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Abstract

If one wants to compute with infinite objects like real numbers or data streams,
continuity is a necessary requirement: better and better (finite) approximations of the
input are transformed in better and better (finite) approximations of the output. In
case the objects are constructively generated, they can be represented by a finite de-
scription of the generating procedure. By effectively transforming such descriptions for
the generation of the input (respectively, their codes) in (the code of) a description for
the generation of the output another type of computable operation is obtained. Such
operations are also called effective. The relationship of both classes of operations has
always been a question of great interest and well known theorems such as those of Myhill
and Shepherdson, Kreisel, Lacombe and Shoenfield, Cĕıtin, and/or Moschovakis present
answers for important special cases. A general, unifying approach has been developed
by the present author in [36].

In this paper the approach is extended to the case of multifunctions. Such functions
appear very naturally in applied mathematics, logic and theoretical computer science.
Various ways of coding (indexing) sets are discussed and their relationship is investi-
gated. Moreover, effective versions of several continuity notions for multifunctions are
introduced. For each of these notions an indexing system for sets is exhibited so that
the multifunctions that are effective with respect to this indexing system are exactly
the multifunction which are effectively continuous with respect to the continuity notion
under consideration. Mostly, in addition to being effective the multifunctions need also
possess certain witnessing functions. Important special cases are discussed where such
witnessing functions always exist.

1 Introduction

As is well known [23, 42], the test whether for two given real numbers the first is smaller
than the second is not computable as a map from the reals to, say, {0, 1}. This fact creates
a serious problem to the design of programming languages for real number computations,
as tests of this kind abundantly appear in algorithms. The problem can be solved by using
the relaxed tests <k (k a natural number) instead, which compare two reals with a given
uncertainty of 2−k:

x <k y =

{
0 if x < y,
1 if x+ 2−k > y.

However, these test functions are over-defined: for real numbers x and y with y−2−k < x < y
both values 0 and 1 are possible.
∗This research has been supported by the German Research Foundation (DFG) under grants no. 446 CHV

113/240/0-1, no. 436 RUS 113/850/0-1(R) and no. 445 SUA-113/20/0-1

1



Consider the equation
f(x) = u.

Among others one would be interested in knowing whether the solutions behave well under
small perturbations of the right hand side. One will have to study f−1(u) as a function of u
in this case. But this is a set-valued or multifunction in general.

There are many more examples showing that multifunctions occur very naturally in
mathematical practice. They have indeed been used with great success in various branches
of mathematics, logic and computer science and there is already a vast literature (cf. e.g.
[2, 3, 30, 33, 40]).

In this paper we will study multifunctions in the setting of effective topological spaces
[36]. These are second-countable T0 spaces where we assume that there has already been
a way to define what are their computable points and it is only these elements that our
spaces contain. We moreover expect the space to come with a canonical numbering of its
elements as well as an indexing of its topological basis. Here, we follow M. B. Smyth’s
approach [34] and think of the basic open sets as easy to encode observations that can be
made about the computational process determining the elements. So, we let the indexing of
the basic open sets be total. As has been shown in [35] however, in general we cannot expect
canonical numberings of the points to be total as well. By a canonical numbering we mean
a numbering that is obtained from a coding of the computational process determining the
elements in such a way that we can enumerate all basic open sets containing a given point,
uniformly in any of its indices.

By doing better and better observations we want finally be able to determine every el-
ement. (A second requirement for a numbering to be canonical or, as we will later say,
acceptable is that this can be done in an effective way.) Thus, we need a relation of definite
refinement between the basic open sets which in many cases will be stronger than set inclu-
sion. In most applications it will be recursively enumerable. As it turns out in these cases,
the refinement relation is a relation between the codes of the basic open sets rather than the
sets itself.

Therefore, we assume that the indexing of the basic open sets is such that there is a
transitive relation on the indices so that the property of being a topological basis holds with
respect to this relation instead of just set inclusion. The property of being a base of the
topology is a ∀∃ statement. We require it to be realised by a computable function on the
involved indices. This leads us to the notion of an effective space.

Note that we think of the topological basis with its numbering and the associated re-
finement relation as being part of the structure under consideration. This seems to be a
typical feature of constructive approaches: constructive notions may depend on how objects
are represented.

A well known prerequisite for a (single-valued) function to be computable is its continuity.
It allows to transform converging approximations of the argument in converging approxima-
tions of the function value. All one has to ensure in addition is that this can be done in an
effective way. In the framework of effective spaces, however, there is also another kind of
functions that could be called computable. Since our spaces contain only points that can be
approximated in an effective way, each point can be represented by a program that computes
such an approximation, or a code of it. This is the way the already mentioned numbering of
the points is obtained. What this other kind of functions do is simply to effectively map (the
codes of) programs generating an approximation of the argument to (the codes of) programs
generating an approximation of the function value. We call such functions effective.
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Functions computable in the first way are also computable in the second way, i.e., they
are also effective. The converse is not true in general, but it is true in some important special
cases such as constructive domains and recursive metric spaces [28, 22, 11, 27, 13, 41]. In
[36] this situation has been analysed in detail and a further condition has been presented
that forces any effective map between effective spaces to be computable. As was shown, in
the case of effective maps between constructive domains or recursive metric spaces the extra
condition is always satisfied.

It is the aim of this paper to study the analogous question for set-valued maps. To do
so we first have to look for a suitable coding system by which we can represent the values of
such maps. In the point case the codes were obtained by effectively enumerating sufficiently
many basic properties of a point, uniquely determining it. In the set case there are too
many subsets to be uniquely representable by codes. So, we no longer require the objects
under consideration to be uniquely determined by the properties we are listing. The coding
system will induce an equivalence relation among the subsets of a given space and what
is actually listed are properties of certain canonical members of the respective equivalence
classes. In computations only information that does not distinguish between members of a
class is used. Our attitude is that the objects we are dealing with are given by other means.
We will examine several coding systems for sets of different strength.

A function is computable in the above way if it is effectively continuous. For multifunc-
tions several continuity notions are in use. We consider at least three of them and discuss
effective versions. For each of them the question of when an effective multifunction is effec-
tively continuous is studied and sufficient conditions are exhibited. Note that in two cases
the outcome is a consequence of the central result in [36]. Finally it is shown that the ex-
tra conditions are satisfied in the case of constructive domains and effectively given metric
spaces. In all these investigations the choice of the coding system for sets we are using will
be important.

The paper is organised as follows: Section 2 contains basic definitions and properties.
The notion of an effective space as well as results that are needed in later sections are
recalled in Section 3. Moreover, important, standard examples of such spaces are discussed.
In Section 4 various subspace indexings are introduced and their interrelation is studied.

Notions of effective continuity for multifunctions are defined in Sections 5 and 6. By
applying one of the central results in [36] it is shown in Section 5 that multifunctions are
effectively lower semi-continuous just if they are effective with respect to hit indices and
possess certain witness functions, and that compact-valued multifunctions are effectively
upper semi-continuous exactly if they are effective with respect to covering indices and also
possess certain witness functions. Hit indices allow the generation of all basic open sets
that meet the indexed set, and from a covering index one can compute all finite covers of
the indexed set, where in this case only compact sets are considered. As is shown in [36],
the witnessing condition is always satisfied if the domain space of the multifunction is a
constructive domain. In the present paper we will show that it is always satisfied as well,
if the range space of the multifunction is an effectively given metric space. However, the
multifunction has to satisfy stronger effectivity requirements in this case. In order to obtain
lower semi-continuity e.g., we must, for each value of the multifunction, uniformly be able to
list all basic open sets missing the value set. An example given in Section 7 will show that
the theorem does not hold without this extra requirement.

In Section 6 the effective outer semi-continuity of multifunctions is studied. Outer semi-
continuous multifunctions have been considered by Rockafellar and Witts [30]. A multifunc-
tion is effectively outer semi-continuous if, and only if, it is jointly effective with respect to
density and closedness indices. A density index of a set codes a procedure generating a dense
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subset of the given set and a closedness index witnesses that the complement of the set is
effectively open.

The research reported on here has been started in the 1990’s. Preliminary versions of
some results have been presented at the workshop “Computability and Models”, Almaty,
Kazakhstan, June 24-28, 2002, the “Second Irish Conference on the Mathematical Founda-
tions of Computer Science and Information Technology”, Galway, Ireland, July 18-19, 2002,
and the workshop “From Sets and Types to Topology and Analysis: Towards Practical Foun-
dations for Constructive Mathematics”, Venice, Italy, May 12-16, 2003. It has been taken up
again when the author was visiting the Universities of Cape Town and Stellenbosch, South
Africa, in 2006, and results have been presented at the workshop “Trends in Constructive
Mathematics”, Frauenwörth, Germany, June 19-23, 2006 and the joint workshop “Domains
VIII” and “Computability over Continuous Data Types”, Novosibirsk, Russia, November
11-15, 2007.

2 Basic definitions and properties

In what follows, let 〈 , 〉 : ω2 → ω be a recursive pairing function with corresponding
projections π1 and π2 such that πi(〈a1, a2〉) = ai, and let D be a standard coding of all finite
subsets of natural numbers. Moreover, let P (n) (R(n)) denote the set of all n-ary partial
(total) recursive functions, and let Wi be the domain of the ith partial recursive function ϕi
with respect to some Gödel numbering ϕ. We let ϕi(a)↓ mean that the computation of ϕi(a)
stops, ϕi(a)↓ ∈ C that it stops with value in C, and ϕi(a)↓n that it stops within n steps. In
the opposite cases we write ϕi(a)↑ and ϕi(a)↑n respectively.

Let S be a nonempty set. If X is a subset of S, then its complement S \ X will be
denoted by X. A (partial) numbering ν of S is a partial map ν : ω ⇀ S (onto) with domain
dom(ν). The value of ν at n ∈ dom(ν) is denoted, interchangeably, by νn and ν(n). Note
that instead of numbering we also say indexing.

Definition 2.1 For numberings ν and κ of set S, ν is reducible to κ, written ν ≤ κ, if there
is a function g ∈ P (1) such that dom(ν) ⊆ dom(g), g(dom(ν)) ⊆ dom(κ), and νm = κg(m),
for all m ∈ dom(ν).

Definition 2.2 Let S, S′ be nonempty sets with numberings ν and ν ′, respectively. A map
F : Sn → S′ is effective, if there is a function f ∈ P (n) such that f(m1, . . . ,mn)↓ ∈ dom(ν ′)
and F (νm1 , . . . , νmn) = ν ′f(m1,...,mn), for all m1, . . . ,mn ∈ dom(ν).

A subset X of S is completely enumerable (c.e.), if there is a recursively enumerable (r.e.)
set Wn such that νi ∈ X if and only if i ∈ Wn, for all i ∈ dom(ν). Set Mn = X, for any
such n and X, and let Mn be undefined, otherwise. Then M is a numbering of the class CE
of completely enumerable subsets of S. Every index of X with respect to M is called a c.e.
index of X. As is easily verified, the collection CE is closed under set union and intersection
and both operations are effective.

A relation R ⊆ S×S is completely enumerable, if there is an r.e. set A so that (νi, νj) ∈ R
if and only if 〈i, j〉 ∈ A, for all i, j ∈ dom(ν).

X is enumerable, if there is an r.e. set A ⊆ dom(ν) such that X = { νi | i ∈ A }. Thus,
X is enumerable if we can enumerate a subset of the index set of X which contains at least
one index for every element of X, whereas X is completely enumerable if we can enumerate
all indices of elements of X and perhaps some numbers which are not used as indices by the
numbering ν. Any r.e. index of A, that is any index of A with respect to W , is said to be
an enumeration index of X.
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Lemma 2.3 Let S be a nonempty set with numbering ν. Then the following two statements
hold:

1. The collection of all enumerable subsets of S is closed under set union and this operation
is effective with respect to enumeration indices.

2. There is a function f ∈ P (1) such that for any enumerable subset X of S and any
enumeration index n of X, f(n)↓ ∈ dom(ν) and νf(n) ∈ X.

In the latter case we say that the collection of all enumerable subsets of S has an in-
tensional selection function. As follows from the next example, the intersection of two
enumerable sets need not be enumerable again.

Example 2.4 Let I ⊆ ω be an immune set, i.e. an infinite set without infinite r.e. subset
(cf. [31]). Set S = {a, b} ∪ I. Moreover, for X ⊆ ω let 2X = { 2i | i ∈ X }. Similarly for
2X + 1. Now, define the indexing ν : ω → S of S by

νi =


a if i ∈ 2I,
b if i ∈ 2I + 1,

b i
2
c otherwise,

and set X = I ∪ {a} and X ′ = I ∪ {b}. Obviously, both sets are enumerable: X =
{ νi | i even } and X ′ = { νi | i odd }. Moreover, X ∩ X ′ = I. If I were enumerable, there
were an r.e. set A ⊆ ω with I = ν(A), which means that A ⊆ 2I∪(2I+1). Since I is infinite,
the same would be true for A. It followed that either the set of all even numbers in A or the set
of all odd numbers in A would be infinite as well. Since { i | 2i ∈ A }, { i | 2i+ 1 ∈ A } ⊆ I, it
would follow that I had an infinite r.e. subset, contrary to its choice. So, I is not enumerable.

Every indexing ν of S induces a family of natural topologies on this set. A topology η
on S is a Mal’cev topology [24], if it has a subbasis C of completely enumerable subsets of T .
Any such subbasis is called a Mal’cev subbasis. All Mal’cev subbases on S can be indexed in
a uniform canonical way. Let Mη

n = Mn, if Mn ∈ C, and let it be undefined, otherwise.
Now, let T = (T, τ) be a topological T0 space with countable basis B. We also write

τ = 〈B〉 to express that B is a countable basis and τ = 〈〈B〉〉 in case that B is a countable
subbasis of τ . For any subset X of T , intτ (X), clτ (X) and extτ (X), respectively, are the
interior, the closure and the exterior of X.

As is well known, each point y of a T0 space is uniquely determined by its neighbourhood
filter N (y) and/or a base of it. Moreover, on T0 spaces there is a canonical partial order,
the specialisation order, which we denote by ≤τ .

Definition 2.5 Let T = (T, τ) be a T0 space, and y, z ∈ T . y ≤τ z if N (y) ⊆ N (z).

Let B be a numbering of B. By definition each open set is the union of certain basic open
sets. In the context of effective topology one is only interested in enumerable unions. We
call an open set O ∈ τ Lacombe-open or a Lacombe set, if there is an r.e. set A ⊆ dom(B)
such that

O =
⋃
{Ba | a ∈ A }.

Set Lτn =
⋃
{Ba | a ∈ Wn }, if Wn ⊆ dom(B), and let Lτn be undefined, otherwise. Then Lτ

is a numbering of the Lacombe sets of τ . The indices are called Lacombe indices. Obviously,
B ≤ Lτ .
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If we want to deal with the points and open sets of space T in an effective way, then the
interplay between both should at least be such that we can effectively list the points of each
basic open set, uniformly in its index. To this end we restrict ourselves to countable spaces.

Definition 2.6 Let T = (T, τ) be a countable topological T0 space with countable basis B,
and let x and B be numberings of T and B, respectively. We say that x is computable if
there is some r.e. set L ⊆ ω such that for all i ∈ dom(x) and all n ∈ dom(B),

〈i, n〉 ∈ L⇔ xi ∈ Bn.

Clearly, if x is computable then every Lacombe set is completely enumerable, uniformly
in its Lacombe index, i.e. Lτ ≤M .

Now, we can effectively compare second-countable topologies.

Definition 2.7 Let τ = 〈B〉 and η = 〈〈C〉〉 be a topologies on T , and B and C, respectively,
be numberings of B and C.

1. η ⊆p τ , read η is effectively pointwise coarser than τ , if there is some function h ∈ P (2)

such that h(i,m)↓ ∈ dom(B) and xi ∈ Bh(i,m) ⊆ Cm, for all i ∈ dom(x) and m ∈
dom(C) with xi ∈ Cm.

2. η ⊆e τ , read η is effectively coarser than τ , if C ≤ Lτ .

Lemma 2.8 ([36]1) Let x be computable. Then, if η is effectively coarser than τ , it is also
effectively pointwise coarser that τ .

For Mal’cev topologies η the converse holds as well, in case T and x satisfy certain
stronger requirements.

3 Effective spaces

In this section, let T = (T, τ) be a countable topological T0 space with countable basis B.
At first sight the requirement that T is countable seems quite restrictive. We think of

T as being the subspace of computable elements of some larger space. There are several
approaches to topology that come with natural computability notions for points and maps
(cf. e.g. [32, 38, 7, 42]). It allows to assign indices to the computable points in a canonical way
so that important properties become computable. In general the notion of computable point
is rather complex, mainly harder than Σ0

1. Consequently, the indexings of the computable
points thus obtained are only partial maps.

Contrary to this, in most applications the basic open sets have a simple finite description.
By coding the descriptions one obtains a total numbering of the topological basis. For us
basic open sets are predicates. Each point is uniquely determined by the collection of all
predicates it satisfies, thus the T0 requirement.

Usually, set inclusion between basic open sets is not completely enumerable. But in the
applications we have in mind there is a canonical relation between the descriptions of the
basic open sets (respectively, their codes), which in many cases is stronger than set inclusion.
This relation is r.e. We assume that the topological basis B comes with a numbering B of
its elements and such a relation between the codes.

1Note that in earlier papers we always assumed the spaces under consideration to have an indexed basis.
In certain cases, however, it is sufficient to require only the existence of an indexed subbasis.
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Definition 3.1 Let ≺B be a transitive binary relation on ω. We say that:

1. ≺B is a strong inclusion, if for all m, n ∈ dom(B), from m ≺B n it follows that
Bm ⊆ Bn.

2. B is a strong basis, if ≺B is a strong inclusion and for all z ∈ T and m, n ∈ dom(B)
with z ∈ Bm ∩ Bn there is a number a ∈ dom(B) such that z ∈ Ba, a ≺B m and
a ≺B n.

For what follows we assume that ≺B is a strong inclusion with respect to which B is a
strong basis.

Definition 3.2 Let T = (T, τ) be a countable topological T0 space with countable basis B,
and let x and B be numberings of T and B, respectively. Then T is effective, if B is total
and the property of being a strong basis holds effectively, which means that there exists a
function sb ∈ P (3) such that for i ∈ dom(x) and m, n ∈ ω with xi ∈ Bm ∩ Bn, sb(i,m, n)↓,
xi ∈ Bsb(i,m,n), sb(i,m, n) ≺B m, and sb(i,m, n) ≺B n.

Note that very often the totality of B can easily be achieved, if the space is recursively
separable, which means that it has a dense enumerable subset, called its dense base.

As is readily verified, T is effective if x is computable, B is total and the strong inclusion
relation is r.e.

Since we work with strong inclusion instead of set inclusion, we had to adjust the notion
of a topological basis. In the same way we need to modify that of a filter base.

Definition 3.3 Let H be a filter. A nonempty subset F of H is called strong base of H if
the following two conditions hold:

1. For all m, n ∈ dom(B) with Bm, Bn ∈ F there is some index a ∈ dom(B) such that
Ba ∈ F , a ≺B m, and a ≺B n.

2. For all m ∈ dom(B) with Bm ∈ H there some index a ∈ dom(B) such that Ba ∈ F
and a ≺B m.

If x is computable, a strong base of basic open sets can effectively be enumerated for each
neighbourhood filter. For effective spaces this can always be done in a normed way [36].

Definition 3.4 An enumeration (Bf(a))a∈ω with f : ω → ω such that range(f) ⊆ dom(B)
is said to be normed if f is decreasing with respect to ≺B. If f is recursive, it is also called
recursive and any Gödel number of f is said to be an index of it.

In case (Bf(a)) enumerates a strong base of the neighbourhood filter of some point, we
say it converges to that point.

Lemma 3.5 ([36]) Let T be effective and x be computable. Then there are functions q ∈
R(1) and p ∈ R(2) such that for all i ∈ dom(x) and all n ∈ ω with xi ∈ Bn, q(i) and p(i, n) are
indices of normed recursive enumerations of basic open sets which converge to xi. Moreover,
ϕp(i,n)(0) ≺B n.

We want not only to be able to generate normed recursive enumerations of basic open
sets that converge to a given point, but conversely, we need also be able to pass effectively
from such enumerations to the point they converge to.
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Definition 3.6 Let x be a numbering of T . We say that:

1. x allows effective limit passing if there is a function pt ∈ P (1) such that, if m is an
index of a normed recursive enumeration of basic open sets which converges to some
point y ∈ T , then pt(m)↓ ∈ dom(x) and xpt(m) = y.

2. x is acceptable if it allows effective limit passing and is computable.

For neighbourhood filters of points having an enumerable strong base, we can always
construct a normed enumeration of a strong base of the same filter. But not every such
enumeration needs to converge. This gives rise to the following completeness notion.

Definition 3.7 A T0 space T = (T, τ,B, B,≺B) with a countable strong basis is construc-
tively complete, if each normed recursive enumeration of nonempty basic open sets converges.

Note that the constructive completeness of a space may depend on the choice of the topo-
logical basis B (as well as the numbering B and the strong inclusion relation ≺B belonging
to it) (cf. [37]).

Proposition 3.8 ([37]) Let T be effective and constructively complete such that all basic
open sets are nonempty. Let ≺B be r.e. and x allow effective limit passing. Then T is
recursively separable.

As we have already seen, every T0 space comes equipped with a canonical partial order,
the specialisation order. For indexed ordered structures another completeness notion is of
importance.

Definition 3.9 Let (Q,v) be a countable partial order and x be an indexing of Q.

1. A nonempty subset S of Q is directed, if for all y1, y2 ∈ S there is some u ∈ S with
y1, y2 v u.

2. Q is constructively d-complete, if each of its enumerable directed subsets has a least
upper bound in Q.

Proposition 3.10 Let T be constructively complete. Moreover, let B be total, x be com-
putable and ≺B be r.e. Then (T,≤τ ) is constructively d-complete.

Proof: Let L ⊆ ω witness that x is computable and v ∈ R(1) such

Wv(i) = {n ∈ ω | (∃a ∈Wi)〈a, n〉 ∈ L }.

Moreover, let s ∈ R(1) such that ϕs(i) is a total enumeration of Wi, if this set is not empty.
Define h ∈ R(1) by

ϕh(i)(0) = ϕs(v(i))(0),

ϕh(i)(m+ 1) =


first c enumerated with c ∈Wv(i),
c ≺B ϕh(i)(m) and c ≺B ϕs(v(i))(m+ 1) if such a c exists,
undefined otherwise.

Now, let i ∈ ω such that {xa | a ∈Wi } is directed. We will show that ϕh(i) is total in
this case.
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Since {xa | a ∈Wi } is directed, this set is not empty and hence ϕs(v(i)) is a total function.
Thus, ϕh(i)(0) is defined. Assume that ϕh(i)(n) is defined for all n ≤ m. By definition of
Wv(i) there is then some am ∈Wi so that xam ∈ B(ϕh(i)(m)). Moreover, there is some b ∈Wi

with xb ∈ B(ϕs(v(i))(m+1)). Since {xa | a ∈Wi } is directed, we have that there exists some
e ∈Wi such that xam , xb ≤τ xe. Hence xe ∈ B(ϕh(i)(m)) ∩B(ϕs(v(i))(m+ 1)). Because B is
a strong basis of the topology, we obtain that there is some c ≺B ϕh(i)(m), ϕs(v(i))(m + 1)
with xe ∈ Bc. This shows that ϕh(i)(m+ 1) is defined as well.

It follows that for i ∈ ω such that {xa | a ∈Wi } is directed, h(i) is an index of a normed
recursive enumeration of nonempty basic open sets. Let the enumeration converge to y ∈ T .
If a ∈ Wi and m ∈ ω so that xa ∈ Bm, then B(ϕh(i)(c)) ⊆ Bm, for some c ∈ ω. Since
{B(ϕh(i)(ν)) | ν ∈ ω } is a base of the neighbourhood filter of y, we obtain that y ∈ Bm.
Thus, y is an upper bound of {xa | a ∈Wi }.

Let z ∈ T be a further upper bound of {xa | a ∈Wi }. Then z ∈ Bn, for all n ∈Wv(i). If
m ∈ ω such that y ∈ Bm, then there is some c ∈ ω with B(ϕh(i)(c)) ⊆ Bm. Thus, z ∈ Bm,
which shows that y ≤τ z. Therefore, y is the least upper bound of {xa | a ∈Wi }.

The following result will be needed later.

Lemma 3.11 ([36]) Let T be effective and recursively separable with dense base DB. More-
over, let x be acceptable. Then, for any completely enumerable subset X of T and any basic
open set Bn, if Bn intersects X, then it also intersects X ∩DB.

At the end of the last section we mentioned that for Mal’cev topologies the converse of
Lemma 2.8 is true as well.

Lemma 3.12 ([36]) Let T be effective and recursively separable and let x be acceptable.
Then any Mal’cev topology on T that is effectively pointwise coarser than τ is also effectively
coarser than τ .

We have already seen, if x is computable, all basic open sets are completely enumerable,
which means that τ is a Mal’cev topology. The next condition helps classifying those Mal’cev
topologies which are effectively coarser than τ . Let to this end for n ∈ dom(B),

hl(Bn) =
⋂
{Bm | m ∈ dom(B) ∧ n ≺B m }.

Definition 3.13 Let η = 〈〈C〉〉 be a topology on T , and C a numbering of C. We say that
a pair of functions (s, r) with s ∈ P (2) and r ∈ P (3) is a realiser for noninclusion of τ with
respect to η, if for all i ∈ dom(x), n ∈ dom(B) and m ∈ dom(C) the following hold:

1. If xi ∈ Cm, then s(i,m)↓ ∈ dom(M) and xi ∈Ms(i,m) ⊆ Cm.

2. If moreover Bn 6⊆ Cm, then also r(i, n,m)↓ ∈ dom(x) and xr(i,n,m) ∈ hl(Bn) \Ms(i,m).

Theorem 3.14 ([36]) Let T be effective and x be acceptable. Then any Mal’cev topology
on T with respect to which τ has a realiser for noninclusion is effectively pointwise coarser
than τ . If T is also recursively separable, then any such topology is even effectively coarser
than τ .

Proposition 3.15 Let η = 〈〈C〉〉 be a topology on T with a numbering C of C. If τ has a
realiser for noninclusion with respect to itself and η is effectively pointwise coarser than τ ,
then τ also has a realiser for noninclusion with respect to η.
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Proof: Let h ∈ P (2) witness that η is effectively pointwise coarser than τ and (s, r) be
a realiser for noninclusion of τ with respect to itself. Furthermore, assume that xi ∈ Cm.
Then h(i,m)↓ ∈ dom(B) and xi ∈ Bh(i,m) ⊆ Cm. It follows that s(i, h(i,m))↓ ∈ dom(M)
and xi ∈Ms(i,h(i,m)) ⊆ Bh(i,m). Define s′ ∈ P (2) by s′(j, a) = s(j, h(j, a)).

Suppose in addition that Bn 6⊆ Cm. Then Bn 6⊆ Bh(i,m). So, r(i, n, h(i,m))↓ ∈ dom(x)
and xr(i,n,h(i,m)) ∈ hl(Bn) \Ms(i,h(i,m)). Define r′ ∈ P (3) by r′(j, c, a) = r(j, c, h(j, a)). Then
(s′, r′) is a realiser for noninclusion of τ with respect to η.

Corollary 3.16 Let T be effective, x be acceptable and let τ have a realiser for noninclusion
with respect to itself. Then any Mal’cev topology η on T is effectively pointwise coarser than
τ if, and only if, τ has a realiser for noninclusion with respect to η.

If the strong inclusion relation ≺B is r.e., we effectively obtain positive information about
set inclusion between basic open sets: pairs (m,n) are listed such that Bm ⊆ Bn. However,
no information is obtained, if Bn 6⊆ Bm. Such knowledge is provided, if topology τ has a
realiser for noninclusion with respect to itself.

Let us next consider some important standard examples of effective T0 spaces.

Example 3.17 (Constructive metric spaces). Let R denote the set of all real numbers, and
let ν be some canonical total indexing of the rational numbers. Then a real number z is said
to be computable, if there is a function f ∈ R(1) such that for all m, n ∈ ω with m ≤ n,
the inequality |νf(m) − νf(n)| < 2−m holds and z = limm νf(m). Any Gödel number of the
function f is called an index of z. This defines a partial indexing γ of the set Rc of all
computable real numbers.

Now, letM = (M, δ) be a separable metric space, and let β be a total numbering of the
dense subset M0. As is well-known, the collection of sets B〈i,m〉 = { y ∈M | δ(βi, y) < 2−m }
(i, m ∈ ω) is a basis of the canonical Hausdorff topology ∆ on M . Define

〈i,m〉 ≺B 〈j, n〉 ⇔ δ(βi, βj) + 2−m < 2−n.

Using the triangle inequality it is readily verified that ≺B is a strong inclusion and the
collection of all Ba is a strong basis.
M is said to be effectively given, if the distance function δ maps M0×M0 into Rc and the

restriction of δ to this set is effective. Since the usual less-than relation on the computable
real numbers is completely enumerable [26], the strong inclusion relation ≺B is r.e. in this
case.

A sequence (ya)a∈ω of elements of M0 is said to be fast, if δ(ym, yn) < 2−m, for all
m,n ∈ ω with m ≤ n. Moreover, (ya) is recursive, if there is some function f ∈ R(1) such
that ya = βf(a), for all a ∈ ω. Any Gödel number of f is called an index of (ya).
M is called constructive, if it is effectively given and, in addition, each element y of M is

the limit of a fast recursive sequence of elements of M0. If m is the index of such a sequence,
set xm = y. Otherwise, let x be undefined. Then x is a numbering of M with respect to
which and the indexing γ of the computable real numbers the distance function is effective
(cf. [35]). Moreover, x is computable. It follows that M is effective.

In [36, Lemma 3.2] a function h ∈ R(1) is constructed such that, if m is an index of a
normed recursive enumeration of basic open sets converging to some point y ∈M , then h(m)
is an index of a fast recursive sequence of elements of the dense subset M0 converging to y as
well. Thus, y = xh(m), which shows that x allows effective limit passing. So, x is acceptable.
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Theorem 3.18 ([35]) Let M be a constructive metric space. Then M is constructively
complete if, and only if, every fast recursive sequence of elements of the dense subset con-
verges.

Well-known examples of constructive metric spaces include Rn
c with the Euclidean or the

maximum norm, Baire space, that is, the set R(1) of all total recursive functions with the
Baire metric [31], and the set ω with the discrete metric. By using an effective version of
Weierstraß’s Approximation Theorem [29] and Sturm’s Theorem [39] it can be shown that
Cc[0, 1], the space of all computable functions from [0, 1] to R [29] with the supremum norm,
is a constructive metric space. A proof of this result and further examples can be found in
Blanck [6].

Example 3.19 (Constructive domains). Let Q = (Q,v) be a partial order. The way-below
relation � on Q is defined as follows: y1 � y2 if for every directed subset S of Q the least
upper bound of which exists in Q, the relation y2 v

⊔
S implies the existence of an element

u ∈ S with y1 v u. Note that � is transitive. Elements y ∈ Q with y � y are called
compact.

A subset Z of Q is a basis of Q, if for any y ∈ Q the set Zy = { z ∈ Z | z � y } is directed
and y =

⊔
Zy. A partial order that has a basis is called continuous. If all elements of Z are

compact, Q is said to be algebraic and Z is called algebraic basis.
Now, assume that Q is countable and let x be an indexing of Q. Let Q be constructively

d-complete and continuous with basis Z. Moreover, let β be a total numbering of Z. Then
(Q,v, Z, β, x) is said to be a constructive pre-domain, if the restriction of the way-below
relation to Z as well as all sets Zy, for y ∈ Q, are completely enumerable with respect to
the indexing β and β ≤ x. In case Q also has a smallest element the structure is called
constructive domain.

The numbering x of Q is said to be admissible, if the set { 〈i, j〉 | βi � xj } is r.e. and
there is a function d ∈ R(1) such that for all indices i ∈ ω for which β(Wi) is directed, xd(i)

is the least upper bound of β(Wi). As shown in [41], such numberings always exist. They
can even be chosen as total.

Partial orders come with several natural topologies. In the applications we have in mind,
one is mainly interested in the Scott topology σ: a subset X of Q is open in σ, if it is
upwards closed with respect to the partial order and intersects each enumerable directed
subset of Q of which it contains the least upper bound. In the case of a constructive domain
this topology is generated by the sets Bn = { y ∈ Q | βn � y } with n ∈ ω. It follows that
Q = (Q, σ) is a countable T0-space with countable basis. Observe that the partial order
on Q coincides with the specialisation order defined by the Scott topology [21]. Obviously,
every admissible numbering is computable. Since Z is dense in Q we also obtain that Q is
recursively separable.

Define
m ≺B n⇔ βn � βm.

Then ≺B is a strong inclusion with respect to which the collection of all Bn is a strong
basis. Because the restriction of � to Z is completely enumerable, ≺B is r.e. It follows that
Q is effective. Moreover, it is constructively complete and each admissible indexing allows
effective limit passing, i.e., it is acceptable. Conversely, every acceptable numbering of Q is
admissible.

Note here that since we have to make use of the effectivity characteristics of the basis,
these properties can only be verified if we choose the strong inclusion relation as above and
do not use simple set inclusion instead.
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Examples of constructive domains include the set P (1) of all partial recursive functions
with the extension ordering, i.e., f v g if graph(f) ⊆ graph(g), and the flat domain ω⊥
(= ω ∪ {⊥}) of the natural numbers, where for u, v ∈ ω⊥, u v v if u = ⊥. Both domains
are algebraic. In the first case the compact elements are just the finite functions indexed in
some canonical way. In the second case all domain elements are compact, indexed by β0 = ⊥
and βn+1 = n, for n ∈ ω.

Example 3.20 (Constructive A- and f -spaces). A- and f -spaces have been introduced by
Eršov [15, 16, 17, 18, 19] as a more topologically oriented approach to domain theory. They
are not required to be complete.

Let Y = (Y, ρ) be a topological T0 space. For elements y, z ∈ Y define y � z if
z ∈ intρ({u ∈ Y | y ≤ρ u }). Y is an A-space, if there is a subset Y0 of Y satisfying the
following three properties:

1. Any two elements of Y0 which are bounded in Y with respect to the specialisation order
have a least upper bound in Y0.

2. The collection of sets intρ({u ∈ Y | y ≤ρ u }), for y ∈ Y0, is a basis of topology ρ.

3. For any y ∈ Y0 and u ∈ Y with y � u there is some z ∈ Y0 such that y � z and z � u.

Any subset Y0 of Y with these properties is called basic subspace.
Let Y be countable and Y0 have a numbering β. For m, n ∈ dom(β) set Bn = intρ({u ∈

Y | βn ≤ρ u }) and define
m ≺B n⇔ βn � βm.

Then ≺B is a strong inclusion with respect to which {Bn | n ∈ dom(β) } is a strong basis.
The A-space Y with basic subspace Y0 is constructive, if the numbering β is total, the
restriction of � to Y0 is completely enumerable, and the neighbourhood filter of each point
has an enumerable strong base of basic open sets. As a consequence, Y has an acceptable
numbering x such that Y is effective [36]. Moreover, it is recursively separable with dense
basis Y0.

Since the topology ρ of a constructive A-space is not required to be the Scott topology
(with respect to ≤ρ), constructive d-completeness is too weak a completeness notion in this
case.

Definition 3.21 A constructive A-space Y is effectively complete, if every enumerable di-
rected subset S of Y with the property that for every z ∈ S there is some z′ ∈ S with z � z′,
has an upper bound y ∈ Y which is also a limit point of S.

Obviously, given such a set S we can enumerate a subset S′ such that any two elements
of S′ are comparable with respect to � and for every z ∈ S there is some z′ ∈ S′ with
z � z′. This gives us the following result.

Proposition 3.22 ([37]) A constructive A-space Y is constructively complete if and only
if it is effectively complete.

Let Y = (Y, ρ) be an arbitrary topological T0-space again. An open set V is an f -set,
if there is an element zV ∈ V such that V = { y ∈ Y | zV ≤ρ y }. The uniquely determined
element zV is called an f -element. Y is an f -space, if the following two conditions hold:

1. If U and V are f -sets with nonempty intersection, then U ∩ V is also an f -set.
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2. The collection of all f -sets is a basis of topology ρ.

An f -space is constructive, if the set of all f -elements has a total numbering α such
that the restriction of the specialisation order to this set as well as the boundedness of two
f -elements are completely recursive and there is a function su ∈ R(2) such that in the case
that αn and αm are bounded, αsu(n,m) is their least upper bound, and if the neighbourhood
filter of each point has an enumerable base of f -sets.

Every f -space is an A-space with basic subspace the set of all f -elements. Moreover, for
y, z ∈ Y with y or z being an f -element, y � z if and only if y ≤ρ z. It follows that also
every constructive f -space is a constructive A-space.

An essential property of continuous partial orders, just as of A- and f -spaces, is that their
canonical topology has a basis with every basic open set Bn being an upper set generated
by a point which is not necessarily included in Bn but in hl(Bn).

Definition 3.23 Let T = (T, τ) be a countable T0 space with a countable strong basis B,
and let x and B be numberings of T and B, respectively. We say that T is effectively pointed,
if there is a function pd ∈ P (1) such that for all n ∈ dom(B) with Bn 6= ∅, pd(n)↓ ∈ dom(x),
xpd(n) ∈ hl(Bn) and xpd(n) ≤τ z, for all z ∈ Bn.

Obviously,
Bn ⊆ { z ∈ T | xpd(n) ≤τ z } ⊆ hl(Bn).

Note that if T is effectively pointed, it is recursively separable with dense base {xa | a ∈
range(pd) } [36].

Since (T,≤τ ) is a partial order, we can equip T with the Scott topology σ.

Lemma 3.24 Let T be effectively pointed. Moreover, let B be total and x be computable.
Then the Scott topology on T is coarser than topology τ .

Proof: Let O ∈ σ and y ∈ O. As is shown in [35, Lemma 2.22] the set {xpd(a) | y ∈ Ba } is
directed with least upper bound y. Moreover, it is enumerable. By definition of the Scott
topology there is therefore some a ∈ ω such that y ∈ Ba and xpd(a) ∈ O. As O is upwards
closed with respect to ≤τ , it follows that

y ∈ Ba ⊆ { z ∈ T | xpd(a) ≤τ z } ⊆ O.

In domain theory it is common to use sequences of points for approximation instead of
sequences of basic open sets. Let (ya)a∈ω be a sequence of points of T . It is recursive, if
there is some function f ∈ R(1) with range(f) ⊆ dom(x) such that ya = xf(a), for all a ∈ ω.
Any Gödel number of f is called an index of (ya). We say that x allows the computation of
least upper bounds, if there is a function sp ∈ P (1) such that, if n is an index of a recursive
sequence (ya) which is increasing with respect to the specialisation order and has a least
upper bound in T , then sp(n)↓ ∈ dom(x) and xsp(n) is the least upper bound of (ya). As we
shall see now, the requirement that x allows the computation of least upper bounds not only
implies that x allows effective limit passing, but has also strong impacts on the topology.
Topology τ is constructively order-consistent (cf. [25]), if every recursive sequence of points
of T which is increasing with respect to the specialisation order and has a least upper bound
in T is eventually in any basic open set that contains its least upper bound.
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Proposition 3.25 ([36]) Let T be effective and effectively pointed. Moreover, let x be com-
putable. Then x allows the computation of least upper bounds if, and only if, τ is construc-
tively order-consistent and x allows effective limit passing.

As we have seen above, if topology τ has a realiser for noninclusion with respect to some
Mal’cev topology η, then η is effectively coarser than τ . For the results we are aiming for it
will be important to know with respect to which Mal’cev topologies such a realiser exists. In
the case of effectively pointed spaces and hence in the case of constructive domains as well
as constructive A- and f -spaces there is an easy answer.

Proposition 3.26 ([36]) Let T be effective and effectively pointed. Moreover, let x be ac-
ceptable. Then τ has a realiser for noninclusion with respect to every Mal’cev topology on
T .

If T is effectively pointed we always have for n ≺B m that xpd(n) ∈ Bm. In certain cases
we need the converse implication to hold as well (cf. [35, Corr.]).

Definition 3.27 T is strongly pointed, if it is effectively pointed and the function pd is such
that for m,n ∈ dom(B) with xpd(n) ∈ Bm one has that n ≺B m.

For strongly pointed and constructively order-consistent spaces also the converse of
Proposition 3.10 holds.

Proposition 3.28 Let T be strongly pointed and τ be constructively order-consistent. More-
over, let (T,≤τ ) be constructively d-complete. Then T is constructively complete.

Proof: Let (Bf(i))i∈ω be a normed recursive enumeration of nonempty basic open sets.
Then (xpd(f(i)))i∈ω is a recursive sequence of points of T that is increasing with respect to
the specialisation order. Since T is constructively d-complete, it has a least upper bound,
say y. We need to show that {Bf(i) | i ∈ ω } is a strong base of the neighbourhood filter of
y. Let y ∈ Bm. Then it suffices to show that for some i ∈ ω, f(i) ≺B m. Because τ is
constructively order-consistent, there is an index i such that xpd(f(i)) ∈ Bm from which we
obtain that f(i) ≺B m by strong pointedness.

As we shall see next, strong pointedness is a rather powerful notion.

Definition 3.29 A transitive relation ≪ on a set S has the interpolation property, if for
all m1,m2, n ∈ S so that n≪ m1,m2 there is some a ∈ S with n≪ a≪ m1,m2.

Lemma 3.30 Let T be strongly pointed. Then the strong inclusion relation ≺B has the
interpolation property.

Proof: Let n,m1,m2 ∈ dom(B) with n ≺B m1,m2. Then xpd(n) ∈ Bm1 ∩ Bm2 . Since B is
a strong basis, there is some a ≺B m1,m2 with xpd(n) ∈ Ba. It follows that n ≺B a, as T is
strongly pointed.

Proposition 3.31 Let T be constructively complete, B be total, and x allow effective limit
passing. Moreover, let ≺B be r.e. and have the interpolation property. Then T is strongly
pointed.
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Proof: Let s, r ∈ R(1) such that ϕs(a) is a total enumeration of Wa, if this set is not empty,
and Wr(n) = {m ∈ ω | n ≺B m }, for n ∈ ω. Define h ∈ R(1) by

ϕh(n)(0) = ϕs(r(n))(0),

ϕh(n)(a+ 1) =


first m enumerated with m ∈Wr(n),
m ≺B ϕh(n)(a) and m ≺B ϕs(r(n))(a+ 1) if such an m exists,
undefined otherwise.

Since ≺B has the interpolation property, the function ϕh(n) is total, for all n ∈ ω. Thus,
for each n ∈ ω such that Bn is not empty,

(
B(ϕh(n)(a))

)
a∈ω is a normed enumeration of

nonempty basic open sets, which converges to a point z ∈ T , as the space is constructively
complete. Let the function pt ∈ P (1) witness that x allows effective limit passing. Then
z = xpt(h(n)).

We first show that z ∈ hl(Bn). Let to this end m ∈ Wr(n). Then there is some c ∈ ω
with ϕh(n)(c) ≺B m. Since the sets B(ϕh(n)(a)) form a strong base of the neighbourhood
filter of z, we have that z ∈ Bm.

Next, we show that z ≤τ y, for all y ∈ Bn. Let Bm ∈ N (z). Then there is again some
c ∈ ω with ϕh(n)(c) ≺B m. Because ϕh(n)(c) ∈Wr(n) we obtain that n ≺B m. Consequently,
Bn ⊆ Bm and hence y ∈ Bm.

Set pd = pt ◦h. It follows that T is effectively pointed. As above we obtain that it is
also strongly pointed.

Summing up what we have just shown as well as in Proposition 3.10, we obtain the
following result.

Theorem 3.32 Let T = (T, τ) be a countable T0 space with a countable strong basis B such
that τ is constructively order-consistent. Moreover, let B be a total indexing of B, x be an
acceptable numbering of T , and ≺B be r.e. Then T is strongly pointed and constructively
d-complete if, and only if, T is constructively complete and ≺B has the interpolation property.

Proposition 3.33 Let T be constructively complete such that all basic open sets are non-
empty, and x be computable. Moreover, let ≺B be r.e. and have the interpolation property.
Then (T,≤τ ) is a constructive pre-domain and τ is coarser than the Scott topology on T .

Proof: Let F be the collection of all r.e. filters on dom(B) with respect to ≺B, ordered
under set inclusion. Then (F,⊆) is a constructive pre-domain with basis { ↑n | n ∈ dom(B) },
where ↑n = {m ∈ dom(B) | n ≺B m } (cf. [1, Proposition 2.2.22]). As we have seen above,
if A ∈ F, then we can construct a function fA ∈ R(1) with range(fA) ⊆ A that is decreasing
with respect to ≺B and is such that for every a ∈ A there is some c ∈ ω with fA(c) ≺B a.
It follows that {BfA(n) | n ∈ ω } is a strong base of the filter generated by {Bm | m ∈ A }.
Moreover, (BfA(n))n∈ω is a normed recursive enumeration of nonempty basic open sets that
converges to some point yA ∈ T .

Next, we show that
A = {n ∈ dom(B) | yA ∈ Bn }. (1)

If a ∈ A, there is some c ∈ ω with fA(c) ≺B a. Thus, yA ∈ BfA(c) ⊆ Ba. Conversely, if
n ∈ dom(B) with yA ∈ Bn, then there is some m ∈ ω with fA(m) ≺B n, as {BfA(n) | n ∈ ω }
is a strong base of N (yA). Since fA(m) ∈ A and A is a filter with respect to ≺B, we obtain
that n ∈ A as well.
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As is easily verified, the assignment F : A 7→ yA is an order-preserving as well as order-
reflecting bijection between (F,⊆) and (T,≤τ ). We will now show that it commutes with
the operation of taking least upper bounds of enumerable directed sets.

Apparently, the union over an enumerable directed subset of F is in F again. Let S

be such a subset. Then F (
⋃

S) is the least upper bound of {F (A) | A ∈ S }. In order to
prove this note that F (

⋃
S) is an upper bound of this set, as F is monotone. Let z ∈ T

be another upper bound. We need to show that F (
⋃

S) ≤τ z. Let to this end n ∈ dom(B)
with F (

⋃
S) ∈ Bn. Then n ∈

⋃
S by (1). Thus, n ∈ A, for some A ∈ S, which implies that

F (A) ∈ Bn. Hence z ∈ Bn as well.
It remains to derive that τ ⊆ σ. Let to this end Bn ∈ τ . By definition of the special-

isation order Bn is upwards closed with respect to ≤τ . Let E ⊆ dom(B) be r.e. such that
{xa | a ∈ E } is directed with least upper bound y. Moreover, assume that y ∈ Bn. Then
n ∈ F−1(y). Since F−1(y) =

⋃
{F−1(xa) | a ∈ E }, it follows that there is some a ∈ E with

xa ∈ Bn. Thus, Bn ∈ σ.

Combining this result with Proposition 3.31 and Lemma 3.24 we obtain the following
consequence.

Theorem 3.34 Let T be constructively complete such that all basic open sets are nonempty.
Moreover, let B be total, x be acceptable, and ≺B be r.e. as well as have the interpolation
property. Then (T,≤τ ) is a constructive pre-domain and τ coincides with the Scott topology
on T .

4 Subspace indexings

In the previous sections we have investigated effectiveness properties in T0 spaces. To this
end we encoded the essential objects, the points and the basic open sets. In this section we
will study ways of assigning indices to subspaces. For cardinality reasons, in general not all
subspaces can be given an index.

We have already encountered two classes of subsets with indexing systems: the completely
enumerable and the enumerable sets. For total numberings, each completely enumerable set
is obviously also enumerable and any of its c.e. indices is an enumeration index of it. In the
general, partial, case, however, this need not be true, as a complete enumeration will not
only enumerate all indices of elements, but perhaps also numbers that are not used by the
indexing.

By listing (indices of) all elements of a set we have effective access to all of them. However,
this limits the kind of sets we can deal with in a computable way. Sometimes it suffices to
enumerate a generating part of the set or certain properties of its points. Note that in
general the set will not be uniquely determined by these properties and as a result different
sets may have the same index. We think of the set as being given by other means. The
index codes only a procedure generating certain useful properties. Several of the naming
systems considered in this paper have also been studied in [10, 9] for Euclidean space and,
more general, effectively given metric spaces.

4.1 Density indices

Definition 4.1 Let T = (T, τ) be a countable T0 space and x be an indexing of T . A subset
X of T is effectively separable if it is empty or has an enumerable subset Z that is dense in
X with respect to the subspace topology. Every enumeration index of Z is called a density
index of X.
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Obviously, if X is enumerable, then every enumeration index of X is a density index of
X. As follows from the next example, the converse is not true, in general.

Example 4.2 Consider the set P (1) of all unary partial recursive functions with some Gödel
numbering. By applying a diagonal argument it is readily shown that the subset R(1) of all
unary total recursive functions is not enumerable. We mentioned already that P (1) is a
constructive domain with respect to the extension ordering. Moreover, R(1) with the Baire
metric is a computable metric space, of which the functions that are 0 almost everywhere
form an enumerable dense subspace. Note that the metric topology on R(1) is the subspace
topology with respect to the Scott topology on P (1). Both spaces are constructively complete.
In the case of Baire space this is a consequence of Theorem 3.18.

The situation is different, however, in the case of effectively separable closed subsets of
effectively pointed spaces.

Proposition 4.3 Let T be effective, effectively pointed and constructively complete. In ad-
dition, let x be acceptable and ≺B r.e. Then any nonempty effectively separable closed subset
X of T is enumerable. Moreover, an enumeration index of every such set X can be computed
from any of its density indices in a uniform way.

Proof: Let L ⊆ ω and pt ∈ P (1) witness that x is acceptable, let s ∈ R(1) such that ϕs(a) is
a total enumeration of Wa, if this set is not empty, and let w ∈ R(1) as well as v ∈ R(2) so
that

Ww(i) = { a ∈ ω | (∃n ∈Wa)(∃j ∈Wi)〈j, n〉 ∈ L }
and

Wv(i,a) = {n ∈Wϕs(w(i))(a) | (∃j ∈Wi)〈j, n〉 ∈ L }.

Define g, f, k ∈ R(2) by

ϕg(i,a)(0) = ϕs(v(i,a))(0),

ϕg(i,a)(c+ 1) =


first m enumerated with m ∈Wv(i,a),
m ≺B ϕg(i,a)(c), and m ≺B ϕs(v(i,a))(c+ 1) if such an m exists,
undefined otherwise,

ϕf(i,a)(c) = max { e ≤ c | (∀1 ≤ e′ ≤ e)ϕg(i,a)(e′)↓c },
ϕk(i,a)(c) = 1 + max {m ≤ c | ϕf(i,a)(m) 6= ϕf(i,a)(m+ 1) }.

Let the functions q ∈ R(1) and p ∈ R(2) be as in Lemma 3.5 and let sb ∈ P (3) and
pd ∈ P (1), respectively, witness that T is effective and effectively pointed. Moreover, let
h ∈ R(2) such that

ϕh(i,a)(0) = ϕq(pd(ϕg(i,a)(0)))(0),

ϕh(i,a)(c+ 1) =



ϕq(pd(ϕg(i,a)(0)))(c+ 1) if ϕf(i,a)(c+ 1) = ϕf(i,a)(c) = 0,

ϕp(pd(ϕg(i,a)(ϕf(i,a)(c))),ϕh(i,a)(ϕk(i,a)(c)))(c+ 1)

if 0 < ϕf(i,a)(c) = ϕf(i,a)(c+ 1),
sb(pd(ϕg(i,a)(ϕf(i,a)(c+ 1))), ϕg(i,a)(ϕf(i,a)(c)), ϕh(i,a)(c))

if ϕf(i,a)(c) 6= ϕf(i,a)(c+ 1).

Now, assume that X is a nonempty closed subset of T and i is a density index of X. Note
that Ww(i) and Wv(i,a) are not empty in this case, as X is not empty.
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Claim 1 (∀c ∈ ω)ϕh(i,a)(c+ 1) ≺B ϕh(i,a)(c).

Proof of Claim: It suffices to consider the case that ϕf(i,a)(c) 6= ϕf(i,a)(c + 1). Moreover,
because of the properties of the function sb, we only have to show that

xpd(ϕg(i,a)(ϕf(i,a)(c+1))) ∈ Bϕg(i,a)(ϕf(i,a)(c)) ∩Bϕh(i,a)(c).

By construction, ϕg(i,a)(ϕf(i,a)(c+ 1)) ≺B ϕg(i,a)(ϕf(i,a)(c)). Hence,

xpd(ϕg(i,a)(ϕf(i,a)(c+1))) ∈ Bϕg(i,a)(ϕf(i,a)(c)).

It follows that
xpd(ϕg(i,a)(ϕf(i,a)(c))) ≤τ xpd(ϕg(i,a)(ϕf(i,a)(c+1))).

Since x(pd(ϕg(i,a)(ϕf(i,a)(c)))) ∈ B(ϕh(i,a)(c)), by definition of ϕh(i,a), we obtain that also
x(pd(ϕg(i,a)(ϕf(i,a)(c+ 1)))) ∈ B(ϕh(i,a)(c)).

As a consequence we have that
(
B(ϕh(i,a)(c))

)
c∈ω is a normed enumeration of basic

open sets which starts to converge to x(pd(ϕg(i,a)(0))), and that until in some first step
c > 1 the values ϕg(i,a)(1), . . . , ϕg(i,a)(e) are computed, for some 1 ≤ e ≤ c. As we
have just seen, x(pd(ϕg(i,a)(e))) ∈ B(ϕg(i,a)(0)) ∩ B(ϕh(i,a)(c − 1)). Therefore, an index
m ≺B ϕg(i,a)(0), ϕh(i,a)(c − 1) can be computed so that x(pd(ϕg(i,a)(e))) ∈ Bm. Next the
sequence will try to converge to x(pd(ϕg(i,a)(e))) in such a way that the basic open sets that
are generated are strongly contained in Bm. This will be done until in some further step
c′ > c the values ϕg(i,a)(1), . . . , ϕg(i,a)(e′) with e′ > e are computed. Again we have that
x(pd(ϕg(i,a)(e′))) ∈ B(ϕg(i,a)(e)) ∩ B(ϕh(i,a)(c′ − 1)). Now, the sequence starts to converge
to x(pd(ϕg(i,a)(e′))), and so on.

Since T is constructively complete the enumeration converges to some point z ∈ T . Then
z = xpt(h(i,a)).

Claim 2 z ∈ X.

Proof of Claim: As follows from the definition, the domain of the function ϕg(i,a) is an
initial segment of ω. We first consider the case that dom(ϕg(i,a)) is finite. Then there
is a maximal number e such that for all e′ ≤ e, ϕg(i,a)(e′)↓. It follows that the enu-
meration

(
B(ϕh(i,a)(c))

)
c∈ω converges to x(pd(ϕg(i,a)(e))), i.e. z = x(pd(ϕg(i,a)(e))). By

construction, B(ϕg(i,a)(e)) contains an element of the dense subset {xj | j ∈Wi }, say x.
Then x(pd(ϕg(i,a)(e))) ≤τ x. Since all basic open set B(ϕh(i,a)(c)), for c ∈ ω, contain
x(pd(ϕg(i,a)(e))), they also contain x. Note that the collection of these sets forms a strong
base of the neighbourhood filter of x(pd(ϕg(i,a)(e))). Because X is closed, it follows that
x(pd(ϕg(i,a)(e))) ∈ X.

Let us next consider the case that dom(ϕg(i,a)) is infinite. Then the function ϕg(i,a) is
total. It follows that there are strictly increasing sequences (cν)ν≥1 and (eν)ν≥0 such that
e0 = 0, c1 > 0, and for all ν > 0,

eν ≤ cν ,
eν = ϕf(i,a)(cν) 6= ϕf(i,a)(cν − 1), and

xpd(ϕg(i,a)(eν)) ∈ Bϕg(i,a)(eν−1) ∩Bϕh(i,a)(cν−1).

Each B(ϕg(i,a)(eν)) contains some xjν with jν ∈Wi. It follows that x(pd(ϕg(i,a)(eν))) ≤τ xjν .
Hence xjν ∈ B(ϕh(i,a)(cν−1)). Since ϕh(i,a)(cν−1) ≺B ϕh(i,a)(m), for m < cν−1, and because
the cν with ν ≥ 1 are strictly increasing, we have that all sets B(ϕh(i,a)(c)) hit the dense
subset {xj | j ∈Wi }. As above it follows that z ∈ X.
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Claim 3 (∀y ∈ X)(∃a ∈ ω)y = xpt(h(i,a)).

Proof of Claim: Let b ∈ ω with Wb = {n ∈ ω | y ∈ Bn }. Because {xj | j ∈Wi } is dense in
X and y ∈ X, each open sets Bn with n ∈Wb hits the dense subset. It follows that b ∈Ww(i).
Let a ∈ ω so that b = ϕs(w(i))(a). Then Wv(i,a) = Wb. Because the topological basis of space
T is strong, we have that Wb is filtered with respect to ≺B. Hence ϕg(i,a) is a total function
and the collection of all sets B(ϕg(i,a)(c)) is a strong base of the neighbourhood filter of y.
Now, let the sequences (cν)ν≥1 and (eν)ν≥0 be as above in the second case of Claim (2).
Then ϕh(i,a)(cν) ≺B ϕg(i,a)(eν), for all ν > 0. It follows that the filter generated by the sets
B(ϕg(i,a)(c)), i.e., the neighbourhood filter of y, is contained in the filter generated by the
sets B(ϕh(i,a)(c)), which is the neighbourhood filter of point z ∈ T . Thus y ≤τ z.

To prove that also z ≤τ y, it suffices to show that y ∈ B(ϕh(i,a)(cν)), for all ν > 0. By
[36, Lemma 4.2] the enumeration

(
B(ϕg(i,a)(c))

)
c∈ω converges to the least upper bound of

the set of all points x(pd(ϕg(i,a)(c))). Thus, x(ϕg(i,a)(eν)) ≤τ y, for all ν > 0. Above we
have seen that always x(pd(ϕg(i,a)(eν+1))) ∈ B(ϕk(i,a)(cν+1 − 1)). As B(ϕk(i,a)(cν+1 − 1)) ⊆
B(ϕk(i,a)(cν)), we obtain that y ∈ B(ϕh(i,a)(cν)), for all ν > 0.

Let r ∈ R(1) with Wr(j) = { pt(h(j, a)) | a ∈ ω }. Then X = {xm | m ∈Wr(i) }. Thus X
is enumerable with enumeration index r(i).

As a consequence of Lemma 2.3 we have that a density index of the union of two effectively
separable subsets of T can be computed from their density indices. Moreover, the collection
of these sets has an intensional selection function.

Lemma 4.4 A subset X of T has density index i if, and only if,

{xa | A ∈Wi } ⊆ X ⊆ clτ ({xa | a ∈Wi }).

Corollary 4.5 If a subset X of T has density index i, then clτ (X) = clτ ({xa | a ∈Wi }).

This result characterises the subspaces of T that may have the same density index. In
particular it follows that exactly the closed sets are uniquely determined by their density
indices.

4.2 Hit indices

Up to now we have represented subspaces by enumerating some particular or all of their
elements. We will now use the open sets that hit the space. Note that we write m 4B n to
mean that m ≺B n or m = n.

Definition 4.6 Let T = (T, τ) be a T0 space with countable strong basis B and B be a
numbering of B. A subset X of T is said to be effectively covered if there is some r.e. set
A ⊆ dom(B) such that the following two conditions hold:

1. (∀m ∈ A)Bm ∩X 6= ∅.

2. (∀n ∈ dom(B))[Bn ∩X 6= ∅ ⇒ (∃m ∈ A)m 4B n].

Every r.e. index of A is called hit index of X.

Lemma 4.7 Let T = (T, τ) be a countable T0 space with countable strong basis B. In
addition, let B be a total numbering of B and x be a computable indexing of T . Then every
effectively separable subset X of T is effectively covered. Moreover, a hit index of every such
set X can be computed from any of its density indices in a uniform way.
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Proof: Let L ⊆ ω witness that x is computable and f ∈ R(1) with

Wf(i) = {n ∈ ω | (∃a ∈Wi)〈a, n〉 ∈ L }.

Then, if i is a density index of X, we have that

Bn ∩X 6= ∅ ⇔ (∃a ∈Wi)Bn ∩ {xa | a ∈Wi } 6= ∅.

It follows that X is effectively covered with hit index f(i).

Note that the converse is not true in general. In [8] a closed subset of an incomplete con-
structive metric space is exhibited, which is effectively covered but not effectively separable.
As we will see next, it is true, however, in the case of constructively complete spaces.

Let X be a subset of T and τX the induced topology on X. Define BX to be the collection
of all sets O ∩X with O ∈ B, set BX

n = Bn ∩X, and let

m ≺BX n⇔ m ≺B n.

Then T X = (X, τX) is also a countable T0 space with countable basis BX , which is strong
if B is strong. Moreover, T X is effective if T is. Set xXi = xi, if i ∈ dom(x) with xi ∈ X,
and let xX be undefined in any other case. Then xX is a numbering of X with xX ≤ x.
Moreover, xX is computable, if x is, and allows effective limit passing, if x does (cf. [37]).
As is readily verified, the r.e. set L ⊆ ω and the function pt ∈ P (1) witnessing that x is
computable and allows effective limit passing, respectively, do the same for xX .

Note that every index c of a converging recursive enumeration
(
Bg(a)∩X

)
a∈ω of relatively

open sets that is normed with respect to ≺BX is also an index of the enumeration
(
Bg(a)

)
a∈ω

normed with respect to ≺B that is converging to the same point.

Proposition 4.8 Let T = (T, τ) be a countable T0 space with countable strong basis B. In
addition, let B be a numbering of B and x be an indexing of T that allows effective limit
passing. Then every nonempty effectively covered subset X of T the induced subspace T X of
which is constructively complete, is effectively separable. Moreover, a density index of every
such set X can be computed from any of its hit indices in a uniform way.

Proof: Let i be a hit index for X and n ∈ Wi. Then Bn hits X. Let y ∈ Bn ∩X. Because
B is a strong topological basis we have that there is some m ≺B n with y ∈ Bm ∩ X. It
follows that there is some n′ ∈Wi with n′ 4B m. So, we have that n′ ≺B n and Bn′ hits X.
Now let k ∈ R(2) with

ϕk(j,n)(0) = n,

ϕk(j,n)(a+ 1) = first m ∈Wi with m ≺B ϕk(j,n)(a).

As we have just seen, for j = i we can always find such an index m. Thus ϕk(i,a) is a total
function. Since the subspace T X is constructively complete, the enumeration

(
B(ϕk(i,n)(a))∩

X
)
a∈ω converges to some point z ∈ X. It follows that the enumeration

(
B(ϕk(i,n)(a))

)
a∈ω

does the same. So, z = x(pt(k(i, n))), where the function pt ∈ P (1) witnesses that x allows
effective limit passing. Let h ∈ R(1) with Wh(j) = { pt(k(j, n)) | n ∈Wj }.

It remains to show that {xa | a ∈Wh(i) } is dense in X with respect to the subspace
topology. By construction, {xa | a ∈Wh(i) } ⊆ X. Let Bm meet X. Then there is some
n ∈Wi with n 4B m. Thus xpt(k(i,n)) ∈ Bn ∩X ⊆ Bm ∩X.
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This proposition generalises [9, Theorem 3.8(2)]. As follows from the next result, con-
structive completeness is transmitted to the subspaces induced by closed subsets.

Lemma 4.9 Let T be constructively complete and X a closed subset of T . Then the induced
subspace T X is constructively complete as well.

Proof: Let m be the index of a recursive enumeration of nonempty relatively basic open
sets normed with respect to ≺BX . Then m is also an index of a recursive enumeration of
nonempty basic open sets normed with respect to ≺B. Since T is constructively complete,
the latter enumeration converges to some point z ∈ T . It remains to show that z ∈ X.

Assume to the contrary that z 6∈ X. Note that X is open. Since the collection of sets
B(ϕm(a)) with a ∈ ω is a base of the neighbourhood filter of z, there is some c ∈ ω such
that B(ϕm(c)) ⊆ X. By assumption m is an index of a normed recursive enumeration of
nonempty relatively open sets, i.e. every set B(ϕm(a)) hits X, a contradiction.

The converse is also true.

Lemma 4.10 Let T be effective, x computable and X be a subset of T such that the induced
subspace T X is constructively complete. Then X is a closed subset of T .

Proof: Let z ∈ X and assume that every basic open set in the neighbourhood filter of z
hits X. By Lemma 3.5 there is a normed recursive enumeration

(
Bf(a)

)
a∈ω of basic open

sets converging to z. Because of our the assumption,
(
Bf(a) ∩X

)
a∈ω is a normed recursive

enumeration of nonempty relatively basic open sets in the induced subspace T X . Since this
subspace is constructively complete, the enumeration converges to some point y ∈ X. Then
the enumeration

(
Bf(a)

)
a∈ω converges to y as well, which means that y = z, a contradiction.

It follows that there is some basic open set containing z which is included in X. Thus,
X is open and X is closed.

Summing up we obtain the following result.

Theorem 4.11 Let T = (T, τ) be a constructively complete countable T0 space with count-
able strong basis B. In addition, let B be a numbering of B and x be an indexing of T that
allows effective limit passing. Then every nonempty closed effectively covered subset X of T
is effectively separable. Moreover, a density index of every such set X can be computed from
any of its hit indices in a uniform way.

As we have already seen, the collection of effectively separable subsets of T has an
intensional selection function. With the theorem it follows that this holds in particular for
the closed effectively covered subsets of T .

Corollary 4.12 Let T = (T, τ) be a constructively complete countable T0 space with count-
able strong basis B. Moreover, let B be a numbering of B and x be an indexing of T that
allows effective limit passing. Then the collection of effectively covered closed subsets of T
has an intensional selection function.

From the above results we see that closed subsets are of importance in the study of
effectively covered subsets of space T . As we shall see now, just as in the case of effective
separability they are the ones that are uniquely determined by their hit indices.
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Lemma 4.13 Let X and X ′ be subsets of T such that X is effectively covered and i ∈ ω is
a corresponding hit index. Then X ′ is effectively covered as well with hit index i if, and only
if, clτ (X) = clτ (X ′).

Proof: Assume that i is a hit index of both X and X ′ and that y ∈ clτ (X). Let Bn contain
y. Then Bn intersects X. Thus, there is some m ∈ Wi with m 4B n. It follows that Bm
hits X ′, as i is also a hit index of X ′. Consequently, Bn intersects X ′ as well. This shows
that y ∈ clτ (X ′). The converse inclusion is obtained analogously.

Now, suppose that clτ (X) = clτ (X ′). We show that X ′ is effectively covered as well with
hit index of i. Let m ∈ Wi. Then Bm intersects X. Since Bm ∩ clτ (X ′) = Bm ∩ clτ (X) ⊇
Bm ∩X 6= ∅, we have that Bm hits also X ′. For the verification of the second condition in
Definition 4.6 let Bn intersect X ′. Because Bn ∩ clτ (X) = Bn ∩ clτ (X ′) ⊇ Bn ∩X ′ 6= ∅, we
obtain that Bn hits X. Thus, there is some m ∈Wi with m 4B n.

4.3 Covering indices

Definition 4.14 Let T = (T, τ) be a T0 space with countable strong basis B and B be a
numbering of B. A subset X of T has computable finite covers if there is some r.e. set A ⊆ ω
such that the following two conditions hold for all i ∈ A and all n ∈ ω with Dn ⊆ dom(B):

1. Di ⊆ dom(B) and X ⊆
⋃
{Ba | a ∈ Di }, i.e., {Ba | a ∈ Di } is a finite cover of X.

2. If {Ba | a ∈ Dn } is a finite cover of X, then there is some i ∈ A so that for all a ∈ Di

there exists some b ∈ Dn with a 4B b.

Each r.e. index of A is called covering index of X.

Note that a covering index does not code just one finite cover of X, but a family of finite
covers of X from which any other such cover can be derived by taking supersets.

Let ↑≤τX = { z ∈ T | (∃y ∈ X)y ≤τ z } be the upper set generated by X with respect to
the specialisation order. Note that each finite cover of X is also a finite cover of ↑≤τX, and
vice versa, as all open sets are upwards closed with respect to the specialisation order.

Lemma 4.15 Let X be a compact subset of T with computable finite covers and let i ∈ ω
be a covering index of X. Then⋂

{
⋃
{Ba | a ∈ Dj } | j ∈Wi } = ↑≤τX.

Proof: By what has just been noted it suffices to show that the left hand side is included
in the right hand side. Let to this end z ∈ T with z 6∈ ↑≤τX. It follows that for each
y ∈ X there is some index ny ∈ dom(B) such that y ∈ Bny but z 6∈ Bny . Then X
is covered by the sets Bny with y ∈ X. Since X is compact, there is a finite subcover,
i.e., there are points y1, . . . , yc such that X ⊆

⋃c
ν=1Bnyν , but z 6∈

⋃m
ν=1Bnyν . Let Dm =

{ny1 , . . . , nyc}. Then there is some j ∈ Wi with X ⊆
⋃
{Ba | a ∈ Dj } ⊆

⋃c
ν=1Bnyν . Thus,

z 6∈
⋃
{Ba | a ∈ Dj } ⊇

⋂
{
⋃
{Ba | a ∈ Dj } | j ∈Wi }.

As follows from the proof, for every (not necessarily compact) subset X of T , ↑≤τX is the
intersection of all its open neighbourhoods. Such sets are called saturated. The next result
shows that the compact saturated subsets of T are uniquely determined by their covering
indices.
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Corollary 4.16 Let X and X ′ be compact subsets of T . Moreover, let X have computable
finite covers and let i ∈ ω be a corresponding covering index. Then X ′ has computable finite
covers as well with covering index i if, and only if, ↑≤τX = ↑≤τX ′.

Proof: The implication from left to right is a consequence of the preceding lemma. The
converse implication follows from the fact that, as a consequence of the right hand side, X
and X ′ have the same strict finite covers.

A finite cover of a set X gives few information about the set X itself, but negative
information about which points of the space can definitely not be in X, namely all those
outside the cover. In order to have also some kind of positive information about X, one
has to combine covering indices i of with hit indices j. Any such pair 〈i, j〉 will be called a
complete covering index of X. Another possibility of obtaining also positive information is
to require that every set in a finite cover meets X.

Definition 4.17 Let T = (T, τ) be a T0 space with countable strong basis B, B be a
numbering of B, and X be a subset of T .

1. A finite subset E of B is a strict finite cover of X, if X ⊆
⋃
E and each Ba ∈ E

intersects X.

2. X has computable strict finite covers, if there is some r.e. set A ⊆ ω such that n ∈ A if
and only if {Ba | a ∈ Dn } is a strict finite cover of X, for all n ∈ ω with Dn ⊆ dom(B).
Each r.e. index of A is called strict covering index of X.

Lemma 4.18 Let T = (T, τ) be a T0 space with countable strong basis B and B be a total
numbering of B. Moreover, let ≺B be r.e. Then the following two statements hold:

1. A strict covering index of every subset X of T can be computed from any of its complete
covering indices in a uniform way.

2. A complete covering index of every compact subset X of T can be computed from any
of its strict covering indices in a uniform way.

Proof: (1) Let r ∈ R(1) so that

Wr(〈i,j〉) = {m ∈ ω | (∃n ∈Wi)(∀a ∈ Dn)(∃b ∈ Dm)a 4B b ∧ (∀b ∈ Dm)(∃c ∈Wj)c 4B b }

and assume that X ⊆ T has complete covering index 〈i, j〉. If m ∈ Wr(〈i,j〉), then the first
condition guaranties that {Bb | b ∈ Dm } is a cover of X and the second that all open sets
Bb with b ∈ Dm meet X. Thus, {Bb | b ∈ Dm } is a strict cover of X. On the other hand, in
case {Bc | c ∈ De } is a strict cover of X, it is in particular a finite cover of X. Hence, there
is some n ∈ Wi such that there is some b ∈ De with a 4B b, for all a ∈ Dn. In addition,
each Bc with c ∈ De hits X. It follows that e ∈Wr(〈i,j〉). This shows that r(〈i, j〉) is a strict
covering index of X.

(2) Let i be a strict covering index of some compact subset X of T . Then it is also
a covering index of X. To see this, note that the first condition in Definition 4.14 holds
trivially and the second as each finite cover has a strict subcover. It remains to show how a
hit index of X can be obtained from i. Define to this end h ∈ R(1) by

Wh(i) = {m ∈ ω | (∃n ∈Wi)(∃a ∈ Dn)a 4B m }.
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Obviously, Bm meets X, for each m ∈ Wh(i). Next assume that Bc intersects X. Since
X is compact, it has a strict finite cover of basic open sets, say {Ba | a ∈ De }. Then
{Ba | a ∈ De } ∪ {Bc} is a strict finite cover of X as well. Let Dn = De ∪ {c}. Then n ∈Wi

and hence c ∈ Wh(i). It follows that h(i) is a hit index of X, whence 〈i, h(i)〉 is a complete
covering index of X.

4.4 Indexing the complement

We will now consider a further way to encode information about the complement of a set.
Let M = (M, δ) be an effectively given metric space as introduced in Example 3.17.

Then the canonical topology ∆ has the collection of sets B〈i,m〉 = { y ∈M | δ(βi, y) < 2−m }
with i,m ∈ ω as strong basis. Here, β is a numbering of the dense subset M0. Let Bc

〈i,m〉 =
{ y ∈M | δ(βi, y) ≤ 2−m }. Note that each set Bc

n is closed, as inverse image of a closed real
interval under the continuous distance function.

Definition 4.19 Let M be an effectively given metric space. A subset X of M admits
effective complement exhaustion if the set {n ∈ ω | Bc

n ∩X = ∅ } is r.e. Any r.e. index of
this set is called complement exhaustion index of X.

Lemma 4.20 Let M = (M, δ) be an effectively given metric space and X be a compact sub-
set of M that has computable finite covers. Then X admits effective complement exhaustion.
Moreover, a complement exhaustion index of every such set X can be computed from any of
its covering indices in a uniform way.

Proof: The lemma is a consequence of [9, Theorem 4.10(2)]. We give a proof in the frame-
work of the present paper. Let i be a covering index of X. We show that

Bc
n ∩X = ∅ ⇔ (∃m ∈Wi)(∀b ∈ Dm)δ(βπ1(b), βπ1(n)) > 2−π2(b) + 2−π2(n).

The right hand side implies that X ⊆
⋃
{Bb | b ∈ Dm } and that Bc

n is disjoint from all Bc
b

with b ∈ Dm, from which it follows that Bc
n is also disjoint from X.

Now, assume that Bc
n is disjoint from X. Since X is compact, there is some point y ∈ X

so that δ(βπ1(n), y) = min { δ(βπ1(n), z) | z ∈ X }. Then δ(βπ1(n), y) > 2−π2(n). Let a ∈ ω

with 2−a < δ(βπ1(n), y)− 2−π2(n).
Recall that compact subspaces are totally bounded. Thus, there are finitely many points

in X such that X is covered by the open spheres with radius 2−(a+1) around these points.
It follows that there exist indices j1, . . . , je so that X is also covered by the spheres B〈jν ,a〉
with ν = 1, . . . , e. Since i is a covering index of X, we obtain that there is some m ∈ Wi

such that there exist some νb ∈ {1, . . . , e} with b 4B 〈jνb , a〉, for each b ∈ Dm. Thus,

2−a + 2−π2(n) < δ(βπ1(n), y)

≤ δ(βπ1(n), βπ(jνb ))

≤ δ(βπ1(n), βπ1(b)) + δ(βπ1(b), βπ(jνb ))

≤ δ(βπ1(n), βπ1(b)) + 2−a − 2−π2(b),

from which it follows that δ(βπ1(n), βπ1(b)) > 2−π2(n) + 2−π2(b), for all b ∈ Dm.
Note that the set E = { 〈c, e〉 | δ(βπ1(c), βπ1(e)) > 2−π2(c) + 2−π2(e) } is r.e. Let t ∈ R(1)

with Wt(i) = {n ∈ ω | (∃m ∈Wi)(∀b ∈ Dm)〈b, n〉 ∈ E }. Then t(i) is a complement exhaus-
tion index of X.
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Observe that for a closed set X the existence of an effective complement exhaustion has
a rather strong implication on the complement of X.

Lemma 4.21 Let M = (M, δ) be a constructive metric space and X be a closed subset
that admits effective complement exhaustion. Then the complement X of X is completely
enumerable. Moreover, a c.e. index of the complement of every such set X can be computed
from any of its complement exhaustion indices in a uniform way.

Proof: Note that by the regularity of metric spaces,

xi ∈ X ⇔ (∃n ∈ ω)xi ∈ Bn ∧Bc
n ∩X = ∅.

So, if A,L ⊆ ω, respectively, witness that X admits effective complement exhaustion and x
is computable, and if f ∈ R(1) such that Wf(i) = { i ∈ ω | (∃n ∈ ω)〈i, n〉 ∈ L ∧ n ∈ A }, then
f(i) is a c.e. index of X, in case that i is a complement exhaustion index of X.

5 Multifunctions

Multifunctions generalise the concept of function to the case that several values may be
assigned to an argument.

Definition 5.1 Let S and S′ be sets. A multifunction F : S ⇒ S′ is given by a relation RF
between S and S′. For y ∈ S,

F (y) = { z ∈ S′ | (y, z) ∈ RF }

is the image or value of F at y.

The domain and the range of F are taken to be the sets

dom(F ) = { y ∈ S | F (y) 6= ∅ }, range(F ) = { z ∈ S′ | (∃y ∈ S)z ∈ F (y) },

which are the images of RF under the projections to the first and second component. The
image of a subset Y of S under F is F (Y ) =

⋃
{F (y) | y ∈ Y }. For a subset Z of S′, the

lower inverse and the upper inverse, respectively, of F are

F−(Z) = { y ∈ S | F (y) ∩ Z 6= ∅ }, F+(Z) = { y ∈ S | F (y) ⊆ Z }.

Lemma 5.2 Let Z,Zi be subsets of S′ ( i ∈ I). Then the following statements hold:

1. F+(Z) = F−(Z), F−(Z) = F+(Z).

2.
⋃
i∈I F

+(Zi) ⊆ F+(
⋃
i∈I Zi).

3.
⋃
i∈I F

−(Zi) = F−(
⋃
i∈I Zi).

In the preceding section we introduced indexings for certain collections of subspaces. As
we have seen, in general the indexed sets are not uniquely determined by their index.

Definition 5.3 Let S be a nonempty countable set. A multinumbering Θ of S is a multi-
function Θ: ω ⇒ S that has S as its range.
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Definition 5.4 Let S, S′ be sets, S′ be a collection of subsets of S′, θ be a (partial) number-
ing of S, and Θ′ be a multinumbering of S′. Moreover, let F : S ⇒ S′ such that F (y) ∈ S′,
for all y ∈ S. Then we call F effective with respect to Θ′ if there is some function f ∈ P (1)

so that for all i ∈ dom(θ), f(i)↓ ∈ dom(Θ′) and

F (θi) ∈ Θ′f(i).

Let f ∈ R(1) witness that F : S ⇒ S′ is effective with respect to c.e. enumeration indices.
Then g ∈ R(1) withWg(j) = { i ∈ ω | j ∈Wf(i) } witnesses that F− : S′ ⇒ S, the lower inverse
of F , is effective with respect to c.e. enumeration indices as well.

If F : S ⇒ S′ and G : S′ ⇒ S′′ are effective with respect to enumeration indices, then so
is G ◦ F . Moreover, if H : S ⇒ S is effective with respect to enumeration indices, the same
is true for the transitive closure H∗ of H defined by H∗(y) =

⋃
{Hn(y) | n ∈ ω }.

Now, let T = (T, τ) and T ′ = (T ′, τ ′), respectively, be T0 spaces with countable strong
bases B and B′ and indexings B as well as B′ of B and B′. We always assume that T is
countable and x is a numbering of T . The question we are interested in for the rest of this
paper is whether effective multifunctions F : T ⇒ T ′ are continuous. Without restriction we
assume that the multifunctions considered in what follows have only nonempty values.

Several continuity notions for multifunctions have been considered in the literature.

Definition 5.5 Let F : T ⇒ T ′ and y ∈ T .

1. F is lower semi-continuous at y if for each open set O ∈ τ ′ meeting F (y) there is a
neighbourhood V of y such that V ⊆ F−(O).

2. F is upper semi-continuous at y if for each open set O ∈ τ ′ containing F (y) there is a
neighbourhood V of y such that V ⊆ F+(O).

3. F is continuous at y if it is both lower and upper semi-continuous at y.

4. F is lower semi-continuous, upper semi-continuous and continuous in T , respectively,
if it is lower semi-continuous, upper semi-continuous and continuous at each point of
T .

Obviously, F is lower semi-continuous in T , exactly if F−(O) ∈ τ , for each O ∈ τ ′, and
similarly upper semi-continuous in T , exactly if F+(O) ∈ τ , for each O ∈ τ ′.

Because of Lemma 5.2(3) it is no restriction if in the definition of lower semi-continuity we
quantify only over all basic open sets meeting F (y). This leads us to the following definition
of when a multifunction is effectively lower semi-continuous.

Definition 5.6 A multifunction F : T ⇒ T ′ is said to be

1. effectively pointwise lower semi-continuous, if there is a function d ∈ P (2) such that
for all i ∈ dom(x) and n ∈ dom(B′) for which F (xi) intersects B′n, d(i, n)↓ ∈ dom(B),
xi ∈ Bd(i,n), and Bd(i,n) ⊆ F−(B′n).

2. effectively lower semi-continuous, if there is a function g ∈ R(1) so that for all n ∈
dom(B′), g(n) ∈ dom(Lτ ) and F−(B′n) = Lτg(n).
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Next, we want to find a definition of when a multifunction could be called effectively upper
semi-continuous. Unfortunately, we cannot proceed as in the case of lower semi-continuity.
If we assume, however, that the multifunction F is compact-valued, i.e. that each image
F (y) for y ∈ T is compact, we can, without loss of generality, restrict the quantification in
the definition of upper semi-continuity to all finite unions of basic open sets containing F (y).
Note that Berge [4] defines upper semi-continuity only for compact-valued multifunctions.
For n ∈ ω with Dn ⊆ dom(B) let

Un =
⋃
{Ba | a ∈ Dn }.

In any other case, let Un be undefined.

Definition 5.7 A compact-valued multifunction F : T ⇒ T ′ is said to be

1. effectively pointwise upper semi-continuous, if there is a function t ∈ P (2) such that for
all i ∈ dom(x) and n ∈ dom(U ′) with F (xi) ⊆ U ′n, t(i, n)↓ ∈ dom(B), xi ∈ Bt(i,n), and
Bt(i,n) ⊆ F+(U ′n).

2. effectively upper semi-continuous, if there is a function h ∈ R(1) so that for all n ∈
dom(U ′), h(n) ∈ dom(Lτ ) and F+(U ′n) = Lτh(n).

3. effectively pointwise continuous if it is both effectively pointwise lower semi-continuous
and effectively pointwise upper semi-continuous.

4. effectively continuous if it is effectively lower semi-continuous and effectively upper
semi-continuous.

Proposition 5.8 Let x be computable and B′ be total. Then following two statements hold:

1. Every effectively lower semi-continuous multifunction F : T ⇒ T ′ is effective with re-
spect to hit indices.

2. Every compact-valued effectively upper semi-continuous multifunction F : T ⇒ T ′ is
effective with respect to covering indices.

Proof: We only derive the first statement. The second follows similarly. Let L ⊆ ω
and g ∈ R(1), respectively, witness that x is computable and F is effectively lower semi-
continuous. Moreover, let f ∈ R(1) such that

Wf(i) = {n ∈ ω | (∃m ∈Wg(n))〈i,m〉 ∈ L }.

Now, note that for i ∈ dom(x),

F (xi) ∩B′n 6= ∅ ⇔ xi ∈ F−(B′n)⇔ xi ∈ Lτg(n) ⇔ (∃m ∈Wg(n))xi ∈ Bm.

It follows that f(i) is a hit index of F (xi),

As has already been said, we are interested in whether and when the converse statements
hold. Let to this end for a (compact-valued) multifunction F : T ⇒ T ′, F−(τ ′) and F+(τ ′),
respectively, be the topologies on T generated by the subbases {F−(B′n) | n ∈ dom(B′) } and
{F+(U ′n) | n ∈ dom(U ′) }, called the lower inverse image under F of τ ′ and the upper inverse
image under F of τ ′. For n ∈ dom(B′) and n ∈ dom(U ′), respectively, set F−n = F−(B′n) and
F+
n = F+(U ′n). Then F− and F+ are indexings of the subbases {F−(B′n) | n ∈ dom(B′) }

and {F+(U ′n) | n ∈ dom(U ′) }, respectively.
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Lemma 5.9 Let ≺B′ be r.e. and F : T ⇒ T ′. Then the following two statements hold:

1. If F is effective with respect to hit indices then F− ≤ M . In particular, F−(τ ′) is a
Mal’cev topology on T .

2. If F is effective with respect to covering indices then F+ ≤ M . In particular, F+(τ ′)
is a Mal’cev topology on T .

Proof: (1) Let f ∈ R(1) witness that F is effective with respect to hit indices and g ∈ R(1)

so that Wg(n) = { i ∈ ω | (∃m ∈Wf(i))m 4B′ n }. Then we have for i ∈ dom(x) and n ∈
dom(B′) that

xi ∈ F−(B′n)⇔ F (xi) ∩B′n 6= ∅ ⇔ (∃m ∈Wf(i))m 4B′ n⇔ i ∈Wg(i).

Thus, F−n = Mg(n), for n ∈ dom(B′)(= dom(F−)).
(2) Now, let f ∈ R(1) witness that F is effective with respect to covering indices and

g ∈ R(1) so that Wg(n) = { i ∈ ω | (∃m ∈Wf(i))(∀a ∈ Dj)(∃b ∈ Dn)a 4B′ b }. In this case we
have for i ∈ dom(x) and n ∈ dom(B′) that

xi ∈ F+(U ′n)⇔ F (xi) ⊆ U ′n
⇔ F (xi) ⊆

⋃
{Ba | a ∈ Dn }

⇔ (∃m ∈Wf(i))(∀a ∈ Dj)(∃b ∈ Dn)a 4B′ b

⇔ i ∈Wg(n).

Hence, F+
n = Mg(n), for n ∈ dom(U ′)(= dom(F+)).

As is readily verified, the converse implications hold as well.

Lemma 5.10 Let B′ be total and F : T ⇒ T ′. Then the following two statements hold:

1. If F− ≤M then F is effective with respect to hit indices.

2. If F+ ≤M then F is effective with respect to covering indices.

Proof: We only show the first statement. The other one follows in a similar way. Let
g ∈ R(1) witness that F− ≤ M and f ∈ R(1) with Wf(i) = {n ∈ ω | i ∈Wg(n) }. Then we
obtain for i ∈ dom(x) and n ∈ ω that

n ∈Wf(i) ⇔ xi ∈Mg(n) ⇔ xi ∈ F−(B′n)⇔ F (xi) ∩B′n 6= ∅.

It follows that f(i) is a hit index of F (xi).

Note that F is effectively pointwise lower semi-continuous exactly if F−(τ ′) ⊆p τ , and
effectively lower semi-continuous just if F−(τ ′) ⊆e τ . Similarly, F is effectively pointwise
upper semi-continuous if, and only if, F+(τ ′) ⊆p τ , and effectively upper semi-continuous if,
and only if, F+(τ ′) ⊆e τ .

As a consequence of Theorem 3.14 we now obtain the continuity result we are looking for.
All we need is that topology τ has a realiser for noninclusion with respect to F−(τ ′) and/or
F+(τ ′). We say in this case that F has a lower, respectively, upper witness for noninlcusion.

Theorem 5.11 Let T be effective, x be acceptable, and ≺B′ be r.e. Then the following two
statements hold:
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1. Every multifunction F : T ⇒ T ′ that is effective with respect to hit indices and has a
lower witness for noninclusion must be effectively pointwise lower semi-continuous. If
T is also recursively separable, then it is even effectively lower semi-continuous.

2. Every compact-valued multifunction F : T ⇒ T ′ that is effective with respect to covering
indices and has an upper witness for noninclusion must be effectively pointwise upper
semi-continuous. If T is also recursively separable, then it is even effectively upper
semi-continuous.

As follows from [36], the witness for noninclusion requirement is indispensable for this
result. Under somewhat stronger, but still very natural assumptions we obtain that the
sufficient conditions used in the theorem are also necessary. Apply to this end Proposition 5.8,
and Proposition 3.15 together with Lemma 2.8.

Corollary 5.12 Let T be effective and recursively separable, let τ have a realiser for nonin-
clusion with respect to itself, x be acceptable, B′ be total, and ≺B′ be r.e. Then the following
two statements hold:

1. Every multifunction F : T ⇒ T ′ is effectively lower semi-continuous if, and only if, it
is effective with respect to hit indices and has a lower witness for noninclusion.

2. Every compact-valued multifunction F : T ⇒ T ′ is effectively upper semi-continuous if,
and only if, it is effective with respect to covering indices and has an upper witness for
noninclusion.

As we have seen in Proposition 3.26, for effectively pointed effective spaces τ has a realiser
for noninclusion with respect to any Mal’cev topology.

Theorem 5.13 Let T be effective and effectively pointed, x be acceptable, B′ be total, and
≺B′ be r.e. Then the following two statements hold:

1. Every multifunction F : T ⇒ T ′ is effective with respect to hit indices if, and only if, it
is effectively lower semi-continuous.

2. Every compact-valued multifunction F : T ⇒ T ′ is effective with respect to covering
indices if, and only if, it is effectively upper semi-continuous.

In the remainder of this section we will consider the case that T ′ is an effectively given
metric space and investigate which effective multifunctions have a lower and/or upper witness
for noninclusion. As we shall see, we need not only know the basic open sets that meet a set
X in this case, but also those that miss it. We call a pair 〈i, j〉 a hit-and-miss index of X,
if i is a hit and j a complement exhaustion index of X.

Proposition 5.14 Let T be effective and recursively separable and T ′ be an effectively given
metric space. Moreover, let x be acceptable. Then every multifunction F : T ⇒ T ′ that is
effective with respect to hit-and-miss indices has a lower witness for noninclusion.

Proof: Let i ∈ dom(x) and m ∈ ω with xi ∈ F−m . Then F (xi) intersects B′m. Let z ∈
F (xi) ∩ B′m. Moreover, let m = 〈m1,m2〉. It follows that δ(βm1 , z) < 2−m2 . Let a ∈ ω
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with 2−a < 2−m2 − δ(βm1 , z). Then there is some point βc in the dense subset of T ′ so that
δ(βc, z) < 2−a−1. Thus, we have

δ(βm1 , βc) + 2−a−1 ≤ δ(βm1 , z) + β(βc, z) + 2−a−1

< δ(βm1 , z) + 2−a−1 + 2−a−1

= δ(βm1 , z) + 2−a

< 2−m2 .

Set m′ = 〈c, a+ 1〉. Then m′ ≺B′ m and z ∈ B′m′ . In addition, clτ ′(B
′
m′) ⊆ (B′m′)

c ⊆ B′m.
Thus, there is some m′ ≺B′ m with (B′m′)

c ⊆ B′m so that F (xi) is met by B′m′ . Let
f ∈ R(1) witness that F is effective with respect to hit-and-miss indices and for i,m ∈ ω,
s̄(i,m) be the first element with respect to some fixed enumeration of { 〈m′, ı̄,m〉 | m′ ≺B′
m ∧ (∃e ∈Wπ1(f(ı̄)))e 4B′ m′ } with ı̄ = i and m = m. Set ŝ(i,m) = π1(s̄(i,m)).

Now, assume in addition that Bn 6⊆ F−m . Let A ⊆ ω witness that T is recursively
separable. Then it follows with Lemma 3.11 that also {xν ∈ Bn | ν ∈ A } 6⊆ F−m . Hence,
there is some a ∈ A such that xa ∈ Bn, and F (xa) and B′m are disjoint. It follows that F (xa)
and (B′ŝ(i,m))

c are disjoint as well. Let L ⊆ ω witness that x is computable. Moreover, let
h(i, n,m) be the first element in some fixed enumeration of { 〈ā, ı̄, n̄,m〉 | ā ∈ A ∧ 〈ā, n̄〉 ∈
L ∧ ŝ(̄ı,m) ∈ Wπ2(f(ā)) } with ı̄ = i, n̄ = n, and m = m. Set r(i, n,m) = π1(h(i, n,m)).
It follows that r(i, n,m) ∈ A ⊆ dom(x) and xr(i,n,m) ∈ Bn \ F−ŝ(i,m). By Lemma 5.9 there

is some g ∈ R(1) with F−m = Mg(m). Set s(i,m) = g(ŝ(i,m)). Then (s, r) is a realiser for
noninclusion of τ with respect to F−(τ ′).

The following result is now a consequence of Theorem 5.11.

Theorem 5.15 Let T be effective and recursively separable and T ′ be an effectively given
metric space. Moreover, let x be acceptable. Then every multifunction F : T ⇒ T ′ that is
effective with respect to hit-and-miss indices must be effectively lower semi-continuous.

Let us see next when F has an upper witness for noninclusion.

Proposition 5.16 Let T be effective and recursively separable and T ′ be an effectively
given metric space. Moreover, let x be acceptable. Then every compact-valued multifunction
F : T ⇒ T ′ that is effective with respect to complete covering indices has an upper witness
for noninclusion.

Proof: Let i ∈ dom(x) and m ∈ ω with xi ∈ F+
m . Then F (xi) ⊆ U ′m. Let z ∈ F (xi).

It follows that there is some az ∈ Dm with z ∈ B′az . As we have seen in the proof of
Proposition 5.14, there is moreover some a′z ≺B′ az so that z ∈ B′a′z ⊆ clτ ′(B

′
a′z

) ⊆ (B′a′z)
c ⊆

B′az . Thus F (xi) ⊆
⋃
{B′a′ | (∃a ∈ Dm)a′ ≺B′ a } ⊆ U ′m. Since F (xi) is compact, there is

some m′ ∈ ω such that for each a′ ∈ Dm′ there exists some a ∈ Dm with a′ ≺B′ a. Moreover
F (xi) ⊆ U ′m′ . Let f ∈ R(1) witness that F is effective with respect to complete covering
indices. Then there is some m′′ ∈Wπ1(f(i)) so that for every a′′ ∈ Dm′′ there is some a′ ∈ Dm′

with a′′ 4B′ a′. It follows that there is some m′′ ∈ Wπ1(f(i)) such that for each a′′ ∈ Dm′′

there exists some a ∈ Dm with a′′ ≺B′ a. Let s̄(i,m) be the first element in some fixed
enumeration of { 〈m′′, ı̄,m〉 | m′′ ∈Wπ1(f(i)) ∧ (∀a′′ ∈ Dm′′)(∃a ∈ Dm)a′′ ≺B′ a } with ı̄ = i
and m = m. Set ŝ(i,m) = π1(s̄(i,m)). Then we have that F (xi) ⊆ U ′ŝ(i,m) ⊆ clτ ′(U

′
ŝ(i,m)) ⊆⋃

{ clτ ′(B
′
ā) | ā ∈ Dŝ(i,m) } ⊆

⋃
{ (B′ā)

c | ā ∈ Dŝ(i,m) } ⊆ U ′m.
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Assume in addition that Bn 6⊆ F+
m . Moreover, let A ⊆ ω witness that T is recursively sep-

arable. Then we obtain with Lemma 3.11 that also {xν ∈ Bn | ν ∈ A } 6⊆ F+
m . Hence, there is

some b ∈ A with xb ∈ Bn and F (xb) 6⊆ U ′m. Consequently, F (xb) 6⊆
⋃
{ (B′ā)

c | ā ∈ Dŝ(i,m) }
as well. Thus, there exists some z ∈ F (xb) so that z 6∈

⋃
{ (B′ā)

c | ā ∈ Dŝ(i,m) }. It follows
that δ(z, βπ1(ā)) > 2−π2(ā), for all ā ∈ Dŝ(i,m). Let c ∈ ω with 2−c < δ(z, βπ1(ā))− 2−π2(ā), for
all these ā. Moreover, let e ∈ ω so that δ(z, βe) < 2−(c+1). Then z ∈ B′〈e,c+1〉 ∩ F (xb). Thus
there is some c′ ∈Wπ1(f(b)) with c′ 4B′ 〈e, c+ 1〉. So, we have

2−c < δ(z, βπ1(ā))− 2−π2(ā)

≤ δ(z, βe) + δ(βe, βπ1(c′)) + δ(βπ1(c′), βπ1(ā))− 2−π2(ā)

< 2−(c+1) + 2−(c+1) − 2−π2(c′) − 2−π2(ā) + δ(βπ1(c′), βπ1(ā)),

from which it follows that δ(βπ1(c′), βπ1(ā)) > 2−π2(c′) + 2−π2(ā), for all ā ∈ Dŝ(i,m).
Now, let L ⊆ ω witness that x is computable. Furthermore, let

E = { 〈e, e′〉 | δ(βπ1(e), βπ1(e′)) > 2−π2(e) + 2−π2(e′) }.

Then E is r.e. Let r̄(i, n,m) be the first element in some fixed enumeration of { 〈b, ı̄, n̄,m〉 |
b ∈ A ∧ 〈b, n̄〉 ∈ L ∧ (∃c′ ∈ Wπ2(f(b)))(∀ā ∈ Dŝ(ı̄,m))〈c′, ā〉 ∈ E } with ı̄ = i, n̄ = n and
m = m, and set r = π1 ◦ r̄. It follows that r(i, n,m) ∈ A ⊆ dom(x), xr(i,n,m) ∈ Bn and
F (xr(i,n,m)) 6⊆ U ′ŝ(i,m). By Lemma 5.9 there is some g ∈ R(1) with F+

m = Mg(m). Set
s(i,m) = g(ŝ(i,m)). Then (s, r) is a realiser for noninclusion of τ with respect to F+(τ ′).

By applying Theorem 5.11 again we obtain an analogue to Theorem 5.15 for the case
of upper semi-continuity. Now recall that by Lemma 4.20 we can compute a complement
exhaustion index from any covering index. Moreover, as we have seen in Lemma 4.18,
complete and strict covering indices can be computed from each other. Therefore, every
compact-valued multifunction that is effective with respect to strict covering indices and has
values in an effectively given metric space is both effectively lower and upper semi-continuous.

Theorem 5.17 Let T be effective and recursively separable and T ′ be an effectively given
metric space. Moreover, let x be acceptable. Then every compact-valued multifunction
F : T ⇒ T ′ that is effective with respect to strict covering indices must be effectively con-
tinuous.

6 Outer semi-continuity

Rockafellar and Wetts [30] consider a further pair of semi-continuities for multifunctions:
outer and inner semi-continuity, where inner semi-continuity coincides with lower semi-
continuity. Let T = (T, τ) and T ′ = (T ′, τ ′), respectively, again be T0 spaces with countable
strong bases B and B′ as well as indexings B and B′ hereof. The outer semi-continuity of a
multifunction F : T ⇒ T ′ is defined in terms of outer limits [30]:

lim sup
y→y

F (y)

= { z ∈ T ′ | (∃(yν)ν∈ω ⊆ T )(∃(zν)ν∈ω ⊆ T ′)yν → y ∧ zν → z ∧ (∀ν ∈ ω)zν ∈ F (yν) }.
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Definition 6.1 A multifunction F : T ⇒ T ′ is outer semi-continuous at y ∈ T if

lim sup
y→y

F (y) ⊆ F (y).

Lemma 6.2 ([30]) For any multifunction F : T ⇒ T

1. F is outer semi-continuous at y ∈ T if, and only if, for every z 6∈ F (y) there are open
neighbourhoods U of z and V of y such that V is disjoint from F−(U).

2. F is outer semi-continuous (everywhere) if, and only if, the relation

RF = { (y, z) ∈ T × T ′ | z ∈ F (y) }

is closed in T × T ′.

The above definition is not well suited for effectivisation. We use the first characterisation
in the preceding lemma instead. Obviuously, the open sets U and V depend on the points y
and z. To be able to express this in our framework we need assume that both T and T ′ are
countable and have numberings x and x′, respectively.

Definition 6.3 A multifunction F : T ⇒ T ′ is effectively (pointwise) outer semi-continuous
if there are functions h, k ∈ P (1) such that for all i ∈ dom(x) and j ∈ dom(x′) with x′j 6∈
F (xi), h(i, j)↓ ∈ dom(B), k(i, j)↓ ∈ dom(B′), xi ∈ Bh(i,j), x′j ∈ B′k(i,j), and Bh(i,j) ∩
F−(B′k(i,j)) = ∅.

It should be noted that we do not have a “pointfree” effective version of global outer
semi-continuity as we had in case of the other semi-continuity notions. Therefore, we need
a weaker notion of effective closedness for a computable version of Lemma 6.2(2) than that
of being the complement of a Lacombe set.

Definition 6.4 A subset O of T is effectively (pointwise) open, if there is some function
p ∈ P (1) so that for all i ∈ dom(x) with xi ∈ O, p(i)↓ ∈ dom(B) and xi ∈ Bp(i) ⊆ O. The
complements of effectively open sets are called effectively closed and the Gödel numbers of
the respective functions p are said to be their closedness indices.

As an immediate consequence of the definition we have that any effectively outer semi-
continuous multifunction is effective with respect to closedness indices.

Note that the product T ×T ′ = (T ×T ′, τ×) with the product topology τ× has the basis
B × B′ with is indexed by B×〈m,n〉 = Bm × B′n and strong with respect to ≺B× defined by
〈m,n〉 ≺B× 〈m′, n′〉 if m ≺B n and m′ ≺B′ n′. The space T × T ′ is indexed by x× defined
similarly. Then T × T ′ is effective if T and T ′ are. In the same way, x× is computable, if x
and x′ are, and allows effective limit passing if x and x′ do so.

Lemma 6.5 A multifunction F : T ⇒ T ′ is effectively outer semi-continuous if, and only if,
the relation RF is an effectively closed subset of T × T ′.

As we did in case the other continuity notions in the preceding section, let us now study
the question whether effective multifunctions are effectively outer semi-continuous. Again we
will need both positive and negative information about the images under the multifunction.
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Theorem 6.6 Let T and T ′ be effective and x as well as x′ be acceptable. Then every
multifunction F : T ⇒ T ′ that is jointly effective with respect to density and closedness indices
must be effectively outer semi-continuous.

Proof: We show that the relation RF is effectively closed. Let to this end k, r ∈ R(1) witness
that F is effective with respect to density and closedness indices, respectively. Moreover,
let L′ ⊆ ω witness that x′ is computable and let s ∈ R(2) such that for ϕs(i,m) enumerates
the set { a ∈Wk(i) | 〈a,m〉 ∈ L′ }, if this set is nonempty. Define f(i,m) = ϕs(i,m)(0) and
f̄(i,m) = 〈i, f(i,m)〉.

Let pt ∈ P (1) witness that x× allows effective limit passing and set ĝ(n) = µc :
ϕr(π1(pt(n)))(π2(pt(n)))↓c. In addition, let q ∈ R(1) and p ∈ R(2) be as in Lemma 3.5 applied
to T × T ′. Finally, define h ∈ R(3) by

ϕh(n,i,j)(a) =

{
ϕq(〈i,j〉)(a) if ĝ(n)↑a,
ϕp(f̄(i,π2(ϕq(〈i,j〉)(ĝ(n)−1))),ϕq(〈i,j〉)(ĝ(n)−1))(a− ĝ(n)) otherwise.

By the recursion theorem there is then a function d ∈ R(2) with

ϕh(d(i,j),i,j) = ϕd(i,j).

Let g(i, j) = ĝ(d(i, j)), and suppose that g(i, j)↑, for some i ∈ dom(x) and j ∈ dom(x′) with
(xi, x′j) 6∈ RF . Then d(i, j) is an index of a normed recursive enumeration of basic open
sets converging to (xi, x′j). Hence, x×pt(d(i,j)) = (xi, x′j). Note that ϕr(i)(j)↓ as (xi, x′j) 6∈ RF .
Thus, g(i, j)↓ as well, in contradiction to our assumption. It follows that g(i, j)↓, for all
i ∈ dom(x) and j ∈ dom(x′) such that (xi, x′j) 6∈ RF .

Assume next that that B×(ϕq(〈i,j〉)(g(i, j) − 1)) meets RF , for some i ∈ dom(x) and
j ∈ dom(x′) with (xi, x′j) 6∈ RF . By Lemma 3.5 we have that (xi, x′j) ∈ B×(ϕq(〈i,j〉)(g(i, j)−
1)). Hence, xi ∈ B(π1(ϕq(〈i,j〉)(g(i, j) − 1))) and B′(π2(ϕq(〈i,j〉)(g(i, j) − 1))) meets F (xi).
Consequently, f(i, π2(ϕq(〈i,j〉)(g(i, j)− 1)))↓ and

x′f(i,π2(ϕq(〈i,j〉)(g(i,j)−1))) ∈ B
′
π2(ϕq(〈i,j〉)(g(i,j)−1)).

It follows that d(i, j) is an index of a normed recursive enumeration of basic open sets
converging to (x(i), x′(f(i, π2(ϕq(〈i,j〉)(g(i, j)− 1))))), i.e.,

x×pt(d(i,j)) = (xi, x′f(i,π2(ϕq(〈i,j〉)(g(i,j)−1)))).

By definition, x′(f(i, π2(ϕq(〈i,j〉)(g(i, j)− 1)))) ∈ F (xi). Therefore,

(xi, x′f(i,π2(ϕq(〈i,j〉)(g(i,j)−1))) ∈ RF ,

which implies that g(i, j)↑ in contradiction to our assumption. It follows that

B×ϕq(〈i,j〉)(g(i,j)−1) ∩RF = ∅,

for all i ∈ dom(x) and j ∈ dom(x′) so that (xi, x′j) 6∈ RF , showing that RF is effectively
closed.

Note that no witness for noninclusion condition was needed in this case.
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Corollary 6.7 Let T and T ′ be effective and x as well as x′ be acceptable. Moreover, let
F : T ⇒ T ′ be a multifunction that is effective with respect to density indices. Then F is
effectively outer semi-continuous if, and only if, F is also effective with respect to closedness
indices.

By Lemma 4.7 a hit index of an effectively separable subspace can be computed from any
of its density indices. As we have moreover seen in Theorem 5.13(1), every multifunction on
an effectively pointed space is effective with respect to hit indices, exactly if it is effectively
lower semi-continuous. If, in addition, the domain space of the multifunction is constructively
complete, as in the case of constructive domains, then density indices can also be computed
from hit indices, by Theorem 4.11. This allows to characterise the multifunctions that are
jointly effective with respect to density and closedness indices.

Theorem 6.8 Let T be effective and effectively pointed. Moreover, let T ′ be effective and
x as well as x′ be acceptable. Then the following two statements hold for any multifunction
F : T ⇒ T ′:

1. If F is jointly effective with respect to density and closedness indices, then it must be
both effectively lower semi-continuous and effectively outer semi-coninuous.

2. If, in addition, T is constructively complete then, if F is both effectively lower semi-
continuous and effectively outer semi-coninuous, it is jointly effective with respect to
density and closedness indices.

Let us now consider the case that the value space T ′ is a constructive metric space. As
we have seen in Theorem 5.15, multifunctions that are effective with respect to hit-and-miss
indices are effectively lower semi-continuous in this case, if, in addition, T is recursively
separable. Obviously, every closed subset of T ′ that admits effective complement exhaustion
is also effectively closed and a closedness index of it can uniformly be computed from any of
its complement exhaustion indices. This gives us the following result.

Theorem 6.9 Let T be effective as well as recursively separable, and let x be acceptable.
Moreover, let T ′ be a constructive metric space. Then every closed-valued multifunction
F : T ⇒ T ′ that is jointly effective with respect to density and complement exhaustion indices
must be both effectively lower semi-continuous and effectively outer semi-continuous.

7 A Counterexample

In Theorem 5.15 we have seen that multifunctions between an effective, recursively separable
space and an effectively given metric space are effectively lower semi-continuous, if they are
jointly effective with respect to hit and to complement exhaustion indices. That is, in
addition to the positive information on the values of the multifunction given by the hit
indices, negative information, i.e. information about the complements of these values, was
needed in the proof. As we will see next, the result is not true without this additional
negative information.

Proposition 7.1 There are constructive metric spaces M and M′, and a multifunction
F : M ⇒M ′ which is effective with respect to enumeration indices, but not lower semi-
continuous, and which is hence not effective with respect to complement exhaustion indices.
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Proof: The construction is based on an idea of Friedberg [20]. Let M be the Baire space
and M′ be the space of the natural numbers with the discrete metric. Moreover, define
f ∈ R(1) by

ϕf(i)(n) =


0 if [(∀a ≤ i)ϕi(a) = 0] ∨ (∃c)[ϕi(c) 6= 0

∧(∀a < c)ϕi(a) = 0 ∧ (∃j < c)(∀b ≤ c)ϕi(b) = ϕj(b)],
undefined otherwise.

As is ready verified, for all ϕi, ϕj ∈ R(1) with ϕi = ϕj one has that ϕf(i) = ϕf(j). Note
that ϕ is an acceptable numbering of Baire space. Now, let x be the acceptable numbering
of M ′ constructed in Example 3.17 and let t ∈ R(1) such that ϕt(n) is the constantly n

function. Then xt(n) = n, for all n ∈ ω. Let k ∈ R(1) with Wk(i) = t(Wf(i) ∪ {1}) and define
F : R(1) ⇒ ω by F (ϕi) = {xa | a ∈Wk(i) }. Then F is effective with respect to enumeration
indices, and F (g) = ω, if the first condition in the definition of function f holds, and
F (g) = {1}, otherwise.

Assume that F is lower semi-continuous. We have that F (λn.0) = ω. Moreover, {0}
is open in the discrete topology on ω. Thus, F (λn.0) meets {0}, i.e., λn.0 ∈ F−({0}). By
the lower semi-continuity of F and the definition of the Baire metric there is thus some
m > 0 such that g ∈ F−({0}), for all g ∈ R(1) with g(n) = 0, for n < m. Let c =
max {ϕi(m) + 1 | i < m ∧ ϕi ∈ R(1) } and define

ĝ(n) =

{
0 if n 6= m,
c otherwise.

Then ĝ ∈ R(1). Moreover, ĝ ∈ F−({0}), since ĝ(n) = 0, for n < m. Let j be a Gödel number
of ĝ. Then j ≥ m, by construction of ĝ. In addition, ĝ(m) 6= 0. It follows that F (ĝ) = {1},
i.e., ĝ 6∈ F−({0}). Thus, F cannot be lower semi-continuous.

A research programme that has received much attention over the last decades suggests
to embed important spaces of analytical mathematics in domains and to extend operations
on the spaces to domain operations (cf. e.g. [6, 14, 12]). Domains have been used with great
success in defining a mathematically sound semantics for programming language constructs.
One of the aims of the programme is to provide such a semantics for languages with a real
number data type. This implies as well the development of a new approach to real number
computations. The intermediate results appearing in such computations are contained in
the domains involved and can thus be perfectly controlled. There is also a well understood
computability theory for domains which can be applied here.

An important result in this respect is Berger’s Extension Theorem [5] saying that every
effective function defined on a effectively dense subset of a constructive algebraic domain
with only total values may be extended to an effective map on the domain in such a way
that for every argument in the effectively dense subspace the value of the extended map
covers the corresponding value of the given map with respect to the domain order. As we
will see now, the result is no longer true in the case of multifunctions.

Definition 7.2 Let T = (T, τ) be a countable T0 space with countable basis B, and x and
B be numberings of T and B, respectively.

1. A subset X of T is effectively dense if there is a function d ∈ P (1) with d(n)↓ ∈ dom(x)
and xd(n) ∈ Bn ∩X, for every n ∈ dom(B).
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2. A point y ∈ T is total if the set ↑≤τ {y} has a greatest element.

3. For subsets X,Y of T and a relation R on T , XREMY if for all y ∈ X there is some
z ∈ Y with y R z and for all z ∈ Y there is some y ∈ X with y R z.

Corollary 7.3 There are constructive algebraic domains Q and Q′, an effectively dense
subspace M of Q, a set M ′ of total elements of Q′, and a multifunction F : M ⇒M ′ that is
effective with respect to enumeration indices, but is such that for no lower semi-continuous
multifunction G : Q⇒ Q′ one has F (y) vEM G(y), for all y ∈M .

Proof: Let Q be the set P (1) of all partial recursive functions with the extension ordering.
As has already been said, the finite functions form an algebraic basis. Note that ϕ is an
admissible numbering of this domain. Moreover, let M be the subset R(1) of all total recursive
functions. Since R(1) contains the functions that are 0 almost everywhere, it is effectively
dense in P (1).

Choose Q′ to be the flat domain ω⊥ of the natural numbers. Then the natural numbers
are the total elements of this domain. Let x′ be an admissible indexing of Q′. It follows that
there is a function d ∈ R(1) such for all i ∈ ω for which β(Wi) is directed, xd(i) is the least
upper bound of β(Wi). Let p ∈ R(1) with Wp(c) = {c+ 1}. Then xd(p(c)) = βc+1 = c.

Now, let f ∈ R(1) be defined as in the proof of the preceding proposition and h ∈ R(1) so
that Wh(i) = { d(p(c)) | c ∈Wf(i) ∪ {1} }. Define F : R(1) ⇒ ω by F (ϕi) = {xa | a ∈Wh(i) }.
Then we have again that F is effective with respect to enumeration indices, and F (g) = ω, if
the first condition in the definition of f holds, and F (g) = {1}, otherwise. As we have seen
in the preceding proposition, F is not lower semi-continuous.

Assume that there is some lower semi-continuous multifunction G : P (1) ⇒ ω⊥ such that
for all g ∈ R(1), F (g) vEM G(g). Note that since all elements of F (g) are maximal in
the domain order on ω⊥, F (g) vEM G(g) implies that F (g) = G(g). Observe further that
the metric topologies on R(1) and ω, respectively, are the subspace topologies of the Scott
topologies on P (1) and ω⊥. Therefore, F is lower semi-continuous as well in this case, which
is not true, as just stated. Thus, such a multifunction G cannot exist.
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