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Abstract
In this note continuous directed-complete partial orders with least element (domains)

are enriched by a family of projections, called approximation structure, that assigns to
each point a sequence of canonical approximations. The morphisms are continuous maps
which commute with the projections. Each approximation structure induces a quasi-
ultrametric on the domain, the associated topology of which is finer than the Scott
topology of the domain. It coincides with the Scott topology exactly if the subdomains
generated by the canonical approximations at the various levels contain only compact
elements, which is the case if and only if none of them contains infinite strictly increasing
chains and if in each of them the lengths of the chains in any given set of finite strictly
increasing chains with the same supremum are bounded. The condition implies that the
subdomains as well as the domain must be algebraic. Similarly, the topology coming with
the metric that is associated with the quasi-metric is finer than the Lawson topology of
the underlying domain and coincides with it if the condition is satisfied.

For categories of domains that are closed under the construction of Cartesian prod-
ucts, function spaces and bilimits of ω-chains, approximation structures on the composed
domains can be defined from those coming with the components in a natural way. The
quasi-metrics induced by the newly constructed approximation structures are nicely re-
lated to those generated by the approximation structures of the components.

1 Introduction

Domains as introduced by Dana Scott [13] and, independently, by Yuri L. Ershov [5] are
partial orders intended to model the notion of approximation (and of computation) in a
qualitative way. The smaller elements are usually regarded as providing less information
than those higher up; they are partial elements from which the total (ideal, fully developed)
elements evolve as one goes up in the order.

In general, there is no measure for the speed of approximation, but for a large—and
important—class of domains there exists a uniform way of approximation, which is compat-
ible with the elementwise one. In these cases the domains are approximated by increasing
chains of subdomains, or more precisely: they can be represented as bilimits of ω-chains of
domains with embedding/projections as bonding maps. Examples of such domains are the
SFP domains introduced by Plotkin [12] in order to provide a class of domains that is closed
under the constructions usually used in programming language semantics, and the domains
that are obtained as solutions of recursive domain equations (cf. [16]).

The approximating subdomains in such a chain can be understood as uniform levels of
approximation. Every point of the domain has a best approximation in each of the subdo-
mains. With respect to these levels the growth of a continuous function can be measured as
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well as the amount of information about an input needed to produce an output of a certain
level. We call the family of maps projecting points to their best approximations an ap-
proximation structure. As is shown, any domain having an approximation structure can be
represented as bilimit of an ω-chain of subdomains with embedding/projections as bonding
maps.

Approximation structures have been introduced in [17] in the case of stable domains. It
was proved that various models for a very strong untyped lambda calculus can be constructed
on the basis of such domains. The morphisms in the corresponding category respect the
approximation levels.

In this note the more general case of continuous domains is considered. The requirements
that link the approximation structure with the continuity structure of the domain are rather
weak. Stronger conditions will be discussed in the paper in connection with topological
considerations. It is shown that any approximation structure defines a canonical quasi-
ultrametric on the domain the induced topology of which is finer than the Scott topology
of the domain. It coincides with the Scott topology just if the strong continuity axiom
holds, which requires for all point x, y and all levels n that if every level n approximant of
x approximates y, then also the best approximation of x at level n approximates y. The
conditions seems to be quite natural, but as is shown, it is equivalent to demanding that
all elements appearing at the various approximation levels are compact. Consequently, the
domain must be algebraic. As is moreover demonstrated, the axiom holds if and only if
the subdomains generated by the approximations at the different levels contain only finite
strictly increasing sequences and if in each such subdomain the lengths of the sequences in
any collection of finite strictly increasing sequences having the same supremum are bounded.

Quasi-metrics on domains have first been considered by M. B. Smyth [14] in order to
allow for quantitative statements about approximations in domains. They satisfy essentially
the same conditions as a metric, except that they must not be symmetric. As a consequence
of this every quasi-metric induces a partial order on its domain. If it is generated by an
approximation structure the corresponding partial order matches with the domain order. In
this case the distance from a point x to a point y is determined by the maximal level such
that all approximations of x of that level approximate y.

With each quasi-metric a metric is associated, which is obtained by symmetrizing the
quasi-metric. In our case the distance of two points in this metric is fixed by the maximal level
up to which their approximations coincide. The topology generated by the metric is finer
than the Lawson topology of the domain and agrees with it in case the strong continuity
axiom holds. Moreover, the domain is complete with respect to this metric, if a weaker
condition, called the weak continuity axiom, is satisfied. It requires for each level n that
every approximant of x of level n also approximates the best approximation of x at that
level.

Note that domains with approximation structure are a special case of the projection
spaces studied by Ehrig et al. [6, 7, 8, 10] as a generalization of the projective model of
process algebra by Bergstra and Klop [3]. Moreover, the class of these domains contains
the rank-ordered sets introduced by Bruce and Mitchell [4] in a model construction for type
systems that allow subtyping, recursive types and higher-order polymorphism.

Classes of domains used in programming language semantics are usually closed under
certain constructions which reflect the constructions used in building up larger programs
and data types from smaller ones. Important examples are the construction of Cartesian
products, function spaces and bilimits of ω-chains. As will be seen, approximation structures
on the composed domains can be constructed in a natural way from those of the components
in these cases. The quasi-metrics associated with the approximation structures thus obtained
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are in a nice relationship with the quasi-metrics coming with the approximation structures
on the components. In the case of Cartesian products the distance from a pair of points to
another such pair is the maximum of the distances between the points in the first component
and those in the second component, respectively. Similar results hold in the other two cases.

The paper is organized as follows. In Section 2 domains with approximation structure and
their morphisms are introduced and fundamental properties are given. The canonical quasi-
metric of an approximation structure and its associated topology is studied in Section 3.
Similarly, in Section 4 the metric generated by the quasi-metric defined in Section 3 and
its topology is considered. In Section 5, finally, the above mentioned constructions on the
class of domains with approximation structure are discussed and relationships between the
quasi-metrics induced by the newly constructed approximation structures and those coming
with the components are derived. Final remarks appear in Section 6.

2 Domains with approximation structure

Let (D,�) be a partially ordered set with least element ⊥. A subset S of D is directed, if it is
nonempty and every pair of elements in S has an upper bound in S. D is a directed-complete
partial order (cpo) if every directed subset S of D has a least upper bound

⊔
S in D.

For elements x, y ∈ D one says that x is way-below y (or that x approximates y), and
writes x � y, if for every directed subset S of D such that y � ⊔

S there is some u ∈ S
with x � u. If x � x then x is called compact. We denote the set of compact elements of
D by D0. The way-below relation is transitive. The next lemma lists some of its important
properties.

Lemma 2.1 Let D be a cpo and u, v, x, y ∈ D. Then the following two statements hold:

1. If x � y then x � y.

2. If u � x � y � v then u � v.

Definition 2.2 Let D be cpo.

1. A subset Z of D is a basis of D if for any x ∈ D the set Zx (= { z ∈ Z | z � x })
contains a directed subset which has x as its least upper bound.

2. D is called continuous or a domain if it has a basis.

3. D is called algebraic or an algebraic domain if it has a basis of compact elements. If
D0 is a countable basis, D is called an ω-algebraic domain.

Note that D0 is included in any basis of D. Standard references for domain theory and
its applications are [11, 9, 1, 19, 2].

On domains the way-below relation has a further useful property, which is known as the
interpolation property.

Lemma 2.3 Let D be a domain with basis Z. Then for any x, y ∈ D with x � y there
exists u ∈ Z so that x � u � y.

The next corollary contains a useful consequence.

Corollary 2.4 Let D be a domain, x ∈ D and S be a directed subset of D. If x � ⊔
S then

there is some z ∈ S with x � z.

3



Proof: Assume that x � ⊔
S. By the interpolation property there is some y ∈ D such that

x � y � ⊔
S. Hence there is some z ∈ S so that y � z. With Lemma 2.1(2) it follows that

x � z.

As is well known, on each cpo D there is a canonical topology σ: the Scott topology. A
subset X is open, if it is upwards closed with respect to the order and intersects each directed
subset of D of which it contains the least upper bound. In case that D is continuous with
basis Z, this topology is generated by the sets ↑↑{z}(= { y ∈ D | z � y }) with z ∈ Z.

Definition 2.5 Let D and E be cpo’s. A map f : D → E is said to be continuous if it is
monotone and for any directed subset S of D,

f(
⊔

S) =
⊔

f(S).

It is well known that the order-based notion of continuity coincides with the topological
one. Denote the collection of all continuous maps from D to E by [D → E]. Endowed with
the pointwise order , that is, f �p g if f(x) � g(x) for all x ∈ D, it is a cpo again, but it
need not be continuous, even if D and E are.

Definition 2.6 An embedding/projection (e, p) from a cpo D to a cpo E is a pair of con-
tinuous maps e : D → E and p : E → D such that p ◦ e = idD, the identity map on D, and
e ◦ p �p idE . The map e is called embedding and p projection.

Embeddings are one-to-one and preserve existing least upper bounds as well as the way-
below relation. Projections are onto. Note that e◦p is an idempotent map on E. Such maps
are called retractions.

An ω-chain in a category K is a diagram of the form Δ = D0
f0→ D1

f1→ · · · . Dually an
ω-cochain is a diagram of the form Δ = D0

f0← D1
f1← · · · . If Kep is a category of cpo’s

with embedding/projections as morphisms and (Di, (ei, pi))i∈ω is an ω-chain in Kep, then
(Di, ei)i∈ω is an ω-chain in the category Ke and (Di, pi)i∈ω is an ω-cochain in the cate-
gory Kp, where Ke and Kp have the same objects as Kep, but have embeddings and/or
projections as morphisms. As is well known, (Di, ei)i∈ω has a colimit which is the limit of
(Di, pi)i∈ω. It is called the bilimit of (Di, (ei, pi))i∈ω. Moreover, if D is an object of Kep and
(fi, gi)i∈ω a family of embedding/projections such that (D, (fi)i∈ω) is a cocone for (Di, ei)i∈ω

and (D, (gi)i∈ω) is a cone for (Di, pi)i∈ω, then (D, (fi)i∈ω) is colimiting ((D, (gi)i∈ω) is lim-
iting) exactly if

⊔
i fi ◦ gi = idD (cf. [1, Lemma 3.3.8]).

The class of algebraic domains contains the large subcollection SFP of domains D that
can be represented as bilimits of ω-chains (Di)i∈ω of finite subdomains [12]. Since the
subdomains Di are closed under the operation of taking existing least upper bounds, any
element x of D has a best approximation

⊔ { z ∈ Di | z � x } in each of them. Abstracting
from such properties one obtains the notion of an approximation structure.

Definition 2.7 Let D be a domain with basis Z and for each i ∈ ω, [·]i : D → D. The
family ([·]i)i∈ω of maps is said to be an approximation structure on D if the following five
conditions hold for all i, j ∈ ω:

1. [·]i is continuous.

2. Z ⊆ ⋃
n Dn, where Dn = {x ∈ D | [x]n = x }.

3. [·]i ◦ [·]j = [·]min{i,j}.
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4. [·]i �p idD.

5.
⊔

n[·]n = idD.

In an earlier paper [17] the author introduced approximation structures in the context of
dI-domains and showed that various models of an important strong untyped lambda calculus
can be constructed on this basis. The morphisms used then respected the approximation
structure. In that case stronger requirements were made reflecting the special properties of
stable domains.

Note that by conditions (3) and(4), [x]i = [[x]i+1]i � [x]i+1. Thus, the maps [·]i form
an increasing chain under the pointwise order. By stipulation (3) we moreover have that Di

is contained in Di+1. Let ιi,i+1 be the corresponding inclusion map and ιi : Di → D be the
inclusion of Di in D. Then it follows with condition (4) that (ιi,i+1, [·]i�Di+1) and (ιi, [·]i)
are embedding/projections.

Let Zi = Z ∩ Di. Then Zi is contained in { [v]i | v ∈ Z }, i.e., Zi ⊆ [Z]i. Conversely, if
v ∈ [Z]i, then there is some u ∈ Z with v = [u]i. Hence, [v]i = [[u]i]i = [u]i = v, i.e., v ∈ Zi.
Thus, we have that Zi = [Z]i.

Proposition 2.8 Let D be a domain with basis Z and approximation structure ([·]i)i∈ω.
Then the following two statements hold:

1. Di is a subdomain of D with basis Zi, for every i ∈ ω.

2. D is isomorphic to the bilimit of the ω-chain (Di, (ιi,i+1, [·]i�Di+1))i∈ω.

The first statement is a special case of the general result that the image of a retraction r
on a domain with basis Z is a continuous sub-cpo with basis r(Z) (cf. [1, Lemma 3.1.3 and
Theorem 3.1.4]) and the second statement is a consequence of condition 2.7(5). It follows
that if D is algebraic then the same is true for the Di, and conversely.

We have already realized that an approximation structure on a domain D can be obtained
from a representation of the domain as a bilimit of an ω-chain of subdomains. Now, we see
that also conversely any approximation structure on D determines such a representation.

Lemma 2.9 Let D be a domain with approximation structure, x ∈ D and i ∈ ω. Then

[x]i =
⊔

{u ∈ Zi | u � x }.

Proof: Note first that the set of all u ∈ Zi with u � x is directed and thus has a least upper
bound. In order to see this let u, v ∈ Zi with u, v � x. Since Z is a basis there is some
w ∈ Zx with u, v � w. It follows that u = [u]i � [w]i � w � x and hence that u � [w]i � x.
Similarly, we obtain that v � [w]i � x. Because Zi = [Z]i, we have that [w]i ∈ Zi.

Now, let u ∈ Zi with u � x, then u � x and hence u = [u]i � [x]i. For the converse
inequality note that Zi is a basis of Di, by Proposition 2.8(1), and that the way-below
relation on Di is the restriction of the way-below relation on D to Di. Moreover, observe
that for u ∈ Zi with u � [x]i we have that u � x, as [x]i � x.

Except condition (2) there are no requirements in Definition 2.7 which combine the
approximation structure with the continuity structure of the domain, i.e., there are no con-
ditions relating the maps [·]i with the way-below relation. By the above lemma we only have
for u ∈ Zi and x ∈ D with u � x that u � [x]i, but later on we would need that u � [x]i.
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Definition 2.10 Let D be a domain with approximation structure. Then we call the con-
dition that for all i ∈ ω, u ∈ Zi and x ∈ D

u � x ⇒ u � [x]i

the weak continuity axiom.

The weak continuity axiom does obviously hold, if all base elements are compact, i.e., if
D is algebraic.

As we go on, we will meet a further (and more powerful) proviso as fallout of our topo-
logical considerations, but as we will also see, this condition has a strong impact on the order
structure of the domain.

Lemma 2.11 Let D be a domain with approximation structure. Then the approximation
structure satisfies the weak continuity axiom if and only if for all i ∈ ω, u ∈ Zi and x ∈ D

u � x ⇒ (∃v ∈ Zi)u � v � x.

Proof: For the “if” part note that Di is a subdomain of D with basis Zi, by Proposi-
tion 2.8(1), and use the interpolation property. The “only-if” part follows with Lemmas 2.9
and 2.1(2).

Observe that in general we only have that if u � x then there is some j ≥ i and some
v ∈ Zj such that u � v � x. To see this use the interpolation property and condition 2.7(2).

The morphisms we want to use in this paper shall not only respect the order structure,
but also the approximation structure.

Definition 2.12 Let D and E be domains with approximation structures ([·]Di )i∈ω and
([·]Ei )i∈ω, respectively. A continuous function f : D → E is

1. rank-preserving if for all x ∈ D and i, j ∈ ω with j ≥ i,

[f(x)]Ei = [f([x]Dj )]Ei .

2. a projection morphism if for all i ∈ ω

[·]Ei ◦ f = f ◦ [·]Di .

The next lemma follows as in [17].

Lemma 2.13 A continuous function f : D → E is a projection morphism if and only if it
is rank-preserving and for all i ∈ ω, f(Di) ⊆ Ei.

In order to produce an output of level i, i.e. in Ei, a rank-preserving map requires only
an approximation of the input of at most the same level. A projection morphism in addition
preserves levels of approximation.

Note that every domain has a trivial approximation structure with respect to which every
continuous function is a projection morphism: set [·]i = idD. An easy nontrivial example of
a domain with approximation structure is the topped domain ω of the natural numbers, i.e.,
the ordinal ω = ω∪{ω} with its canonical order, which has ω as its set of compact elements.
For k ∈ ω and i ∈ ω set

[k]ωi = min{i, k}.
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Then ([·]ωi )i∈ω is an approximation structure on ω.
Let D be a domain with approximation structure and set [·]ω = idD. Then λ(k, x) ∈

ω × D.[x]k is a map from ω × D to D. Note that ω × D is a domain with approximation
structure again. The order and the projection maps are defined componentwise. As in [17]
we obtain the following result.

Lemma 2.14 The map [·]· is a projection morphism.

3 The canonical quasi-metric

As will be shown in this section, every approximation structure defines a quasi-ultrametric
on its underlying domain in a natural way.

Definition 3.1 Let X be a set. A map d : X × X → [0,∞) is a quasi-metric if the following
two conditions hold for all x, y, z ∈ X:

1. d(x, y) = d(y, x) = 0 ⇔ x = y

2. d(x, z) ≤ d(x, y) + d(y, z).

If instead of (2) the stronger condition

2’. d(x, z) ≤ max{d(x, y), d(y, z)}

holds, d is called a quasi-ultrametric.
Note that a quasi-metric need not be symmetric. Every quasi-metric d defines a partial

order ≤d and a T0 topology τd on X. The partial order is given by

x ≤d y ⇔ d(x, y) = 0

and the topology generated by the sets

Bn(x) = { z ∈ X | d(x, z) < 2−n }

with x, y ∈ X and n ∈ ω.
With respect to the induced partial order each quasi-metric is monotone in its first argu-

ment and antimonotone in its second argument. Moreover, it is continuous in its topology.
In what follows, let D be a domain with basis Z and approximation structure ([·]i)i∈ω.

As is well known

x � y ⇔ (∀u ∈ Z)(u � x ⇒ u � y).

For n ∈ ω set

x �n y ⇔ (∀u ∈ Zn)(u � x ⇒ u � y).

Assume that x �n y. Then it follows with Lemma 2.9 that [x]n � y. The converse implication
is true, if x �n [x]n, which holds exactly in case the weak continuity axiom is satisfied.

We will now introduce a distance function on D, where the distance of a point x to a
point y is determined by the maximal level such that all approximations of x of that level
approximate y. Define

d(x, y) =

{
0 if x � y,
2−min{ i|x ��iy } otherwise.
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It is readily verified that d is a quasi-ultrametric on D. We call it the canonical quasi-
ultrametric of the approximation structure. As is easily seen, its induced partial order coin-
cides with the domain order.

By definition [x]n ∈ Bn(x) just if x �n [x]n. Thus, the approximation structure satisfies
the weak continuity axiom if and only if [x]n ∈ Bn(x), for all x ∈ D and n ∈ ω.

Proposition 3.2 Let D be a domain with an approximation structure that satisfies the weak
continuity axiom. Then

⋃
i Di is a dense subspace of D with respect to the topology defined

by the canonical quasi-ultrametric of the approximation structure.

Next, we will study the relationship between the topology τd defined by d and the Scott
topology on D. It is well known that the Scott topology captures essential properties of
computations. Therefore, in order to be able to use a quasi-metric on a domain for studying
quantitative aspects of computations, its associated topology should coincide with the Scott
topology. Note that y ∈ Bn(x) exactly if x �n y.

Proposition 3.3 Let D be a domain with approximation structure. Then its Scott topology
is coarser than the topology defined by the canonical quasi-ultrametric of the approximation
structure.

Proof: Let u ∈ Z and x ∈ D with u � x. By condition 2.7(2) u ∈ Zm, for some m ∈ ω.
Therefore Bm(x) ⊆ ↑↑{u}.

The converse inclusion does not hold in general. Smyth [15] considers the above quasi-
metric in the context of ω-algebraic domains D with a rank function on the set of their
compact elements, i.e. a map rk: D0 → ω. In this case the quasi-metric coincides with the
Scott topology, if rk−1({n}) is finite, for every n ∈ ω. Domains with approximation structure
have a canonical rank function on their basis, which is given by rk(u) = min { i | u ∈ Di }.

In this section we will characterize when the quasi-metric topology coincides with the
Scott topology. Let us first study when a ball Bn(x) is Scott open. Observe to this end that
Bn(x) is always upwards closed with respect to the domain order.

Lemma 3.4 Let x, y ∈ D and n ∈ ω such that [x]n � y. Then y ∈ Bn(x).

Proof: Let u ∈ Zn with u � x. Then it follows with Lemma 2.9 that u � [x]n � y. Hence
u � y. This shows that y ∈ Bn(x).

The converse implication in this lemma does not hold in general. As we will see next, it
characterizes the Scott openness of Bn(x).

Lemma 3.5 For x ∈ D and n ∈ ω, Bn(x) is Scott open if and only if [x]n � y, for all
y ∈ Bn(x).

Proof: Let S be a directed subset of D. Moreover, for the “if” part, let y ∈ Bn(x) and
assume that y � ⊔

S. Then
⊔

S ∈ Bn(x), which implies that there is some z ∈ S with
z ∈ Bn(x). As we have already seen, this means that [x]n � z, what was to be shown.

Now, for the “only-if” part, assume that
⊔

S ∈ Bn(x). Then [x]n � ⊔
S. By Corol-

lary 2.4 there is thus some z ∈ S so that [x]n � z, which, by Lemma 3.4, implies that
z ∈ Bn(x).
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Definition 3.6 Let D be a domain with approximation structure. We call the requirement
that for x, y ∈ D and n ∈ ω

x �n y ⇒ [x]n � y

the strong continuity axiom.

This axiom and in particular its consequence that [x]n � x, for all x ∈ D and n ∈ ω,
which we call the special continuity axiom and which strengthens condition (4) in the def-
inition of an approximation structure, expresses very well our intuition about the approxi-
mations [x]n as being canonical finitary elements that approximate x and as being the best
possible approximation of x at level n. In combination with condition (5) the special con-
tinuity axiom says that the approximation structure endows the domain with a canonical
basis with respect to which condition (2) always holds.

If we choose x ∈ Dn in the special continuity axiom, then we obtain that x = [x]n � x,
i.e., x is compact. So, it follows from the special continuity axiom that D has a canonical basis
of compact elements. This is a strong consequence, since it means that D must be algebraic.
As we will see next, this is not only a consequence, but equivalent to the continuity axiom.

Lemma 3.7 The approximation structure on D satisfies the strong continuity axiom exactly
if Dn ⊆ D0, for all n ∈ ω.

Proof: It remains to show the “only-if” part. Let to this end n ∈ ω and x, y ∈ D such that
x �n y. As we have already seen, this implies that [x]n � y. Hence [x]n � y, since [x]n is
compact.

Note that a compact element cannot be the least upper bound of an infinite strictly
increasing sequence. For two finite increasing sequences (yi)i≤N , (zj)j≤M of elements of D
we say that they are compatible if for every i ≤ N there is some j ≤ M with yi � zj , and vice
versa. Moreover, for any collection of finite sequences its length set is the class of lengths of
the sequences in the given collection.

Lemma 3.8 For n ∈ ω, Dn ⊆ D0 just if Dn contains only strictly increasing sequences of
finite length and the length set of any collection of compatible strictly increasing sequences
in Dn is bounded.

Proof: As has already been said, Dn contains no infinite strictly increasing sequences, if
Dn ⊆ D0. Moreover, all sequences in a set of compatible strictly increasing sequences in Dn

have the same least upper bound, say x ∈ Dn. Then the members of all sequences in this
set are contained in the set ↓n{x} of all elements y ∈ Dn with y � x. Since Dn is algebraic
by our assumption and its elements are compact, ↓n{x} is directed. Therefore, if the set
of lengths of the given sequences were not bounded, we could construct an infinite strictly
increasing sequence with least upper bound x, which is impossible, as we have seen.

Conversely, if x ∈ Dn and S is a directed subset of Dn with x � ⊔
S, then S contains

only strictly increasing sequences of finite length. Moreover, among them there is one of
maximal length. Its greatest element, say z, must be the least upper bound of S, otherwise
we could construct a longer sequence, since S is directed. It follows that z ∈ S and x � z.
Thus, x is compact.

If Dn ⊆ D0, for all n ∈ ω, it follows from Proposition 2.8 that D is a bilimit of an ω-chain
of algebraic domains and is hence itself algebraic.

Summing up what we have gained so far, we obtain the following result.
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Theorem 3.9 Let D be a domain with approximation structure. Then the following four
statements are equivalent:

1. The Scott topology on D coincides with the topology defined by the canonical quasi-
ultrametric of the approximation structure.

2. The approximation structure satisfies the strong continuity axiom.

3. Dn contains only compact elements, for all n ∈ ω.

4. For all n ∈ ω, Dn contains only strictly increasing sequences of finite length and the
length set of any collection of compatible strictly increasing sequences in Dn is bounded.

Moreover, if any of these conditions holds, then D must be algebraic.

In the case of domains with approximation structure the condition presented in this
characterization improves Smyth’s stipulation on the inverse images of the rank function
mentioned earlier in this section.

If the Scott topology on D coincides with the topology of the canonical quasi-ultrametric,
that is, if all approximations [x]n are compact, the distance from a point x to a point y is
determined by the maximal level up to which the best approximation of x is majorized by
y. In that case we have for x, y ∈ D with x �� y that

d(x, y) = 2−min{ i|[x]i ��y }.

4 The associated metric

As is well known, a metric d̄ is associated with every quasi-metric d. It is obtained by
symmetrizing the quasi-metric:

d̄(x, y) = max{d(x, y), d(y, x)}.

Let D be a domain with approximation structure and d the canonical quasi-ultrametric
associated with it. Then d̄ is an ultrametric.

For x, y ∈ D and n ∈ ω define

x =n y ⇔ (∀u ∈ Zn)(u � x ⇔ u � y).

Note that x =n y implies that [x]n = [y]n. The converse holds if the approximation structure
satisfies the weak continuity axiom.

Lemma 4.1 Let x, y ∈ D such that x �= y. Then

d̄(x, y) = 2−min{ i|x�=iy }.

Let μd̄ be the topology associated with d̄. It is generated by the sets

Cn(x) = { y ∈ D | d̄(x, y) < 2−n }

with x ∈ D and n ∈ ω.
Note that by Lemma 4.1, y ∈ Cn(x) just if x =n y. Moreover, Cn(x) ⊆ Bn(x), which

implies that τd ⊆ μd̄.
If the weak continuity axiom holds, every rank-preserving map is nonexpansive with

respect to this metric and hence continuous with respect to the associated topology. Because
of Lemma 2.13 the same is true for the projection morphisms.
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Proposition 4.2 Let D be a domain with an approximation structure that satisfies the weak
continuity axiom. Then D is complete with respect to d̄ and

⋃
i Di is a dense subspace.

The proof is as in [17]. Remember that by the weak continuity axiom, x =n y exactly if
[x]n = [y]n.

In the preceding section we compared the quasi-metric topology induced by the approx-
imation structure with the canonical topology of the underlying domain. There is also a T2

topology generated by the domain order, the Lawson topology. We will now compare this
topology with the metric topology defined by d̄.

For x ∈ D let ↑{x} = { y ∈ D | x � y }. Then the Lawson topology λ is generated by the
subsets of D which are either Scott open or of the form D\↑{x}, for some x ∈ D.

Lemma 4.3 For x ∈ D and n ∈ ω

Cn(x) = Bn(x) ∩
⋃

{D\↑{y} | y ��n x }.

Proof: Let z ∈ Cn(x). Then z ∈ Bn(x) and x =n z. If there were some y ∈ D with y � z,
but y ��n x, it followed that y �n z and hence that y �n x, which is impossible by the choice
of y. Thus z ∈ Bn(x) ∩ ⋃ {D\↑{y} | y ��n x }.

If, conversely, z ∈ Bn(x) ∩ ⋃ {D\↑{y} | y ��n x }, we have that x =n z, since otherwise
we had that z ∈↑{y}, for some y ∈ D with y ��n x, namely y = z. Therefore z ∈ Cn(x).

It follows that μd̄ ⊆ λ, if τd ⊆ σ.

Proposition 4.4 Let D be a domain with approximation structure. Then the Lawson topol-
ogy of the domain is coarser than the topology defined by the ultrametric associated with the
canonical quasi-ultrametric of the approximation structure.

Proof: Let X be one of the generating subsets of D generating the Lawson topology. Because
σ ⊆ τd, by Proposition 3.3, and τd ⊆ μd̄, it suffices to consider the case that X = D\↑{y},
for some y ∈ D. Without restriction let y �= ⊥. Moreover, let x ∈ X and m be the smallest
i with y ��i x. We will show that Cm(x) ⊆ X. Let to this end z ∈ Cm(x). Then z =m x and
y �� z, since otherwise we had y �m z and thus y �m x, in contradiction to our choice of m.
Therefore z ∈ X.

The above results show that μd̄ = λ, if τd = σ. The coincidence of these two topologies has
been characterized in Theorem 3.9.

Theorem 4.5 Let D be an algebraic domain with an approximation structure that satisfies
the strong continuity axiom. Then the topology defined by the ultrametric associated with
the canonical quasi-ultrametric of the approximation structure coincides with the Lawson
topology of the domain.

5 Some constructions

Classes of domains used in programming language semantics are usually closed under certain
constructions which reflect the constructions used in building up larger programs and data
types from smaller ones. Important examples are the construction of Cartesian products,
function spaces and bilimits of ω-chains. The last construction is used in solving recursive
domain equations [16].
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In this section we will show how in these cases approximation structures on the newly
constructed domains can be defined in terms of those on the components in a natural way.
Moreover, it will be studied how the canonical quasi-metrics of the approximation structures
thus obtained can be computed from the canonical quasi-metrics coming with the compo-
nents.

We start with the construction of Cartesian products. Let to this end D and E be
domains with bases ZD and ZE as well as approximation structures ([·]Di )i∈ω and ([·]Ei )i∈ω,
respectively.

The Cartesian product D × E of D and E is the usual product of sets, augmented with
the coordinatewise order. It is a domain again with basis ZD×ZE . Note that the way-below
relation between two pairs holds, exactly if it holds componentwise. For (x, y) ∈ D ×E and
n ∈ ω set

[(x, y)]×n = ([x]Dn , [y]En ).

Proposition 5.1 ([·]×i )i∈ω is an approximation structure on D × E.

As is easily verified,

(x, y) �n (x′, y′) ⇔ x �n x′ ∧ y �n y′,

for x, x′ ∈ D, y, y′ ∈ E and n ∈ ω.
Now, let dD, DE and d×, respectively, be the canonical quasi-metrics of the approx-

imation structures on D, E and D × E. Moreover, let (x, y), (x′, y′) ∈ D × E. Then
d×((x, y), (x′, y′)) = 0, exactly if dD(x, x′) = 0 and dE(y, y′) = 0. Moreover, in case that
d×((x, y), (x′, y′)) �= 0, its value is determined by the minimal i such that (x, y) ��i (x′, y′).
Let m be the smallest such i. Then x ��m x′ or y ��m y′. Since (x, y) �j (x′, y′) and hence
x �j x′ as well as y �j y′, for all j < m, it follows that dD(x, x′), dE(y, y′) ≤ 2−m and in at
least one case the value is 2−m.

Proposition 5.2 For any (x, y), (x′, y′) ∈ D × E

d×((x, y), (x′, y′)) = max{dD(x, x′), dE(y, y′)}.

Let us next consider the function space construction. As is well known, in general, the
function space [D → E] of two domains D and E is not a domain again. This is the case,
however, if E is an L-domain, i.e., a domain in which every subset S bounded by an element
z has a least upper bound

⊔z S in the principal ideal ↓{z} (= { y ∈ E | y � z }). Then the
function space has a basis of step functions.

Definition 5.3 Let D and E, respectively, be a domain and an L-domain.

1. For basic elements u ∈ D and v ∈ E the single-step function (u ↘ v) : D → E is
defined by

(u ↘ v)(x) =

{
v if u � x,
⊥E otherwise.

2. A step function is the relative join of a bounded finite collection of single-step functions.
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Note that a finite family (ui ↘ vi), i = 1, . . . , n, of single-step functions is bounded by a
continuous function f and has a least upper bound in ↓{f}, exactly if the set { vi | ui � x }
is bounded by f(x) for each x ∈ D. As follows from the next lemma [18], for domains D, E
the collection of all step functions is a basis of [D → E].

Lemma 5.4 Let D and E, respectively, be a domain and an L-domain with bases ZD and
ZE. Moreover, let f ∈ [D → E], and for some finite index set I, let ui ∈ ZD and vi ∈ ZE,
for i ∈ I. Then the following two statements hold:

1. f =
⊔ { (u ↘ v) | v � f(u) }.

2.
⊔f { (ui ↘ vi) | i ∈ I } � f ⇔ (∀i ∈ I)vi � f(ui).

Now, assume that D and E have approximation structures ([·]Di )i∈ω and ([·]Ei )i∈ω, re-
spectively. For f ∈ [D → E], x ∈ D and i ∈ ω set

[f ]→i (x) = [f(x)]Ei .

Since [·]Ei is continuous, [f ]→i ∈ [D → E].

Proposition 5.5 ([·]→i )i∈ω is an approximation structure on [D → E].

The verification of the requirements in Definition 2.7 is straightforward. One takes ad-
vantage of the fact that the least upper bound of a directed function set can be computed
argumentwise. The same is true for the next result, which is a consequence of Lemma 5.4.

Lemma 5.6 Let f, g ∈ [D → E] and n ∈ ω. Then

f �n g ⇔ (∀x ∈ D)f(x) �n g(x).

For the proof of the “if” part note that for x ∈ D and v ∈ ZE
n with v � f(x) there is some

u ∈ ZD such that u � x and v � f(u). Moreover, a step function
⊔f { (ui ↘ vi) | i ∈ I } is

in [D → E]n, just if vi ∈ ZE
n , for all i ∈ I.

Let d→ and dE , respectively, be the canonical quasi-metrics of the just defined approxi-
mation structure on [D → E] and that on E.

Proposition 5.7 For f, g ∈ [D → E]

d→(f, g) = max { dE(f(x), g(x)) | x ∈ D }.

Because of the above lemma this result follows by the same kind of reasoning as in the
product case.

Finally, let DOMAep be the category the objects of which are domains with approxi-
mation structure and the morphisms are embedding/projections which are both projection
morphisms. Moreover, let Δ =

(
Di, (ei, pi)

)
i∈ω

be an ω-chain in this category and set

D∞ = { t ∈ ∏
n Dn | (∀n ∈ ω)t(n) = pn(t(n + 1)) }.

Endowed with the componentwise defined order D∞ is a domain (cf. [1, Theorem 3.3.11]).
Let enm = em−1 ◦ · · · ◦ en for n < m, enn = idDn , and pmn = pm ◦ · · · ◦ pn−1, for m < n.

The canonical embedding inn ∈ [Dn → D∞] is given by

inn(x)(m) =

{
enm(x) if n ≤ m,
pmn(x) otherwise.
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If Di comes with basis Zi, for each i ∈ ω, then
⋃

n inn(Zn) is a basis of D∞.
For i ∈ ω let ([·]Di

j )j∈ω be the given approximation structure on Di. We will now define
an approximation structure on D∞. Let to this end t ∈ D∞ and i, n ∈ ω. Set

[t]∞i (n) = [t(n)]D
n

i .

Since the projections pi are projection morphisms, [t]∞i ∈ D∞.

Proposition 5.8 ([·]∞i )i∈ω is an approximation structure on D∞.

As is easily verified, D∞ is the bilimit of the ω-chain Δ in DOMAep.
Unfortunately, the way-below relation on D∞ cannot be reduced to the way-below re-

lation on the components as in the case of finite products. Therefore, we restrict ourselves
to the case that the Di are algebraic. Then D∞ is algebraic as well. We have already seen
that under this assumption, x �n y exactly if [x]n � y. Since ordering and approximation
structure on D∞ are defined componentwise, we can proceed as in the other two cases to
derive a relationship between the canonical quasi-metrics d∞ and di, respectively, of the
approximation structures on D∞ and the Di.

Proposition 5.9 Let Di be algebraic, for all i ∈ ω, and s, t ∈ D∞. Then

d∞(s, t) = max { di(s(i), t(i)) | i ∈ ω }.

6 Conclusion

Several approaches can be found in the literature to enrich domains used in the foundations
of computing by weak metrical notions so as to provide a structure for the study of quan-
titative aspects of computing. In this note domains have been enriched by approximation
structures which allow the definition of uniform levels of approximation. Most domains used
in program semantics come equipped with this additional structure. In general, the ties
between an approximation structure and the continuity structure of the domain are rather
weak. Stronger requirements, called the weak and/or strong continuity axiom, have been
discussed, which have deep links to topology.

As was shown, each approximation structure defines a quasi-ultrametric in a canonical
way. The partial order induced by the quasi-metric agrees with the domain order. Its
topology is finer than the Scott topology of the domain, in general. Both topologies coincide
exactly if the strong continuity axiom holds, which is the case if and only if the subdomains
defining the uniform approximation levels contain only compact elements. This is a strong
requirement which forces the subdomains and the domain to be algebraic.

For a special class of algebraic domains a quasi-metric has been introduced by Smyth
in the same way. The just mentioned requirement for the equivalence of the two topologies
improves his condition.

By symmetrizing a quasi-metric one obtains a metric. In the case of the canonical quasi-
metric of an approximation structure the distance of two points in this metric is determined
by the maximal level up to which the approximations of the two points agree. The domain
is complete in this metric, if the weak continuity axiom is satisfied. Moreover, the metrical
topology is finer than the Lawson topology of the domain. Both topologies coincide if the
strong continuity axiom holds.

Classes of domains used in studying the meaning of programs have to be closed under
constructions reflecting similar constructions on the syntactic level. For three important
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constructions it has been shown that approximation structures on the newly constructed
domains can be defined from those on the components in a natural way. Moreover, the
distance of points in the new domains with respect to the canonical quasi-metric of these
approximation structures can easily be computed from distances of points in the component
domains.
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