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Abstract

In this paper a new notion of continuous information system is introduced. It is shown
that the information systems of this kind generate exactly the continuous domains. The
new information systems are of the same logic-oriented style as the information systems
first introduced by Scott in 1982: they consist of a set of tokens, a consistency predicate
and an entailment relation satisfying a set of natural axioms.

It is shown that continuous information systems are closely related to abstract bases.
Indeed, both categories are equivalent. Since it is known that the categories of abstract
bases and/or continuous domains are equivalent, it follows that the category of continuous
information systems is also equivalent to that of continuous domains.

In applications mostly subclasses of continuous domains are considered. The domains
have e.g. to be pointed, algebraic, bounded-complete or FS. Conditions are presented that
when fulfilled by an continuous information system force the generated domain to belong
to the required subclass. In most cases the requirements are not only sufficient but also
necessary.

1 Introduction

In 1982, in his seminal paper [14] Dana Scott introduced information systems and approximable
mappings as a logic-oriented approach to denotational semantics of programming languages.
Larsen and Winskel [12] then showed that the category of these structures is equivalent to the
category of Scott domains with Scott continuous functions and explained how domain equations
can be solved exactly (not just up to isomorphism) by using information systems. In the sequel,
the new concept was used in many domain-theoretic studies (cf. e.g. [13]). Moreover, similar
structures were introduced in order to characterize various other kinds of domains that have
turned out important in studies of computation [17, 4, 5, 7, 19, 21, 22].
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Science Foundation of China (NSFC), respectively, under grants no. 446 CHV 113/240/0-1, 10371106 and
10410638. The work of the first author has moreover been supported by the German Research Foundation
(DFG) under grant no. 436 RUS 113/850/0-1(R).
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Nearly all these formalisms represent only subclasses of algebraic domains. Hoofman [11] and
Vickers [16] were the first to present a generalization of information systems to the continuous
case. Hoofman’s continuous information systems are in the spirit of Scott’s information systems,
which means they consist of a set of tokens representing bits of information and an entailment
relation between finite sets of tokens, but they capture only the bounded-complete continuous
domains. Vickers’s approach, however, is more general and allows to represent all continuous
domains, but is not Scott-style: he considers transitive dense relations. Bedregal [3] contains
a Scott-style approach that claims to capture exactly the continuous domains. Unfortunately,
this paper contains no proofs but various errors. It seems that the requirements used there are
too weak.

In the present paper we introduce a new notion of continuous information systems. The
definition uses several conditions that appear already in Scott’s and/or Hoofman’s approach.
Moreover, a new requirement is added. As is shown, these information systems generate exactly
the continuous (not necessarily pointed) domains, or more mathematically: the categories of
both structures are equivalent.

As is well known, up to isomorphism continuous domains are completely determined by their
bases and the restriction of the approximation relation to them. Important domain construc-
tions can be reduced to analogous constructions on the bases. In the same way Scott continuous
functions can be recovered from their restriction to the bases of the domains involved. Bases of
continuous domains together with the approximation relations are examples of what is called
abstract basis. The category of these structures is known to be equivalent to the category of
continuous domains.

In this paper it is analyzed how abstract bases and continuous information systems corre-
spond to each other. As we will see, both structures are closely related. Abstract bases form
a bridge between continuous information systems and domains. It will be shown that the cat-
egories of continuous information systems and/or abstract bases are equivalent as well. The
above mentioned equivalence of continuous information systems and continuous domains is a
consequence of both results.

The paper is organized as follows: Section 2 contains the necessary definitions and results
about domains and abstract bases. In Section 3 continuous information systems are introduced
and their relationship with abstract bases is analyzed. By this we obtain that the states
of a continuous information system form a continuous domain with respect to set inclusion.
The analysis defines the object part of the functors that establish the equivalence between
both categories. The morphism part is studied in Section 4. The appropriate morphisms for
information systems are approximable mappings. They correspond to approximable relations
in a natural way. This leads to the just mentioned equivalence.

As has already been said, a continuous information system generates a—not necessarily
pointed—continuous domain. In most computer science application domains are required to be
pointed or satisfy even more restrictive requirements. In Section 5 conditions are derived which
when fulfilled by an information system force the generated domain to satisfy the additional
requirements. In most cases the conditions are not only sufficient but also necessary.

Final remarks can be found in Section 6.
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2 Domains and abstract bases

For any set A, we write X ⊆fin A to mean that X is finite subset of A.
Let (D,v) be a poset. D is pointed if it contains a least element ⊥. A subset S of D is

called consistent if it has an upper bound. S is directed, if it is nonempty and every pair of
elements in S has an upper bound in S. D is a directed-complete partial order (dcpo), if every
directed subset S of D has a least upper bound

⊔
S in D, and D is bounded-complete if every

consistent subset has a least upper bound in D.
Assume that x, y are elements of a dcpo D. Then x is said to approximate y, written x� y,

if for any directed subset S of D the relation y v
⊔
S always implies the existence of some

u ∈ S with x v u. Moreover, x is compact if x� x. A subset B of D is a basis of D, if for each
x ∈ D the set {u ∈ B | u� x } contains a directed subset with least upper bound x. Note that
the set of all compact elements of D is included in every basis of D. A dcpo D is said to be
continuous (or a continuous domain) if it has a basis and it is called algebraic (or an algebraic
domain) if its compact elements form a basis. Standard references for domain theory and its
applications are [9, 8, 1, 15, 2, 6].

Definition 2.1. Let D and D′ be posets. A function f : D → D′ is Scott continuous if for any
directed subset S of D with a least upper bound,

f(
⊔
S) =

⊔
f(S).

The above definition demands that f(
⊔
S) is the least upper bound of the set f(S). As a

consequence one obtains that f is also monotone. Under the stronger assumption that D and
D′ are dcpo’s one needs not care about the existence of directed least upper bounds. Instead,
one requires f to be monotone and preserve directed least upper bounds.

With respect to the pointwise order the set of all Scott continuous functions between two
dcpo’s D and D′ is a dcpo again. Observe that it need not be continuous even if D and D′ are.

Definition 2.2. Let D be a pointed dcpo.

1. A Scott continuous functionf : D → D is said to be finitely separated from the identity
idD on D, if there exists a finite subset Mf of D such that for any X ∈ D there is m ∈Mf

with f(x) v m v x. One speaks of strong separation if for each x ∈ D there are elements
m,m′ ∈Mf with f(x) v m� m′ v x.

2. D is called an FS-domain if there is a directed collection (fi)i∈I of Scott continuous
functions on D, each finitely separated from idD, with the identity function as their least
upper bound.

FS-domains are continuous: the set of all points fi(m) with m ∈ Mfi
and i ∈ I is a basis.

Algebraic FS-domains are also called bifinite domains.
By [10, Lemma 2], for every fi, the function fi ◦ fi is strongly finitely separated from IdD.

Since also
⊔
i∈I(fi ◦fi) = idD, we can assume that an FS-domain comes with a strongly finitely

separating function family and hence that the separating sets Mfi
contain only base elements.

As is well known, if D is a continuous domain D with basis B, then B with the restriction
of the approximation relation to it is an abstract basis.
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Definition 2.3. An abstract basis is given by a set B together with a transitive relation ≺ on
B, such that the following interpolation law holds for all elements u and finite subsets M of B:

M ≺ u⇒ (∃v ∈ B)M ≺ v ≺ u.

Here M ≺ u means that m ≺ u, for any m ∈M .

Recall that for a transitive relation ≺ on a set B, a subset S of B is called dense if for all
u, v ∈ B with u ≺ v there is some w ∈ S such that u ≺ w ≺ v. If B is dense, one also says that
the relation ≺ is dense. For abstract bases (B,≺) we therefore have that ≺ is a dense transitive
relation.

Conversely, if we are given an abstract basis then a continuous domain can be derived from
it by considering all round ideals and ordering them with respect to set inclusion.

Definition 2.4. Let (B,≺) be an abstract basis. A nonempty subset I of B is a round ideal if

1. (∀u ∈ B)(∀v ∈ I)(u ≺ v ⇒ u ∈ I),

2. (∀u, v ∈ I)(∃w ∈ I)(u ≺ w ∧ v ≺ w).

The set RI(B) of all round ideals of B ordered by set inclusion is called the round ideal
completion of B. Let piB : B → RI(B) be the embedding which maps u ∈ B to the principal
ideal ↓≺u.

Proposition 2.5 (cf. [1, 18]). Let (B,≺) be an abstract basis. Then the following two state-
ments hold:

1. The round ideal completion RI(B) is a continuous domain with basis piB(B).

2. RI(B) is algebraic exactly if the subset of all reflexive elements is dense, i.e., if for all
u, v ∈ B with u ≺ v there is some w ∈ B so that u ≺ w ≺ w ≺ v.

Proposition 2.6. Let D be a continuous domain with basis B. Then B with the restriction
of the approximation relation to B is an abstract basis such that the corresponding round ideal
completion is isomorphic to D.

The isomorphism is given by the two functions ilD : D → RI(B) and spD : RI(B)→ D which
are inverse to each other:

ilD(x) = {u ∈ B | u� x }, spD(I) =
⊔
I.

The usual morphisms between abstract bases are approximable relations.

Definition 2.7. A relation R between abstract bases B and C is called approximable if the
following four conditions hold for all u, u′ ∈ B and v, v′ ∈ C and all finite subsets M of C:

1. (uRv ∧ v �C v′)⇒ uRv′,

2. (∀v′′ ∈M)uRv′′ ⇒ (∃w ∈ C)(uRw ∧ w �C M),

3. (u′ �B u ∧ uRv)⇒ u′Rv,

4. uRv ⇒ (∃w ∈ B)(u �B w ∧ wRv).
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Obviously, for every abstract basis (B,≺), the relation ≺ is approximable. It is the identity
morphism IRB on B.

Let D and D′, respectively, are continuous domains with bases of B and B′. Then for any
Scott continuous function f : D → D′, its skeleton

sktn(f) = { (u, v) ∈ B ×B′ | v �′ f(u) }

is an approximable relation between (B,�) and (B′,�′). Conversely, if (B,≺) and (B′,≺′)
are abstract bases and R is an approximable relation between them, then by setting

fR(I) = { v ∈ B′ | (∃u ∈ I)(u, v) ∈ R }

one obtains a Scott continuous function fR : RI(B)→ RI(B′). Moreover,

f = spD′ ◦ fsktn(f) ◦ ilD and R = (piB × piB′)−1(sktn(fR)).

Theorem 2.8. The category AB of abstract bases and approximable relations is equivalent to
the category CDOM of continuous domains and Scott continuous functions.

3 Continuous information systems

In this section we introduce our notion of continuous information system and study the rela-
tionship of these structures with continuous domains.

Definition 3.1. Let A be a set, Con a collection of finite subsets of A and `⊆ Con×A. Then
(A,Con,`) is a continuous information system if the following six conditions hold for all sets
X,Y ∈ Con, elements a ∈ A and nonempty finite subsets F of A:

1. {a} ∈ Con,

2. X ` a⇒ X ∪ {a} ∈ Con,

3. (Y ⊇ X ∧X ` a)⇒ Y ` a,

and, defining X ` Y to mean that X ` b, for all b ∈ Y ,

4. X ` Y ∧ Y ` a⇒ X ` a,

5. X ` a⇒ (∃Z ∈ Con)(X ` Z ∧ Z ` a),

6. X ` F ⇒ (∃Z ∈ Con)(Z ⊇ F ∧X ` Z).

If (A,Con,`) is a continuous information system then the elements of A are usually called
tokens, the sets in Con consistent and the relation ` entailment relation. Tokens should be
thought of as atomic propositions giving information about data and consistent sets as repre-
senting consistent finite conjunctions of such propositions. The entailment relation then tells
us which propositions are derivable from what.

As we will see in this section, continuous information systems allow the generation of all
continuous domains. Hoofman [11] introduced a similar structure, also called continuous in-
formation system, that captures exactly the bounded-complete continuous domains. Condi-
tions 3.1(1) and (3-5) are used by him as well1. Observe that Condition 3.1(2) need not hold in

1Note that [11, Definition 19 (5)] should read as (Y ∈ ConA ∧X ⊆ Y ∧X `A a)⇒ Y `A a.
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his setting [11, Example 3.6]. As is easily verified, every continuous information system in our
sense satisfying the additional requirement that for all finite subsets Y of A and all X ∈ Con,

(Y ⊆ X ∧X ∈ Con)⇒ Y ∈ Con

is a continuous information systems in Hoofman’s sense.
Note that Conditions 3.1(1), (2) and (4) have already been used by Scott [14].
As we will see next, Conditions 3.1(5) and (6) can be replaced by a single requirement.

Proposition 3.2. Let A be a nonempty set, Con be a collection of finite subsets of A and
`⊆ Con×A such that Conditions 3.1(2, 3) hold. Then Requirements 3.1(5, 6) together are
equivalent to the following statement:

(∀X ∈ Con)(∀F ⊆fin A)[X ` F ⇒ (∃Z ∈ Con)(X ` Z ∧ Z ` F )].

Proof. Assume that Conditions 3.1(5, 6) hold. Furthermore, suppose that X ` F and let a ∈ F .
Then, by 3.1(5), there is some set Za ∈ Con with X ` Za and Za ` a. With 3.1(6) it follows
that there is some Z ∈ Con with Z ⊇

⋃
{Za | a ∈ F } and X ` Z. Since Za ` a, we also have

that Z ` a, by 3.1(3). Thus, X ` Z and Z ` F .
For the converse implication we only have to show that Condition 3.1(6) holds. Assume

that X ` F . Then there is some Z ∈ Con with X ` Z and Z ` F . Set Y = Z ∪ F . Then
Y ∈ Con, by 3.1(2), and X ` Y .

For X,Y ∈ Con let X < Y if Y ` X. Then < is a transitive dense relation on Con, which
shows that (Con, <) is a continuous information systems in the sense of Vickers [16]. These
information systems capture exactly the continuous domains.

When we say that a continuous information system generates a continuous domain, we mean
that the data (the states) that are uniquely described by certain sets of elementary propositions
or tokens form a domain with respect to set inclusion.

Definition 3.3 (cf. [3]). Let (A,Con,`) be a continuous information system. A subset x of A
is a state of (A,Con,`) if the next three conditions hold:

1. (∀F ⊆fin x)(∃Y ∈ Con)(F ⊆ Y ∧ Y ⊆ x),

2. (∀X ∈ Con)(∀a ∈ A)(X ⊆ x ∧X ` a⇒ a ∈ x),

3. (∀a ∈ x)(∃X ∈ Con)(X ⊆ x ∧X ` a).

It follows that states are subsets of tokens that are finitely consistent (1) and closed under
entailment (2). Furthermore, each token in a state is derivable (3), i.e., for each token there is
a finite subset of the state that entails the token.

With respect to set inclusion the states of A form a partially ordered set which we denote
by |A|.

Similarly to Proposition 3.2 the requirement that F ⊆ Y in 3.3(1) can be replaced by an
entailment condition.

Proposition 3.4. Let (A,Con,`) be a continuous information system and x be a subset of
A such that Condition 3.3(3) holds. Then Requirement 3.3(1) is equivalent to the following
statement:

(∀F ⊆fin x)(∃Y ∈ Con)(Y ⊆ x ∧ Y ` F ).
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Proof. Assume that Condition 3.3(1) holds, let x be a subset of A and F a finite subset of
x. Then, by 3.3(3), there is some consistent subset Za of x with Za ` a, for every a ∈ F .
Let Z =

⋃
{Za | a ∈ F }. Then Z is a finite subset of x and hence, by 3.3(1), there is some

consistent superset Y of Z that is still contained in x. As Y ⊇ Za, it follows with 3.1(3) that
Y ` a, for every a ∈ F .

For the converse implication, let F be again a finite subset of x. Then there is some consistent
subset Y of x with Y ` F . Set Z = Y ∪F . As F is finite, it follows with 3.1(2) and (3) that Z
is consistent. Moreover, F ⊆ Z ⊆ x.

As we will see now, there is a close connection between continuous information systems and
abstract bases such that states and round ideals correspond to each other.

Let (B,≺) be an abstract basis and for u, v ∈ B, let u � v if u ≺ v or u = v. Set

Con = {X ⊆fin B | X directed with respect to �}

and for X ∈ Con and a ∈ B define

X ` a⇔ (∃c ∈ X)a ≺ c

Lemma 3.5. C(B) = (B,Con,`) is a continuous information system.

Proof. As is readily seen, Conditions 3.1(1-5) hold. For the verification of Condition 3.1(6) let
X ∈ Con and F be a finite nonempty subset of B so that X ` F . Then there is some ca ∈ X
with a ≺ ca, for every a ∈ F . Since X is directed with respect to �, there is moreover some
d ∈ X with ca � d, for all a ∈ F . It follows that F ≺ d. By the interpolation law there is hence
some e ∈ B with F ≺ e ≺ d. Set Z = F ∪ {e}. Then Z ∈ Con, Z ⊇ F , and X ` Z.

Lemma 3.6. RI(B) = |C(B)|.

Proof. Let I ∈ RI(B). We need to show that I is a state of C(B). Let to this end F be
a finite subset of I. If F is empty, set Y = {a}, for some a ∈ I. Otherwise, assume that
F = {u1, . . . , ur}. Then we can inductively find elements v1, . . . , vr ∈ I with v1 = u1 and
vi−1, ui ≺ vi, for i = 2, . . . , r. Set Y = F ∪ {v2, . . . , vr} in this case. Then we have in both
cases that Y is a consistent subset of I.

Next assume that X is a subset of I and u ∈ B with X ` u. Then u ≺ v, for some v ∈ X.
Thus v ∈ I and hence also u ∈ I.

Finally, let u ∈ I. Since I is a round ideal, there is some v ∈ I with u ≺ v. It follows that
{v} ∈ Con, {v} ⊆ I, and {v} ` u.

Now, let conversely x be a state of C(B). We have to verify that x is a round ideal. Assume
that v ∈ x and u ∈ B with u ≺ v. Then {v} ∈ Con and {v} ` u. Hence u ∈ x, by 3.3(2).

For Condition 2.4(2) let u, v ∈ x. By 3.3(3) there are finite consistent subsets U and V of
x with U ` u and V ` v. With 3.3(1) it follows that there is a consistent subset Z of x which
contains both U and V . Hence, Z ` {u, v}, by 3.1(3). Since Z is directed with respect to �,
we obtain that u, v ≺ z, for some z ∈ Z.

By Proposition 2.5(1) it follows that |C(B)| is a continuous domain.
Next we will show that conversely also every continuous information system (A,Con,`)

generates an abstract basis: For X,Y ∈ Con set

Y ≺ X ⇔ X ` Y.
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Lemma 3.7. B(A) = (Con,≺) is an abstract basis.

Proof. By Condition 3.1(4), the relation ≺ is transitive. To see that it also satisfies the inter-
polation law, let V1, . . . , Vr, X ∈ Con with Vi ≺ X, for i = 1, . . . , r. Then we have that X ` Vi,
for each such i, and hence that X `

⋃
{Vi | 1 ≤ i ≤ r }. Set V =

⋃
{Vi | 1 ≤ i ≤ r }. With

Proposition 3.2 it follows that there is some Z ∈ Con with X ` Z and Z ` V . In particular we
have that Z ` Vi, for all 1 ≤ i ≤ r. Thus, Vi ≺ Z ≺ X, for i = 1, . . . , r.

Lemma 3.8. 1. For x ∈ |A|, {X ∈ Con | X ⊆ x } ∈ RI(B(A)).

2. For I ∈ RI(B(A)),
⋃
I ∈ |A|.

Proof. (1) As a consequence of 3.3(2) the set {X ∈ Con | X ⊆ x } is downwards closed with
respect to ≺. To see that it is also directed, let X and Y be consistent subsets of x. By
Proposition 3.4 there is a consistent subset Z of x that contains both X and Y and is such that
Z ` X ∪ Y , which means that X,Y ≺ Z.

(2) We have to verify the conditions in Definition 3.3. Let F be a finite subset of
⋃
I. Then,

for each a ∈ F there is some Xa ∈ I with a ∈ Xa. As I is a round ideal and F is finite, there
is moreover some Y ∈ I so that Xa ≺ Y , for all a ∈ F . Then Y ∈ Con and Y ` Xa, for every
such a. Since a ∈ Xa, this implies that Y ` F . With Condition 3.1(6) we now obtain that
there is some Z ∈ Con with Y ` Z. Moreover, Z ⊇ F . Thus, Z ≺ Y , which means that Z ∈ I.
Hence, Z ⊆

⋃
I.

For the second condition let X be a consistent subset of
⋃
I and a be an element of A so

that X ` a. Since X is finite, we can again find some Y ∈ I with Y ` X. By 3.1(4) we have
that Y ` a, that is {a} ≺ Y . Since Y ∈ I, it follows that {a} ∈ I as well. Thus, a ∈

⋃
I.

For the third condition let a ∈
⋃
I. Then there is some Xa ∈ I with a ∈ Xa. As I is a

round ideal, we can moreover find some Y ∈ I with Xa ≺ Y . Thus, Y ` Xa, which in particular
means that Y ` a. Furthermore, Y ⊆

⋃
I.

The last lemma allows us to define functions F : |A| → RI(B(A)) and G : RI(B(A))→ |A|
by setting

F(x) = {X ∈ Con | X ⊆ x } and G(I) =
⋃
I.

Obviously, they are both monotone.

Lemma 3.9. The functions F and G are inverse to each other and Scott continuous.

Proof. Let x ∈ |A|. Obviously,
⋃
{X ∈ Con | X ⊆ x } ⊆ x. For the converse inclusion

let a ∈ x. Then {a} ∈ Con. Hence, {a} ∈ {X ∈ Con | X ⊆ x }, which means that a ∈⋃
{X ∈ Con | X ⊆ x } ⊆ x.
Next, let I ∈ RI(B(A)). Set Ī =

⋃
I. Then I ⊆ {X ∈ Con | X ⊆ Ī }. Conversely, let

X ∈ Con with X ⊆ Ī. As in the proof of Lemma 3.8(2) we can then find some Y ∈ Con∩I
with Y ` X, which means that X ≺ Y . Since I is a round ideal, it follows that X ∈ I.

To show that both functions are Scott continuous, it is now sufficient to show that F
preserves existing directed least upper bounds. Let to this end (xi)i∈K a directed family of
states. As is readily seen,

⋃
i∈K xi is a state too, in this case. Moreover, it is the least upper

bound of (xi)i∈K . Since similarly the union of a directed family of round ideals is its least
upper bound in RI(B(A)), we have to show that

{X ∈ Con | X ⊆
⋃
i∈K xi } =

⋃
i∈K
{X ∈ Con | X ⊆ xi },
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which is obvious by the directedness of the family (xi)i∈K .

As we have seen in Proposition 2.5(1), RI(B(A)) is a continuous domain. It follows that |A|
is a continuous domain as well. The consistent subsets of A generate a canonical basis for |A|.

Lemma 3.10. 1. For X ∈ Con, X̂ = { a ∈ A | X ` a } is a state of A.

2. For every z ∈ |A|, the set of all X̂ with X ∈ Con so that X ⊆ z is directed and z is its
union.

Proof. (1) follows immediately from 3.1(4-6) in this case.
For (2) let Az =

⋃
{ X̂ | X ∈ Con∧X ⊆ z }. Because of 3.3(1) Az is nonempty. Moreover,

we have for two consistent subsets X and Y of z that there is a further consistent subset Z
of z that includes both of them. With 3.1(3) it follows that X̂, Ŷ ⊆ Ẑ. Thus, Az is directed.
Obviously,

⋃
Az ⊆ z. Let conversely be a ∈ z. Because of 3.3(3) there is some consistent subset

X of z such that X ` a. Then X̂ ∈ Az and hence a ∈
⋃
Az.

This result allows to characterize the approximation relation on |A| in terms of the entail-
ment relation. The characterization nicely reflects the intuition that x � y if x is covered by
some “finite part” of y.

Lemma 3.11. For x, y ∈ |A|,

x� y ⇔ (∃V ∈ Con)(V ⊆ y ∧ V ` x).

Proof. The “if”-part of the statement is an obvious consequence of the preceding lemma.
For the proof of the converse implication assume that S is a directed collection of states of

A such that y ⊆
⋃
S. By the premise there is some finite consistent subset V of y with x ⊆ V̂ .

It follows that V ⊆
⋃
S. Since V is finite and S directed, there is thus some s ∈ S so that

V ⊆ s. As s is a state, we obtain that also V̂ ⊆ s and hence that x ⊆ s. Thus x� y.

Let us now sum up what we have shown so far.

Theorem 3.12. 1. Let (B,≺) be an abstract basis. Then the following two statements hold:

(a) C(B) is a continuous information system.

(b) |C(B)| is a continuous domain with |C(B)| = RI(B).

2. Let (A,Con,`) be a continuous information system. Then the following three statements
hold:

(a) |A| is a continuous domain.

(b) B(A) is an abstract basis.

(c) The domains RI(B(A)) and |A| are isomorphic.

By Proposition 2.6, every continuous domain D gives rise to an abstract basis the round
ideal completion of which is isomorphic to D. The abstract base consists of a fixed basis BD of
D and the restriction of the approximation relation to BD.

Corollary 3.13. Let D be a continuous domain. Then the following two statements hold:

1. C(BD) is a continuous information system.

2. The domains |C(BD)| and D are isomorphic.
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4 Approximable mappings

In a next step we want to turn the collection of continuous information systems into a category.
Similar to abstract bases the appropriate morphisms are not proper maps but relations. They
share essential properties with entailment relations.

Definition 4.1. An approximable mapping H between continuous information systems (A,Con,
`) and (A′,Con′,`′), written H : A 
 A′, is a relation between Con and A′ satisfying for all
X,X ′ ∈ Con, Y ∈ Con′ and b ∈ A′, as well as all nonempty finite subsets F of A′ the following
five conditions, where XHY means that XHc, for all c ∈ Y :

1. (XHY ∧ Y `′ b)⇒ XHb,

2. XHF ⇒ (∃Z ∈ Con′)(F ⊆ Z ∧XHZ),

3. (X ` X ′ ∧X ′Hb)⇒ XHb,

4. (X ⊇ X ′ ∧X ′Hb)⇒ X ′Hb,

5. XHb⇒ (∃Z ∈ Con)(∃Z ′ ∈ Con′)(X ` Z ∧ ZHZ ′ ∧ Z ′ `′ b).

As has already been mentioned, entailment relations are special approximable morphisms.
For X ∈ Con and a ∈ A set X Id a if X ` a. Then Id: A 
 A such that for all H : A 
 A′,
H ◦ IdA′ = H = IdA ◦H, where for approximable mappings H : A 
 A′ and G : A′ 
 A′′ their
composition H ◦G : A 
 A′′ is defined by

X(H ◦G)c⇔ (∃Y ∈ Con′)(XHY ∧ Y Gc).

Let CINF be the category of continuous information systems and approximable mappings.
There is also a close connection between approximable mappings and approximable relations
which turns the connection between continuous information systems and abstract bases studied
the last section into an equivalence between AB and CINF.

Let B, B′ be abstract bases and R be an approximable relation between B and B′. Moreover,
define the relation C(R) ⊆ ConC(B)×B′ by

XC(R)a⇔ (∃c ∈ X)cRa.

Lemma 4.2. C(R) : C(B) 
 C(B′).

Proof. We only consider Conditions 4.1(2) and 4.1(5), the verification of the remaining require-
ments being straightforward. Let to this end X ∈ ConC(B), b ∈ B′ and F be a finite subset of
B′.

Assume first that XC(R)F . Then we have that for every a ∈ F there is some ca ∈ X with
caRa. Since X is directed with respect to �, it contains a greatest element c̄. It follows that
c̄Ra, for all a ∈ F . With Condition 2.7(2) we thus obtain that there is some element b ∈ B′ so
that b � F and c̄Rb. Set Z = F ∪{b}. Then Z is directed with respect to �′, i.e. Z ∈ ConC(B′).
Moreover, c̄RZ and hence XC(R)Z.

Next, suppose that XC(R)b. Then there is some c ∈ X with cRb. By Condition 2.7(2) there
is thus some element b̄ ∈ B′ such that cRb̄ and b ≺ b̄. Set Z ′ = {b̄}. Then Z ′ ∈ ConC(B′) and
Z ′ `C(B′) b. With Condition 2.7(4) we moreover obtain that there is some c̄ ∈ B so that c̄Rb̄
and c ≺ c̄. Set Z = {c̄}. Then we have that Z ∈ ConC(B), X `C(B) Z and ZC(R)Z ′.
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Now, let A, A′ be continuous information systems and H : A 
 A′. For X ∈ B(A) and
Y ′ ∈ B(A′) let

XB(H)Y ′ ⇔ XHY ′.

Lemma 4.3. B(H) is an approximable relation between B(A) and B(A′).

Proof. We only verify Conditions 2.7(2) and 2.7(4), the others being straightforward. Let to
this end X ∈ Con, Y ′ ∈ Con′, and be M′ a finite subset of Con′.

Suppose first that for all X ′ ∈ M′, XB(H)X ′. Then it follows with Condition 4.1(5)
that for each such X’ and all a′ ∈ X ′ there is some Z ′X′,a′ ∈ Con′ such that XHZ ′X′,a′ and
Z ′X′,a′ `′ a′. By Conditions 4.1(4) and 3.1(3) we therefore have that there is some Z ′ ∈ Con′

with Z ′ ⊇
⋃
{Z ′X′,c′ | X ′ ∈M′ ∧ c′ ∈ X ′ }, XHZ ′ and Z ′ `′ a′, which means that XB(H)Z ′

and Z ′ �B(A′) M.
Next, assume that XB(H)Y ′. Then XHa′, for all a′ ∈ Y ′. With Condition 4.1(5) we

obtain that there is some Za′ ∈ Con so that X ` Za′ and Za′Ha′, for each such a′. By applying
Conditions 3.1(6) and 4.1(2) it follows that there is some Z ∈ Con with Z ⊇

⋃
{Zc′ | c′ ∈ Y ′ },

X ` Z and ZHa′, for all a′ ∈ Y ′ . Thus, we have that X �B(A) Z and ZB(H)Y ′.

It is readily seen that C : AB→ CINF and B : CINF→ AB are functors. As will be shown
in what follows, they constitute an equivalence between both categories.

For a category C let IC be the identical functor on C. We first show that there is a
natural isomorphism τ : IAB → B ◦ C. Let to this end (B,≺) be an abstract basis. Then
B(C(B)) = (ConC(B),≺B(C(B))) and for X,Y ∈ ConC(B) we have that

X ≺B(C(B)) Y ⇔ (∀a ∈ X)(∃b ∈ Y )a ≺ b,

which means that for a, b ∈ B,

{a} ≺B(C(B)) {b} ⇔ a ≺ b.

Define relations PB and QB , respectively, between B and B(C(B)) as well as B(C(B)) and
B by

PB = { (b,X) ∈ B × ConC(B) | X ≺B(C(B)) {b} }, and

QB = {X, b) ∈ ConC(B)×B | {b} ≺B(C(B)) X }.

Then PB and QB are approximable relations with PB ◦QB = RIB and QB ◦ PB = RIB(C(B)).
Set τB = PB .

Lemma 4.4. τ is a natural transformation.

Proof. It remains to show that for abstract bases (B,≺), (B′,≺′) and an approximable relation
R between B and B′,

τB ◦ B(C(R)) = R ◦ τB′ .

Note first that for X,Y ∈ ConC(B),

XB(C(R))Y ⇔ (∀a ∈ Y )(∃c ∈ X)cRa.
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Now, let B ∈ B and Y ′ ∈ ConC(B′). Then

b(τB ◦ B(C(R)))Y ′ ⇔ (∃Z ∈ ConC(B))bτBZ ∧ ZB(C(R))Y ′

⇔ (∃Z ∈ ConC(B)){b} �B(C(B)) Z ∧ ZB(C(R))Y ′

⇔ {b}B(C(R))Y ′

⇔ (∃z′ ∈ B′){b}B(C(R)){z′} ∧ {z′} �B(C(B′)) Y
′

⇔ (∃z′ ∈ B′)bRz′ ∧ z′τB′Y ′

⇔ b(R ◦ τB′)Y ′.

Let us summarize what we have just shown.

Proposition 4.5. τ : IAB → B ◦ C is a natural isomorphism.

Next, we show that there is also a natural isomorphism η : ICINF → C ◦ B. Let (A,Con,
`) be a continuous information system. Then C(B(A)) = (Con,ConC(B(A)),`C(B(A))), where
ConC(B(A)) is the collection of all finite subsets of Con that are directed with respect to �B(A)

and
X `C(B(A)) X ⇔ (∃Z ∈ X)Z ` X,

for X ∈ ConC(B(A)) and X ∈ Con. Set

SA = { (X,Y ) ∈ Con×Con | X ` Y }, and

TA = { (X, a) ∈ ConC(B(A))×A | X `C(B(A)) {a} }.

Then SA : A 
 C(B(A)) and TA : C(B(A)) 
 A.

Lemma 4.6. 1. SA ◦ TA = IdA,

2. TA ◦ SA = IdC(B(A)).

Proof. Note that for X,Y ∈ Con, X ` Y just if {X} `C(B(A)) Y . Then (1) is a consequence
of the conditions for entailment relations. For (2) let X ∈ ConC(B(A)) and X ∈ Con. Then we
have that

X(TA ◦ SA)X ⇔ (∃Y ∈ Con)XTAY ∧ Y SAX

⇔ (∃Y ∈ Con)X `C(B(A)) Y ∧ Y ` X

⇔ (∃Y ∈ Con)(∃Z ∈ X)Z ` Y ∧ Y ` X

⇔ (∃Z ∈ X)Z ` X

⇔ X `C(B(A)) X.

Set ηA = SA.

Lemma 4.7. η is a natural transformation.
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Proof. We only have to show that for continuous information systems (A,Con,`) and A′,Con′,
`′) and an approximable mapping H : A 
 A′,

ηA ◦ C(B(H)) = H ◦ ηA′ .

Note to this end that for X ∈ ConC(B(A)) and X ′ ∈ C(B(A′)),

XC(B(H))X ′ ⇔ (∃Z ∈ X)ZHX ′.

Then we have for X ∈ C(B(A)) and Y ′ ∈ C(B(A′)) that

X(ηA ◦ C(B(H)))Y ′ ⇔ (∃Z ∈ ConC(B(A)))XSAZ ∧ ZC(B(H))Y ′

⇔ (∃Z ∈ ConC(B(A)))(∀Z ∈ Z)X ` Z ∧ (∃U ∈ Z)ZHY ′

⇔ XHY ′ (1)

⇔ (∃V ′ ∈ Con′)XHV ′ ∧ V ′ `′ Y ′

⇔ X(H ◦ ηA′)Y ′.

In line (1) the implication from left to right is a consequence of Condition 4.1(3). For the
converse direction use Condition 4.1(5) to obtain some U ∈ Con such that X ` U and UHY ′.
Then set Z = {U}.

Let us summarize again what we have achieved in this step.

Proposition 4.8. η : ICINF → C ◦ B is natural isomorphism.

Putting Propositions 4.5 and 4.8 together, we obtain what we were aiming for in this section.

Theorem 4.9. The category AB of abstract bases and approximable relations is equivalent to
the category CINF of continuous information systems and approximable mappings.

Corollary 4.10. The category CINF of continuous information systems and approximable
mappings is equivalent to the category CDOM of continuous domains and Scott continuous
functions.

5 Special cases

In this section we are going to study for some important kinds of domains how they can be
represented as continuous information systems. Algebraic domains are certainly one of the most
frequently used kinds.

Proposition 5.1. Let A be a set, Con a collection of finite subsets of A and `⊆ Con×A.
Then (A,Con,`) is a continuous information system with |A| being algebraic if, and only if,
(A,Con,`) satisfies Conditions 3.1(1-4, 6) and in addition the following requirement

(∀X,Y ∈ Con)[X ` Y ⇒ (∃Z ∈ Con)(X ` Z ∧ Z ` Z ∧ Z ` Y )]. (ALG)

Proof. We have seen in Section 3 that if A is a continuous information system, then B(A) is an
abstract basis. Moreover, RI(B(A)) and |A| are isomorphic domains. So, if |A| is algebraic the
same holds for RI(B(A)). Condition (ALG) is therefore a consequence of Proposition 2.4(2).

For the converse implication note that Condition 3.1(5) follows from the extra require-
ment (ALG) with Condition 3.1(1). Therefore, A is a continuous information system. Moreover,
RI(B(A)) is algebraic because of Proposition 2.4(2).
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For a continuous information system Condition (ALG) is obviously satisfied if

(∀X ∈ Con)(∀a ∈ X)X ` a.

This requirement has been used by Scott [14].
In most computer science applications of domain theory one requires the domains to be

pointed. Therefore, we are interested in when |A| has a least and, similarly, when it has a
greatest element.

Proposition 5.2. Let (A,Con,`) be a continuous information system. Then |A| is pointed if,
and only if, ∅ ∈ Con or there is some a ∈ A with X ` a, for all X ∈ Con.

Proof. Let us first assume that |A| has a least state ⊥. If ⊥ is empty, then by choosing F = ∅
in 3.3(1) we have that there is some X ∈ Con with ∅ ⊆ X ⊆ ∅, which means that ∅ ∈ Con.

Suppose now that ⊥ is not empty, say a ∈ ⊥. Then a is contained in every state of A, in
particular in the states X̂. Thus X ` a, for every X ∈ Con.

For the converse implication assume first that ∅ ∈ Con. Then ∅̂ is a state of A. If c ∈ ∅̂, i.e.,
if ∅ ` c, then X ` c, for any X ∈ Con, by 3.1(3). With 3.3(1, 2) it follows that c is contained
in every state of A, i.e. ∅̂ is its least state.

If, on the other hand, A has some element a with X ` a, for every X ∈ Con, then we obtain
again that a is contained in every state of |A|, which implies that {̂a} is its least state.

Let A` = { a ∈ A | (∃X ∈ Con)X ` a } be the derivable kernel of A. Obviously, A` =
⋃
|A|.

Moreover, |A| has a greatest element exactly if
⋃
|A| is a state of A.

Lemma 5.3.
⋃
|A| is a state⇔ (∀F ⊆fin A

`)(∃X ∈ Con)(F ⊆ X ∧X ⊆ A`).

Note that the right hand side is Condition 3.3(1) for the set
⋃
|A|. As is readily verified,

Conditions 3.3(2, 3) hold in this case.

Proposition 5.4. Let (A,Con,`) be a continuous information system. Then |A| has a greatest
element if, and only if,

(∀F ⊆fin A
`)(∃X ∈ Con)(F ⊆ X ∧X ⊆ A`). (TOP)

Observe that A` may be a proper subset of A, i.e., a continuous information system may
contain tokens that are never entailed. Because of Condition 3.3(3) they are of no use in domain
construction. The following construction shows that they can easily be eliminated.

Definition 5.5. A continuous information system (A,Con,`) is called reduced if for every
a ∈ A there is some X ∈ Con with X ` a.

Let (Ared,Conred,`red) be defined by

Ared = { a ∈ A | (∃a ∈ A)X ` a },

Conred = {X ∈ Con | X ⊆ Ared }, and

X `red a⇔ X ` a,

where X ∈ Conred and a ∈ Ared. The next result is now readily verified.

Lemma 5.6. (Ared,Conred,`red) is a reduced continuous information system with |Ared| = |A|.
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A further type of domains that is often used in computer science are the bounded-complete
ones. As follows from the definition, bounded-complete continuous domains are always pointed.

Proposition 5.7. Let (A,Con,`) be a continuous information system that satisfies the addi-
tional requirement that

(∀Y ⊆fin A)(∀X ∈ Con)[X ` Y ⇒ Y ∈ Con]. (WBC)

Then |A| is bounded-complete.

Proof. Since |A| is directed-complete, it suffices to show that any two states which are bounded
from above have a least upper bound. Note first that because of Proposition 3.4 and Con-
dition (WBC) any finite subset of a state is consistent. Now, let x, x′ and y be states with
x, x′ ⊆ y. We want to show that

z = { a ∈ A | (∃X ∈ Con)(X ⊆ x ∪ x′ ∧X ` a) }

is also a state and that it is the least upper bound of x and x′.
Let a ∈ z. Then there is some consistent subset X of x ∪ x′ with X ` a. Since X ⊆ y, it

follows that a ∈ y. Thus z ⊆ y. As a consequence, any finite subset of z is consistent. Hence,
z satisfies Condition 3.3(1). With Condition 3.3(3) we obtain that x, x′ ⊆ z. Therefore, by its
definition, z satisfies this requirement as well.

For Condition 3.3(2), let Z ⊆ z and c ∈ A with Z ` c. Then there is some consistent
Xa ⊆ x ∪ x′, for each a ∈ Z, with Xa ` a. Let X be the union of these sets Xa. As X ⊆ y, X
is consistent. Moreover, X ⊆ x ∪ x′ and X ` a. Hence a ∈ z.

Finally, let y′ be any other state with x, x′ ⊆ y′. Then x ∪ x′ ⊆ y′. With Condition 3.3(2)
it follows that also z ⊆ y′.

It would be interesting to find a condition that is also necessary, as we did in the other
cases. Note that Condition (WBC) implies Condition 3.1(6).

In his definition of continuous information system Hoofman [11] uses the above Condi-
tion (WBC) as well as the requirement that for all finite subsets Y of A and all X ∈ Con,

(Y ⊆ X ∧X ∈ Con)⇒ Y ∈ Con . (SBC)

He does not use Condition 3.1(2). Observe that (WBC) follows from (SBC) if 3.1(2) is assumed.
A continuous domain which is a complete lattice is called a continuous lattice. If the domain

is even algebraic, one calls it an algebraic domain. Obviously, a poset is a continuous lattice
just if it is a bounded-complete continuous domain with greatest element, correspondingly in
the algebraic case.

Proposition 5.8. Let (A,Con,`) be a continuous information system.

1. If A satisfies the additional requirements (TOP) and (WBC). Then |A| is a continuous
lattice.

2. If A satisfies the additional requirements (ALG), (TOP) and (WBC). Then |A| is an
algebraic lattice.
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One of the earliest and most important applications of domain theory was in programming
language semantics. Since any advanced algorithmic language allows the formation of function
spaces as data type, only Cartesian closed full subcategories of CDOM are of interest in this
case. Moreover, the domains have to be pointed. As has been shown by Jung [10], there are
just two such maximal subcategories, generated by FS-domains and L-domains, respectively.
We will consider only the first class here. The representation of L-domains by continuous
information systems will be the subject of a separate paper.

Proposition 5.9. Let A be a set and Con a countable collection of finite subsets of A including
the empty set. Then there is a relation `⊆ Con×A such that (A,Con,`) is a continuous
information system with |A| being an FS-domain if, and only if, there exists a directed family
(
i)i∈I of relations between Con and A as well as a family (Mi)i∈I of finite subsets of Con so
that the following eight conditions hold for all indices i ∈ I, sets X,Y ∈ Con, elements a ∈ A
and nonempty finite subsets F of A:

1. {a} ∈ Con,

2. (∃j ∈ I)X 
j a⇒ X ∪ {a} ∈ Con,

3. [X 
i Y ∧ (∃j ∈ I)Y 
j a]⇒ X 
i a,

4. X 
i F ⇒ (∃Z ∈ Con)[F ⊆ Z ∧X 
i Z],

5. [(∃j ∈ I)X 
j Y ∧ Y 
i a]⇒ X 
i a,

6. [X ⊇ Y ∧ Y 
i a]⇒ X 
i a,

7. X 
i a⇒ (∃Z,Z ′ ∈ Con)(∃j, j′ ∈ I)[X 
j Z ∧ Z 
i Z ′ ∧ Z ′ 
j′ a],

8. (∃Z ∈Mi)[X ` Z ∧ (∀b ∈ A)(X 
i b⇒ (∃j ∈ I)Z 
j b)].

Proof. Assume that there is a relation `⊆ Con×A such that (A,Con,`) is a continuous infor-
mation systems and |A| is an FS-domain. Then there is a directed family (fi)i∈I on |A| and a
family (Mi)i∈I of finite nonempty subsets of |A| such that the identity on |A| is the least upper
bound of the functions fi and each Mi witnesses that fi is finitely separated from id|A|. Note
that for X ∈ Con, X̂ =

⋃
i∈I fi(X̂). Thus, for a ∈ A,

X ` a⇔ a ∈ X̂ ⇔ (∃j ∈ I)a ∈ fj(X̂).

For i ∈ I, define 
i⊆ Con×A by

X 
i a⇔ a ∈ fi(X̂).

Conditions (1) to (7) are now readily verified. For (7) note that X̂ =
⋃
{ Ẑ | Z ∈ Con∧Z ⊆ X̂ }

and similarly fi(Ẑ) =
⋃
{ Ẑ ′ | Z ′ ∈ Con∧Z ′ ⊆ fi(Ẑ) }.

It remains to define Mi and verify requirement (8). As we has been remarked in Section 2,
we may assume that each set Mi contains only base elements, which means in this case that
the elements of the Mi are of the form X̂, for some X ∈ Con. Thus, for every i ∈ I, there are
finite subsets Mi of Con with Mi = { X̂ | X ∈Mi }. Condition (8) is now obvious.

For the converse implication set `=
⋃
i∈I 
i. Then (A,Con,`) is obviously a continuous

information system. Moreover, for i ∈ I and x ∈ |A|, define

fi(x) = { a ∈ A | (∃X ∈ Con)X ⊆ x ∧X 
i a }.
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As is easily seen, fi is a Scott continuous function on |A|, for each i ∈ I, and the family of all
these functions is directed with the identity on |A| as its least upper bound. Finally, for i ∈ I,
set Mi = { X̂ | X ∈Mi }.

Now, let i ∈ I and x ∈ |A|. Since Con is countable, the set of all consistent subsets of
x is countable as well. Because of Condition 3.3(1) we can therefore construct an increasing
sequence (Xν)ν∈ω of consistent subsets of x such that for every consistent subset Y of x there
is some ν ∈ ω with Y ⊆ Xν . By Assumption (8) there is some Zν ∈Mi, for each such ν, such
that Xν ` Zν and

fi(X̂ν) = { b ∈ A | Xν 
i b } ⊆ Ẑν .

Because Mi is finite, there must then be some Z ′ ∈Mi such that for infinitely many indices ν,
Zν = Z ′. It follows that for all ν ∈ ω, fi(X̂ν) ⊆ Z ′ and for some ν′ ∈ ω, Xν′ ` Z ′. Thus we
have that

fi(x) =
⋃
{ fi(Ŷ ) | Y ∈ Con∧Y ⊆ x } ⊆ Ẑ ′ ⊆ X̂ν′ ⊆ x,

which shows that fi is finitely separated from the identity on |A|.

The next result presents a sufficient condition for a continuous information system to gen-
erate a bifinite domains. The countability assumption on Con is not used in this case.

Proposition 5.10. Let (A,Con,`) be a continuous information system that satisfies Condi-
tion (ALG) as well as the requirement that ∅ ∈ Con or there is some a ∈ A with X ` a, for all
X ∈ Con. Moreover, for each finite subset F of A let there be a finite family F of consistent
sets that contains all consistent subsets of F and is such that for all subfamilies G of F and all
Z ∈ Con,

(∀X ∈ G)Z ` X ⇒ (∃Y ∈ F)[Z ` Y ∧ (∀X ∈ G)Y ` X].

Then |A| is a bifinite domain.

Proof. By Propositions 5.1 and 5.2 we have that |A| is a pointed algebraic domain. Because of
[6, Proposition II-2.20] it remains to show that there is a directed family of Scott continuous
functions that all have finite range and the identity on |A| as their least upper bound.

Let
I = {F ⊆fin A | (∃X ∈ Con)X ⊆ F }.

Then I is directed. Now, for F ∈ I and x ∈ |A|, define

GF,x = {X ∈ F | X ⊆ x }

and set ĜF,x = { X̂ | X ∈ GF,x }. We show that ĜF,x has a greatest element.
Let G =

⋃
GF,x. Then G is a finite subset of x. By Proposition 3.4, there is hence some

consistent subset Z of x with Z ` G. It follows that Z ` X, for all X ∈ GF,x. Thus, there is
some Y ∈ F such that Z ` Y and Y ` X, for all X ∈ GF,x. Since Z is included in x, the same
holds for Y . Moreover, Y ∈ GF,x and X̂ ⊆ Ŷ , for all X ∈ GF,x. Thus Ŷ is the largest element
of ĜF,x.

Set gF (x) = max ĜF,x. Then range(gF ) is a subset of the set of all X̂ with X ∈ F and hence
finite. We show next that gF is Scott continuous.

Obviously, gF is monotone. Let S be a directed subset of |A| and assume that gF (
⋃
S) = Ŷ

with Y ∈ GF,
S
S . Then Y ⊆

⋃
S. Since S is directed, there is some state s ∈ S so that Y ⊆ s.

It follows that gF (s) ⊇ Ŷ = gF (
⋃
S), which implies that gF is Scott continuous.
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Note that for F1, F2 ∈ I, gF1 , gF2 v gF1∪F2∪
S

(F1∪F2). Thus, the family (gF )F∈I is directed.
It remains to show that (

⊔
F∈I gF )(x) = x, for all x ∈ |A|.

By the definition of the functions gF we have that
⋃
{ gF (x) | F ∈ I } ⊆ x. For the converse

inclusion choose X ∈ Con with X ⊆ x. Then X ∈ I. Moreover, X ∈ X, where X is the family
of consistent sets that exists for X by our assumption. It follows that X ∈ GX,x and hence
that X̂ ⊆ gX(x). Thus,

x =
⋃
{ Ẑ | Z ∈ Con∧Z ⊆ x } ⊆

⋃
{ gZ(x) | Z ∈ Con∧Z ⊆ x } ⊆

⋃
{ gF (x) | F ∈ I }.

Obviously, the results given so far allow the introduction of special categories of information
system such that equivalence results as in Section 4 hold with respect to the corresponding
domain categories. We leave this to the interested reader.

6 Concluding remarks

In this paper a new notion of continuous information system is introduced. As is shown the in-
formation systems of this type generate exactly the continuous domains. This result is obtained
by analyzing the relationship between information systems and abstract bases. It is shown that
both categories are equivalent.

Abstract bases have turned out to be an important tool in domain theory. The main (and
up to isomorphism, only) examples for abstract bases are the bases of continuous domains
together with the restriction of the approximation relation to the basis. As is well known, up to
isomorphism continuous domains are completely determined by their bases. The same is true
for Scott continuous functions and their behaviour on the bases of its domain and codomain.
This basic relationship led to another well known equivalence, that between the categories of
abstract bases and continuous domains.

As a consequence of both equivalence results the equivalence between the categories of
continuous information systems and of continuous domains is obtained.

For most applications continuous domains are far too general. A great variety of important
subclasses has been studied in the literature. For certain rather large subclasses conditions
have been derived in the paper which when fulfilled by a continuous information system force
the generated domain to belong to the class in question. It would be interesting to find similar
requirements for other subclasses.
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