An Intrinsic Characterisation of Effective Topologies

Dieter Spreen

University of Siegen

Advances in Constructive Topology and Logical Foundations—Padova, October 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1. Effective Topological Spaces

An effective topological space is a two-level structure consisting of two indexed sets:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- points
- basic opens,

as well as two enumerable relations between the two levels:

- membership
- convergence.

Let $T = (T, \tau, B, x, B)$ be a countable topological T_0 space with countable basis B such that

- ▶ $x: \omega \rightarrow T$ (onto) is a (partial) enumeration of the points in T,
- B: ω → B (onto) is a (total) enumeration of all basic open sets.

We think of the basic open sets as elementary predicates that are easy to encode.

They determine the points: Because of T_0 , equality of points is Leibniz identity w.r.t. these predicates.

In general it is difficult to deal with set inclusion in an effective framework. In most cases we can use a stronger relation on the codes of basic open sets instead.

Definition

A transitive relation \prec_B on ω is a *strong inclusion*, if for all $m, n \in \omega$

$$m \prec_B n \Rightarrow B_m \subseteq B_n.$$

Assume further that

B is a strong basis, i.e., the property of being a base holds with respect to ≺_B instead of ⊆.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A topology is a structure that allows to talk about *convergence* and *limits*. Here, convergence is defined in terms of normed families of filter bases.

Definition

- A family $(B_{a_{\nu}})_{\nu\geq 0}$ of basic open sets is
 - ▶ *normed* if

$$a_0 \succ_B a_1 \succ_B \cdots$$

► recursive if the sequence a₀, a₁,... is computable. Any of its Gödel numbers is called *index* of (B_{a_ν})_{ν>0}.

Let $(B_{a_{\nu}})_{\nu\geq 0}$ be a normed family of basic open sets and $y \in T$.

$$(B_{a_{\nu}})_{\nu \geq 0} \longrightarrow y$$

if { $B_{a_{\nu}} \mid \nu \geq 0$ } is a strong basis of the neighbourhood filter $\mathcal{N}(y)$ of y.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For $n \ge 0$, indices *i* of points and indices *m* of normed recursive families of basic open sets define

$$i \models n \Leftrightarrow x_i \in B_n$$

 $m \rightsquigarrow i \Leftrightarrow m \text{ is an index of } (B_{a_{\nu}})_{\nu \geq 0} \text{ and } (B_{a_{\nu}})_{\nu \geq 0} \longrightarrow x_i.$

Definition

Space \mathcal{T} is *effective* if the relations

$$\prec_B, \models, \rightsquigarrow$$

are enumerable relative to the sets of numbers over which they are defined.

2. Intrinsic Topologies on Indexed Sets

Indexed sets possess a variety of intrinsic topologies defined by their computability structure.

Let S be a countable set and $\nu : \omega \rightharpoonup S$ (onto) be a (partial) numbering of S with domain dom(ν).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $X \subseteq S$ is completely enumerable, if there is an r.e. set W_n such that for all $i \in dom(\nu)$,

$$\nu_i \in X \Leftrightarrow i \in W_n.$$

Set

$$M_n = \begin{cases} X & \text{for any such } n \text{ and } X, \\ \text{undefined} & \text{otherwise.} \end{cases}$$

Then M is a numbering of the class CE of all completely enumerable subsets of S.

Similarly, X is *completely decidable*, if there is an decidable set A such that for all $i \in \text{dom}(\nu)$, $\nu_i \in X$ iff $i \in A$.

 $X \subseteq S$ is *enumerable*, if there is some r.e. set $A \subseteq \operatorname{dom}(\nu)$ such that

$$X = \{ \nu_i \mid i \in A \}.$$

Thus, X is enumerable if we can enumerate a subset of the index set of X which contains at least one index for every element of X, whereas X is completely enumerable if we can enumerate all indices of all elements of X and perhaps some numbers which are not used as indices by numbering ν .

- A topology on S is a Mal'cev topology, if it has a basis of completely enumerable subsets of S. Any such basis is called Mal'cev basis.
- 2. The topology \mathcal{E} generated by the collection CE of all completely enumerable subsets of S is called the *Ershov* topology.

Obviously, the Ershov topology is the finest Mal'cev topology on S.

We assume that every Mal'cev basis is indexed by a restriction of indexing M.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In certain cases one needs to be able to completely enumerate not only each basic open set, but also its complement.

Theorem (Rice)

Let T be effective and connected. Then a subset of T is completely decidable if, and only if, it is empty or the whole space.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

It follows that, in general, we cannot expect that the whole complement of a completely enumerable set is completely enumerable as well. Note that *CE* is a distributive lattice with respect to union and intersection. For $U \in CE$, let

 $U^* = pseudocomplement(U),$

i.e. the greatest completely enumerable subset of $S \setminus U$, if it exists. Definition U is *regular*, if U^* and U^{**} both exist and $U = U^{**}$. Set

 $R_{\langle m,n
angle} = egin{cases} M_m & ext{if } m,n\in ext{dom}(M) ext{ and } M_m^* = M_n \ ext{undefined} & ext{otherwise.} \end{cases}$

Then R is a numbering of the class REG of all regular subsets of S.

- 1. We say that a topology is a *bi-Mal'cev topology*, if it has a basis of regular sets. Any such basis is called *bi-Mal'cev basis*.
- 2. Let \mathcal{R} be the topology generated by the collection *REG* of all regular subsets of *S*.

We assume that every bi-Mal'cev basis is indexed by a restriction of indexing R.

Obviously, \mathcal{R} is the finest bi-Mal'cev topology on S. Moreover, all of its basic open sets are regular open.

- 1. An open set X is regular open, if X = int(cl(X)).
- 2. A topological space is *semi-regular* if it has a basis of regular open sets.

Definition

Let η be a topology on S with basis A.

- 1. An open set $X \in \eta$ is *weakly decidable* if both X and ext(X) are completely enumerable.
- 2. We say that η is *complemented* if all of its basic open sets are weakly decidable.

Let \mathcal{C} be a class of sets $X \in \eta$ such that

X is regular open

•
$$X \in \mathcal{C} \Rightarrow \operatorname{ext}(X) \in \mathcal{C}$$
.

Then C generates a topology $\eta_C \subseteq \eta$ such that for all $X \in C$:

• X is regular open in $\eta_{\mathcal{C}}$.

•
$$\operatorname{ext}_{\eta_{\mathcal{C}}}(X) = \operatorname{ext}_{\eta}(X).$$

Set

 $\mathcal{C} = \{ X \in \eta \mid X \text{ regular open and weakly decidable.} \}$

Then $\eta^* = \eta_c$ is the finest complemented semi-regular topology generated by η -open sets.

We call η^* the complemented semi-regular topology associated with $\eta.$

Note that every regular subset of S is regular open and weakly decidable with respect to the Ershov topology on S, and these are the only such sets.

Proposition

 $\mathcal R$ is the complemented semi-regular topology associated with the Ershov topology on S, i.e.

$$\mathcal{R} = \mathcal{E}^*.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

3. Comparing Topologies Effectively

In a second countable space $\mathcal{T} = (\mathcal{T}, \tau, \mathcal{B}, B)$ every open set is a countable union of basic open sets. This gives rise to the following notion of being effectively open.

Definition

 $O \in \tau$ Lacombe set, if there is an r.e. set $A \subseteq \omega$ such that

$$O=\bigcup \{ B_a \mid a \in A \}.$$

Any r.e. index *i* of *A* is called *Lacombe index* of *O*. We write $O = L_i^{\tau}$.

٠

Let η be a further topology on T with countable basis C and indexing C of the basis.

1. η is effectively coarser than τ (written $\eta \subseteq_{e} \tau$), if there is a computable total function f such that

$$C_n = L_{f(n)}^{\tau}$$

(日) (日) (日) (日) (日) (日) (日) (日)

2. η and τ are effectively equivalent (written $\eta =_{e} \tau$), if both $\eta \subseteq_{e} \tau$ and $\tau \subseteq_{e} \eta$.

A condition that forces a topology η on T to be effectively coarser than the given topology τ :

Let η be a topology on T with basis C and numbering C of C. Moreover, assume that

$$x_i \in C_m$$
.

We want to find a basic open set B_n with

$$x_i \in B_n \subseteq C_m$$
.

As follows from work of Beeson, we have to give a proof by contradiction.

So, we have to suppose for all n that

$$x_i \in B_n \Rightarrow B_n \nsubseteq C_m.$$

Since we are working in an effective framework, we need to effectively find a point

$$y \in B_n \setminus C_m$$
,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

realizing that $B_n \not\subseteq C_m$.

As turns out it is sufficient:

First to find a perhaps smaller completely enumerable set

$$x_i \in M' \subseteq C_m.$$

▶ Then, for every larger set $B_{n'}$ with $n' \succ_B n$ to find a witness

$$y\in B_{n'}\setminus M'.$$

We say that τ has a *noninclusion realizer* with respect to η , if such M' and γ can effectively be found.

Note that M' is completely enumerable, but $y \notin M'$. So, in general there is no way to find y.

4. The Characterization

Definition

 ${\mathcal T}$ is recursively separable if it has an enumerable dense subset.

Proposition

Let \mathcal{T} be effective as well as recursively separable and η be Mal'cev topology on \mathcal{T} . If τ has a noninclusion realizer with respect to η , then $\eta \subseteq_{e} \tau$.

Remember that by our assumptions every basic open set B_n is completely enumerable. Thus, τ is a Mal'cev topology.

Theorem

Let T be effective as well as recursively separable and let τ have a noninclusion realizer with respect to itself. Then τ is the effectively finest Mal'cev topology on T relative to which τ has a noninclusion realizer.

5. Special Cases

We will now study important special cases and see when such realizers exist.

Domain-like spaces

An essential property of continuous domains (dcpo's), just as of Ershov's A- and f-spaces, is that their canonical topology has a basis with every basic open set being an upper set generated by a point which is not necessarily included in B_n but in $hl(B_n)$ where

$$\mathsf{hl}(B_n) = \bigcap \{ B_m \mid n \prec_B m \}.$$

 \mathcal{T} is effectively pointed, if there is a computable function pd such that for all n with $B_n \neq \emptyset$,

- 1. $x_{pd(n)} \in hl(B_n)$,
- 2. $x_{pd(n)} \leq_{\tau} z$, for all $z \in B_n$.

Here \leq_{τ} is the *specialization order* associated with τ :

$$y \leq_{\tau} z \Leftrightarrow \mathcal{N}(y) \subseteq \mathcal{N}(z).$$

Lemma

Let \mathcal{T} be effective and effectively pointed. Then \mathcal{T} is recursively separable with dense base $\{x_a \mid a \in \operatorname{range}(pd)\}$.

Lemma

Let \mathcal{T} be effective. Then each completely enumerable subset of \mathcal{T} is upwards closed with respect to the specialization order.

Proposition

Let T be effective and effectively pointed. Then τ has a noninclusion realizer with respect to any Mal'cev topology on T.

Theorem

Let \mathcal{T} be effective and effectively pointed. Then

$$\tau =_{e} \mathcal{E},$$

i.e., τ is effectively equivalent to the Ershov topology on T.

Proposition

Let T be effective and recursively separable. Then τ has a noninclusion realizer relative to every bi-Mal'cev topology on T.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma

Let \mathcal{T} be effective and recursively separable. Then the following statements hold:

1. For every weakly decidable open set O,

$$\mathsf{ext}_{ au}(\mathit{O}) = \mathit{O}^*$$

2. For every weakly decidable basic open set B_n ,

 B_n regular $\Leftrightarrow B_n$ regular open.

3. If, in addition, $ext_{\tau}(B_n)$ is completely enumerable, uniformly in *n*,

 τ bi-Mal'cev $\Leftrightarrow \tau$ semi-regular.

Theorem

Let \mathcal{T} be effective, recursively separable and semi-regular. Moreover, assume that $ext_{\tau}(B_n)$ is completely enumerable, uniformly in n. Then

$$\tau =_{e} \mathcal{R},$$

i.e., τ is effectively equivalent to the complemented semi-regular topology associated with the Ershov topology on T.