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Abstract

The continuity problem, i.e., the question whether effective maps between effectively
given topological spaces are effectively continuous, is reconsidered. In earlier work it was
shown that this is always the case, if the effective map also has a witness for noninclusion.
The extra condition does not have an obvious topological interpretation. As is shown
in the present paper, it appears naturally where in the classical proof that sequentailly
continuous maps are continuous the Axiom of Choice is used. The question is therefore
whether the witness condition appears in the general continuity theorem only for this
reason, i.e., whether effective operators are effectively sequentially continuous. For two
large classes of spaces covering all important applications it is shown that this is indeed
the case. The general question, however, remains open.

1 Introduction

Computations are usually required to end in finite time. Because of this only a finite amout
of information about the input can be used during a computation. Moreover, an output once
written on the output tape cannot be changed anymore: given more information about the
input, the machine can only extend what is already written on the output tape (Monotonic-
ity).

These properties not only hold for functions on the natural numbers, but also for the
computation of operators on such functions. A natural topology can be defined on such
spaces with respect to which computable operators turn out to be (effectively) continuous.

If one restricts one’s interest to functions which are computable and can therefore be
presented by the programs computing them (or their codings), there is another way of speci-
fying the computability of operators: an operator is effective if it is tracked by a computable
function on the code.

The continuity problem is the question whether effective operators are the restrictions
(to computable inputs) of (effectively) continuous operators. Obviously, both approaches
are rather unconnected. Nevertheless for certain important cases positive solutions were
presented: In the case of operators on the partial computable functions this is due to Myhill
and Shepherdson [14]; in the case of the total computable functions to Kreisel, Lacombe and
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Shoenfield [11]. In the first case the result has been generalised to certain types of directed-
complete partial orders with the Scott topology (cf. e.g. Egli and Constable [3]; Sciore and
Tang [17]; Weihrauch [28]), in the other to separable metric spaces (Ceitin [2]; Moschovakis
[13]). These two types of spaces are quite different, not only topologically: they also offer
different algorithmic techniques to use. As follows from an example by Friedberg [8], effective
operators are not continuous, in general.

The situation remained unclear for quite a while. In 1984 Spreen and Young [26] showed
that for second-countable topological T0 spaces effective maps are effectively continuous if
they have a witness for noninclusion. Later Spreen [20] showed that for quite a large class
of spaces this property is also necessary. It says that if the image of a basic open set under
the operator is not included in a given basic open sets in its co-domain, then one needs be
able to effectively produce a witness for this.

The condition seems natural when dealing with continuity. In the present note we will
give even more evidence for its canonicity. In classical topology it is well known that for
second-countable spaces sequentially continuous maps are continuous. The proof can be
transferred into a constructive framework. There is however one step in which the classical
proof uses the Axiom of Choice and the effective information needed here is exactly what is
provided by the witness for noninclusion condition.

So, the question comes up whether effective operators are effectively sequentially contin-
uous and the extra condtion is only needed for the step from effective sequential continuity
to effective continuity. We will show for a large class of spaces that effective operators are
effectively continuous. To this end we require the spaces to come equipped with a set of
canonical computable sequences which are such that sequences can be stretched by wait-
and-see strategies and the operator taking convergent sequences to their limits is effective.
In addition all basic open sets need be completely enumerable, uniformly in their index. All
conditions seem very natural, but as we will see, in particular the combination of wait-and-see
strategies with limit computations has a strong impact on the topology.

If we deal with spaces as the total computable functions or the computable real numbers,
then a metric is at hand which allows putting stronger conditions on the convergence of
sequences. These conditions are important in order to be able to render the limit operator
computable, however they are not compatible with wait-and-see strategies. Other algorith-
mic techniques like decision procedures are at hand instead. Also for spaces of this kind it
is shown that effective operators are effectively sequentially continuous. However, we have
not been able to present a uniform approach to the question whether effective operators are
effectively sequentially continuous as we did in the case of effective continuity. It is even
not clear whether this holds in general. A modification of Friedberg’s example shows that
effective operators are not sequentially continuous in general. But this still leaves open the
possibility that they are effecively sequentially continuous as we are dealing with computable
sequences only in this case.

As is well known, limits of point sequences in a T0 space are not uniquely determined.
In the joint paper [26] we had to make special assumption to handle this problem. Later,
in [20] we based our approach on filter convergence to get rid of it. In both cases we had
to assume that one can effectively pass from a computable enumeration of the sequence
elements and/or a filter base to the points they converge to. The relationship between both
conditions will be studied as well.

The paper is organized as follows: Section 2 contains basic definitions. In Section 3
notions and results from the theory of effective spaces are recalled. A new construction of
an acceptable numbering is given. Important special cases of such spaces are considered
in Section 4. The condition of a numbering having a limit algorithm and the existence of
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such numberings is dicussed in Section 5. In Section 6 the relationship between effective
continuity notions of different strength is investigated, in particular the relationship between
effective continuity and effective sequential continuity. Finally, in Section 7, the question of
when an effective map is effectively sequentially continuous is examined.

2 Basic definitions

In what follows, let 〈 , 〉 : ω2 → ω be a computable pairing function with corresponding
projections π1 and π2 such that πi(〈a1, a2〉) = ai. We extend the pairing function in the
usual way to an n-tupel encoding. The projection functions are then denoted by πni with
1 ≤ i ≤ n. Let P (n) (R(n)) denote the set of all n-ary partial (total) computable functions,
and let Wi be the domain of the ith partial computable function ϕi with respect to some
Gödel numbering ϕ. We let ϕi(a)↓ mean that the computation of ϕi(a) stops, ϕi(a)↓ ∈ C
that it stops with value in C, and ϕi(a)↓n that it stops within n steps. In the opposite cases
we write ϕi(a)↑ and ϕi(a)↑n respectively. Moreover, we write F : X ⇀ Y to mean that F is
a partial function from set X into set Y with domain dom(F ).

A (partial) numbering ν of a set S is a partial map ν : ω ⇀ S (onto). The value of ν at
n ∈ dom(ν) is denoted, by νn. If s ∈ S and n ∈ dom(ν) with νn = s, then n is said to be an
index of s. Numberings ν with dom(ν) = ω, are called total. Note that instead of numbering
we also say indexing.

Definition 2.1. Let ν, κ be numberings of set S.

1. ν ≤ κ, read ν is reducible to κ, if there is some function g ∈ P (1) with dom(ν) ⊆ dom(g),
g(dom(ν)) ⊆ dom(κ), and νm = κg(m), for all m ∈ dom(ν).

2. ν ≡ κ, read ν is equivalent to κ, if ν ≤ κ and κ ≤ ν.

A subset X of S is completely enumerable, if there is a computably enumerable set Wn

such that νi ∈ X if and only if i ∈ Wn, for all i ∈ dom(ν). Set Mn = X, for any such n
and X, and let Mn be undefined, otherwise. Then M is a numbering of the class CE of
completely enumerable subsets of S. If Wn is decidable, the X is called completely decidable.

X is enumerable, if there is a computably enumerable set A ⊆ dom(ν) such that X =
{ νi | i ∈ A }. Thus, X is enumerable if we can enumerate a subset of the index set of X which
contains at least one index for every element of X, whereas X is completely enumerable if
we can enumerate all indices of elements of X and perhaps some numbers which are not used
as indices by the numbering ν.

Definition 2.2. A map F : S → T between sets S and T with numberings ν and κ, respec-
tively, is effective, if there is a function f ∈ P (1) such that f(i)↓ ∈ dom(κ) and F (νi) = κf(i),
for all i ∈ dom(ν). Function f is said to track F and any Gödel number of f is called index
of F .

Note that the preimage of a completely enumerable set with respect to an effective map
is completely enumerable again.

A sequence (ya)a∈ω of elements of S is computable if there some function g ∈ R(1) with
range(g) ⊆ dom ν) so that ya = νg(a), for all a ∈ ω. Every Gödel number of g is called index
of (ya)a. Let ω be enumerated by its identity. Then the computable sequences in S are the
effective maps from ω to S.
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3 Effective spaces

Let T = (T, τ) be a countable topological T0 space with a countable basis B. As has been
demonstrated by the author in a series of papers [18, 19, 20, 21, 22, 23, 24, 25], topological
spaces of this kind are well suited for effectivity considerations.

Assume further that B is a total numbering of B. In the applications we have in mind
the basic open sets can be described in a finite way. The indexing B is then obtained by
an encoding of the finite descriptions. If we want to deal with the points and open sets of
space T in an effective way, the interplay between both should at least be such that we can
effectively list the points of each basic open set, uniformly in its index.

Definition 3.1. Let T = (T, τ) be a countable topological T0 space with countable basis
B, and let x and B be numberings of T and B , respectively, such that B is total. We say
that x is computable if there is some computably enumerable set L ⊆ ω such that for all
i ∈ dom(x) and all n ∈ ω,

〈i, n〉 ∈ L⇐⇒ xi ∈ Bn.

Thus, x is computable if and only if all basic open sets B, are completely enumerable,
uniformly in n.

As said, in the applications we have in mind basic open sets can be described in a
finite way and the indexing B is then obtained by an encoding of the finite descriptions.
Moreover, in these cases there is a canonical relation between the (code numbers of the)
finite descriptions which is stronger than the usual set inclusion between the described sets.
This relation is computable enumerable, which is not true for set inclusion, in general.

Definition 3.2. Let ≺B be a transitive binary relation on ω. We say that:

1. ≺B is a strong inclusion, if for all m,n ∈ ω, from m ≺B n it follows that Bm ⊆ Bn.

2. B is a strong basis, if ≺B is a strong inclusion and for all z ∈ T and m,n ∈ ω with
z ∈ Bm ∩Bn there is some a ∈ ω such that z ∈ Ba, a ≺B m and a ≺B n.

In what follows, we always assume that ≺B is a strong inclusion with respect to which
B is a strong basis.

Definition 3.3. Space T is effective, if the property of being a strong basis holds effectively,
which means that there exists a function sb ∈ P (3) such that for i ∈ dom(x) and m, n ∈ ω
with xi ∈ Bm ∩Bn, sb(i,m, n)↓, xi ∈ Bsb(i,m,n), sb(i,m, n) ≺B m, and sb(i,m, n) ≺B n.

As is well known, each point y of a T0 space is uniquely determined by its neighbourhood
filter N (y) and/or a base of it.

Definition 3.4. Let H be a filter. A nonempty subset F of H is called strong base of H if
the following two conditions hold:

1. For all m, n ∈ ω with Bm, Bn ∈ F there is some index a ∈ ω such that Ba ∈ F ,
a ≺B m, and a ≺B n.

2. For all m ∈ ω with Bm ∈ H there is some index a ∈ ω such that Ba ∈ F and a ≺B m.

If x is computable, a strong base of basic open sets can effectively be enumerated for
each neighbourhood filter. Here, we are interested in enumerations that proceed in a normed
way.
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Definition 3.5. An enumeration (Bf(a))a∈ω with f : ω → ω is said to be normed if f is
decreasing with respect to ≺B. If f is computable, it is also called computable and any Gödel
number of f is said to be an index of it.

In case (Bf(a))a enumerates a strong base of the neighbourhood filter of some point, we
say it converges to that point.

Lemma 3.6 ([20]). Let T be effective and x be computable. Then there is a function q ∈ R(1)

such that for each i ∈ dom(x), q(i) is an index of a normed computable enumeration of basic
open sets converging to xi.

We not only want be able to generate normed recursive enumerations of basic open sets
converging to a given point, but conversely, we need also be able to pass effectively from
such enumerations to the point they converge to.

Definition 3.7. Let x be a numbering of T . We say that:

1. x allows effective limit passing if there is a function pt ∈ P (1) such that, if m is an
index of a normed computable enumeration of basic open sets converging to some point
y ∈ T , then pt(m)↓ ∈ dom(x) and xpt(m) = y.

2. x is acceptable if it allows effective limit passing and is computable.

Any two acceptable numberings of T are m-equivalent [20]. We will now give an example
of an acceptable numbering that shall be used again later.

Proposition 3.8. Let T be such that ≺B is computably enumerable and the neighbourhood
filter of each point in T has an enumerable strong base of basic open sets. Then, T has an
acceptable numbering.

Proof. If {Bn | n ∈We } is a strong base of the neighbourhood filter of some point y ∈ T ,
set x̄e = y. Otherwise, let x̄ be undefined. Because of the assumption, x̄ is a numbering of
T . Let L = { 〈e, n〉 | n ∈We }. Then L is computably enumerable. Moreover, we have for
i ∈ dom(x̄) that

x̄i ∈ Bn ⇐⇒ (∃m ∈Wi)m ≺B n⇐⇒ (∃m)〈i,m〉 ∈ L ∧m ≺B n,

which shows that x̄ is computable.
Next, let m be an index of a normed computable enumeration of basic open sets con-

verging to some point y ∈ T . Then {Bn | n ∈ range(ϕm) } is a strong base of N (y). Hence,
y = xt(m), where t ∈ R(1) is such that Wt(a) = range(ϕa), showing that x̄ also allows effective
limit passing.

For basic open sets Bn, let

hl(Bn) =
⋂
{Ba | n ≺B a }.

Sometimes, when we need to choose certain elements in Bn, we may not be able to find them
in Bn, but then we want to find them as close to Bn as possible.

Let X be an subset of T . A typical situation in many proofs is that we need to show
for some basic open set Bn that Bn ⊆ X. We would try a proof by contradiction and
assume that Bn 6⊆ X. Then we would choose, uniformly in n and perhaps some index of
X, an element z ∈ Bn \ X and derive a contradiction. In a non-effective setting it is not
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worth talking about such situations. In an effective context, however, we have to effectively
find such a witness z. As we will see later, the situation occurs in particular in continuity
proofs. In this case X is the preimage of a basic open set B′n under a map F : T → T ′, where
T = (T ′, τ ′) is a further countable T0 space with countable basis B′ and a total indexing B′

of B′.

Definition 3.9. [[26, 20]] F has a witness for noninclusion, if there are functions s ∈ P (2)

and r ∈ P (3) such that for i ∈ dom(x) and e, n ∈ ω the following hold:

1. If F (xi) ∈ B′n, then s(i, n)↓ ∈ dom(M) and xi ∈Ms(i,n) ⊆ F−1(B′n).

2. If, in addition, Be 6⊆ F−1(B′n), then also r(i, e, n)↓ ∈ dom(x) with xr(i,e,n) ∈ hl(Be) \
Ms(i,n).

3. Moreover, for every index m of a computable normed enumeration of basic open sets
converging to xi, if Bϕm(e+1) 6⊆ F−1(B′n), then the sequence (ya)a with ya = xϕp(i,m)(a),
for a ≤ e, and ya = xr(i,ϕm(e+1),n), otherwise, is in Seq.

4 Special cases

In this section we introduce some important standard examples of effecive T0 spaces.
As is well known, T0 spaces come equipped with a canonical order ≤τ , called specialization

order : For y, z ∈ T ,
y ≤τ z ⇐⇒ (∀n ∈ ω)[y ∈ Bn ⇒ z ∈ Bn].

Every open set is upwards closed under the specialization order and continuous maps are
monotone with respect to it.

4.1 Constructive domains

Let Q = (Q,v) be a partial order with least element. A nonempty subset S of Q is directed,
if for all y1, y2 ∈ S there is some u ∈ S with y1, y2 v u. The way-below relation � on
Q is defined as follows: y1 � y2 if for every directed subset S of Q the least upper bound
of which exists in Q, the relation y2 v

⊔
S implies the existence of an element u ∈ S with

y1 v u. Note that � is transitive. Elements y ∈ Q with y � y are called compact.
A subset Z of Q is a basis of Q, if for any y ∈ Q the set Zy = { z ∈ Z | z � y } is directed

and y =
⊔
Zy. A partial order that has a basis is called continuous. If all elements of Z are

compact, Q is said to be algebraic and Z is called algebraic basis.
Now, assume that Q is countable and let x be an indexing of Q. Then Q is constructively

d-complete, if each of its enumerable directed subsets has a least upper bound in Q. Let
Q be constructively d-complete and continuous with basis Z. Moreover, let β be a total
numbering of Z. Then (Q,v, Z, β, x) is said to be a constructive domain, if the restriction
of the way-below relation to Z as well as all sets Zy, for y ∈ Q, are completely enumerable
with respect to the indexing β, and β ≤ x.

A numbering x of Q is said to be admissible, if the set { 〈i, j〉 | βi � xj } is computably
enumerable and there is a function d ∈ R(1) such that for all indices i ∈ ω for which β(Wi) is
directed, xd(i) is the least upper bound of β(Wi). As shown in [28], such numberings always
exist. They can even be chosen as total.

Partial orders come with several natural topologies. In the applications we have in mind,
one is mainly interested in the Scott topology σ: a subset X of Q is open in σ, if it is upwards
closed with respect to the partial order and intersects each enumerable directed subset of Q
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of which it contains the least upper bound. In the case of a constructive domain this topology
is generated by the sets Bn = { y ∈ Q | βn � y } with n ∈ ω. It follows that Q = (Q, σ) is
a countable T0-space with countable basis. Observe that the partial order on Q coincides
with the specialization order defined by the Scott topology [9]. Obviously, every admissible
numbering is computable.

Define
m ≺B n⇔ βn � βm.

Then ≺B is a strong inclusion with respect to which the collection of all Bn is a strong basis.
Because the restriction of� to Z is completely enumerable, ≺B is computably enumerable. It
follows that Q is effective. Moreover, each admissible indexing allows effective limit passing,
i.e., it is acceptable. Conversely, every acceptable numbering of Q is admissible.

Note that the set P (1) of partial computable functions, ordered by f v g, if g extends f ,
is a constructive algebraic domain. The finite functions are its compact elements and each
Gödel numbering is admissible.

4.2 Constructive A- and f-spaces

A- and f -spaces have been introduced by Eršov [4, 5, 6, 7] as a more topologically oriented
approach to domain theory. They are not required to be complete. For a set X of a
topological space, let int(X) denote its interior. Set

y � z ⇐⇒ z ∈ int({u ∈ T | y ≤τ u }).

Now, let Y = (Y, ρ) be a topological T0-space. Y is an A-space, if there is a subset Y0 of
Y that satisfies the following three properties:

1. Any two elements of Y0 which are bounded in Y with respect to the specialization
order have a least upper bound in Y0.

2. The collection of sets int({u ∈ Y | y ≤ρ u }), for y ∈ Y0, is a basis of topology ρ.

3. For any y ∈ Y0 and u ∈ Y with y � u there is some z ∈ Y0 such that y � z and z � u.

Any subset Y0 of Y with these properties is called basic subspace.
Let Y be countable and Y0 have a total numbering β. For m, n ∈ ω let Bn = int({u ∈

Y | βn ≤ρ u }) and define
m ≺B n⇔ βn � βm.

Then ≺B is a strong inclusion with respect to which {Bn | n ∈ ω } is a strong basis. An
A-space Y with basic subspace Y0 is constructive, if the restriction of � to Y0 is completely
enumerable, and the neighbourhood filter of each point has an enumerable strong base of
basic open sets. As shown in [20], Y has an acceptable numbering x such that Y is effective.

Let Y = (Y, ρ) be again an arbitrary topological T0-space. An open set V is an f -set, if
there is a some element zV ∈ V such that V = { y ∈ Y | zV ≤ρ y }. The uniquely determined
element zV is called f -element. Y is an f -space, if the following two conditions hold:

1. If U and V are f -sets with nonempty intersection, then U ∩ V is also an f -set.

2. The collection of all f -sets is a basis of topology ρ.
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An f -space is constructive, if the set of all f -elements has a total numbering α such
that the restriction of the specialization order to this set as well as the boundedness of two
f -elements are completely decidable and there is a function su ∈ R(2) such that in the case
that αn and αm are bounded, αsu(n,m) is their least upper bound, and if the neighbourhood
filter of each point has an enumerable base of f -sets. (Similar conditions can be found in
[7, 10].)

Obviously, every f -space is an A-space with basic subspace the set of all f -elements.
Note that for y, z ∈ Y with y or z being an f -element, y � z if and only if y ≤τ z. Thus,
also every constructive f -space is a constructive A-space.

4.3 Constructive metric spaces

Whereas domains as well as A- and f -spaces typicaly do not satisfy T2 separation, in this
section we will consider the standard example of an effective Hausdorff space.

LetM = (M, δ) be a countable separable metric space and β be a total numbering of its
dense subset M0. As is well-known, the collection of sets B〈i,m〉 = { y ∈M | δ(βi, y) < 2−m }
(i, m ∈ ω) is a basis of the canonical Hausdorff topology ∆ on M .

Define
〈i,m〉 ≺B 〈j, n〉 ⇔ δ(βi, βj) + 2−m < 2−n.

Using the triangle inequality it is readily verified that ≺B is a strong inclusion and the
collection of all Ba is a strong basis.

Definition 4.1. M is said to be constructive, if the sets

{ 〈i, j, a, n〉 | δ(βi, βj) < a · 2−n } and { 〈i, j, a, n〉 | δ(βi, βj) > a · 2−n }

are computably enumerable, and the neighbourhood filter of each point has an enumerable
strong base of basic open sets.

Obviously, ≺B is computably enumerable in this case.
Well-known examples of constructive metric spaces include Rnc , that is the space of all

n-tuples of computable real numbers with the Euclidean or the maximum norm; Baire space,
that is the set R(1) of all total computable functions with the Baire metric [16]; and the set ω
with the discrete metric. By using an effective version of Weierstraß’s approximation theorem
[15] and Sturm’s theorem [27] it can be shown that Cc[0, 1], the space of all computable
functions from [0, 1] to R with the supremum norm [15], is a constructive metric space too.
A proof of this result and further examples can be found in Blanck [1].

5 Limit algorithms

In this note we assume each space to come with a rich collection Seq of canonical computable
sequences with the following properties:

1. All sequences that are monotonically increasing with respect to the specialization order
are in SEQ.

2. There is a function p ∈ R(1) such that for each index m of a normed computable
enumeration of basic open sets, p(m) is an index of a computable sequence of points
in Seq with xϕp(m)(a) ∈ hl(Bϕm(a)).
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3. If (ya)a is in Seq, then, for every ā ∈ ω, (y′a)a is in Seq as well, where y′a = ya, for
a < ā, and y′a = yā, otherwise.

In the domain case, and similarly for A- and f -spaces, Seq consists of all computable
monotonically increasing sequences. Let f ∈ R(1) with β = x ◦ f . Then, if m is an index of
a normed computable enumeration of basic open sets, p = f ◦ ϕm. In the metric case we let
Seq be the set of all computable regular Cauchy sequences, where a Cauchy sequence (ya)a
is regular (or, fast), if δ(ym, yn) < 2−m, for all n ≥ m. Instead, one could also take the set of
all computable Cauchy sequences with a computable Cauchy criterion (cf. [12]). If x is such
that for some g ∈ R(1), β = x ◦ g, and m is an index of a normed computable enumeration
of basic open sets, choose p = g ◦ π1 ◦ ϕm.

In Section 3 as well as in other papers we based our approach to the computation of
limits on filter convergence. In the earlier paper [26], however, we used point sequence
convergence. One of the main reasons for moving to filters was that in T0 spaces the limit of
a point sequence in not uniquely determined, in general: if y is a limit point, every z with
z ≤τ y is a limit point as well. We denote the set of limit points of a sequence (ya)a by
Lima ya.

Definition 5.1. A numbering x of T has a limit algorithm, if there is a function li ∈ P (1)

such that the following four conditions hold, for all indices m,m′ of convergent sequences in
Seq:

1. li(m)↓ ∈ dom(x).

2. xli(m) ∈ Lima xϕm(a)

3. If, for some ā ∈ ω, xϕm(a) = xϕm(ā), for all a ≥ ā, then xli(m) = xϕm(ā).

4. If Lima xϕm(a) = Lima xϕm′ (a), then xli(m) = xli(m′).

A typical technique in enumeration is to wait and see, i.e., to repeat what has aleady been
enumerated till new information becomes available. This motivated the following condition.

Definition 5.2. A sequence (ya)a in Seq is said to allow delaying, if for all ā,m ∈ ω the
sequence (y′a)a with y′a = ya, for a < ā, y′a = yā, for ā ≤ a < ā + m, and y′a = ya−m+1,
otherwise, is in Seq as well.

We start with a general result.

Proposition 5.3. Let x have a limit algorithm. Moreover, let X be a completely enumerable
subset of T and (ya)a a sequence in Seq that allows delaying. Then for every index m of
(ya)a and any numbers ā ∈ ω, if yā ∈ X, also xli(m) ∈ X.

Proof. Let We witness the complete enumerability of X and set g(b̄) = µc ≥ ā : ϕe(li(b̄))↓c.
By the recursion theorem there is then some b ∈ ω with

ϕb(a) =


ϕm(a) if a < ā,

ϕm(ā) if g(b)↑a and a ≥ ā,

ϕm(ā+ a− g(b) + 1) if g(b)↓a and a ≥ ā.

Suppose that g(b)↑. Because of Property 3 of Seq, the sequence (xϕb(a))a is in Seq in
this case. Moreover, it converges to yā. With Condition 5.1(3) we therefore obtain that
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xli(b) = yā. By our assumption, yā ∈ X, i.e., ϕm(ā) ∈ We. It follows that li(b) ∈ We as well,
which means that g(b)↓, a contradiction.

So we have that g(b)↓. Since (ya)a allows delaying, it follows that the just defined sequence
with index b is in Seq, also in this case. Moreover, Lima xϕb(a) = Lima ya and hence, by
Condition 5.1(4), xli(m) = xli(b). As a further consequence, li(b) ∈ We, which means that
xli(b) ∈ X. This shows that xli(m) ∈ X.

Let u, z ∈ T with y ≤τ z. Then the sequence with ya = u, for a < ā and ya = z,
otherwise, for some ā ∈ ω, is in Seq, by Condition 3 for Seq, and obviously allows delaying.
Thus, if u ∈ X, z ∈ X as well.

Corollary 5.4. Let x have a limit algorithm. Then each completely enumerable subset of T
is upwards closed under the specialization order.

Next, suppose that T ′ = (T ′, τ ′) is a further countable T0 space with countable basis
B′ and numberings x′ and B′ of T ′ and B′, respectively, such that B′ is total. Moreover,
recall that the preimage of a completely enumerable set under an effective map is completely
enumerable again.

Corollary 5.5. Let x have a limit algorithm and x′ be computable. Then every effective
map F : T → T ′ is monotone with respect to the specialization order.

Now, assume that X is a basic open set.

Corollary 5.6. Let x be computable and have a limit algorithm. Then, for any index m of
a convergent sequence in Seq that allows delaying, the following two statements hold:

1. xϕm(a) ≤τ xli(m), for all a ∈ ω.

2. y ≤τ xli(m), for all y ∈ Lima xϕm(a).

Proof. (1) Let a, n ∈ ω with xϕm(a) ∈ Bn. Then it follows with the preceding proposition
that xli(m) ∈ Bn as well. Thus, xϕm(a) ≤τ xli(m).

(2) Let y ∈ Lima xϕm(a) and n ∈ ω with y ∈ Bn. Then there is some ā ∈ ω so that
xϕm(a) ∈ Bn, for all a ≥ ā. By the preceding proposition it follows that also xli(m) ∈ Bn,
which shows that y ≤τ xli(m).

In case that the function li ∈ P (1) in Definition 5.1 also satisfies the condition in State-
ment 5.6(2), we say that the limit operator computes maximal limits.

Is is well known that if space T satifies T1 separation its specialization order coincides
with the identity relation on T . Under the assumptions of the above corollary we therefore
obtain that sequences in Seq that allow delaying must be constant. In other words, except
in the case of T0 spaces that violate the T1 condition, only trivial sequences in Seq satisfy
the assumption.

As we will see next, the property in Corollary 5.6(1) is characteristic for limit algorithms.

Lemma 5.7. Let li ∈ P (1) such that for all indices m of convergent sequences in Seq,
li(m)↓ ∈ dom(x) with xli(m) ∈ Lima xϕm(a) and xϕm(a) ≤τ xli(m), for all a ∈ ω. Then x has
a limit algorithm.
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Proof. As in the preceding proof we obtain that y ≤τ xli(m), for all y ∈ Lima xϕm(a). Hence,
xli(m) = max≤τ Lima xϕm(a). If m′ is an index of a further converging sequence in Seq so
that Lima xϕm′ (a) = Lima xϕm(a), we therefore have that xli(m′) = max≤τ Lima xϕm′ (a) =
max≤τ Lima xϕm(a) = xli(m).

If there is some ā ∈ ω such that ϕm(a) = ϕm(ā), for all a ≥ ā, then xϕm(ā) ∈ Lima xϕm(a).
Thus, xϕm(ā) ≤τ xli(m). To see that also the converse inequality holds, let n ∈ ω with
xli(m) ∈ Bn. Since xli(m) is a limit point of (xϕm(a))a, there is some â ∈ ω with xϕm(a) ∈ Bn,
for all a ≥ â. In particular, we have that xϕm(ā) ∈ Bn, which shows that xli(m) ≤τ xϕm(ā).

Proposition 5.8. Let x be computable and all sequences in Seq allow delaying. Then
x has a limit algorithm if, and only if, there is some function li ∈ P (1) so that for all
indices m of convergent sequences in Seq, li(m)↓ ∈ dom(x) with xli(m) ∈ Lima xϕm(a) and
xϕm(a) ≤τ xli(m), for all a ∈ ω.

This gives us a hint of how to construct a numbering of T that has a limit algorithm
in the case of T0 spaces that do not satisfy T1 separation. As in the case of constructive
domains, A- and f -spaces, we now let Seq only contain sequences that monotonically increase
with respect to the specialization order. Such sequences always allow delaying. Note that
the greatest limit point, if it exists, is the least upper bound in this case. Moreover, we
assume that ≺B is computably enumerable and that the neighbourhood filter of each point
has an enumerable strong base of basic open sets. As we have seen in Section 4, the just
mentioned spaces always satisfy these assumptions. Let x̄ be the numbering constructed in
Proposition 3.8 and li ∈ R(1) with

Wli(m) = {n ∈ ω | (∃a ∈ ω)n ∈Wϕm(a) }.

Suppose that m is an index of a monotonically increasing sequence with least upper bound
y. By what we have seen above, all Bn with n ∈Wli(m) contain y. On the other hand, if Bn
contains y then there is some a ∈ ω with xϕm(a) ∈ Bn, as y is a limit point. Thus, n ∈Wli(m).
It follows that {Bn | n ∈Wli(m) } is the set of all basic open sets containing y and hence a
strong base of N (y). So, y = x̄li(m), which shows that x̄ has a limit algorithm.

Proposition 5.9. Let T be a T0 space that does not satisfy T1 separation and is such that
≺B is computably enumerable and the neighbourhood filter of each point has an enumerable
strong base of basic open sets. Then every acceptable numbering of T has a limit algorithm.

Proof. As we have seen, the numbering x̄ constructed in Proposition 3.8 is acceptable and
has a limit algorithm. Moreover, it has been mentioned that all acceptable numberings of
T are m-equivalent. Obviously, the property of having a limit algorithm is inherited under
m-equivalence.

Proposition 5.10. LetM be a constructive metric space. Then every acceptable numbering
of M has a limit algorithm.

Proof. Again it suffices to show that the numbering x̄ constructed in Proposition 3.8 has a
limit algorithm. Let (ya)a be a computable regular Cauchy sequence that converges to some
point y ∈ M . Because of regularity we have that δ(ya, y) ≤ 2−a. Let a > 1. Since M0 is
dense in M , there is some βi ∈M0 such that δ(βi, ya) < 2−a. By the triangular inequation it
then follows that {u ∈M | δ(ya, u) ≤ 2−a } ⊆ B〈i,a−1〉. We need to enumerate a strong base
of N (y). To this end we will enumerate all pairs 〈i, a− 1〉 with a > 0 and ya ∈ B〈i,a〉. Let m
be an index of (ya)a. By definition of x̄,

xϕm(a) ∈ B〈i,a〉 ⇐⇒ 〈i, a〉 ∈Wϕm(a).
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Therefore, if we let li ∈ R(1) such that

Wli(m) = { 〈i, a− 1〉 | a > 0 ∧ 〈i, a〉 ∈Wϕm(a) },

all basic open set B〈i,a−1〉 with 〈i, a − 1〉 ∈ Wli(m) contain the limit point y. It remains to
show that they form a strong filter base.

Let 〈i, a − 1〉, 〈j, c − 1〉 ∈ Wli(m). Then y ∈ B〈i,a−1〉 ∩ B〈j,c−1〉. Since the set of all Bd
forms a strong basis of the metric topology, there exist b, n ∈ ω such that y ∈ B〈b,n〉 and
〈b, n〉 ≺B 〈i, a − 1〉 as well as 〈b, n〉 ≺B 〈j, c − 1〉. Let n̄ ∈ ω with 2−n̄ < 2−n − δ(βb, y).
Moreover, choose n̂ > n̄ + 2 so that δ(yn̂, y) ≤ 2−n̂ and e ∈ ω with δ(βe, yn̂) < 2−n̂ as well.
It then follows that

δ(βe, βb) + 2−n̂+1 ≤ δ(βe, y) + δ(y, βb) + 2−n̂+1

< 2 · 2−n̂+1 + δ(y, βb) < 2−n̄ + δ(y, βb) < 2−n,

which means that 〈e, n̂− 1〉 ≺B 〈b, n〉. Thus we have that 〈e, n̂− 1〉 ≺B 〈i, a− 1〉 as well as
〈e, n̂− 1〉 ≺B 〈j, c− 1〉. Moreover, 〈e, n̂− 1〉 ∈Wli(m).

So far we have seen for two important and large classes of effective spaces that acceptable
numberings also have a limit algorithm. We will now, conversely, study when numberings
that have a limit algorithm also allow effective limit passing. In doing so, we will meet the
witness for noninclusion condition. This time the identity function on T is required to have
it. We say in this case that space T has a witness for noninclusion.

Proposition 5.11. Let let T have a witness for noninclusion, and every sequence in Seq
allow delaying. Moreover, let x be computable as well as have a limit algorithm. Then x also
allows effective limit passing.

Proof. Let li ∈ P (1) witness that x has a limit algorithm, and p ∈ R(1) be as in Property 2 of
Seq. Moreover, let s ∈ P (2) and r ∈ P (3) testify that space T has a witness for noninclusion.

Now, letm be an index of a normed computable enumeration of basic open sets converging
to y ∈ T . We will show that y = xli(p(m)). Then pt = li ◦p witnesses that x allows effective
limit passing.

Let Bn ∈ N (y). Then exists ā ∈ ω with ϕm(ā) ≺B n. Hence xϕp(m)(a) ∈ Bϕm(a−1) ⊆ Bn,

for all a ≥ ā + 1, from which it follows that (xϕp(m)(a))a converges to y. Thus, li(p(m))↓ ∈
dom(x). Furthermore, with Corollary 5.6(2) we obtain that y ≤τ xli(p(m)).

For the converse inequality, assume that n ∈ ω with xli(p(m)) ∈ Bn. By Condition 3.9(1)
we then have that xli(p(m)) ∈Ms(li(p(m)),n) as well. Let b = s(li(p(m)), n) and set g(e) = µc :
ϕb(li(e))↓c. By the recursion theorem there is some u ∈ ω with

ϕu(a) =

{
ϕp(m)(a) if g(u)↑a,
r(i, ϕm(g(u)), n) otherwise.

Assume that g(u)↑. Then xϕu(a) = xϕp(m)(a), for all a ∈ ω. Thus, the sequence is in

Seq. In addition, li(u)↓ ∈ dom(x) and xli(u) = xli(p(m)), which implies that li(u) ∈ Wb, a
contradiction.

Suppose next that Bϕm(g(u)) 6⊆ Bn. Then r(i, ϕm(g(u)), n)↓ ∈ dom(x). Furthermore,

xr(i,ϕm(g(u)),n) ∈ hl(Bϕm(g(u))) \Ms(li(p(m)),n).
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By definition, xϕu(a) = xϕp(m)(a), for a < g(u), and xϕu(a) = xr(i,ϕm(g(u)),n), other-

wise. With Condition 3.9(3) it follows that the sequence is in Seq. Moreover, it con-
verges to xr(i,ϕm(g(u)),n). Thus, li(u)↓ ∈ dom(x) and, because of Property 5.1(3), xli(g(u)) =
xr(i,ϕm(g(u)),n). As we have already seen, li(u) ∈ Wb, i.e., xli(u) ∈ Ms(li(p(m)),n). This means
that xr(i,ϕm(g(u)),n) ∈Ms(li(p(m)),n), a contradiction.

Thus, Bϕm(g(u)) ⊆ Bn. As m is an index of a normed enumeration of basic open sets
converging to y, we have that y ∈ Bϕm(g(u)). Therefore, y ∈ Bn too, which shows that
xli(p(m)) ≤τ y.

In the above result the assumption that the sequences in Seq allow delaying is only used
to show that y ≤τ xli(p(m)). The converse inequality, i.e., xli(p(m)) ≤τ y was derived without
invoking this condition. Now, suppose that T has the T1 property. Then the specialization
order coincides with the identity on T . Hence, it follows that y = xli(p(m)). So, we obtain
that x allows effective limit passing without using that sequences in Seq allow delaying.

Corollary 5.12. Let T be a T1 space and have a witness for noninclusion. Moreover, let x
be computable as well as have a limit algorithm. Then x also allows effective limit passing.

6 Continuity

By definition, a sequence (ya)a converges to a point y, if for any n ∈ ω with y ∈ Bn there is
some Nn ∈ ω with ya ∈ Bn, for all a ≥ Nn. Any function that maps n with y ∈ Bn to such
an Nn is called convergence module.

Definition 6.1. A sequence (ya)a of elements of T converges effectively to some point y ∈ T ,
if there is some function k ∈ P (1) such that for all n ∈ ω with y ∈ Bn it follows that k(n)↓
and ya ∈ Bn, for all a ≥ k(n).

Thus, a sequence converges effectively if it has a computable convergence module.
Let m be an index of a computable normed enumeration of basic open sets converging

to y ∈ Bn. Then, for all a > 0, xϕp(m)(a) ∈ Bϕm(a−1). Assume that ≺B is computably
enumerable and set

A = { 〈a′,m′, n′〉 | a′ > 0 ∧ ϕm′(a′ − 1) ≺B n′ }.

As {Ba | a ∈ range(ϕm) } is a strong basis of N (y), A is not empty. With respect to some
fixed enumeration, let 〈ā, m̄, n̄〉 be the first element enumerated in A with m̄ = m and
n̄ = n. Set ϕk(m)(n) = ā. Then ϕk(m)(n) witnesses that (xϕp(m)(a))a converges effectively to
y, uniformly in m.

Lemma 6.2. Let {p(m)}m be the family of indices of canonical computable point sequences
in Seq associated with converging normed computable enumerations of basic open sets. Then
each sequence (xϕp(m)(a))a converges effectively, uniformly in m.

We say that T has a uniform computable convergence module, if there is a function
cm ∈ R(1) such that for all indices m of effectively converging sequences in Seq, ϕcm(m) is a
corresponding convergence module.

Definition 6.3. A map F : T → T ′ is effectively sequentially continuous, if for every sequence
(ya)a in Seq effectively converging to a point y ∈ T , the sequence (F (ya))a effectively
converges to F (y), uniformly in the index m of (ya)a, i.e., there is some function k ∈ R(1) so
that λn. ϕk(m)(n) witnesses the effective convergence of (F (ya))a.
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For topological spaces with countable topological basis it is well known that sequentially
continuous maps are continuous, and vice versa. In this section we will study this relationship
in the effective context described so far.

Definition 6.4. A map F : T → T ′ is said to be

1. effectively pointwise continuous, if there is a function h ∈ P (2) such that for all i ∈
dom(x) and n ∈ ω with F (xi) ∈ B′n, h(i, n)↓, xi ∈ B′h(i,n), and F (Bh(i,n)) ⊆ B′n;

2. effectively continuous, if there is a function g ∈ R(1) such that for all n ∈ ω, F−1(B′n) =⋃
{Ba | a ∈Wg(n) }.

The equivalence between effective continuity and effective pointwise continuity was inves-
tigated in [20]. To show that effectively pointwise continuous maps are effectively continuous
one had to assume that T has an enumerable dense subset.

For the study of the remaining relationship between effective sequential continuity and
effective pointwise continuity, let us first see how this is usually done, in a non-effective
context. Assume to this end that T = (T, τ) and T ′ = (T ′, τ ′) are T0 space with countable
bases B and B′, respectively, let F : T → T ′ be a sequentially continuous map, and y a point
in T .

• First, one uses the countability of B to construct a sequence of basic open sets U0 ⊇
U1 ⊇ . . . that forms a basis of the neighbourhood filter of y.

• Next, one assumes that F is not continuous. Hence, there is some basic open set V
containing F (y) such that F (Ua) 6⊆ V , for all a ∈ ω.

• Using the Axiom of Choice, one then selects some point ya ∈ Ua, for each a ∈ ω, such
that F (ya) 6∈ V .

• It follows that (ya)a converges to y, but (F (ya))a does not converge to F (y), a contra-
diction.

Let us now assume that B and B′ are total numberings of B and B′, respectively, and
that T and T ′ are both countable with numberings x and x′, respectively. Moreover, suppose
that T is effective and x is computable. Then, by Lemma 3.6, there is some function q ∈ R(1)

such that, for each i ∈ dom(x), q(i) is an index of a normed computable enumeration of basic
open set converging to xi. In particular, we have that Bϕq(i)(0) ⊇ Bϕq(i)(1) ⊇ . . .

In the second step, assuming that

Bϕq(i)(a) 6⊆ F−1(B′n)

we need be able to effectively find a witness ya for this, uniformly in n, a and i. It is here
where we need F to have a witness for noninclusion. As was shown in [26, 20], effective
maps e.g. have a witness for noninclusion, if their domain is a constructive A- or f -space or
a constructive domain, or their codomain is a constructive metric space or, more general,
an effective T3 space. However, as follows from an example by Friedberg [8], this is not the
case, in general.

Theorem 6.5. Let T be effective and x be computable. Then every effectively sequentially
continuous map F : T → T ′ that has a witness for noninclusion is effectively pointwise con-
tinuous.
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Proof. Let k ∈ R(1) witness the effective sequential continuity of F and s ∈ P (2) as well as
r ∈ P (3) its having a witness for noninclusion. Moreover, let q ∈ R(1) be as in Lemma 3.6
and p ∈ R(1) as in Property 2 of Seq. By the recursion theorem there is a function g ∈ R(2)

with

ϕg(i,n)(a) =

{
ϕp(q(i))(a) if a < ϕk(g(i,n))(n),

r(i, ϕq(i)(ϕk(g(i,n))(n)), n) otherwise.

Set h(i, n) = ϕk(g(i,n))(n) and assume that h(i, n)↑, for some i ∈ dom(x) and n ∈ ω with
F (xi) ∈ B′n. Then xϕg(i,n)(a) = xϕp(q(i))(a), for all a ∈ ω. Thus, (xϕg(i,n)(a))a is a sequence

in Seq effectively converging to xi. It follows that ϕk(g(i,n))(n) is defined, a contradiction.
Thus, h(i, n) is defined, for all i ∈ dom(x) and n ∈ ω with F (xi) ∈ B′n.

Next, assume that Bϕq(i)(h(i,n)) 6⊆ F−1(B′n), for some i ∈ dom(x) and n ∈ ω with F (xi) ∈
B′n. Then r(i, ϕq(i)(h(i, n)), n)↓ ∈ dom(x) with

xr(i,ϕq(i)(h(i,n)),n) ∈ hl(Bϕq(i)(h(i,n))) \ F−1(B′n).

By Condition 3.9(3), (xϕg(i,n)(a))a is in Seq, effectively converging to xr(i,ϕq(i)(h(i,n)),n).

Since h(i, n) is a module of the convergence of (F (xϕg(i,n))(a)))a to F (xr(i,ϕq(i)(h(i,n)),n)),

it follows that F (xϕg(i,n)(h(i,n))) ∈ B′n, i.e., F (xr(i,ϕq(i)(h(i,n)),n)) ∈ B′n, a contradiction. Con-
sequently, the function h witnesses that F is effectively pointwise continuous.

For the derivation of the converse implication we recall the fact that in T0 spaces which
are not Hausdorff limit points are no longer uniquely determined. We say that Seq has
maximal limits if Lima ya has a greatest element, for each sequence (ya)a in Seq.

Proposition 6.6. Let T have a uniform computable convergence module, Seq maximal
limits, and x a limit operator that computes maximal limits. Then every effectively pointwise
continuous maps F : T → T ′ is effectively sequentially continuous.

Proof. Let cm ∈ R(1) and h ∈ P (2), respectively, witness that T has a uniform effective
convergence module and F is effectively pointwise continuous. Now, assume that m is
an index of a computable sequence in Seq effectively converging to a point y ∈ T and
n ∈ ω so that F (y) ∈ B′n. Then (xϕm(a))a also converges effectively to its largest limit
point xli(m). Moreover, F (xli(m)) ∈ B′n. It follows that h(li(m), n)↓, xli(m) ∈ Bh(li(m),n),
and F (Bh(li(m),n)) ⊆ B′n. Hence, xϕm(a) ∈ Bh(li(m),n) and therefore F (xϕm(a)) ∈ B′n, for all
a ≥ ϕcm(m)(h(li(m), n)), which shows that F is effectively sequentially continuous.

7 Effective maps

In this section we will investigate when an effective map F : T → T ′ is effectively sequentially
continuous.

Assume that (ya)a is a computable sequence in SEQ converging to y ∈ T . Then (F (ya))a
is computable as well. We will now show that in certain general cases it converges effectively
to F (y), i.e., we will show that in theses cases each effective maps is effectively sequentially
continuous.

Let m be an index of (ya)a and n ∈ ω with F (y) ∈ B′n. Then, uniformly in m and n, we
construct a computable sequence (za)a with index b:

1. We follow the sequence (ya)a as long as the computation of li(b) has not terminated or
F (xli(b)) has not been found in B′n.
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2. If the computation of li(b) has terminated and F (xli(b)) has been found in B′n, say in
step N0, we delay our strategy to follow the sequence (ya)a and repeat the element yN0

as long as F (yN0) has not been found in B′n.

3. If, in step N1, we have found F (yN0) in B′n, we go to element yN0+1 and repeat it as
long as we have not found F (yN0+1) in B′n.

4. If, in step N2, we have found F (yN0+1) in B′n, we go to element yN0+2 and repeat it as
long as we have not found F (yN0+2) in B′n, and so on.

As we will see, all steps N0, N1, N2. . . . exist and depend computably on m,n. Obviously,
then N0 is a module for the convergence of (F (ya))a to F (y).

Theorem 7.1. Let x have a limit algorithm, x′ be computable, and the sequences in Seq
allow delaying. Then every effective map F : T → T ′ is effectively sequentially continuous.

Proof. Since x′ is computable, B′n is completely enumerable, uniformly in n. Hence, as F
is effective, F−1(B′n) is completely enumerable as well. Let this be witnessed by Wv(n) with

v ∈ R(1). Obviously, v uniformly depends on the index of F . Finally, let li ∈ P (1) witness
that x has a limit algorithm and let t ∈ R(1) with range(t) ⊆ dom(x) so that (xt(a))a is a
sequence in Seq converging to some y ∈ T .

Set ḡ(b̄, n) = µc : ϕv(n)(li(b̄))↓c and define ū ∈ P (3) by

ū(b̄, n, 0) = 0,

ū(b̄, n, a+ 1) =


ū(b̄, n, a) + 1 if ḡ(b̄, n)↑a+1, or ḡ(b̄, n)↓a+1

and ϕv(n)(t(ū(b̄, n, a)))↓a+1,

ū(b̄, n, a) if ḡ(b̄, n)↓a+1 and ϕv(n)(t(ū(b̄, n, a)))↑a+1.

In addition, let h ∈ R(2) with

ϕh(b̄,n)(a) = t(ū(b̄, n, a)).

By the recursion theorem there is then a function b ∈ R(1) with ϕb(n) = ϕh(b(n),n). Set
g(n) = ḡ(b(n), n) and u(n, a) = ū(b(n), n, a).

Suppose that g(n)↑, for some n ∈ ω with F (y) ∈ B′n. Then u(n, a) = a and hence
xϕb(n)(a) = xt(a). It follows that (xϕb(n)(a))a converges to y. Hence, y ≤τ xli(b(n)) because

of Corollary 5.6. By assumption, y ∈ F−1(B′n). With Corollary 5.4 we therefore obtain
that xli(b(n)) ∈ F−1(B′n) as well, since F−1(B′n) is completely enumerable. Consequently,
li(b(n)) ∈Wv(n), i.e., g(n) is defined, a contradiction.

Next, let k(n, e) = µc : ϕv(n)(t(g(n) + e))↓c and assume that there is some n, ā ∈ ω so
that k(n, ā)↑. Let ā be minimal with this property. Then

ϕb(n)(a) =



t(a) if a < g(n),

t(g(n)) if g(n) ≤ a < k(n, 0)),

t(g(n) + 1)) if k(n, 0) ≤ a < k(n, 1),
...

t(g(n) + ā− 1) if k(n, ā− 2) ≤ a < k(n, ā− 1),

t(g(n) + ā) if a ≥ k(n, ā− 1).
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As Seq is closed under delaying, the sequence (xϕb(n)(a))a is in Seq. Moreover, it is

a sequence that is eventually constant. With Condition 5.1(3) it therefore follows that
xli(b(n)) = xt(g(n)+ā). As we have already seen, li(b(n)) ∈Wv(n), i.e., xli(b(n)) ∈ F−1(B′n). The
latter set is completely enumerable. Therefore, also t(g(n) + ā) ∈ Wv(n), which means that
k(n, ā)↓, a contradiction.

This shows that k(n, e)↓, for all n, e ∈ ω. In other words, g is a computable convergence
module, i.e., the sequence (F (xt(a))a converges effectively to F (y). As follows from the
construction, g depends computably on the Gödel number of t. So, we have that F is
sequentially continuous, effectively.

Note that the construction of the convergence module g not only depends computably
on the index of the sequence transformed by F , but also on the index of F . Moreover, we
do not know whether effective maps have a witness for noninclusion under the assumptions
of the theorem.

Corollary 7.2. Let x have a limit algorithm and be computable. Moreover, let the sequences
in Seq allow delaying. Then T has a uniform computable convergence module.

Proof. Let F be the identity on T in the above theorem.

The most restrictive assumption in the above result is that sequences in Seq should
allow delaying. In the proof the constructed sequence had to be delayed several times.
This is certainly not possible for sequences that have to satisfy strong conditions as the
regular Cauchy sequences. In what follows we will derive an analogous result for spaces like
constructive metric spaces in which the requirement that sequences in Seq allow delaying is
no longer used. As we will see, the construction in the proof is very much the same as the
one in the previous proof, only where we had to wait and see whether a certain computation
will terminate, we can now use a decision precedure. We will derive the result for the rather
general class of effective T3 spaces. For a subset X of a topological space, let cl(X) denote
its closure and ext(X) ist exterior.

Definition 7.3. T is effectively T3, if there is some function s ∈ P (2) such that s(i,m)↓
with

xi ∈ Bs(i,m) ⊆ cl(Bs(i,m)) ⊆ Bm,

for all i ∈ dom(x) and m ∈ ω with xi ∈ Bm.

We moreover say that numbering x is co-computable if ext(Bn) is completely enumerable,
uniformly in n. Note that in a constructive metric space xi ∈ ext(B〈j,n〉), exactly if there is
some basic open set B〈e,m〉 containing xi so that δ(βj , βe) > 2−m+2−n. Hence the numbering
constructed in Proposition 3.8 is also co-computable.

Theorem 7.4. Let T ′ be effectively T3, x′ be computable as well as co-computable, and
x have a limit algorithm. Then every effective map F : T → T ′ is effectively sequentially
continuous.

Proof. Let s ∈ P (2) and f ∈ P (1), respectively, witness that T is effectively T3 and F is
effective. Since x′ is computable, it follows as in the proof of Theorem 7.1 that F−1(B′n) is
completely enumerable, uniformly in n. Let this be witnessed by Wv(n) with v ∈ R(1).

As x′ is also co-computable, it follows in a similar way that there is a function w ∈ R(2)

so that Ww(i,n) witnesses that F−1(ext(B′s(f(i),n))) is completely enumerable, uniformly in

i, n. Again v, w uniformly depend on the Gödel number of f . Let, finally, li ∈ P (1) witness
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that x has limit algorithm and let t ∈ R(1) with range(t) ⊆ dom(x) so that (xt(a))a is a
sequence in Seq converging to some point y ∈ T .

In the construction of the sequence with index b we are going to describe, for cer-
tain sequence elements xt(a) we will search whether we find F (xt(a)) ∈ B′n or F (xt(a)) ∈
ext(B′s(f(li(b)),n)). Possibly both is the case, then we give preference to what we find first.
Let

k̄1(b̄, n, a) = µc : ϕv(n)(t(ū(b̄, n, a)))↓c, k̄2(b̄, n, a) = µc : ϕw(li(b̄),n)(t(ū(b̄, n, a)))↓c,

and

k̄(b̄, n, a) =


k̄1(b̄, n, a) if k̄1(b̄, n, a) terminates in at most the same number

of steps as k̄2(b̄, n, a),

k̄2(b̄, n, a) if k̄2(b̄, n, a) terminates in less steps than k̄1(b̄, n, a),

undefined otherwise.

Moreover, set ḡ(b̄, n) = µc : ϕv(n)(li(b̄))↓c and define ū ∈ P (3) by

ū(b̄, n, 0) = 0,

ū(b̄, n, a+ 1) =



ū(b̄, n, a) + 1 if ḡ(b̄, n)↑a+1, or ḡ(b̄, n)↓a+1, k̄(b̄, n, a)↓,
k̄1(b̄, n, a)↓ and k̄(b̄, n, a) = k̄1(b̄, n, a),

ū(b̄, n, a) if ḡ(b̄, n)↓a+1, k̄(b̄, n, a)↓, k̄2(b̄, n, a)↓
and k̄(b̄, n, a) = k̄2(b̄, n, a),

undefined otherwise.

Finally, let h ∈ R(2) with
ϕh(b̄,n)(a) = t(ū(b̄, n, a)).

By the recursion theorem there is then some function b ∈ R(1) with ϕb(n) = ϕh(b(n),n).
Set

k1(n, a) = k̄1(b(n), n, a), k2(n, a) = k̄2(b(n), n, a), k(n, a) = k̄(b(n), n, a),

g(n) = ḡ(b(n), n) and u(n, a) = ū(b(n), n, a).

Then it follows as in the proof of Theorem 7.1 that g(n) is defined for all n ∈ ω with
F (y) ∈ B′n. Thus, F (xli(b(n))) ∈ B′n, i.e., x′f(li(b(n))) ∈ B

′
n, from which we obtain with the

effective T3 property that x′f(li(b(n))) ∈ Bs(f(li(b(n))),n). In addition, we have for a ≥ g(n)

that either F (xt(a)) ∈ B′n, or F (xt(a)) ∈ T ′ \B′n, in which case F (xt(a)) ∈ ext(Bs(f(li(b(n))),n)).
Therefore, at least one of k1(n, a) and k2(n, a) must be defined, i.e., k(n, a) is always defined.

Assume that there is some n, ā ∈ ω with ā ≥ g(n) such that F (xt(ā)) 6∈ B′n. Let ā be
minimal with this property. Then k1(n, ā) is not defined. As a consequence we obtain with
what has just been said that k(n, ā) = k2(n, ā). Moreover,

ϕb(n)(a) =

{
t(a) if a < ā,

t(ā) otherwise.

With Property 3 of Seq it follows that (xϕb(n)(a))a is in Seq. Furthermore, the sequence is

eventually constant. Because of Condition 5.1(3) we therefore have that xli(b(n)) = xt(ā). As
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we have already seen, li(b(n)) ∈Wv(n), i.e., xli(b(n)) ∈ F−1(B′n). The latter set is completely
enumerable. Therefore, also t(ā) ∈Wv(n), which means that F (xt(ā)) ∈ B′n, a contradiction.

This shows that for all n ∈ ω with F (y) ∈ B′n, we have that F (xt(a)) ∈ B′n as well, for
all a ≥ g(n), i.e., the sequence (F (xt(a)))a converges effectively to F (y). In other words, F
is effectively sequentially continuous.

The two theorems in this section cover a large variety of cases. Unfortunately, however, we
were not able to pursue our programme in full generality, i.e., to derive a theorem stating the
effective sequential continuity of effective operators that would include all interesting cases,
as we did in the continuous case. However, the present situation is also more complicated.
In the continuous case we have one decision to make whether to follow a given sequence or
to deviate. Now, we have to deal with infinitely many such decisions and the strategies how
to make the decisions were quite different in the cases we considered. It is even not clear to
us, whether effective operators are effectively sequentially continuous in general, or whether
an additional condition is needed.

Proposition 7.5. There is a constructive metric space M, a constructive domain Q, and
a map F : M → Q which is effective, but not sequentially continuous.

Proof. The following construction is a modification of an example given by Friedberg [8].
Let M be Baire space and Q Sierpinski space {⊥, 0} with ⊥ v 0, β0 = ⊥, and βn+1 = 0.
Moreover, set

h(i) =


1 if [(∀a ≤ i)ϕi(a) = 0] ∨ (∃c)[ϕi(c) 6= 0 ∧ (∀a < c)ϕi(a) = 0 ∧

(∃j < c)(∀b ≤ c)ϕi(b) = ϕj(b)],

undefined otherwise.

Then h ∈ P (1). As it is readily verified, for all ϕi, ϕj ∈ R(1) with ϕi = ϕj one has that
h(i) = h(j). Let x be an admissible indexing of Q. Then there is a function d ∈ R(1)

such that for all i ∈ ω for which β(Wi) is directed, xd(i) is the least upper bound of β(Wi).

Let q ∈ R(1) with Wq(i) = {0, h(i)}, and set t = d ◦ q. We define the effective mapping

F : R(1) → Q by F (ϕi) = xt(i). Then F (ϕi) = 0, if the first condition in the definition of h
holds; otherwise, F (ϕi) = ⊥.

Now, for m ∈ ω, let km = max{ϕi(m+ 1) + 1 | i ≤ m ∧ ϕi ∈ R(1) } and define

gm(a) =

{
0 if a 6= m+ 1,

km otherwise.

Then gm ∈ R(1), for every m ∈ ω. Moreover, (gm)m is a regular Cauchy sequence that
converges to λn.0. Since for any Gödel number j of gm we have that j > m and as gm(m+1) 6=
0, it follows from the definition of F that F (gm) = ⊥, for all m ∈ ω. On the other hand,
F (λn.0) = 0. Thus, F cannot be sequentially continuous.

However, this leads still open the question whether effective operators are effectively
sequentially continuous. To decide this question negatively, one would need a computable
sequence (gm)m in the construction.
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