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A CONSTRUCTION METHOD FOR PARTIAL
METRICS

DIETER SPREEN

Abstract. We present a general construction that starts
from a family of interior-preserving open coverings of a given
subspace and results in a partial metric with respect to which
all subspace elements have self-distance zero. A necessary
and sufficient condition is derived for when this partial met-
ric induces the given topology. The condition is particularly
satisfied if the members of each covering are pairwise disjoint.

The method is based on Fletcher’s universal construction
for transitive quasi-uniformities. Important examples of par-
tial metrics in the literature can be obtained in this way.

As a consequence of the construction, the set of all points
with self-distance zero is a Gδ. Moreover, this subspace is
zero-dimensional in its induced topology.

1. Introduction

Topological spaces that appear in the context of the semantics
of computation usually satisfy only the weak T0 separation axiom,
and are thus equipped with a canonical partial order. In contrast to
spaces which are mainly considered in mathematics and are at least
Hausdorff, these spaces contain not only the ideal or total elements
that are the result of a mathematical construction or a computation
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and that are the only points in commonly considered spaces, but
also the objects which appear at the various computational stages.
They are called partial elements and approximate the total ones.

Because of the just mentioned weak topological separation prop-
erties metrics are no longer appropriate when dealing with quanti-
tative aspects of such approximations. One has to use quasi-metrics
instead. They are such that the distance from point x to point y
may be different to that from y to x. This seems unnatural and
counter intuitive. As a remedy Matthews [15] introduced the notion
of a partial metric. In this case the distance function is symmetric,
but the self-distance of a point need not be zero. In applications
one is mostly interested in partial metrics with respect to which
the ideal elements have self-distance zero. The self-distance of the
partial elements is interpreted as a measure of their partiality.

Each partial metric induces a quasi-metric in a natural way. In
fact, partial metrics are equivalent to weighted quasi-metrics [15].
Their topology is the topology of the associated quasi-metric. As
is well known, each second-countable T0 space is quasi-metrizable.
This does not hold for partial metrics. Künzi and Vajner [13] pro-
vide a subtle discussion of which spaces are partial metrizable.

Every quasi-metric generates a quasi-uniformity in the usual way.
Conversely, every countably based quasi-uniformity with associated
T0 topology can be generated in such a way. It is not known whether
this is also true for partial metrics.

In this note we present a general construction that starts from a
family of interior-preserving open coverings of a given subspace and
results in a partial metric with respect to which all subspace ele-
ments have self-distance zero. A necessary and sufficient condition
is derived for when this partial metric induces the given topology.
The condition is particularly satisfied if the members of each cov-
ering are pairwise disjoint.

The method is based on Fletcher’s universal construction for
transitive quasi-uniformities [6, 7]. Important examples of partial
metrics in the literature can be obtained in this way.

As a consequence of the construction, the set of all points with
self-distance zero is a Gδ. By definition, the partial metric is a
metric on this subspace. Since the uniformity generated by it is
transitive, the subspace is zero-dimensional in its induced topology.
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The note is organized as follows: In Section 2 basic topological
definitions and facts are recalled. Section 3 contains definitions
and examples from domain theory. The construction is given in
Section 4.

2. Weak Metrics

In this section we recall some topological notions and facts needed
in what follows.

Let (X, ρ) be a topological space. If U is a subset of X then
extρ(U) denotes its exterior. For points x, y ∈ X set x ≤ρ y if
every open set in ρ containing x also contains y. Then ≤ρ is a
preorder on X, called the specialization order. It is a partial order
exactly if the space is T0.

Definition 2.1. A quasi-uniformity on a set X is a filter U of
binary relations on X such that

(1) each member of U contains the diagonal ∆X of X ×X and
(2) for any U ∈ U there is some V ∈ U with V ◦ V ⊆ U .

The pair (X,U) is said to be a quasi-uniform space and the
elements of U are called entourages. A subfamily B of U is a base for
U if each member of U contains an element of B and a subfamily
S of U is a subbase for U if the family of finite intersections of
elements of S is base for U . A (sub)base B for a quasi-uniformity
is transitive provided that each B ∈ B is a transitive relation. If a
quasi-uniformity has a transitive (sub)base it is called transitive as
well. For a detailed treatment of the theory of quasi-uniform spaces
the reader is referred to [7].

If U is a quasi-uniformity on X, then so is its conjugate U−1 =
{U−1 | U ∈ U }, where U−1 = { (x, y) ∈ X ×X | (y, x) ∈ U }. The
uniformity U∗ generated by U has a base given by the entourages
U∗ = U∩U−1. The topology τ(U) induced by U is that in which the
sets U(x) = { y ∈ X | (x, y) ∈ U }, with U ∈ U , form a neighbour-
hood base for each x ∈ X. If ρ is a topology on X that coincides
with τ(U), then U is said to be compatible with ρ.

As is well known, there is a close connection between uniformities
and metrics on a set X. The same holds for quasi-uniformities and
quasi-metrics.
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Definition 2.2. A quasi-metric for a set X is a nonnegative real-
valued function d on X ×X such that the following two conditions
hold for all x, y, z ∈ X:

(1) x = y ⇔ d(x, y) = d(y, x) = 0,
(2) d(x, y) ≤ d(x, z) + d(z, y).

Each quasi-metric d on X generates a quasi-uniformity Ud on X
which has as a base the family of sets of the form { (x, y) ∈ X×X |
d(x, y) < 2−n } with n ∈ N.

For x ∈ X and n ∈ N, let Sd(x, 2−n) = { y ∈ X | d(x, y) < 2−n }
be the open sphere about x with radius 2−n. The topology that
has the family {Sd(x, 2−n) | x ∈ X ∧ n ∈ N } as a base is called the
topology induced by d and denoted by τ(d). It is identical with the
topology τ(Ud) induced by the quasi-uniformity generated by d.

As follows from the definition, a quasi-metric satisfies the usual
conditions for a metric except the symmetry requirement. A dis-
tance notion closely related to quasi-metrics satisfying this condi-
tion is that of a partial metric.

Definition 2.3. A partial metric for a set X is a nonnegative real-
valued function p on X×X such that the following four conditions
are satisfied for any x, y, z ∈ X:

(1) p(x, y) ≥ p(x, x),
(2) p(x, y) = p(y, x),
(3) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(4) p(x, y) + p(z, z) ≤ p(x, z) + p(z, y).

The pair (X, p) is a partial metric space. The set ker(p) =
{x ∈ X | p(x, x) = 0 } is called the kernel of p. For x, y ∈ X, let
x ≤p y if p(x, y) = p(x, x). Then ≤p is a partial order on X, said
to be the partial order associated with p.

Proposition 2.4 ([15]). Let (X, p) be a partial metric space. Then
the kernel of p is upwards closed with respect to ≤p. All of its
elements are even maximal with respect to this order.

As has already been mentioned, spaces used in studies of the
mathematical semantics of computation have only the weak T0 sep-
aration property. In addition to the (totally defined) final results
of a computation they also contain its intermediate values. The
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self-distance p(x, x) is a feature used to describe the amount of in-
formation contained in x. The smaller p(x, x) the more defined x
is, x being totally defined if p(x, x) = 0.

Matthews [15] showed that there is a correspondence between
partial metrics and weighted quasi-metrics, where a weighted quasi-
metric on X is a pair of maps (d,w) consisting of a quasi-metric d
on X and a nonnegative real-valued function w on X, called weight
function, such that for all x, y ∈ X, d(x, y)+w(x) = d(y, x)+w(y).

If p is a partial metric on X define the functions dp and wp,
respectively, by

dp(x, y) = p(x, y)− p(x, x) and

wp(x) = p(x, x).

Then (dp, wp) is a weighted quasi-metric on X. Conversely, if (d,w)
is a weighted quasi-metric on X then the function p(d,w) defined by
p(d,w)(x, y) = d(x, y) + w(x) is a partial metric on X.

We call dp the quasi-metric associated with p and define the
quasi-uniformity Up generated and the topology τ(p) induced by the
partial metric p, respectively to be the quasi-uniformity generated
and the topology induced by the quasi-metric associated with p, i.e.,
Up = Udp and τ(p) = τ(dp). As is readily verified, the specialization
order of τ(p) and the partial order associated with p agree. If ρ is a
topology on X which coincides with the topology τ(p) induced by
the partial metric p, then we also say that p is compatible with ρ.

3. Examples from Domain Theory

Domains are the standard type of spaces used in computer sci-
ence when dealing with the semantics of computations on non-
discrete objects.

Let (D,v) be a partial order with least element ⊥. For a subset
S of D, ↑S = {x ∈ D | (∃y ∈ S)y v x } is the upper set generated
by S. The subset S is directed, if it is nonempty and every pair of
elements in S has an upper bound in S. D is a directed-complete
partial order (dcpo) if every directed subset S of D has a least
upper bound

⊔
S in D. Standard references for the theory of this

structure are [10, 9, 1, 19, 2, 8].
If (D,v) is a dcpo and x, y ∈ D then one says that x approx-

imates y, and writes x � y if for every directed subset S of D



6 DIETER SPREEN

with y v
⊔
S there is some u ∈ S with x v u. The relation �

is transitive. A member x of a dcpo D is compact if x � x. We
denote the set of compact elements of D by KD. Observe that for
compact elements z and members x of D, z � x exactly if z v x.

Definition 3.1. A subset Z of a dcpo D is a basis for D, if for any
x ∈ D the set Zx = { z ∈ Z | z � x } is directed and x =

⊔
Zx.

Note that KD is included in any basis of D.

Definition 3.2. A dcpo D is called continuous or a continuous
domain if it has a basis. It is called algebraic or algebraic domain if
it has a basis of compact elements. We say that D is ω-continuous
if there exists a countable basis and we call it ω-algebraic if KD is
a countable basis.

Several meaningful topologies have be defined on dcpo’s. Mostly
they are equipped with the Scott topology σ. It reflects important
properties of computations. A subset X of D is Scott open if it
is upwards closed with respect to the partial order and intersects
each directed subset of which it contains the least upper bound.
In case D is continuous with basis Z the family of sets ↑↑{z} =
{x ∈ D | z � x }, with z ∈ Z, is a base for σ. Note that the Scott
topology fulfills the T0 but in general not the T1 condition. Its
specialization order coincides with the domain order.

Domain theory is a theory about the approximation by basis ele-
ments. Without any notion of distance only qualitative statements
can be made. So, the question came up whether domains are partial
metrizable [16, 11]. Positive answers were given in the ω-algebraic
case by O’Neill [17], and in the more general ω-continuous case
independently by Schellekens [18] and Waszkiewicz [21].

Let D be an ω-algebraic domain and z0, z1, . . . an enumeration
of its compact elements. For x, y ∈ D set

(3.1) p(x, y) = 1−
∑
{ 2−(n+1) | n ≥ 0 ∧ x, y ∈↑{zn} }.

Proposition 3.3 ([21]). For any ω-algebraic domain D, p is a
partial metric on D which is compatible with the Scott topology.

Obviously, p(x, x) = 0 exactly if x dominates all elements of D.
Since, in general, domains do not possess a greatest element, all
elements have nonzero self-distance in this case.
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Recent research in domain theory has mostly dealt with the ques-
tion which spaces can be given a domain environment, i.e. a con-
tinuous domain which contains a subspace (of total elements) cor-
responding to the given space in a continuous way (cf. e.g. [3, 14,
5, 4, 12]). The ultimate goal of this research is the development
of programming languages for real number computations that can
be given a faithful domain semantics. In many cases the given
space is required to be homeomorphic to the subspace of maxi-
mal domain elements. In this case one wants the partial metric to
be such that its restriction to the maximal elements is a metric,
or in other words, that exactly the maximal elements have self-
distance zero. For spaces in which all maximal elements are also
constructively maximal such partial metrics have been presented
by Waszkiewicz [22] in the algebraic and Smyth [20] in the more
general continuous case. For continuous domains in general the
problem whether such partial metrics exist is still open.

An element x of a continuous domainD is constructively maximal
if it satisfies all tests, where a test consists of a pair (u, v) of basis
elements of D such that u � v, and x satisfies test (u, v) if either
u � x or x has a neighbourhood lying apart from ↑↑{v}. In the
algebraic case a test (u, v) can be simplified to the case u = v.

Let D be again an ω-algebraic domain and z0, z1, . . . an enumer-
ation of its compact elements. For x, y ∈ D set

q(x, y) = 1−
∑
{ 2−(n+1) | n ≥ 0 ∧

[x, y ∈↑{zn} ∨ x, y ∈ extσ(↑{zn})] }.
(3.2)

Proposition 3.4 ([20]). For any ω-algebraic domain D, q is a
partial metric on D which is compatible with the Scott topology.
Moreover, q(x, x) = 0 exactly if x is constructively maximal.

4. The Construction

Let (X, ρ) be a topological space and C a collection of open sub-
sets of X. C is called interior-preserving if

⋂
{C | C ∈ C′ } is open,

for every C′ ⊆ C. Set

UC = { (x, y) ∈ X ×X | (∀C ∈ C)[x ∈ C ⇒ y ∈ C] }.

Then UC is a reflexive and transitive relation.
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The following result due to Fletcher [6, 7, Theorem 2.6] presents
a universal construction method for transitive quasi-uniformities on
X that are compatible with the given topology ρ.

Theorem 4.1. Let (X, ρ) be a topological space. Then following
two statements hold:

(1) Let A = (Ci)i∈I be a family of interior-preserving collec-
tions of open subsets of X such that

⋃
i∈I Ci is a subbase for

ρ. Then {UCi | i ∈ I } is a subbase for a transitive quasi-
uniformity UA on X which is compatible with ρ.

(2) Let V be a transitive quasi-uniformity on X compatible with
ρ and let B be a transitive base for V. For V ∈ B set
CV = {V (x) | x ∈ X } and let B = { CV | V ∈ B }. Then B
is a family of interior-preserving collections of open covers
of X such that

⋃
B is a subbase for ρ and V = UB.

For the next steps the following two examples provide some in-
side.

Example 4.2. Let D be an algebraic domain. We will define two
families of interior-preserving collections of open subsets of D. For
z ∈ KD set

Pz = {↑{z}} and Sz = {↑{z}, extσ(↑{z})}.

Then
⋃
{Pz | z ∈ KD } and

⋃
{ Sz | z ∈ KD } are subbases of σ.

Moreover,

UPz =↑{z}×↑{z} ∪
⋃
{ {x} ×D | x ∈ D\↑{z} } and

USz =↑{z}×↑{z} ∪ extσ(↑{z})× extσ(↑{z})

∪
⋃
{ {x} ×D | x ∈ D \ (↑{z} ∪ extσ(↑{z})) }.

We see that both entourages have a significant symmetric sub-
relation, which is an equivalence relation on

⋃
Pz and/or

⋃
Sz.

For an interior-preserving collection C of open subsets of X set

Sym(UC) = UC ∩ U−1
C ∩

⋃
C ×

⋃
C.

Then Sym(UC) is an equivalence relation on
⋃
C.

Assume now that (X, ρ) is a T0 space and A = (Ci)i∈N is a
family of interior-preserving collections of open subsets of X such
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that
⋃
i∈N Ci is a subbase for ρ. Let x, y ∈ X and define

pA(x, y) = 1−
∑
{ 2−(i+1) | i ≥ 0 ∧ (x, y) ∈ Sym(UCi) }.

Proposition 4.3. Let (X, ρ) be a T0 space and A = (Ci)i∈N be a
family of interior-preserving collections of open subsets of X such
that

⋃
i∈N Ci is a subbase for ρ. Then the function pA is a partial

metric on X.

Proof. Condition 2.3(2) is obvious. For the verification of the re-
maining requirements let x, y, z ∈ X.

(1) If (x, y) ∈ Sym(UCi), then x ∈
⋃
Ci and hence (x, x) ∈

Sym(UCi). Thus,∑
{ 2−(i+1) | i ≥ 0 ∧ (x, y) ∈ Sym(UCi) }

≤
∑
{ 2−(i+1) | i ≥ 0 ∧ (x, x) ∈ Sym(UCi) }.

It follows that pA(x, x) ≤ pA(x, y).
(3) If pA(x, y) = pA(x, x), then∑

{ 2−(i+1) | i ≥ 0 ∧ (x, y) ∈ Sym(UCi) }

=
∑
{ 2−(i+1) | i ≥ 0 ∧ (x, x) ∈ Sym(UCi) }

=
∑
{ 2−(i+1) | i ≥ 0 ∧ x ∈

⋃
Ci },

which implies that for i ≥ 0,

(x, y) ∈ Sym(UCi)⇔ x ∈
⋃
Ci.

Now, let C ∈
⋃
i∈N Ci with x ∈ C. Then there is some n ≥ 0 so

that C ∈ Cn. By what we have just seen it follows that (x, y) ∈
Sym(UCn). Since x ∈ C we have that y ∈ C as well. Thus x ≤ρ y,
as

⋃
i∈N Ci is a subbase for ρ.

If also pA(x, y) = pA(y, y), we obtain in the same way that y ≤ρ
x. It follows that x = y, since (X, ρ) is T0.

(4) If (x, z) ∈ Sym(UCi) or (z, y) ∈ Sym(UCi), then we have
in any case that z ∈

⋃
Ci and (z, z) ∈ Sym(UCi). Moreover, if

(x, z), (z, y) ∈ Sym(UCi), then also (x, y) ∈ Sym(UCi), as Sym(UCi)
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is transitive. Thus∑
{ 2−(i+1) | i ≥ 0 ∧ (x, z) ∈ Sym(UCi) }

+
∑
{ 2−(i+1) | i ≥ 0 ∧ (z, y) ∈ Sym(UCi) }

≤
∑
{ 2−(i+1) | i ≥ 0 ∧ (x, y) ∈ Sym(UCi) }

+
∑
{ 2−(i+1) | i ≥ 0 ∧ (z, z) ∈ Sym(UCi) }.

It follows that pA(x, y) + pA(z, z) ≤ pA(x, z) + pA(z, y).
�

Moreover, we have for x ∈ X that

pA(x, x) = 0⇔
∑
{ 2−(i+1) | i ≥ 0 ∧ (x, x) ∈ Sym(UCi) } = 1

⇔
∑
{ 2−(i+1) | i ≥ 0 ∧ x ∈

⋃
Ci } = 1

⇔ (∀i ∈ N)x ∈
⋃
Ci

⇔ x ∈
⋂
{

⋃
Ci | i ∈ N }.

Proposition 4.4. Let (X, ρ) be a T0 space and A = (Ci)i∈N be a
family of interior-preserving collections of open subsets of X such
that

⋃
i∈I Ci is a subbase for ρ. Then the kernel of pA is a Gδ-set,

and hence upwards closed with respect to the specialization order.

As an immediate consequence we obtain that if S is a subspace
of X and we choose the Ci, for i ∈ N, as interior-preserving open
covers of S then S is included in the kernel of pA.

Let dA be the quasi-metric associated with pA. Then

dA(x, y)

= pA(x, y)− pA(x, x)

=
∑
{ 2−(i+1) | i ≥ 0 ∧ x ∈

⋃
Ci ∧ (x, y) 6∈ Sym(UCi) }

= 1−
∑
{ 2−(i+1) | i ≥ 0 ∧ [x ∈

⋃
Ci ⇒ (x, y) ∈ Sym(UCi)] }

For i ≥ 0 set

Ri = { (x, y) ∈ X ×X | x ∈
⋃
Ci ⇒ (x, y) ∈ Sym(UCi) }.
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Then we have for x, y ∈ X and n ≥ 0 that

dA(x, y) < 2−n ⇔ 1− 2−n <
∑
{ 2−(i+1) | (x, y) ∈ Ri }

⇔ 0 <
∑
{ 2−(i+1) | (x, y) ∈ Ri } −

n−1∑
i=0

2−(i+1)

⇔ (x, y) ∈
n−1⋂
i=0

Ri ∩
⋃
i≥n

Ri.

Let RA be the transitive quasi-uniformity on X with subbase
{Ri | i ∈ N }. Since

n+1⋂
i=0

Ri ⊆ { (x, y) ∈ X ×X | dA(x, y) < 2−(n+1) } ⊆ Rn ⊆ UCn ,

we obtain that

Lemma 4.5. UA ⊆ RA = UdA
.

It follows that ρ = τ(UA) ⊆ τ(RA) = τ(dA). For the converse
inclusion remember that Sym(UCi) is an equivalence relation on⋃
Ci, for each i ∈ N. Let Di

j with j ∈ J i be the corresponding
equivalence classes. Then

Ri =
⋃
j∈Ji

Di
j ×Di

j ∪ (X \
⋃
Ci)×X.

Lemma 4.6. τ(RA) ⊆ τ(UA), exactly if Di
j ∈ τ(UA), for all i ∈ N

and j ∈ J i.

Note that Di
j =

⋂
Cix \

⋃
(Ci \ Cix), for each x ∈ Di

j . Here, Cix is
the collection of those C ∈ Ci that contain x. Since

⋃
i∈N Ci is a

subbasis for ρ, we therefore obtain that τ(RA) ⊆ ρ if and only if for
each i ∈ N and x ∈

⋃
Ci there are indices j1, . . . , jn ∈ N and sets

C1 ∈ Cj1 , . . . , Cn ∈ Cjn so that x ∈
⋂n
ν=1Cν ⊆

⋂
Cix \

⋃
(Ci \ Cix).

The next result is now a consequence of what we have shown so
far.

Theorem 4.7. Let (X, ρ) be a T0 space and A = (Ci)i∈N be a
family of interior-preserving collections of open subsets of X such
that

⋃
i∈N Ci is a subbase for ρ. Then the following statements hold:

(1) The distance function is a partial metric on X.
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(2) The kernel ker(pA) of pA is a Gδ-set.
(3) The partial metric pA is compatible with ρ if and only if⋂

Cix \
⋃

(Ci \ Cix) ∈ ρ,

for all i ∈ N and x ∈
⋃
Ci.

(4) With respect to the induced topology ker(pA) is a zero-dimen-
sional space.

Proof. It remains to show statement (4). By the preceding two
lemmas the transitive quasi-uniformity RA is compatible with ρ.
Thus, the uniformity generated by the restrictions of the entourages
Ri to the kernel of pA is a transitive as well and compatible with the
induced topology ρ�ker(pA). With [7, Proposition 6.1] we obtain
that the subspace (ker(pA), ρ�ker(pA)) is zero-dimensional. �

Obviously, the condition in Theorem 4.7(3) is satisfied if the
members of each collection Ci are pairwise disjoint.

Corollary 4.8. Let (X, ρ) be a T0 space and A = (Ci)i∈N be a
family of collections of pairwise disjoint open subsets of X such that⋃
i∈N Ci is a subbase for ρ. Then the following statements hold:

(1) The distance function pA is a partial metric on X that is
compatible with ρ.

(2) The kernel ker(pA) of pA is a Gδ-set.
(3) With respect to the induced topology ker(pA) is a zero-dimen-

sional space.

Note that in this case the partial metric pA coincides with the
partial metric defined in [13, Proposition 2].

If the members of all Ci are pairwise disjoint we have that

UCi =
⋃
C∈Ci

C × C ∪ (X \
⋃
Ci)×X,

which implies that UCi = Ri. Thus the quasi-uniformities UA, RA

and UdA
all coincide.

Proposition 4.9. Let (X, ρ) be a T0 space and A = (Ci)i∈N be a
family of collections of pairwise disjoint open subsets of X such that⋃
i∈I Ci is a subbase for ρ. Then UpA

= RA = UA.

Let D be an ω-algebraic domain and P = (Pz)z∈KD as well as
S = (Sz)z∈KD be the families of collections of pairwise disjoint
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Scott open sets considered in Example 4.2. Then we have for the
partial metrics p and q defined in (3.1) and (3.2), respectively, that
p = pP and q = pS. Moreover, as a consequence of Corollary 4.8 we
obtain that both are compatible with the Scott topology, as stated
in Propositions 3.3 and 3.4.
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