0,∞),R) under the technical condition

(3.2) Disc({A(t)}t≥0) ∩Disc({D(t)}t≥0) = ∅ almost surely.

Here Disc(x) = {t ≥ 0 : x(t−) 6= x(t)} is the set of discontinuity points of an ele-
ment x ∈ D([0,∞),R), the space of càdlàg functions x : [0,∞) → R. For example,
condition (3.2) holds if Yn and Jn are independent, which makes A(t) and D(t) in-
dependent. In general, however, the limit process A(E(t)) is a stable Lévy motion
with index α ∈ (0, 2] subordinated to the inverse or hitting time E(t) of another
stable Lévy motion D(t) with index β ∈ (0, 1), which is not necessarily independent
of the outer process A(t). We would like to verify if (3.1) holds also for processes
with simultaneous jumps, and then derive an analogous limit for OCTRW. We will
use some results from the very useful book of Silvestrov [39].

Theorem 3.1. Assume that (Yn, Jn) are iid R×R+-valued random vectors and that
(2.4) holds. Then

(3.3) {B̃(c)S(N(ct) + 1)}t≥0 ⇒ {A(E(t))}t≥0

as c→∞ in the J1 topology on D([0,∞),R); Also

(3.4) {B̃(c)S(N(ct))}t≥0 ⇒ {A(E(t)−)}t≥0

as c→∞ in the J1 topology on D([0,∞),R).

Proof. Note that the CTRW scaling limit in (3.4) has to be interpreted as the right-
continuous version of {A(E(t)−)}t≥0 so that its sample paths are proper elements
of D([0,∞),R). Theorem 4.5.6 in [39] shows that a suitably normalized random
walk ξε(t) subordinated to a suitably normalized renewal process νε(t) converges to a
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limit ξ(ν(t)) under some technical conditions, which we now check. First of all, the

triangular array (κε,k, ξε,k) with ε = c−1, nε = b̃(c), κε,k = c−1Jk and ξε,k = B̃(c)Yk
has iid rows for any ε > 0. Hence condition T4 on [39, p. 287] holds. Next define

ξε(t) =

[nεt]∑
k=1

ξε,k = B̃(c)S(b̃(c)t)

and

κε(t) =

[nεt]∑
k=1

κε,k = c−1T (b̃(c)t).

Since (2.5) holds, condition A66 on [39, p. 288] also holds with (κ0(t), ξ0(t)) =
(D(t), A(t)). Finally, note that condition J20 on [39, p. 285] holds with π1(0+) =
φD(0,∞) = ∞, by the standard convergence criteria for triangular arrays (e.g., see
[24, Theorem 3.2.2]). Now define the renewal process

νε(t) = sup(s : κε(s) ≤ t) = b̃(c)
−1

min{n ≥ 0 :
n∑
k=1

κε,k > t}

= b̃(c)
−1

min{n ≥ 0 :
n∑
k=1

Jk > ct} = b̃(c)
−1(

N(ct) + 1
)

and the corresponding limit process

ν0(t) = sup{s ≥ 0 : κ0(s) ≤ t}
= sup{s ≥ 0 : D(s) ≤ t} = inf{s ≥ 0 : D(s) > t} = E(t).

The random walk process subordinated to the renewal process is

ζε(t) = ξε(νε(t)) = B̃(c)S(b̃(c)νε(t))

= B̃(c)S
(
b̃(c)

(
b̃(c)

−1
(N(ct) + 1)

))
= B̃(c)S(N(ct) + 1)

which is the left-hand side of (3.3). Then [39, Theorem 4.5.6] yields

(3.5) B̃(c)(S(N(ct) + 1) = ζε(t)→ ζ0(t) = ξ0(ν0(t)) = A(E(t))

as c→∞ in the J1 topology on D([0,∞),R).
Next we consider the CTRW limit (3.4). Following [39, page 282], we consider the

so-called modified renewal process

ν ′ε(t) = b̃(c)
−1

max{n ≥ 0 :
n∑
k=1

κε,k ≤ t} = b̃(c)
−1
N(ct)

and

ζ ′ε(t) = ξε(ν
′
ε(t)) = B̃(c)S(N(ct))
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which is the left-hand side of (3.4). Since [39, Theorem 4.5.6] is an application of [39,
Theorem 4.5.1], the remarks on [39, page 282] show that, under the same conditions
we have already checked, we also get process convergence

B̃(c)S(N(ct)) = ζ ′ε(t)→ ζ ′0(t) = ξ0(ν0(t)−) = A(E(t)−)

as c→∞ in the J1 topology on D([0,∞),R). �

Remark 3.2. Under the condition (3.2), the CTRW scaling limit A(E(t)) = A(E(t)−)
almost surely, so that (3.4) is consistent with (3.1). Theorem 3.1 strengthens (3.1) by
relaxing the simultaneous jumps condition in Equation (3.2), and replacing the M1

topology with the stronger J1 topology.

Remark 3.3. The CTRW and OCTRW convergence results in Theorem 3.1 can also
be obtained from Henry and Straka [15, Theorem 3.6], which yields

(3.6) {B̃(c)S(N(ct) + 1), b(b̃(c))T (N(ct) + 1)}t≥0 ⇒ {A(E(t)), D(E(t))}t≥0

and

(3.7) {B̃(c)S(N(ct)), b(b̃(c))T (N(ct))}t≥0 ⇒ {A(E(t)−), D(E(t)−)}t≥0

as c → ∞ in the J1 topology on D([0,∞),R). The proof of [15, Theorem 3.6] uses
a continuous mapping approach. The convergence (3.6) was also proven by Silve-
strov and Teugels [40, Theorem 3.2] by arguments similar to Theorem 3.1. Further
discussion of the processes D(E(t)) and D(E(t)−) will be included in Example 5.2.

Recall that a stochastic process {X(t)}t≥0 is self-similar with index H if for any
r > 0 {X(rt)} = {rHX(t)} in the sense of finite-dimensional distributions, e.g., see
[12].

Corollary 3.4. The limit processes A(E(t)) and A(E(t)−) in Theorem 3.1 are both
self-similar with index β/α.

Proof. Recall that B̃(c) varies regularly with index −β/α, i.e., B̃(rc)B̃(c)−1 → r−β/α

as c→∞ for every r > 0. From (3.3) we get

{B̃(c)S(N(c · rt) + 1)}t≥0 ⇒ {A(E(rt))}t≥0

while a continuous mapping argument along with (3.3) yields

{B̃(c)S(N(crt) + 1)} = {B̃(c)B̃(cr)−1 · B̃(cr)S(N(crt) + 1)} ⇒ {rβ/αA(E(t))}

so that {A(E(rt))} and {rβ/αA(E(t))} are identically distributed as elements
of D([0,∞),R). A similar argument using (3.4) shows that {A(E(rt)−)} and
{rβ/αA(E(t)−)} are identically distributed as elements of D([0,∞),R). Then we
also have equality in the sense of finite dimensional distributions. �
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Remark 3.5. Theorem 3.4 in [3] states that B̃(c)S(N(ct))⇒ A(E(t)) in the sense of
one-dimensional distributions, which is true only when A(E(t)) = A(E(t)−) almost
surely. To clarify the argument in the proof of [3, Theorem 3.4], note that (here pt is
the density of E(t))

lim
h↓0

1

h
P{A(s) ∈M, s < E(t) ≤ s+ h}

= lim
h↓0

1

h

∫ s+h

s

P{A(s) ∈M |E(t) = u}pt(u)du

= lim
h↓0

1

h

∫ s+h

s

P{A(u− (u− s)) ∈M |E(t) = u}pt(u)du

= P{A(s−) ∈M |E(t) = s}pt(s)

(3.8)

which leads to (3.4) in the sense of one dimensional distributions. Examples 5.2–5.6
in [3] provide governing equations for the CTRW limit process A(E(t)−) in some
special cases with simultaneous jumps.

Remark 3.6. It is not hard to extend Theorem 3.1 to the more general case of tri-

angular array convergence. Let (J
(c)
n , Y

(c)
n ) be iid on R × R+ for each c > 0 and

set

(3.9) T (c)(n) =
n∑
j=1

J
(c)
j and S(c)(n) =

n∑
i=1

Y
(c)
i

and let N (c)(t) = max{n ≥ 0 : T (c)(n) ≤ t}. Assume that

(3.10) {(S(c)(cu), T (c)(cu))}u≥0 ⇒ {(A(u), D(u)}u≥0 as c→∞

in the J1 topology on D([0,∞),R × R+), where {(A(u), D(u)}u≥0 is a Lévy process
on R×R+ such that φD(0,∞) =∞ and b = 0 in (2.8). Triangular array convergence
is useful in applications to finance, because the limit is more flexible. For example,
A(t) can be a Brownian motion with drift, or a Lévy process with finite variance but

power-law probability tails. Let ε = c−1, nε = c, κε,k = J
(c)
k and ξε,k = Y

(c)
k . Then it

follows exactly as in the proof of Theorem 3.1 that

{S(c)(N (c)(t) + 1)}t≥0 ⇒ {A(E(t))}t≥0

{S(c)(N (c)(t))}t≥0 ⇒ {A(E(t)−)}t≥0

(3.11)

as c→∞ in the J1 topology on D([0,∞),R). This clarifies results in [28]: Use (3.8)
above to see that Theorem 3.6, Corollary 3.8, and the governing equation (4.5) in [28]
pertain to the CTRW limit process M(t) = A(E(t)−) in general.
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4. Governing equations

In this section we derive the governing pseudo-differential equations of the coupled
OCTRW limit process A(E(t)) and the corresponding CTRW limit process A(E(t)−)
from Theorem 3.1. Our methods are based on Laplace and Fourier transforms. We
begin by stating our main theorem. Recall that the Fourier symbol ψA(k), the Laplace
symbol ψD(s), and the Fourier-Laplace symbol ψ(k, s) were defined in Section 2. For
any fixed x ∈ R define the translation Tx(y) = y + x. Since the set R × (t,∞) is
bounded away from (0, 0) for any t > 0, φ(dy, (t,∞)) is a finite measure on R. Define
the image measure

Tx(φ)(B, (t,∞)) = φ(T−1
x (B), (t,∞)) = φ(B − x, (t,∞))

for any Borel set B ⊂ R. We will also use the notation

P̂Y (k) = E
[
eikY

]
k ∈ R

for the Fourier transform of the distribution of a random variable Y on R,

P̃J(s) = E
[
e−sJ

]
s ≥ 0

for the Laplace transform of a nonnegative random variable J , and

P̄(Y,J)(k, s) = E
[
e−sJ+ikY

]
(k, s) ∈ R× R+

for the FLT of a random vector (Y, J) on R× R+.

Theorem 4.1. Assume that (Yn, Jn) are iid R×R+-valued random vectors and that
(2.4) holds. Then

(4.1) ρt(dy) =

∫ ∞
0

∫
R

∫ t

0

Tx(φ)(dy, (t− τ,∞))P(A(u),D(u))(dx, dτ) du

is the distribution of the OCTRW limit A(E(t)) in (3.3), and its FLT is given by

(4.2)

∫ ∞
0

e−stP̂A(E(t))(k) dt =
1

s

ψ(k, s)− ψA(k)

ψ(k, s)
.

Furthermore,

(4.3) ηt(dy) =

∫ ∞
0

∫ t

0

φD((t− τ,∞))P(A(s),D(s))(dy, dτ) ds

is the distribution of the CTRW limit A(E(t)−) in (3.4), and its FLT is given by

(4.4)

∫ ∞
0

e−stP̂A(E(t)−)(k) dt =
1

s

ψD(s)

ψ(k, s)
.

The proof of Theorem 4.1 requires a few lemmas. Recall that (Yn, Jn) are iid with
(Y, J).
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Lemma 4.2. (a) For the OCTRW process Z(t) = S(N(t) + 1) we have for s > 0,
k ∈ R

(4.5)

∫ ∞
0

e−stP̂S(N(t)+1)(k) dt =
1

s

P̂Y (k)− P̄(Y,J)(k, s)

1− P̄(Y,J)(k, s)
.

(b) For the CTRW process X(t) = S(N(t)) we have for s > 0, k ∈ R

(4.6)

∫ ∞
0

e−stP̂S(N(t))(k) dt =
1

s

1− P̃J(s)

1− P̄(Y,J)(k, s)
.

Proof. Observe first that

∫ ∞
0

e−st
∫

1{T (n)≤t}e
ikS(n) dP dt =

∫ (∫ ∞
T (n)

e−st dt
)
eikS(n) dP

=
1

s

∫
e−sT (n)+ikS(n) dP

=
1

s

(
P̄(Y,J)(k, s)

)n
.

(4.7)

Note that 1{N(t)=n} = 1{T (n)≤t} − 1{T (n+1)≤t} and hence

P̂S(N(t)+1)(k) =

∫
eikS(N(t)+1) dP

=
∞∑
n=0

∫
1{N(t)=n}e

ikS(n+1) dP

=
∞∑
n=0

[∫
1{T (n)≤t}e

ikS(n+1) dP −
∫

1{T (n+1)≤t}e
ikS(n+1) dP

]
.
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Therefore we have in view of (4.7) and independence that∫ ∞
0

e−stP̂S(N(t)+1)(k) dt

=
∞∑
n=0

[∫ ∞
0

e−st
∫

1{T (n)≤t}e
ikS(n+1) dP dt−

∫ ∞
0

e−st
∫

1{T (n+1)≤t}e
ikS(n+1) dP dt

]
=
∞∑
n=0

[∫ ∞
0

e−st
∫

1{T (n)≤t}e
ikS(n)eikYn+1 dP dt− 1

s

(
P̄(Y,J)(k, s)

)n+1
]

=
∞∑
n=0

[∫ ∞
0

e−st
∫

1{T (n)≤t}e
ikS(n) dP P̂Y (k) dt− 1

s

(
P̄(Y,J)(k, s)

)n+1
]

=
∞∑
n=0

[1

s

(
P̄(Y,J)(k, s)

)n
P̂Y (k)− 1

s

(
P̄(Y,J)(k, s)

)n+1
]

=
1

s

(
P̂Y (k)− P̄(Y,J)(k, s)

) ∞∑
n=0

(
P̄(Y,J)(k, s)

)n
=

1

s

P̂Y (k)− P̄(Y,J)(k, s)

1− P̄(Y,J)(k, s)

which proves (4.5).
For the proof of (4.6) note first that∫

1{T (n+1)≤t}e
ikS(n) dP =

∫
1{T (n)+Jn+1≤t}e

ikS(n) dP

=

∫ ∫ t

0

1{T (n)≤t−τ}e
ikS(n) dPJ(τ) dP.

Then we have ∫ ∞
0

e−st
∫

1{T (n+1)≤t}e
ikS(n) dP dt

=

∫ ∞
0

e−st
∫ ∫ t

0

1{T (n)≤t−τ}e
ikS(n) dPJ(τ) dP dt

=

∫
eikS(n)

∫ ∞
0

e−st
∫ t

0

1{T (n)≤t−τ} dPJ(τ) dt dP

=

∫
eikS(n)

∫ ∞
0

∫ ∞
τ

e−st1{T (n)≤t−τ} dt dPJ(τ) dP

=

∫
eikS(n)

∫ ∞
0

∫ ∞
T (n)+τ

e−st dt dPJ(τ) dP

=
1

s

∫
e−sT (n)+ikS(n) dP

∫ ∞
0

e−sτ dPJ(τ)

=
1

s
P̃J(s)

(
P̄(Y,J)(k, s)

)n
.
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In view of (4.7) we obtain∫ ∞
0

e−stP̂S(N(t))(k) dt

=
∞∑
n=0

[∫ ∞
0

e−st
∫

1{T (n)≤t}e
ikS(n) dP dt−

∫ ∞
0

e−st
∫

1{T (n+1)≤t}e
ikS(n) dP dt

]
=

1

s

∞∑
n=0

[(
P̄(Y,J)(k, s)

)n − P̃J(s)
(
P̄(Y,J)(k, s)

)n]
=

1

s

1− P̃J(s)

1− P̄(Y,J)(k, s)

and the proof is complete. �

Lemma 4.3. (a) For the OCTRW process S(N(t) + 1) we have for all k ∈ R and
s > 0

(4.8)

∫ ∞
0

e−stP̂B̃(c)S(N(ct)+1)(k) dt→ 1

s

ψ(k, s)− ψA(k)

ψ(k, s)
as c→∞.

(b) For the CTRW process S(N(t)) we have for all k ∈ R and s > 0

(4.9)

∫ ∞
0

e−stP̂B̃(c)S(N(ct))(k) dt→ 1

s

ψD(s)

ψ(k, s)
as c→∞ .

Proof. Recall from Section 2 that B̃(c) = B(b̃(c)) is a regularly varying function with
index −β/α. From (2.5) we get(

B̃(c)S(b̃(c)), c−1T (b̃(c))
)
⇒ (A,D) as c→∞.

By the continuity theorem for the FLT for probability distributions, this is equivalent
to

(4.10)
(
P̄(Y,J)(B̃(c)k, c−1s)

)b̃(c)
→ P̄(A,D)(k, s) = e−ψ(k,s) as c→∞

for all k ∈ R and s ≥ 0. Take logs and apply a Taylor expansion to see that (4.10) is
equivalent to

(4.11) b̃(c)
(
1− P̄(Y,J)(B̃(c)k, c−1s)

)
→ ψ(k, s) as c→∞.

Using P̄(Y,J)(0, s) = P̃J(s) and P̄(Y,J)(k, 0) = P̂Y (k) as well as ψ(k, 0) = ψA(k) in
(2.10) and ψ(0, s) = ψD(s) in (2.12), we get from (4.11)

b̃(c)
(
1− P̂Y (B̃(c)k)

)
→ ψA(k)

b̃(c)
(
1− P̃J(c−1s)

)
→ ψD(s)

(4.12)

as c→∞.
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Proof of (a): In view of Lemma 4.2 (a) we get by a simple change of variables for
all k ∈ R and s > 0∫ ∞

0

e−stP̂B̃(c)S(N(ct)+1)(k) dt = c−1

∫ ∞
0

e−(sc−1)tP̂S(N(t)+1)(B̃(c)k) dt

=
1

s

P̂Y (B̃(c)k)− P̄(Y,J)(B̃(c)k, c−1s)

1− P̄(Y,J)(B̃(c)k, c−1s)

=
1

s

b̃(c)
(
P̂Y (B̃(c)k)− 1

)
+ b̃(c)

(
1− P̄(Y,J)(B̃(c)k, c−1s)

)
b̃(c)

(
1− P̄(Y,J)(B̃(c)k, c−1s)

)
→ 1

s

−ψA(k) + ψ(k, s)

ψ(k, s)

as c→∞, using (4.11) and (4.12).
Proof of (b): Similarly, we get from Lemma (4.2) (b) that for all k ∈ R and s > 0∫ ∞

0

e−stP̂B̃(c)S(N(ct)(k) dt = c−1

∫ ∞
0

e−(sc−1)tP̂S(N(t))(B̃(c)k) dt

=
1

s

1− P̃J(c−1s)

1− P̄(Y,J)(B̃(c)k, c−1s)

=
1

s

b̃(c)
(
1− P̃J(c−1s)

)
b̃(c)

(
1− P̄(Y,J)(B̃(c)k, c−1s)

)
→ 1

s

ψD(s)

ψ(k, s)

as c→∞, using (4.11) and (4.12) again. The proof is complete. �

Remark 4.4. In the uncoupled case where A,D are independent, we have ψ(k, s) =
ψA(k)+ψD(s) and hence the limits in (4.8) and (4.9) are equal. Hence it follows from
Lemma 4.3 that the FLT limits of B̃(c)S(N(ct) + 1) and B̃(c)S(N(ct)) are equal if
and only if A and D are independent.

The following Lemma provides a uniqueness theorem for FLT.

Lemma 4.5. Let (ρt)t>0 and (ηt)t>0 be two families of probability measures on R such
that t 7→ ρt and t 7→ ηt are weakly right-continuous. If∫ ∞

0

e−stρ̂t(k) dt =

∫ ∞
0

e−stη̂t(k) dt

for all s > 0 and k ∈ R, then ρt = ηt for all t > 0.

Proof. For any fixed k ∈ R, the uniqueness theorem for Laplace transforms implies
that ρ̂t(k) = η̂t(k) for Lebesgue-almost all t > 0. By the continuity theorem for the
Fourier transform, both t 7→ ρ̂t(k) and t 7→ η̂t(k) are right-continuous. It follows that
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ρ̂t(k) = η̂t(k) for all t > 0. Since k ∈ R is arbitrary, the uniqueness theorem of the
Fourier transform implies ρt = ηt for all t > 0, and the proof is complete. �

Lemma 4.6. For any t > 0, k ∈ R and s > 0 we have

(4.13)

∫ ∞
0

e−st
∫

R
eikxφ(dx, (t,∞)) dt =

1

s

(
ψ(k, s)− ψA(k)

)
where ψ(k, s) is the log-FLT of (A,D) as in (2.7).

Proof. Since φ(dx, (t,∞)) is a finite measure on R, the Fourier-transform of
φ(dx, (t,∞)) is well defined for any t > 0. Moreover∣∣∣∫

R
eikxφ(dx, (t,∞))

∣∣∣ ≤ φ(R, (t,∞)) = φD(t,∞)

and by [28, Eq. (3.12)] we know that∫ ∞
0

e−stφD(t,∞) dt =
1

s
ψD(s)

for s > 0. Therefore, we can apply Fubini’s theorem to get∫ ∞
0

e−st
∫

R
eikxφ(dx, (t,∞)) dt

=

∫ ∞
0

∫
R
e−steikx

∫ ∞
0

1(t,∞)(u)φ(dx, du) dt

=

∫
R

∫ ∞
0

eikx
(∫ ∞

0

1(t,∞)(u)e−st dt
)
φ(dx, du)

=
1

s

∫
R

∫ ∞
0

(
1− e−su

)
eikx φ(dx, du)

=
1

s

∫
R

∫ ∞
0

[(
eikx − 1− ikx

1 + x2

)
+
(

1− eikxe−su +
ikx

1 + x2

)]
φ(dx, du)

=
1

s

(
−ψA(k) + ψ(k, s)

)
and the proof is complete. �

Lemma 4.7. Equation (4.1) defines a probability measure ρt(dy) on R such that∫ ∞
0

e−stρ̂t(k) dt =
1

s

ψ(k, s)− ψA(k)

ψ(k, s)

for any s > 0 and x ∈ R. Moreover, the mapping t 7→ ρt is right continuous with
respect to weak convergence.
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Proof. Observe first that Tx(φ)(R, (t− τ,∞)) = φD(t− τ,∞) and hence

ρt(R) =

∫ ∞
0

∫
R

∫ t

0

Tx(φ)(R, (t− τ,∞))P(A(u),D(u))(dx, dτ) du

=

∫ ∞
0

∫ t

0

φD(t− τ,∞)P(A(u),D(u))(R, dτ) du

=

∫ ∞
0

∫ t

0

φD(t− τ,∞)PD(u)(dτ) du = 1

by [28, Theorem 3.1], so that ρt is a probability measure on R for any t > 0. Observe
that for k ∈ R we have using Fubini that

ρ̂t(k) =

∫ ∞
u=0

∫
x∈R

∫ t

τ=0

∫
y∈R

eikyTx(φ)(dy, (t− τ,∞))P(A(u),D(u))(dx, dτ) du

=

∫ ∞
u=0

∫
x∈R

∫ t

τ=0

∫
y∈R

eikTx(y)φ(dy, (t− τ,∞))P(A(u),D(u))(dx, dτ) du

=

∫ ∞
u=0

∫
x∈R

∫ t

τ=0

∫
y∈R

eik(x+y)φ(dy, (t− τ,∞))P(A(u),D(u))(dx, dτ) du

(4.14)

Then, by Fubini’s theorem we get for any s > 0 and k ∈ R, using (4.13) that∫ ∞
0

e−stρ̂t(k) dt

=

∫ ∞
t=0

e−st
∫ ∞
u=0

∫
x∈R

∫ t

τ=0

∫
y∈R

eik(x+y)φ(dy, (t− τ,∞))P(A(u),D(u))(dx, dτ) du dt

=

∫ ∞
t=0

∫ ∞
u=0

∫
x∈R

∫ ∞
τ=0

∫
y∈R

e−steik(x+y)1[0,t](τ)φ(dy, (t− τ,∞))P(A(u),D(u))(dx, dτ) du dt

=

∫ ∞
u=0

∫
x∈R

∫ ∞
τ=0

∫ ∞
t=0

∫
y∈R

e−steik(x+y)1[0,t](τ)φ(dy, (t− τ,∞)) dt P(A(u),D(u))(dx, dτ) du

=

∫ ∞
u=0

∫
x∈R

∫ ∞
τ=0

∫ ∞
t=τ

∫
y∈R

e−steik(x+y)φ(dy, (t− τ,∞)) dt P(A(u),D(u))(dx, dτ) du

=

∫ ∞
u=0

∫
x∈R

∫ ∞
τ=0

(∫ ∞
v=0

∫
y∈R

e−s(v+τ)eik(x+y)φ(dy, (v,∞)) dv
)
P(A(u),D(u))(dx, dτ) du

=

∫ ∞
u=0

∫
x∈R

∫ ∞
τ=0

e−sτeikx
(∫ ∞

v=0

e−sv
∫
y∈R

eikyφ(dy, (v,∞)) dv
)
P(A(u),D(u))(dx, dτ) du

=
1

s

(
ψ(k, s)− ψA(k)

) ∫ ∞
u=0

(∫
x∈R

∫ ∞
τ=0

e−sτeikx P(A(u),D(u))(dx, dτ)
)
du

=
1

s

(
ψ(k, s)− ψA(k)

) ∫ ∞
0

e−uψ(k,s) du =
1

s

ψ(k, s)− ψA(k)

ψ(k, s)
.
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Note that the last equality is justified since Reψ(k, s) ≥ ψD(s) > 0, as in [28, p.
1619].

In order to show that t 7→ ρt is weakly right-continuous, in view of the continuity
theorem for the Fourier transform, it is enough to show that for any fixed k ∈ R the
function t 7→ ρ̂t(k) is right-continuous. Using (4.14) we get for any t > 0 and h > 0
that

ρ̂t(k)− ρ̂t+h(k)

=

∫ ∞
u=0

∫
x∈R

∫ t

τ=0

∫
y∈R

eik(x+y)φ(dy, (t− τ,∞))P(A(u),D(u))(dx, dτ) du

−
∫ ∞
u=0

∫
x∈R

∫ t+h

τ=0

∫
y∈R

eik(x+y)φ(dy, (t+ h− τ,∞))P(A(u),D(u))(dx, dτ) du

=

∫ ∞
u=0

∫
x∈R

∫ t

τ=0

(∫
y∈R

eik(x+y)φ(dy, (t− τ,∞))

−
∫
y∈R

eik(x+y)φ(dy, (t+ h− τ,∞))
)
P(A(u),D(u))(dx, dτ) du

−
∫ ∞
u=0

∫
x∈R

∫ t+h

τ=t

∫
y∈R

eik(x+y)φ(dy, (t+ h− τ,∞))P(A(u),D(u))(dx, dτ) du

=Ih − Jh.

Then we get

|Ih| ≤
∫ ∞
u=0

∫ t

τ=0

[
φ(R, (t− τ,∞))− φ(R, (t+ h− τ,∞))

]
P(A(u),D(u))(R, dτ) du

=

∫ ∞
0

∫ t

0

[
φD(t− τ,∞)− φD(t+ h− τ,∞)

]
PD(u)(dτ) du

→ 0

as h ↓ 0 by a dominated convergence argument along with [28, Eq. (3.1)], as in [28,
p. 1625]. Moreover

|Jh| ≤
∫ ∞

0

∫ t+h

t

φ(R, (t+ h− τ,∞))P(A(u),D(u))(R, dτ) du

=

∫ ∞
0

∫ t+h

t

φD(t+ h− τ,∞)PD(u)(dτ) du

→ 0

as h ↓ 0 using some results in Kesten [18], as in [28, pp. 1615–1616]. This concludes
the proof. �
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The following lemma is not required for the proof of Theorem 4.1, but is included
to show that the distribution ρt of the OCTRW limit process A(E(t)) is (weakly)
continuous.

Lemma 4.8. The mapping t 7→ ρt is also weakly left-continuous, thus it is weakly
continuous.

Proof. By the continuity theorem for Fourier transforms it is enough to show that
t 7→ ρ̂t(k) is left-continuous for any k ∈ R. Using (4.14) we get for any t > 0 and
0 < h < t

ρ̂t(k)− ρ̂t−h(k)

=

∫ ∞
u=0

∫
x∈R

∫ t

τ=0

∫
y∈R

eik(x+y)φ
(
dy, (t− τ,∞)

)
P(A(u),D(u))(dx, dτ) du

−
∫ ∞
u=0

∫
x∈R

∫ t−h

τ=0

∫
y∈R

eik(x+y)φ
(
dy, (t− h− τ,∞)

)
P(A(u),D(u))(dx, dτ) du

=

∫ ∞
u=0

∫
x∈R

∫ t−h

τ=0

∫
y∈R

eik(x+y)
[
φ
(
dy, (t− τ,∞)

)
− φ
(
dy, (t− h− τ,∞)

)]
P(A(u),D(u))(dx, dτ) du

+

∫ ∞
u=0

∫
x∈R

∫ t

τ=t−h

∫
y∈R

eik(x+y)φ
(
dy, (t− τ,∞)

)
P(A(u),D(u))(dx, dτ) du

=Ih + Jh.

Then by Tonelli’s theorem we get

|Ih| ≤
∫ ∞
u=0

∫ t−h

τ=0

[
φ
(
R, (t− h− τ,∞)

)
− φ
(
R, (t− τ,∞)

)]
P(A(u),D(u))(R, dτ) du

=

∫ ∞
u=0

∫ t−h

τ=0

[
φD(t− h− τ,∞)− φD(t− τ,∞)

]
PD(u)(dτ) du

=

∫ t−h

0

φD(t− h− τ,∞)W (dτ)−
∫ t

0

φD(t− τ,∞)W (dτ)

+

∫ t

t−h
φD(t− τ,∞)W (dτ),

where W (dτ) =
∫∞

0
PD(u)(dτ) du is the occupation measure. In view of [18, Corollary

6.2] we have
∫ u

0
φD(u− τ,∞)W (dτ) = 1 for any u > 0 and hence we get as h ↓ 0

|Ih| ≤
∫ t

t−h
φD(t− τ,∞)W (dτ)→ 0.
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Similarly, we get as h ↓ 0

|Jh| ≤
∫ ∞
u=0

∫ t

τ=t−h
φ
(
R, (t− τ,∞)

)
P(A(u),D(u))(R, dτ) du

=

∫ ∞
u=0

∫ t

τ=t−h
φD(t− τ,∞)PD(u)(dτ) du =

∫ t

t−h
φD(t− τ,∞)W (dτ)→ 0

which concludes the proof. �

Proof of Theorem 4.1. Lemma 4.7 shows that ρt(dy) is right-continuous with FLT

(4.15)
1

s

ψ(k, s)− ψA(k)

ψ(k, s)
.

Theorem 3.1 shows that B̃(c)S(N(ct)+1) converges in J1 to A(E(t)), and Lemma 4.3
shows that the FLT of B̃(c)S(N(ct)+1) converges to the same limit (4.15). Note that
J1 convergence implies convergence in distribution on the set of all points of stochastic
continuity of the limit process, e.g. see [39, p. 44]. Moreover, all but countably many
points of a càdlàg process are points of stochastic continuity, e.g. see [39, Lemma
1.6.2]. Then

PB̃(c)S(N(ct)+1)(dx)⇒ PA(E(t))(dx)

as c → ∞ for all but countably many t > 0. Then the continuity theorem for the
Fourier transform yields

P̂B̃(c)S(N(ct)+1)(k)→ P̂A(E(t))(k)

as c→∞ for all k ∈ R, for dt-almost every t > 0. Then we have for each k ∈ R that∫ ∞
0

e−stP̂B̃(c)S(N(ct)+1)(k) dt→
∫ ∞

0

e−stP̂A(E(t))(k) dt

as c→∞, and this together with (4.8) shows that the FLT of A(E(t)) equals (4.15).
Since A(t) is càdlàg and E(t) is continuous and nondecreasing, A(E(t)) is a càdlàg pro-
cess. Then it is right-continuous almost surely, and hence it is also right-continuous in
distribution. Then Lemma 4.5 implies that ρt(dy) equals the distribution of A(E(t)),
which finishes the proof of (a). Part (b) follows from [28, Theorem 3.6] and Remark
3.6. The arguments are similar. �

To conclude this section, we now identify the governing equation of the OCTRW
limit, and contrast with the CTRW. Suppose that the OCTRW limit process A(E(t))
in (3.3) has a Lebesgue density a(x, t), and recall from Section 2 that ψ(k, s)ā(k, s) is
the FLT of ψ(i∂x, ∂t)a(x, t). Then it follows from Theorem 4.1 and Lemma 4.6 that

ā(k, s) =
1

s

ψ(k, s)− ψA(k)

ψ(k, s)
.

Rewrite in the form

ψ(k, s)ā(k, s) =
ψ(k, s)− ψA(k)

s
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and invert the FLT using Lemmma 4.6 to see that

(4.16) ψ(i∂x, ∂t)a(x, t) = φ(dx, (t,∞))

is the governing equation of the OCTRW limit. If the CTRW limit process A(E(t)−)
in (3.4) has a Lebesgue density c(x, t), then it follows from [28, Eq. (4.5)] and Remark
3.6 that

(4.17) ψ(i∂x, ∂t)c(x, t) = δ(x)φD(t,∞)

with a different boundary condition on the right-hand side.
In order to avoid distributions in the boundary condition, one can impose a smooth

initial condition as in [1]. Suppose that X0 is a random variable with C∞ density
p(x), independent of {(A(t), D(t))}, that represents the particle position at time t = 0.
Then A(E(t)) + X0 has a density a(x, t) =

∫
p(x − y)ρt(dy) with Fourier transform

â(k, t) = ρ̂t(k)p̂(k) and FLT

(4.18) ā(k, s) =
s−1[ψ(k, s)− ψA(k)]p̂(k)

ψ(k, s)
.

Lemma 4.6 shows that the Fourier transform q̂(k, t) =
∫
eikxφ(dx, (t,∞)) exists for

all t > 0, and that the Laplace transform of q̂(k, t) is given by (4.13). It follows easily
that the FLT of

∫
p(x−y)φ(dy, (t,∞)) is given by the numerator in (4.18). Inverting

the FLT in (4.18) reveals the governing equation

(4.19) ψ(i∂x, ∂t)a(x, t) =

∫
p(x− y)φ(dy, (t,∞)).

Using the same smooth initial condition for the CTRW limit is equivalent to replacing
δ(x) by p(x) in (4.17).

5. Examples

In this section we provide some concrete examples of OCTRW convergence, and
we compute the governing equation of the limit process.

Example 5.1. If Yn and Jn are independent, then so are the limit processes A(t) and
D(t). The FL-symbol ψ(k, s) = ψA(k) + ψD(s) and φ(dx, (t,∞)) = ε0(dx)φD(t,∞)
where ε0 is the point mass at zero. Suppose that the stable Lévy motion A(t) is
totally positively skewed with Fourier symbol ψA(k) = b(−ik)α for some 0 < α ≤
2, α 6= 1. Suppose that Jn belongs to the domain of attraction of a standard β-stable
subordinator D with Laplace symbol

(5.1) ψD(s) = sβ =

∫ ∞
0

(
1− e−su

)
φD(du).

A calculation similar to [24, Lemma 7.3.7] shows that

(5.2) φD(t,∞) =
t−β

Γ(1− β)
.
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Since δ(x) = ε0(dx), the OCTRW limit governing equation (4.16) reduces to

(5.3) ∂βt a1(x, t) = −b∂αxa1(x, t) + δ(x)
t−β

Γ(1− β)

where b > 0 if 0 < α < 1 and b < 0 for 1 < α ≤ 2. In this case, the CTRW limit
equation (4.17) reduces to the same form, so that the OCTRW limit and the CTRW
limit have the same governing equation. Since ψ(k, s) = ψA(k)+ψD(s), it follows from
Theorem 4.1 that A(E(t)) and A(E(t)−) have the same FLT in this case. The proof
of [28, Theorem 3.6] shows that the limiting CTRW distribution ηt(dx) in (4.3) is also
right-continuous. Then it follows from Lemma 4.5 that ηt(dx) = ρt(dx). Theorem
4.1 shows that the FLT of A(E(t)) and A(E(t)−) are equal if and only if A and D
are independent. Hence this is the only case in which the OCTRW and CTRW have
the same limit, which shows that (3.2) is equivalent to assuming independence of A
and D.

Corollary 3.4 shows that the uncoupled limit process is self-similar with index β/α.
In this case, self-similarity also follows directly by a simple conditioning argument,
since the stable Lévy motion A(t) is self-similar with index 1/α, and E(t) is self-
similar with index β by [26, Proposition 3.1]. Equation (5.3) is called the space-time
fractional diffusion equation. It has been used frequently in physics, finance, and
hydrology to model anomalous diffusion [4, 5, 30, 31, 34, 35]. The underlying CTRW
model explains the meaning of the fractional derivatives. A fractional derivative in
space with index α < 2 models long particle jumps, while a fractional derivative in
time models long resting periods between movements.

Finally we note that for non-random jumps Yn = 1 we get A(t) = t and hence
the CTRW limit is the hitting time E(t). Its FLT is sβ−1/(sβ − ik) and its densities
c1(x, t) solve

∂βt c1(x, t) = −∂xc1(x, t) + δ(x)
t−β

Γ(1− β)
.

In fact one can write c1(x, t) in terms of Mittag-Leffler functions [8, 9], which leads
to a useful solution method for time-fractional equations [22, 29].

The remaining examples are coupled, i.e., A,D in (2.4) are dependent random
variables. A general construction in [3] yields all possible coupled limit distributions.
Suppose that Jn are iid with D, a standard β-stable subordinator with Lévy measure
(5.2). For any probability measure ω on R and any p > β/2, suppose that the
conditional distribution of Yn given Jn = t is tpω. Then [3, Theorem 2.2] shows that
(2.4) holds, the Lévy measure of (A,D) is

(5.4) φ(dy, dt) = tpω(dy)φD(dt),

and furthermore, every possible non-normal coupled limit has a Lévy measure of this
form. In this case, A is stable with index α = β/p.



ORACLE CONTINUOUS TIME RANDOM WALKS 21

Example 5.2. Next we consider the completely coupled case Yn = Jn as in Kotulski
[20]. Suppose that Jn are iid with D, a standard β-stable subordinator. From (5.4)
with p = 1 and ω = ε1, we see that the Lévy measure (jump intensity)

(5.5) φ(dy, dt) = εt(dy)φD(dt)

of (A,D) is concentrated on the line y = t. Zolotarev [44, Lemma 2.2.1] shows that
E[eikD] has a unique analytic extension to the complex plane with a branch cut along
the ray arg(k) = −3π/4, hence ψA(k) = ψD(−ik). Then an easy computation using
(5.1) shows that ψ(k, s) = (s−ik)β where b = 0, σ2 = 0, and a = −

∫
t(1+t2)−1φD(dt)

in (2.8). Since A = D the joint distribution of (A(s), D(s)) is given by

(5.6) P(A(s),D(s))(dx, du) = εu(dx)PD(s)(du).

Theorem 4.1 (b) shows that the CTRW limit A(E(t)−) = D(E(t)−) in (3.4) has FLT

(5.7)

∫ ∞
0

e−stη̂t(k) dt =
1

s

ψD(s)

ψ(k, s)
=

sβ−1

(s− ik)β
.

Following [3, Example 5.4] we can invert the FLT in (5.7) to see that the CTRW limit
distribution ηt(dx) has a Lebesgue density

(5.8) c2(x, t) =
xβ−1(t− x)−β

Γ(β)Γ(1− β)
, 0 < x < t

that solves the coupled governing equation (4.17), which can be written in this case
as (

∂t + ∂x
)β
c(x, t) = δ(x)

t−β

Γ(1− β)

with a coupled space-time fractional derivative operator on the left-hand side. Some
properties of these operators are studied in [2].

Next we show that (5.8) also follows from the general formula (4.3) for the CTRW
limit distribution ηt(dx): First note that the support of ηt(dx) is contained in [0,∞)
in this case. For z > 0, using (5.6), we get using Fubini

ηt([0, z]) =

∫ ∞
0

∫ t

0

∫ z

0

φD(t− u,∞)εu(dx)PD(s)(du) ds

=

∫ ∞
0

∫ t

0

1[0,z](u)φD(t− u,∞)PD(s)(du) ds.

(5.9)

Hence, if z ≥ t then

(5.10) ηt([0, z]) =

∫ ∞
0

∫ t

0

φD(t− u,∞)PD(s)(du) ds = 1

since the inner integral on the left-hand side of (5.10) is the probability distribution
of the hitting time process E(t), see [28, Theorem 3.1]. Let gβ denote the density of
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D. Then

(5.11) PD(s)(du) = s−1/βgβ(s−1/βu)du.

Moreover, in view of (5.2) we have

(5.12) φD(t− u,∞) =
1

Γ(1− β)
(t− u)−β.

Hence, if z < t then (5.9) reduces to

ηt([0, z]) =
1

Γ(1− β)

∫ ∞
0

∫ z

0

(t− u)−βs−1/βgβ(s−1/βu) du ds

=
1

Γ(1− β)

∫ z

0

(t− u)−β
∫ ∞

0

s−1/βgβ(s−1/βu) ds du

and therefore the density of ηt, supported on (0, t), is given by

(5.13) c2(x, t) =
1

Γ(1− β)
(t− x)−β

∫ ∞
0

s−1/βgβ(s−1/βx) ds.

A simple change of variable yields

(5.14)

∫ ∞
0

s−1/βgβ(s−1/βx) ds = βxβ−1

∫ ∞
0

y−βgβ(y) dy = Kβxβ−1

with

(5.15) K =

∫ ∞
0

y−βgβ(y) dy.

Then (5.13) reduces to a beta density

(5.16) c2(x, t) =
Kβ

Γ(1− β)
(t− x)−βxβ−1 , 0 < x < t

which implies that

(5.17) K =
1

βΓ(β)
.

Hence (5.16) agrees with (5.8).
The OCTRW limit A(E(t)) = D(E(t)) in (3.3) has distribution ρt(dx) with FLT

(5.18)

∫ ∞
0

e−stρ̂t(k) dt =
1

s

ψ(k, s)− ψA(k)

ψ(k, s)
=

1

s

(s− ik)β − (−ik)β

(s− ik)β

which comes from substituting ψA(k) = (−ik)β and ψ(k, s) = (s − ik)β into (4.2).
Now we will use (4.1) to compute the density of ρt in this case. Observe first that
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the support of ρt is contained in [0,∞). In view of (5.6) and Fubini we get for z > 0

ρt([0, z]) =

∫ ∞
0

∫ t

0

∫
R
φ([0, z − x], (t− τ,∞))ετ (dx)PD(s)(dτ) ds

=

∫ ∞
0

∫ t

0

φ([0, z − τ ], (t− τ,∞))PD(s)(dτ) ds.

(5.19)

Using (5.5) we compute

φ([0, z − τ ], (t− τ,∞)) =

∫ ∞
t−τ

∫ ∞
0

1[0,z−τ ](y)εu(dy)φD(du)

=

∫ ∞
t−τ

1[0,z−τ ](u)φD(du).

(5.20)

Hence φ([0, z− τ ], (t− τ,∞)) = 0 if z ≤ t and therefore supp(ρt) ⊂ [t,∞). Moreover,
if z > t we get from (5.20) using (5.2) that

(5.21) φ([0, z − τ ], (t− τ,∞) =

∫ z−τ

t−τ
φD(du) =

1

Γ(1− β)

[
(t− τ)−β − (z − τ)−β

]
.

Using (5.21) and (5.11), we get in (5.19) for z > t that

ρt([0, z]) =
1

Γ(1− β)

∫ ∞
0

∫ t

0

[
(t− τ)−β − (z − τ)−β

]
s−1/βgβ(s−1/βτ) dτ ds

so the density of the OCTRW limit distribution ρt for x > t is given by

a2(x, t) =
β

Γ(1− β)

∫ ∞
0

∫ t

0

(x− τ)−β−1s−1/βgβ(s−1/βτ) dτ ds

=
β

Γ(1− β)

∫ t

0

(x− τ)−β−1

∫ ∞
0

s−1/βgβ(s−1/βτ) ds dτ

=
β

Γ(β)Γ(1− β)

∫ t

0

(x− τ)−β−1τβ−1 dτ

(5.22)

using (5.14) and (5.17). A change of variables r = τ/(x− τ) yields

a2(x, t) =
β

Γ(β)Γ(1− β)

∫ t

0

(
τ

x− τ

)β−1
1

(x− τ)2
dτ

=
x−1β

Γ(β)Γ(1− β)

∫ t/(x−t)

0

rβ−1 dr

=
x−1

Γ(β)Γ(1− β)

(
t

x− t

)β
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for x > t. It is easy to see that
∫∞
t
a2(x, t) dx = 1 and hence

(5.23) a2(x, t) =
x−1

Γ(β)Γ(1− β)

(
t

x− t

)β
, x > t

is the density of ρt in this special case. This OCTRW limit density solves the governing
equation (4.16), which can be written in this case as

(5.24)
(
∂t + ∂x

)β
a2(x, t) =

1

Γ(1− β)

∫ ∞
t

εu(dx)βu−β−1 du

using (5.2) and (5.5).
Observe that from (5.23) we have

a2(x, t) ∼
tβ

Γ(β)Γ(1− β)
x−1−β as x→∞

so that the distribution ρt of A(E(t)) belongs to the domain of normal attraction of
a β-stable random variable. Then it follows from [23, Theorem 1] that E(|A(E(t))|ρ)
exists for 0 < ρ < β and diverges for ρ ≥ β.

Both the CTRW limit and the OCTRW limit in this example are related to the
generalized arc sine distributions. Formula (5.8) is the density of tB, and (5.23) is
the density of t/B, where B has a beta distribution with parameters β and 1− β. In
this example, we have B(c) = b(c) in (2.5) so that B̃(c) = 1/c in Theorem 3.1. Then
we have c−1S(N(ct)) ⇒ tB and c−1S(N(ct) + 1) ⇒ t/B as c → ∞. Specializing to
t = 1 it follows that

c− S(N(c))

c
⇒ 1− B and

S(N(c) + 1)− c
c

⇒ 1

B
− 1

which agrees with the results in Feller [14, Theorem XIV.3] once we note that
Γ(β)Γ(1 − β) = π/ sin(πβ). Hence our approach provides a different proof of the
classical results on the generalized arc sine distribution for residual waiting time and
spent waiting time. Our approach can also be used to simplify parts of the proof of
Theorems 2–4 in Dynkin [11].

Since A(t) = D(t) in this case, the CTRW limit A(E(t)−) is the value of the
subordinator D(t) at the instant before the first passage time E(t) at which it exceeds
t. It has a beta density (5.16) supported on 0 < x < t, which agrees with the result
in Bertoin [7, p. 82]. On the other hand, the OCTRW limit A(E(t)) is the value
of the subordinator D(t) at the first passage time E(t). The form of its density
(5.23) can also be computed from [18, Lemma 6.1]. Here we have a sharp contrast
P [A(E(t)) > t] = 1 and P [A(E(t)−) < t] = 1, which agrees with [7, III, Theorem 4].
The random variable A(E(t))− t in this case is sometimes called the overshoot.

Example 5.3. Suppose D is a stable subordinator with E(e−sD) = e−s
β
, and the

conditional distribution of Y given D = t is normal with mean zero and variance 2t,
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as in Shlesinger, Klafter and Wong [37]. Then

E(eikY ) = E(E(eikY |D)) = E(e−k
2D) = e−|k|

2β

so that Y is symmetric stable with index α = 2β. If we take (Yn, Jn) iid with (Y,D),
then (2.4) holds, and it follows from (5.4) that the operator stable limit (A,D) has
Lévy measure

(5.25) φ(dx, dt) = t1/2ω(dx)φD(dt)

where ω is a normal distribution with mean zero and variance 2. Take a = b = σ2 = 0
in (2.8) to see that

ψ(k, s) =

∫ ∞
0

∫ ∞
−∞

(
1− eikxe−st +

ikx

1 + x2

)
1√
4πt

exp

(
−x

2

4t

)
dxφD(dt)

=

∫ ∞
0

(
1− e−t(s+k2)

)
φD(dt) = (s+ k2)β

using (5.1). The CTRW limit has FLT

(5.26)

∫ ∞
0

e−stP̂A(E(t)−)(k) dt =
sβ−1

(s+ k2)β
.

Inverting the FLT as in [3, Example 5.2] shows that the CTRW limit A(E(t)−) has
Lebesgue density

(5.27) c3(x, t) =

∫ t

0

n0,2u(x)
uβ−1

Γ(β)

(t− u)−β

Γ(1− β)
du

where n0,2t is the density of a normal law with mean zero and variance 2t. This
density solves the governing equation

(5.28)
(
∂t − ∂2

x

)β
c3(x, t) = δ(x)

t−β

Γ(1− β)
.

A comparison with (5.8) shows that

(5.29) c3(x, t) =

∫ t

0

n0,2u(x)c2(u, t) du

so that the CTRW limit in this case is a variance mixture of a normal density with
respect to the CTRW limit density from the completely coupled case of Example 5.2.

The OCTRW limit A(E(t)) in (3.3) has distribution ρt(dx) with FLT∫ ∞
0

e−stρ̂t(k) dt =
1

s

(s+ k2)β − |k|2β

(s+ k2)β
.

Now we will compute the density of ρt. The Lévy measure of (A,D) is given by (5.25)
and the density of (A,D) is given by

p(z, u) = n0,2u(z)gβ(u)
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where gβ is the density of D. Since (A,D) is operator-stable with exponent
diag(1/(2β), 1/β), the density of (A(s), D(s)) reads

(5.30) ps(z, u) = s−3/(2β)p(s−1/(2β)z, s−1/βu) = s−1/βn0,2u(z)gβ(s−1/βu).

Using (5.25) we get

φ((−∞, z − x], (t− τ,∞)) =
1

Γ(1− β)

∫ ∞
t−τ

∫ z−x

−∞
n0,2u(v) dv βu−β−1 du.

Observe that

(5.31)
∂

∂z
φ((−∞, z − x], (t− τ,∞)) =

1

Γ(1− β)

∫ ∞
t−τ

n0,2u(z − x)βu−β−1 du.

In view of (4.1) we have for all z ∈ R

ρt(−∞, z] =

∫ ∞
0

∫
R

∫ t

0

φ((−∞, z − x], (t− τ,∞))P(A(s),D(s))(dx, dτ) ds

=

∫ ∞
0

∫ t

0

∫
R
φ((−∞, z − x], (t− τ,∞))ps(x, τ) dx dτ ds.

Using (5.30) and (5.31), the density of ρt in this example is

a3(z, t) =

∫ ∞
0

∫ t

0

∫
R

∂

∂z
φ((−∞, z − x], (t− τ,∞))ps(x, τ) dx dτ ds

=
1

Γ(1− β)

∫ ∞
s=0

∫ t

τ=0

∫
x∈R

∫ ∞
u=t−τ

n0,2u(z − x)βu−β−1 du s−1/βn0,2τ (x)gβ(s−1/βτ) dx dτ ds

=
1

Γ(1− β)

∫ ∞
s=0

∫ t

τ=0

∫ ∞
u=t−τ

n0,2u ∗ n0,2τ (z)βu−β−1 du gβ(s−1/βτ) dτ s−1/β ds

=
1

Γ(1− β)

∫ ∞
s=0

∫ t

τ=0

∫ ∞
u=t−τ

n0,2(u+τ)(z)βu−β−1 du gβ(s−1/βτ) dτ s−1/β ds

=
1

Γ(1− β)

∫ t

τ=0

∫ ∞
u=t−τ

n0,2(u+τ)(z)βu−β−1 du

∫ ∞
0

s−1/βgβ(s−1/βτ) ds dτ

=
β

Γ(β)Γ(1− β)

∫ t

τ=0

∫ ∞
u=t−τ

n0,2(u+τ)(z)u−β−1 du τβ−1 dτ

using (5.14), (5.15) and (5.17). A simple change of variables gives the OCTRW limit
density

a3(x, t) =
β

Γ(β)Γ(1− β)

∫ t

τ=0

∫ ∞
s=t

n0,2s(x)(s− τ)−β−1 ds τβ−1 dτ

=
β

Γ(β)Γ(1− β)

∫ ∞
t

n0,2s(x)

∫ t

0

(s− τ)−β−1τβ−1 dτ ds.
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A comparison with (5.22) shows that

(5.32) a3(x, t) =

∫ ∞
t

n0,2s(x)a2(s, t) ds

a variance mixture of a normal density with respect to the OCTRW limit density
of Example 5.2, analogous with (5.29). The OCTRW limit density of this example
solves the governing equation (4.16), which now reads

(5.33)
(
∂t − ∂2

x

)β
a3(x, t) =

1

Γ(1− β)

∫ ∞
t

n0,2u(x) dx βu−β−1 du.

The tail behavior of the CTRW limit and the OCTRW limit are very different in
this example. The CTRW limit A(E(t)−) has second moment

∫ ∞
−∞

x2c3(x, t) dx =

∫ ∞
−∞

x2

∫ t

0

n0,2s(x)c2(s, t) ds dx

=

∫ t

0

∫ ∞
−∞

x2n0,2s(x) dx c2(s, t) ds

= 2

∫ t

0

s c2(s, t) ds <∞,

since the beta density c2(x, t) has finite support on x ∈ (0, t), and thus has a finite
first moment. Hence A(E(t)−) has finite variance, so it belongs to the domain of
attraction of a normal law. However, the tail of the OCTRW limit is heavier.

The OCTRW limit A(E(t)) has tail probability

P{|A(E(t))| > z} = 2

∫ ∞
z

a3(x, t) dx = 2

∫ ∞
z

∫ ∞
t

n0,2s(x) a2(s, t) ds dx

=
2tβ

Γ(β)Γ(1− β)

∫ ∞
z

∫ ∞
t

1

s(s− t)β
n0,2s(x) ds dx

=
tβ√

π Γ(β)Γ(1− β)

∫ ∞
z

∫ ∞
t

1

s3/2(s− t)β
e−x

2/(4s) ds dx.
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Now a change of variables u = x2/(4s) with du/ds = −x2/(4s2) = −u/s gives

P{|A(E(t))| > z} =
tβ√

π Γ(β)Γ(1− β)

∫ ∞
z

∫ x2/(4t)

0

1

u
(
x2

4u

)1/2 (x2

4u
− t
)β e−u du dx

=
2(4t)β√

π Γ(β)Γ(1− β)

∫ ∞
z

1

x

∫ x2/(4t)

0

uβ−1/2e−u
1

(x2 − 4ut)β
du dx

=
2(4t)β√

π Γ(β)Γ(1− β)

∫ ∞
0

uβ−1/2e−u
∫ ∞

max(
√

4ut,z)

1

x(x2 − 4ut)β
dx du

= z−2β · Cβ
∫ ∞

0

uβ−1/2e−u hz(u) du,

where

Cβ =
2(4t)β√

π Γ(β)Γ(1− β)
and hz(u) =

∫ ∞
max(

√
4ut,z)

z2β

x(x2 − 4ut)β
dx.

A further change of variables y = x2 with dy/dx = 2x gives

hz(u) =
z2β

2

∫ ∞
max(4ut,z2)

y−β−1

(
y

y − 4ut

)β
dy.

For fixed u > 0 and ε > 0 choose z0 >
√

4ut so large that for any y > z2
0 we get

1 ≤
(

y

y − 4ut

)β
≤ 1 + ε.

Then for z ≥ z0 we have

1

2β
=
z2β

2

∫ ∞
z2

y−β−1 dy ≤ hz(u) ≤ (1 + ε)
z2β

2

∫ ∞
z2

y−β−1 dy =
1 + ε

2β
.

Since ε > 0 is arbitrary, for any u > 0 we have hz(u) → 1/(2β) as z → ∞. Further-
more, for any u > 0 the mapping z 7→ hz(u) is continuous and obviously increasing
on the interval (0,

√
4ut). For z >

√
4ut we have

d

dz
hz(u) = 2βz2β−1

∫ ∞
z

1

x(x2 − 4ut)β
dx− z2β 1

z(z2 − 4ut)β

= z2β−1

(∫ ∞
z

2β

x(x2 − 4ut)β
dx− 1

(z2 − 4ut)β

)
= z2β−1

(∫ ∞
z2

β

y(y − 4ut)β
dy − 1

(z2 − 4ut)β

)
< z2β−1

(∫ ∞
z2

β

(y − 4ut)β+1
dy − 1

(z2 − 4ut)β

)
= 0
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which shows that z 7→ hz(u) is decreasing on the interval (
√

4ut,∞). Hence

sup
z>0

hz(u) = (4ut)β
∫ ∞
√

4ut

1

x(x2 − 4ut)β
dx

= (4ut)β
(∫ 8ut

4ut

1

2y(y − 4ut)β
dy +

∫ ∞
8ut

1

2y(y − 4ut)β
dy

)
≤ (4ut)β−1

∫ 8ut

4ut

1

2(y − 4ut)β
dy + (4ut)β

∫ ∞
8ut

1

2(y − 4ut)β+1
dy

= (4ut)β−1 1

2(1− β)(4ut)β−1
+ (4ut)β

1

2β(4ut)β
=

1

2β(1− β)

independent of u > 0. Since
∫∞

0
uβ−1/2e−u du = Γ(β+1/2), by dominated convergence

we get ∫ ∞
0

uβ−1/2e−u hz(u) du→ Γ(β + 1/2)

2β
as z →∞.

Altogether we have P{|A(E(t))| > z} = z−2βL(z) with L(z) → CβΓ(β + 1/2)/(2β)
as z →∞, which shows that A(E(t)) belongs to the domain of normal attraction of
a 2β-stable distribution. Then E(|A(E(t))|ρ) exists for 0 < ρ < 2β and diverges for
ρ > 2β [14, XVII.5]. In particular, the second moment of A(E(t)) is infinite, while
the second moment of A(E(t)−) is finite.

Corollary 3.4 shows that both A(E(t)) and A(E(t)−) are self-similar with scaling
index β/α = 1/2, hence this example provides two alternative coupled models for
anomalous diffusion, that spread at the same rate as a Brownian motion.

Example 5.4. Suppose D is a stable subordinator with E(e−sD) = e−s
β
, and the

conditional distribution of Y given D = t is symmetric stable with distribution ωt

where ω has Fourier symbol b|k|γ for some b > 0 and 0 < γ ≤ 2. Note that the special
case γ = 2, b = 1 was considered in Example 5.3. Then

E(e−sD+ikY ) = E(E(e−sD+ikY |D)) = E(e−sD−Db|k|
γ

) = e−(s+b|k|γ)β

so that Y is symmetric stable with index α = γβ. If we take (Yn, Jn) iid with (Y,D)
then (2.4) holds, and it follows from (5.4) that the operator stable limit (A,D) has
Lévy measure φ(dx, dt) = t1/γω(dx)φD(dt). The CTRW limit has FLT

(5.34) c̄4(k, s) =
sβ−1

(s+ b|k|γ)β
.

Inverting the Laplace transform gives

ĉ4(k, t) =

∫ t

0

e−ub|k|
γ uβ−1

Γ(β)

(t− u)−β

Γ(1− β)
du,
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where we have used the formulas Ltq−1 = s−q/Γ(q) for q > 0, L[e−tcg(t)] = L(g)(s+c),
and L(f ∗ g)(t) = Lf(s)Lg(s). Finally we invert the Fourier transform to get

(5.35) c4(x, t) =

∫ t

0

fu(x)
uβ−1

Γ(β)

(t− u)−β

Γ(1− β)
du

where fu(x) is the density of ωu. This density solves the governing equation

(5.36)
(
∂t − b∂γ|x|

)β
c4(x, t) = δ(x)

t−β

Γ(1− β)

where ∂γ|x|f(x) is the inverse Fourier transform of −|k|γ f̂(k), also called the Riesz

fractional derivative. A comparison with (5.8) shows that

(5.37) c4(x, t) =

∫ t

0

fu(x)c2(u, t) du

so that the CTRW limit in this case is a scale mixture of a symmetric stable density
with respect to the CTRW limit density from the completely coupled case of Example
5.2.

The OCTRW limit A(E(t)) in (3.3) has distribution ρt(dx) with FLT∫ ∞
0

e−stρ̂t(k) dt =
1

s

(s+ b|k|γ)β − b|k|γβ

(s+ b|k|γ)β
.

It follows from the scaling property fcu(x) = c−1/γfu(c
−1/γx) that (A(s), D(s)) has

density

(5.38) ps(z, u) = s−1/αs−1/βp(s−1/αz, s−1/βu) = s−1/βfu(z)gβ(s−1/βu),

and then an argument quite similar to Example 5.3 shows that the density of ρt in
this example is

(5.39) a4(x, t) =

∫ ∞
t

fs(x)a2(s, t) ds

a scale mixture of a symmetric stable density with respect to the OCTRW limit
density of Example 5.2, analogous with (5.37). The OCTRW limit density of this
example solves the governing equation (4.16), which now reads

(5.40)
(
∂t − b∂γ|x|

)β
a4(x, t) =

1

Γ(1− β)

∫ ∞
t

fu(x) dx βu−β−1 du.

As in Example 5.3, the tail behavior of the CTRW limit and the OCTRW limit are
quite different here. For the CTRW limit A(E(t)−), note that the density f of the
symmetric α-stable random variable A(1) fulfills f(x) ∼ C · x−α−1 for some C > 0 as
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x → ∞. Thus we get
∫∞
z
f(u) du = z−αL(z) with L(z) → C/α as z → ∞. Make a

change of variables u = s−1/αx to get

P{|A(E(t)−)| > z} = 2

∫ ∞
z

c4(x, t) dx = 2

∫ ∞
z

∫ t

0

fs(x) c2(s, t) ds dx

=
2

Γ(β)Γ(1− β)

∫ ∞
z

∫ t

0

s−1/αf(s−1/αx) (t− s)−βsβ−1 ds dx

=
2

Γ(β)Γ(1− β)

∫ t

0

∫ ∞
z

f(s−1/αx)s−1/α dx (t− s)−βsβ−1 ds

=
2

Γ(β)Γ(1− β)

∫ t

0

∫ ∞
s−1/α z

f(u) du (t− s)−βsβ−1 ds

=
2

Γ(β)Γ(1− β)

∫ t

0

(s−1/α z)−αL(s−1/α z) (t− s)−βsβ−1 ds

= z−α
2

Γ(β)Γ(1− β)

∫ t

0

(
s

t− s

)β
L(s−1/α z) ds,

Now for ε > 0 choose z0 sufficiently large such that for all z ≥ z0 we have

∣∣L(t−1/α z)− C
α

∣∣ < εK−1
β , where Kβ =

∫ t

0

(
s

t− s

)β
ds ∈ (0,∞).

Then for z ≥ z0 we get∣∣∣∣∣
∫ t

0

(
s

t− s

)β
L(s−1/α z) ds− C

α

∫ t

0

(
s

t− s

)β
ds

∣∣∣∣∣ < ε

which shows that

P{|A(E(t)−)| > z} ∼ z−α
2CKβ

αΓ(β)Γ(1− β)
.

Hence the CTRW limit A(E(t)−) belongs to the domain of normal attraction of an
α-stable random variable. However, the OCTRW limit A(E(t)) has a heavier tail.

Write

P{|A(E(t))| > z} = 2

∫ ∞
z

a4(x, t) dx = 2

∫ ∞
z

∫ ∞
t

fs(x) a2(s, t) ds dx

=
2tβ

Γ(β)Γ(1− β)

∫ ∞
z

∫ ∞
t

1

s(s− t)β
s−1/αf(s−1/αx) ds dx,
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where fs denotes the density of A(s)
d
= sαA(1) and f = f1. A change of variables

u = s−1/αx gives

P{|A(E(t))| > z} =
2tβα

Γ(β)Γ(1− β)

∫ ∞
z

∫ t−1/αx

0

1

x
((

x
u

)α − t)β f(u) du dx

=
2tβα

Γ(β)Γ(1− β)

∫ ∞
0

uαβf(u)

∫ ∞
max(t1/αu,z)

1

x (xα − tuα)β
dx du

= z−αβ · Cβ
∫ ∞

0

uαβf(u)hz(u) du,

where

Cβ =
2tβα

Γ(β)Γ(1− β)
and hz(u) =

∫ ∞
max(t1/αu,z)

zαβ

x (xα − tuα)β
dx.

Since A(1) has finite moments of any order less than α, we have
∫∞

0
uαβf(u) du <∞,

and then a dominated convergence argument similar to Example 5.3 yields∫ ∞
0

uαβf(u)hz(u) du→ 1

αβ

∫ ∞
0

uαβf(u) du =: Kαβ ∈ (0,∞).

Altogether we have P{|A(E(t))| > z} = z−αβL(z) with L(z) → CβKαβ as z →
∞, which shows that the OCTRW limit A(E(t)) belongs to the domain of normal
attraction of a stable distribution with index αβ < α, so it has a heavier tail than
the CTRW limit A(E(t)−).

Corollary 3.4 shows that both A(E(t)) and A(E(t)−) in this example are self-similar
with scaling index β/α = 1/γ > 1/2, so this example provides two alternative coupled
models for anomalous super-diffusion that spread faster than Brownian motion.

Example 5.5. Everything in Example 5.4 extends immediately to an arbitrary stable
distribution ω with symbol ap(−ik)γ + aq(ik)γ for γ 6= 1 where p, q are nonnegative
with p + q = 1 and a > 0 for 0 < γ < 1, a < 0 for 1 < γ ≤ 2. To connect back to
Example 5.4, note that ap(−ik)γ + aq(ik)γ = a cos(πγ/2)|k|γ when p = q = 1/2, so
that the sign of a must change at γ = 1 to keep b = a cos(πγ/2) > 0. Now (5.36) is
replaced by

(5.41)
(
∂t + ap∂γx + aq∂γ−x

)β
c5(x, t) = δ(x)

t−β

Γ(1− β)

and (5.40) is replaced by

(5.42)
(
∂t + ap∂γx + aq∂γ−x

)β
a5(x, t) =

1

Γ(1− β)

∫ ∞
t

fu(x) dx βu−β−1 du

where ∂γ−xh(x) is the inverse Fourier transform of (ik)γĥ(k), also called the negative
Riemann-Liouville fractional derivative. To illustrate, consider the 1/2-stable Lévy
density f(x) = (2

√
π)−1x−3/2e−1/(4x) for x > 0; see [44, p. 66]. The corresponding
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distribution ω has Fourier symbol (−ik)1/2 by [44, Theorem C.3], so we are in the
case a = p = 1 and γ = 1/2. It follows that for u > 0 and x > 0

fu(x) = u−2f(u−2x) =
u

x

1√
4πx

e−u
2/(4x) =

u

x
n0,2x(u)

is the density of ωu. Thus by (5.35) and (5.41) the CTRW limit density

c5(x, t) =
x−1

Γ(β)Γ(1− β)

∫ t

0

(
u

t− u

)β
n0,2x(u) du

for x > 0 solves the governing equation

(∂t + ∂1/2
x )βc5(x, t) = δ(x)

t−β

Γ(1− β)
.

By (5.23) and (5.39) the OCTRW limit density is

a5(x, t) =
x−1

Γ(β)Γ(1− β)

∫ ∞
t

n0,2x(u)

(
t

u− t

)β
du,

a density mixture of the normal distribution, in contrast to the variance mixture in
Example 5.3. Of course, this is also a scale mixture of the Lévy density.

As for the OCTRW governing equation, we first observe from integration by parts∫ ∞
t

fu(x)βu−β−1 du =
β

x

∫ ∞
t

u−βn0,2x(u) du

= 2β

∫ ∞
t

u−β−1 u

2x

1√
4πx

e−u
2/(4x) du

= 2βt−β−1n0,2x(t)− 2β(β + 1)

∫ ∞
t

u−β−2n0,2x(u) du

= 2β(β + 1)

∫ ∞
t

u−β−2
(
n0,2x(t)− n0,2x(u)

)
du.

By (5.42) the OCTRW density solves the governing equation

(∂t + ∂1/2
x )βa5(x, t) =

2β(β + 1)

Γ(1− β)

∫ ∞
t

u−β−2
(
n0,2x(t)− n0,2x(u)

)
dx du.

Example 5.6. Assume that X(t) is any Lévy process such that PX(t) = ωt for
some infinitely divisible law ω. Assume further that D(t) is a β-stable subordinator,

independent of X(t) with E[e−sD(1)] = e−s
β

as before. Define a triangular array with
iid rows such that

Y
(c)
i

d
= X(D(c−1)) and J

(c)
i

d
= D(c−1).

Then it is easy to see that

(S(c)(ct), T (c)(ct))⇒ (A(t), D(t))
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where A(t) = X(D(t)), which introduces the coupling we have in Examples 5.3–5.5.
Since X(t) and D(t) are independent, a simple conditioning argument yields

PA(E(t)−)(dx) =

∫ ∞
0

ωu(dx)PD(E(t)−)(du) =

∫ ∞
0

ωu(dx)c2(u, t) du

as well as

P(A(E(t))(dx) =

∫ ∞
0

ωu(dx)PD(E(t))(du) =

∫ ∞
0

ωu(dx)a2(u, t) du.

Both are scale mixtures with respect to the densities from Example 5.2. Let D =
D(1), A = A(1), and write E(eikX(t)) = e−tψ0(k). Then

E(e−sDeikA) = E(E(e−sDeikX(D)|D = t)) = E(e−sDe−Dψ0(k)) = e−(s+ψ0(k))β

so that ψ(k, s) = (s+ψ0(k))β in this case. If X(t) has a density fu(t), then A(E(t)−)
has a density

(5.43) c6(x, t) =

∫ t

0

fu(x)c2(u, t) du

that solves the coupled pseudo-differential equation

(5.44)
(
∂t + ψ0(i∂x)

)β
c6(x, t) = δ(x)

t−β

Γ(1− β)

while A(E(t)) has a density

(5.45) a6(x, t) =

∫ t

0

fu(x)a2(u, t) du

that solves the coupled pseudo-differential equation

(5.46)
(
∂t + ψ0(i∂x)

)β
c6(x, t) =

1

Γ(1− β)

∫ ∞
t

fu(x) dx βu−β−1 du.

If ω is stable with index γ, then this extends Examples 5.3, 5.4, and 5.5, and explains
the scale mixtures seen there. It also extends [3, Example 5.6] to the case where ω is
not symmetric.

If ω is not stable, then the limit in this example can only be obtained from a
triangular array, as discussed in Remark 3.6. To see this, note that (A(t), D(t)) =
Y (D(t)) where Y (t) = (X(t), t) is a Lévy process on R2. The distribution of Y (s)
is µs(dx, dt) = ωs(dx)εs(dt), and then it follows from Sato [33, Theorem 30.1] that
Y (D(t)) is infinitely divisible with Lévy measure

ωt(dx)φD(dt) =

∫ ∞
0

µs(dx, dt)φD(ds).

Unless ω is stable, then this does not reduce to the form (5.4), and then it follows
from [3, Theorem 2.2] that (A(t), D(t)) = Y (D(t)) cannot occur as the limit in (2.4)
for any space-time random walk.
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Example 5.7. Suppose D is a stable subordinator with E(e−sD) = e−s
β
, and the

conditional distribution of Y given D = t is ωt(dx) = 1
2
[εt(dx)+ε−t(dx)] as in [19, 21]

and [3, Example 5.4]. Then

E(eikY ) = E(E(eikY |D)) = 1
2
E(eikD + e−ikD) = 1

2
[e−(−ik)β + e−(ik)β ].

If we take (Yn, Jn) iid with (Y,D) then (2.4) holds, and it follows from (5.4) that the
operator stable limit (A,D) has Lévy measure

φ(dx, dt) = ωt(dx)φD(dt).

Take a = b = σ2 = 0 in (2.8) to see that

ψ(k, s) =

∫ ∞
0

∫ ∞
−∞

(
1− eikxe−st +

ikx

1 + x2

)
ωt(dx)φD(dt)

= 1
2

∫ ∞
0

(
1− e−(t−ik))φD(dt) + 1

2

∫ ∞
0

(
1− e−(t+ik)

)
φD(dt)

= 1
2
[(s− ik)β + (s+ ik)β]

using (5.1). Then

ψA(k) = ψ(k, 0) = 1
2
[(−ik)β + (ik)β] = |k|β cos(πβ/2)

so that Y is symmetric stable with index α = β. The CTRW limit has FLT

c̄7(k, s) =
2sβ−1

(s− ik)β + (s+ ik)β

and governing equation(
∂t + ∂x

)β
c7(x, t) +

(
∂t − ∂x

)β
c7(x, t) = δ(x)

2t−β

Γ(1− β)
.

The OCTRW limit A(E(t)) in (3.3) has FLT

ā7(k, s) =
1

s

(s− ik)β + (s+ ik)β − 2|k|β cos(πβ/2)

(s− ik)β + (s+ ik)β

and governing equation(
∂t + ∂x

)β
a7(x, t) +

(
∂t − ∂x

)β
a7(x, t) =

β

2Γ(1− β)

∫ ∞
t

[εt(dx) + ε−t(dx)]t−β−1 dt.

Computing the density is much harder in this example because ωt is not infinitely
divisible.

Example 5.8. Our last example is taken from Jurlewicz [16, 17]. Suppose that Yn and
Jn are independent as in Example 5.1, so that c−1/αS(ct)⇒ A(t), c−1/βT (ct)⇒ D(t),
and c−βN(ct) ⇒ E(t). A coupling will be introduced by clustering the jumps. Let
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Mn denote iid cluster sizes, taking values in the nonnegative integers. Let C(n) =∑n
i=1Mi with C(0) = 0 and define

Y M
i =

∑
C(n−1)<i≤C(n)

Yi and JMi =
∑

C(n−1)<i≤C(n)

Ji.

Define the coupled CTRW XM(t) = SM(NM(t)) where NM(t) = max{n ≥ 0 :
TM(n) ≤ t}, and the coupled OCTRW ZM(t) = SM(NM(t)+1). Note that SM(n) =
S(C(n)) and TM(n) = T (C(n)). Let NM(t) = max{n ≥ 0 : C(n) ≤ t} and recall
that {N(t) ≥ m} = {T (m) ≤ t}. Then

NM(N(t)) = max{n ≥ 0 : C(n) ≤ N(t)} = max{n ≥ 0 : T (C(n)) ≤ t} = NM(t)

so that we can also write the clustered CTRW XM(t) = S(C(NM(N(t)))) and the
clustered OCTRW ZM(t) = S(C(NM(N(t)) + 1)). Suppose that (Mn) belongs to the
strict domain of attraction of some stable law with index 0 < η < 1. An argument
similar to Example 5.2 shows that

C(NM(rt))

r
⇒ tB and

C(NM(rt) + 1)

r
⇒ t

B
as r → ∞, where B has beta distribution with parameters η and 1 − η. Using a
transfer theorem from Dobrushin [10], Jurlewicz [16] shows that

C(NM(rβ r−βN(rt)))

rβ
⇒ BE(t) and

C(NM(N(rt)) + 1)

rβ
⇒ E(t)

B
and finally, another application of the transfer theorem yields

S(C(NM(N(rt))))

rβ/α
⇒ A(BE(t)) and

S(C(NM(N(rt)) + 1)

rβ/α
⇒ A(E(t)/B).

This argument uses the fact that Yn, Jn and Mn are independent, and then A(t),
B, and E(t) are independent in the limit. Although these limits involve a mixture
with respect to the generalized arc sine distributions, they do not fall under the
scheme of Example 5.6, because of the further subordination to E(t). Note that a
representation of the CTRW and OCTRW limits in this example via under- and over-
shooting subordinators has been proposed recently [42]. According to this result we
have

S(C(NM(N(rt))))

rβ/α
⇒ A(AM(EM(E(t))−))

and
S(C(NM(N(rt)) + 1)

rβ/α
⇒ A(AM(EM(E(t))))

where AM(EM(t)−) and AM(EM(t)) are the CTRW and OCTRW limits obtained in
Example 5.2 for a process with waiting times and jumps both equal to Mn. This repre-
sentation is consistent with the theses of Theorem 3.1. We are currently investigating
the governing equations for these interesting processes.
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